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ABSTRACT
We test the accuracy of different models of the attenuation of light due to resonant scattering
by intergalactic neutral hydrogen by comparing their predictions of the evolution of the mean
cosmic flux decrement,D A , to measurements of this quantity based on observations. Tothis
end, we use data available in the literature and our own measurements of the cosmic flux
decrement for 25 quasars in the redshift range 2.71 < zem < 5.41 taken from the SDSS Data
Release 5. In order to perform the measurements ofD A , we fit a power-law to the continuum
redward of the Lyα emission line, and extrapolate this fit to region blueward ofit, where the
flux is severely affected by absorption due to intervening H absorbers.

We compute, using numerical simulations, the redshift evolution of D A accounting for
the presence of Lyα Forest absorbers and Lyman limit systems randomly distributed along the
line-of-sight, and compute its intrinsic scatter at the 1-,2-, and 3σ level due to fluctuations
in the absorber properties (column density, Doppler parameter, redshift) along different lines-
of-sight. The numerical simulations consist of Monte Carlorealizations of distributions of the
absorber properties constrained from observations.

The results from the models considered here confirm our theoretical expectation that the
distribution ofD A at any given redshift be well described by a lognormal distribution function.
This implies that the effective optical depth, usually defined as the negative logarithm of the
average flux, 1 -D A, is very accurately Gaussian distributed, in contrast to previous studies.
This result is independent to the form of the input distribution functions, and rather insensitive
to the presence of high-column density absorbers, such as the Lyman limit systems.

By comparing our and previous measurements ofD A to the outcomes of our simulations,
we find an excellent agreement between the observations and the evolution of themean DA as
predicted by one of the models considered in this work. Theobserved scatterin D A at each
redshift, however, cannot be recovered from our simulations. Even though there is evidence
for the fact that the lack of agreement between models and observations comes from the
combination of heterogeneous measurement sets obtained bydifferent methods, the failure of
the models to accurately account for the absorption by intergalactic Lyα absorbing systems
and its variation along different lines-of-sight cannot be completely ruled out.

Key words: methods: numerical, intergalactic medium, quasars: absorption lines

1 INTRODUCTION

Since the introduction of the Gunn-Peterson (GP) test by
Gunn & Peterson (1965), a detailed knowledge about the physical
state of the intergalactic medium (IGM) has been gained fromthe
study of the absorption features identified in the spectra ofquasi-
stellar objects (QSOs) at restframe wavelengthsλ 6 121.5 nm,

⋆ Currently at: Institut für Physik, Universität Potsdam,Am Neuen Palais
10, D-14469 Potsdam; E-mail: tepper@astro.physik.uni-potsdam.de

which are now known to be mainly due to resonant scattering by
intergalactic neutral hydrogen randomly distributed along the line-
of-sight, as first proposed by Lynds (1971). For instance, the null
result in the search for a GP trough has been used to rule out
the existence of a hot intercloud medium (ICM) (Steidel & Sargent
1987a, Giallongo et al. 1992, 1994), which was thought to confine
by pressure the Lyα clouds (Sargent et al. 1980, Ostriker & Ikeuchi
1983). As a result of detailed analyses of the line statistics of
the absorbing material, a wealth of information on its clustering
(seee.g.Ostriker et al. 1988), in particular the existence of voids
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(e.g.Pierre et al. 1988, Duncan et al. 1989, Dobrzycki & Bechtold
1991), and the evolution of its number densities, column densities,
and Doppler parameter with redshift (e.g.Kim et al. 1997) has ac-
cumulated over the past years. These results, in combination with
the use of state-of-the-art numerical simulations of structure forma-
tion based on the currently accepted paradigm of the concordance
cosmology (Springel et al. 2005), show that the features seen in
absorption against bright background sources arise when the line-
of-sight intersects the structures that naturally emerge and evolve
with time under the influence of gravitational attraction. Differ-
ent types of structures such as the filaments present in thecosmic
web, galactic haloes, and even the discs of primeval galaxies, give
rise to distinct absorption features attributed to entities known his-
torically as Lyα Forest clouds, Lyman limit systems (LLSs), and
damped Lyα absorbers (DLAs) (seee.g.Rauch 1998, Wolfe et al.
2005, for excellent reviews, respectively). Nevertheless, the rela-
tion between the observed absorption features and the objects caus-
ing them, in particular the correlation between observed damped
absorption lines, metal lines (e.g.Mg , O ) and galaxies–the so-
called Absorber-galaxy Connection–is still a matter of debate (see
e.g.Williams, Shu & Ménard 2005, Part 1). As a consequence of
numerous efforts over many years, we now have a better under-
standing of the origins of the different absorption features observed
in QSO spectra. In particular, the notion of discrete, intervening H
absorbing systems randomly distributed along the line-of-sight has
been embedded into the more general picture of an evolvingcon-
tinuousintergalactic medium with a H density field that varies in
space and time, with its evolution driven mainly by the Hubble ex-
pansion, the radiation field of ionising UV sources, and the collapse
of structures due to gravity.

1.1 Methods and Input Distributions: A Brief Review

Over decades many people have been working hard towards in-
ferring the physical properties of the intergalactic medium such as
its chemical content, density, temperature, etc. (seee.g.Kim et al.
2002) by measuring the type of transition, strength, numberden-
sity, and profiles of absorption lines imprinted in the spectra of
QSOs and, more recently, of Gamma-Ray bursts (GRBs) (e.g.
Lamb & Reichart 2000). There has also been a great effort to quan-
tify the effect of the absorption due to intergalactic neutral hy-
drogen on the photometric properties of background sources. As
a matter of fact, several models have been developed in orderto
account for this so-called intergalactic attenuation, with different
approaches and purposes. Møller & Jakobsen (1990) used Monte
Carlo simulations to estimate the amount of absorption at wave-
lengths shorter than the redshifted He λ30.4 nm line, in order to
test the feasibility of the equivalent of the Gunn-Petersontest for
intergalactic helium. They found that the absorption as a function
of wavelength, averaged over many lines-of-sight, should display
together with a characteristic stair-case profile due to thecumula-
tive absorption at the H resonant wavelengths, an additional char-
acteristic valley-shaped feature (the ”Lyman-valley”) due to the cu-
mulative effect of the photoionisation of H by photons with ener-
gies Eγ > h c/λ L, whereλ L = 91.2 nm. Later on, in a seminal
paper Madau (1995) developed an analytical method to quantify
the opacity due to intergalactic H as a function of redshift, and
its effect on the colors of high-redshift galaxies. The underlying
assumption of this model is that the observed flux of a source at
redshiftz is given by the product of theintrinsic flux and a trans-
mission factor that accounts for themeanabsorption as a func-
tion of wavelength given in the form exp(−τeff) ≡ 〈exp(−τ)〉 (see

Madau 1995, their equation 3), where the brackets denote theaver-
age over an ensemble of random lines-of-sight. The most common
application of this model consists in correcting the flux of asyn-
thetic (galaxy-, QSO-) spectrum for intergalactic absorption. This
correction is of particular importance at high redshift, where in-
tergalactic H severely absorbs the light of a background object at
restframe wavelengths shorter than 121.6 nm, leading to a substan-
tial reddening of its colour (seee.g.Bicker et al. 2004). As the nu-
merous references in the literature attest, the Madau modelhas be-
come the most widely used attenuation model. However, in a later
work Bershady, Charlton & Geoffroy (1999, from now on BCG99)
argued that it is not possible to estimate the mean change in the
magnitude of a source at a given redshift due to absorption byin-
tergalactic H along the line-of-sight by multiplying the mean trans-
mission curve of Madau’s model with the spectrum of the source
and integrating over the corresponding passband, mainly because of
the existence of color terms. They suggested that the correct way
of accounting for the mean effect of H absorption on the spec-
trum of a background source and on its photometric properties is
to model first the absorption along many random lines-of-sight,
compute the desired photometric quantities for each one of them,
andthencompute the average over the ensemble of lines-of-sight.
In other words, they argue that the processes of averaging over
many random lines-of-sight and measuring photometric quantities
are non-commutative. Indeed, they showed using a Monte Carlo
technique that the average magnitudes computed following their
approach substantially differ from those computed using Madau’s
model, even when using the same input distributions for the number
of absorbers, their column densities and Doppler parameters. The
approach proposed by BCG99 effectively mimics the measurement
process that would take place if one would determinee.g.the mean
observed brightness of a collection of galaxies with different ab-
sorber populations along their particular lines-of-sight, but other-
wise identical in their intrinsic properties (spectrum, morphology,
etc.), and is hence physically meaningful. It turns out thatfeatures
such as the characteristic stair-case profile and the Lyman-valley
cannot possibly be observed in asinglespectrum, since they arise
only by averaging over sufficient numbers of lines-of-sight, a pro-
cess that has no physical meaning.

In a more recent paper, Meiksin (2006) developed a method
to compute the opacity due to intergalactic H by using hydrody-
namical simulations of structure formation in the framework of the
concordanceΛCDM cosmology performed by Meiksin & White
(2004). Applying their model to compute broad-band magnitudes
for different types of objects (e.g.starburst galaxies, QSOs of Type
I and II), Meiksin (2006) reports differences of 0.5 – 1.0 mag with
respect to Madau (1995)’s model. Despite the different results ob-
tained, this model is similar to Madau (1995)’s model in the sense
that it implicitly assumes that the mean opacity of the IGM along
a random line-of-sight due to the presence of H can be accounted
for by multiplying a given input spectrum with a mean attenuation
curve of the form exp(−τeff) and integrating over the corresponding
filter function (see Meiksin 2006, their equation 8).

Following BCG99, we state that
∫ ∞

0
f λ · 〈exp(−τ)〉 ·T(λ) dλ ,

〈∫ ∞

0
f λ · exp(−τ) · T (λ) dλ

〉

, (1)

where f λ is the intrinsic flux,T(λ) is the filter transmission func-
tion, and the brackets denote the average over all lines-of-sight.
We consider that the operation implied by the right-hand side of
this expression is the correct way of estimating mean magnitudes
of background objects including the effect of the absorption due
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to intergalactic H. This approach is of course not restricted to the
computation of mean magnitudes and colors, and can be applied to
the estimate of the mean of any photometric quantity. Furthermore,
it is also possible to determine not only the mean, but in principle
any desired confidence interval around the mean,e.g.±σ range,
via the computation of quantiles (see Section 5).

It should be clear that not only the method, but also the input
physics is an (even more) crucial ingredient of a particularmodel
that accounts for the intergalactic attenuation, as already shown by
BCG99. It is, however, not trivial to test whether using a particular
method and a set of input distributions accurately describes the
observed effect of the absorption by intergalactic H on the spectra
of background sources. For example, the evolutionary synthesis
models of Bicker et al. (2004) that include the correction for
intergalactic absorption based on Madau’s model match quite well
the observations of galaxies in the Hubble Deep Field (Bicker et al.
2004, their Figure 12), since the magnitude differences reported
by BCG99 (their Figure 7) for one of their models with respect
to Madau’s model are in this case of the order of the scatter of
the observations around the predicted colors. In other words,
even though Madau’s and BCG99’s approaches are fundamentally
different, it is difficult to test the accuracy of their predictions on
the basis of a comparison toe.g.observed galaxy colors. A quantity
that is more sensitive to the absorption due to intergalactic H is the
mean cosmic flux decrementDA (cf. Section 2). The reason for
this is that the restframe wavelength range over which this quantity
is measured is typically 10 nm wide, and is hence narrower than
typical broadband filters. We thus consider as a primer test that
any model that accounts for the absorption due to intergalactic
H should reproduce first of all the observations of this quantity.
Hence, through the comparison of their respective predictions to
measurements ofDA it should be possible to discriminate between
different models which may or may not be appropriate to account
for the effect of the intergalactic attenuation on the spectra of
background sources. We select for this comparison two of several
models introduced by BCG99 to compute the magnitude changes
of high-redshift galaxies due to intergalactic absorption, and
which are based, respectively, on the input distribution functions
of Kim et al. (1997), and the input physics of the Madau (1995)
approach. The latter is chosen since, as already mentioned,it is the
model most widely used in the literature; the former constitutes,
to the best of our knowledge, the most complete set of input
distribution functions for the evolution of the Lyα absorbers to
date, later expanded but not significantly changed by Kim et al.
(2002).

To sum up: The main goal of this work is to model and analyse
the redshift evolution ofDA for different evolution scenarios of
the intergalactic neutral hydrogen, conveniently parametrized by
input distribution functions of the form of equation (4, Section 2).
Hence, the models we consider here differ only by the set of input
distribution functions used, but they all equal in method,i.e. all
of them take advantage of the Monte Carlo technique. We judge
the goodness of a particular model by its power to reproduce the
observations ofDA in a wide redshift range, and analyse to which
extent the theoretical expectations about the properties of DA are
recovered from the measurements.

This work is organised as follows: In Section 2 we briefly re-
call the concept of the cosmic flux decrement and discuss some
issues related to its measurement. In Section 3 we present two dif-
ferent types of models for the intergalactic attenuation, which we
use to model the redshift evolution of the cosmic flux decrement.

In Section 4, we describe our measurements of this quantity for a
sample of SDSS QSO spectra. Finally, we compare these and pre-
vious measurements to the outcomes of each model, and discuss
the results of this comparison as well as some other implications of
the models for the evolution ofDA in Section 5.

2 THE COSMIC FLUX DECREMENT REVISITED

Before high-resolution (i.e.∆λ . 1 nm), high S/N observation be-
came feasible, the basic spectroscopic technique used to analyse the
effect of the absorption due to intergalactic neutral hydrogenon the
spectra of background sources was to measure the mean depression
of the observed flux relative to the unabsorbed flux –or emission
continuum–, a quantity which became to be known as cosmic flux
decrement. This quantity, first introduced by Oke & Korycansky
(1982), can be defined as a function of redshift by

DA (z) ≡ 1
∆λ

∫ λ2·(1+z)

λ1·(1+z)

(

1− fobs(λ)
f c(λ)

)

dλ , (2)

where f c and fobs are the continuum and the observed fluxes, re-
spectively, and∆λ ≡ (1+ z) · (λ 2 − λ 1). Formally, the integral is
computed in the restframe wavelength range [102.5, 121.6] nm, i.e.
between the Lyβ and the Lyα emission lines. However, the actual
estimate ofDA is usually performed between the restframe wave-
lengthsλ = 105 nm andλ = 117 nm –or in an even narrower wave-
length interval– in order to avoid contamination by the emission
wings of the Lyβ + O and Lyα lines, respectively.

SinceDA is extremely sensitive tof c, as can be easily seen
from the definition (2), an accurate measurement of this quantity
demands a reliable estimate of the underlying continuum. Unfor-
tunately, there is no consensus of what the best method to esti-
mate the continuum may be. A popular choice, mainly because
of the presence of emission lines redward of the Lyα forest re-
gion, consists in fitting a local continuum, most commonly using
cubic splines (seee.g.Lu et al. 1996) or b-spline functions (seee.g.
Kirkman et al. 2003, Tytler et al. 2004a,b), searching for regions
apparently free of absorption blueward of the Lyα emission line.
Other authors prefer to fit a continuum in the region redward of the
red wing of the Lyα emission line, and extrapolate it to the region
blueward of it (Steidel & Sargent 1987b, Schneider et al. 1989,
Cristiani et al. 1993). A widely adopted form for the fitted contin-
uum in this case is a power-law with spectral indexα ν which for
wavelengthsλ > 121.6 nm takes on values in the range [0.28, 0.99]
(Steidel & Sargent 1987b, Vanden Berk et al. 2001, and references
therein). The latter method may tend to place the intrinsic contin-
uum level higher than it actually is, thus overestimating the mea-
sured values ofDA (cf. Sec. 4.1; see also Tytler et al. 2004a, and
references therein); for the former method the opposite is true, in
general (seee.g.Faucher-Giguere et al. 2007). For either method,
there is an uncertainty in the estimate of the continuum, andthis
is the main drawback of the mean flux depression as a technique
to estimate the mean absorption due to neutral hydrogen present
in the intergalactic medium (IGM). In an attempt to overcomethis
problem, Zuo & Lu (1993) used the idea that the cosmic flux decre-
ment effectively measures thetotal equivalent width of all Lyα ab-
sorption lines in the chosen wavelength range –if correctedfor the
contribution of metal absorption lines– to measure this quantity by
simply adding up the equivalent widths of lines identified asLyα
absorption lines. Of course, the reliability of this technique highly
depends on the correct identification of lines, and misidentification
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may lead to larger uncertainties than those associated to the contin-
uum estimate.

It turns out that reliable measurements ofDA are very use-
ful to constrain estimates of fundamental cosmological parame-
ters such as the mean baryon densityΩ b, the UV background in-
tensity (Rauch et al. 1997), the normalization of the power spec-
trum σ8, the vacuum-energy densityΩΛ, and the Hubble param-
eter H0 (Tytler et al. 2004a). It is hence of great interest to con-
trast observations to theoretical models of the evolution of DA , in
which the bias due to the uncertainty in the estimate of the contin-
uum is absent. This has been previously done by different workers
(seee.g.Giallongo, Gratton & Trevese 1990, Cristiani et al. 1993,
Madau 1995), usually obtaining a good agreement with observa-
tions. However, there is still a scatter in the observationsof this
quantity for which it has not been accounted yet in any modelling
so far. It is possible that this scatter may well be due to the dif-
ference in the methods used by each group to measureDA and to
the different redshift ranges probed. Hence, by taking advantage of
the Monte Carlo technique, we assess to which extent theobserved
scatter can be ascribed to theintrinsic scatter inDA due to fluctu-
ations in the properties (number density, column density, Doppler
parameter) of the H absorbers along different lines-of-sight (see
Section 3.3).

From the theoretical point of view, assuming that the restframe
equivalent width of the absorbers does not evolve with redshift,
and that the number density of the absorbing systems evolveslike
∝ (1+ z) γ, it is expected thatDA should evolve withz like

DA(z) ∝ (1+ z)1+γ (3)

where the extra factor (1+ z) comes from the scaling of the equiva-
lent width, as pointed out by Jenkins & Ostriker (1991). Indeed, it
has been found empirically that the redshift evolution ofDA can be
described by a power lawDA (z) = A · (1+ z)1+γ with A = 6.2·10−3

andγ = 1.75 (Kirkman et al. 2005), even though other functional
forms, e.g.an exponential of the formDA (z) = D0

A · eα·(1+z) with
D0

A = 0.01 andα = 0.75 (Zhang et al. 1997) also match well
the observations. More recently, Kirkman et al. (2007) showed
that the observed evolution ofDA with redshift in the range
0 < z < 3.2 is well described by a broken power-law, even though
the significance of the fit is low. In any case, expressions like
these are only valid up to a given redshift, since they diverge for
z → ∞, whilst DA converges asymptotically to 1 in this limit
or, more precisely, when z approaches the redshiftzreion at which
reionisation sets on. As will be shown later, the redshift evolution
of DA predicted by our simulations does satisfy this asymptotic
behaviour (cf. Section 5). Furthermore, even if the power-law form
for the evolution ofDA holds, the indexγ in equation (3) should
be replaced byγ, where the latter index accounts for the averaged
evolution of absorbers of different column densities, which evolve
all at different rates. Conversely, estimates of a singleγ from DA

measurements assuming a power-law of the form of equation (3),
as done by O’Brien et al. (1988), may give a hint on the population
of absorbersdominating the behaviour ofDA , comparing the
estimatedγ with the power-law index of the different populations.
For instance, according to one of the models considered here,
the redshift evolution ofDA will be shown to be dominated by
absorbers with column densities NHI < 1017 cm−2.

A compilation ofDA measurements, accumulated in the liter-
ature over the past twenty years approximately, and which includes
our own measurements that extend the redshift range tozem = 5.41,

Table 1. Types of absorbers and their corresponding parameters adopted
from Madau (1995, their equation 10). Note, however, that they quote
NHI = 2.0 · 1012 as lowest column density, while we use NHI = 1.0 · 1012,
in order for the adopted normalisation to be consistent.

NHI [cm−2] N 0 γ β

1012 − 1.59 · 1017 2.40 · 107 2.46 1.50
1.59 · 1017 − 1020 1.90 · 108 0.68 1.50

is shown in Figure 6 (cf. Section 4 and cited references for details
on the measurements in this figure).

3 MODELLING THE INTERGALACTIC ATTENUATION

Since the observation of individual sources (galaxies, QSOs,
GRBs) necessarily implies observations along different lines-of-
sight, it is expected that the stochastic nature of the distribution of
the Lyα absorbers, especially of those with the highest column den-
sities, causes a scatter in the observed absorption, even for sources
with identical intrinsic spectra. Hence, depending on the absorp-
tion along a particular line-of-sight, one would expect different ob-
served values for each measurement of any photometric quantity,
for example, the cosmic flux decrementDA . Performing enough
measurements of such a quantity for sources with –ideally– iden-
tical SEDs at a fixed redshift, one could in principle estimate its
mean and its scatter due to stochastic effects in the absorption by
neutral hydrogen in the IGM.

The numerical realisation of this thought experiment is
best achieved through Monte Carlo simulations. Followinge.g.
Møller & Jakobsen (1990), Giallongo et al. (1990), Cristiani et al.
(1993), and BCG99, we generate thousands (4· 103) of lines-of-
sight each with a random population of H absorbers, and compute
the absorption along each of them for a given input spectrum at
a fixed redshift. The population of each line-of-sight consists of a
random numberNabs of absorbing systems, each of them character-
ized by three parameters: its redshiftzabs, its column density NHI ,
and its Doppler parameterb ≡

√
2kT/mH, wherek is the Boltz-

mann constant,T is the kinetic temperature of the gas andmH is
the mass of the hydrogen atom.

The redshift and column density characterising each absorber
are drawn from a distribution of the form

f (NHI , z) = N0 · (1+ z) γ · NHI
−β , (4)

whereN0 is a normalization constant. This function defines the 1-
dimensional distribution of the H present in the IGM probed by a
random line-of-sight. The numberNabs of systems for each line-of-
sight is drawn from a Poisson distribution with parameter

〈Nabs〉 =
∫

I z

∫

I N HI

f (NHI , z) d NHI dz, (5)

where the integral is carried out over appropriate redshift- and col-
umn density intervalsI z andI N HI , respectively.
We use different sets of input distributions that include the evolu-
tion of both low- and high density absorbers, and that give rise to
the following models:

MMC This model relies on the input distributions from Madau
(1995, their equation 10) listed in Table 1. Here, the Doppler pa-
rameter is kept constant at a valueb = 35.0 km s−1, which roughly
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Table 2. Types of absorbers and their corresponding parameters, adopted
from BCG99, their equation 10.

NHI [cm−2] N0 γ β

1012 − 1014 3.14 · 107 1.29 1.46
1014 − 1.59 · 1017 1.70 · 106 3.10 1.46
1.59 · 1017 − 1020 1.90 · 108 0.68 1.50

matches the meanb-value derived by Rauch et al. (1992). This
model corresponds to one of the several models presented by
BCG99, and is referred to as theMC-NH method in their work.

BMC This model matches the best method of BCG99 namedMC-
Kim. The corresponding parameters for the line-density evolution
and column density distribution functions are summarized in Ta-
ble 2. In this model, in contrast to the MMC model, the Doppler
parameter for each absorber is drawn from a truncated, redshift-
dependent Gaussian distribution of the form

P(b) ≡ Θ (b− btr ) ·
1

√
2πσ2

exp

(

− 1
2σ2

(b− µ)2

)

,

whereΘ(x) is the Heaviside function:

Θ(x) =

{

0, x < 0
1, x > 0

and the mean, standard deviation, and truncation value as a function
of redshift are given byµ (z) = −3.85z+38.9,σ (z) = −3.85z+20.9
andbtr (z) = −6.73z+ 39.5, respectively. BCG99 originally used
this model to analyse the impact of the intergalactic attenuation on
high-redshift galaxy colors in the range 1.75< z< 5.0, but we use
it in the extended range 0.2 < z < 5.41. Since our highest redshift
limit is not too far away from BCG99’s, we may safely assume that
the model is valid in our extended redshift range.

MMC without Lyman limit systems In order to asses the impact
of the Lyman limit systems on the intergalactic absorption,we
introduce this model, which consists of the same input distributions
as the MMC model, excluding the systems with column densities
NHI > 1.59 · 1017 cm−2.

In all the models describe above, the attenuation factor for
each absorber is given by exp[−τ (λ)], where, for the general case,
the absorption coefficientτ (λ) can be written as

τ (λ) = τ LL (λ) +
N trans
∑

i=2

τi (λ) . (6)

The first term on the right–hand side is the opacity due to the ioni-
sation of neutral hydrogen by photons with wavelengthsλ 6 λ LL ≡
91.18 nm. It is given by

τ LL (λ) = NHI · Θ (λ LL − λ) · g (λ) · σ∞ ·
(

λ

λ LL

)3

, (7)

whereσ∞ ≡ 6.3·10−18 cm2 is the H photoionisation cross-section,
andg is the Gaunt–factor for bound–free transitions1. The second
term is the sum of the opacities due to resonant scattering ateach

1 An extensive tabulation of values for the Gaunt–factor can be found in
Karzas (1961).

transition of the Lyman series2. In general, the absorption coeffi-
cient for the transition 1→ i is

τ i(λ) = NHI · σ i · φ (a i , x) . (8)

The cross-sectionσ i is a function of the Doppler parameterb, the
oscillator strength of the transitionfi , and the resonant wavelength
λi, and is given by

σi =

√
π e2

mec2

λ2
i

∆λD
f i , (9)

where∆λD = λi b/c is the Doppler broadening, and the variable
x ≡ (λ − λi)/∆λD is the distance to the line center in Doppler units.
We assume the profile functionφ of the absorption line to be given
by the Voigt-Hjerting function

H (a i , x) ≡ a i

π

∫ +∞

−∞

e−y2

(x− y)2 + a2
i

dy. (10)

Here, a i ≡ λ2
i Γi/(4π∆λD) is the relative strength of the natu-

ral broadening to Doppler broadening for theith transition, and
y ≡ v/b is the kinetic velocity in units of the Doppler parameter. In
this work, we neglect the opacity due to the photoionisationterm
and consider only the first resonant transition,i.e. the Lyα transi-
tion, since this is the only one of interest in the wavelengthrange
studied here. Furthermore, we use the approximation toH for val-
ues ofa and column densities characteristic for intergalactic H of
Tepper-Garcı́a (2006).

3.1 The transmission factorΦ

The cumulative absorption along a random line-of-sight of the flux
fem of a source at redshiftzem is calculated according to expression

fobs(λ obs) =
fem(λ em)
1+ zem

·Φ (λ obs) , (11)

whereλ obs andλ em are the observed and the emitted wavelengths,
respectively. These are related byλ obs = λ em · (1+ zem). The quan-
tity Φ is the transmission factor and is given by

Φ (λ) ≡
Nabs
∏

i=1

exp[−τ2 (λ/(1+ zi)] = exp

















−
Nabs
∑

i=1

τ2 (λ/(1+ zi)

















, (12)

whereτ is given by equation (8), andzi is the redshift at the epoch
of absorption3.

Introducing the relationf c (λ) = fem[λ/(1 + z)]/(1 + z), it
follows from equations (2), (11), and (12) that

1− DA (z) =
1
∆λ

∫ λ2·(1+z)

λ1·(1+z)
Φ (λ) dλ . (13)

The right–hand side of this expression is just wavelength-averaged
value ofΦ at redshiftz, and we will denote it byΦ z. Note, how-
ever, that this quantity still depends on redshift, as indicated by
the subscript. SinceDA (z) andΦz differ only by a constant factor,
they may be considered as equivalent with respect to their statistics,
which will be discussed in the next section.

2 We adopt the convention that the Lyα transition (from the ground state to
the next higher energy level) be identified with i= 2, the Lyβ transition with
i = 3, etc. The photoionisation cross-section is thus consistently denoted by
σ∞.
3 The reader shall bear in mind that NHI , andσ i anda i–through the depen-
dence on the Doppler parameter–in equation (8) are different in general for
each absorber. However, we do not write this explicitly bye.g.introducing
a new subscript in order to avoid a cumbersome notation.
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6 T. Tepper-Garcı́a and U. Fritze

3.2 Distribution of DA

Judging from the dependence ofΦ on τ and Nabs (see equation
12), it is expected that the transmission factor and consequently DA

are rather complicated random variables. Nevertheless, asis well
known from statistics, a random variablex that can be expressed
as the product of a large number of small, statistically independent
factors is distributed lognormally,i.e.according to the distribution

f (x; µ, σ) =
1

√
2πσ2 x

e
− 1

2

(

ln x−µ
σ

)2

, (14)

whereµ andσ are the mean and the standard deviation of lnx. This
expression is equivalent to the statement that a random variablex
is distributed lognormally, if and only if its logarithm is distributed
normally.

The expected valueµ′ and the standard deviationσ′ of a log-
normal distributed quantity can be expressed in terms of theparam-
etersµ andσ as

µ′ = eµ+
1
2σ

2
, (15)

and

σ′ =
(

eσ
2 − 1

)1/2
µ′ . (16)

From the form of equation (12) we may suspect that the transmis-
sion factor is a lognormally distributed variable, since itcan be ex-
pressed as the product of a large number of statistically indepen-
dent factors that take on values in the range [0, 1]. The implications
of this statement are profound: IfΦ is distributed lognormally, so
doesΦ z and consequentlyDA (z). Furthermore, due to the prop-
erty of the lognormal distribution stated above, the effective optical
depth of the Lyα absorption, usually defined asτeff ≡ − ln (1−DA )
(seee.g.Kim et al. 2001) should obey a Gaussian distribution. This
result follows independently from the fact that the total optical
depth can be expressed as the sum of the independent contribu-
tion of each system, as indicated in equation (12). Thus, fora suffi-
ciently large number of absorbersNabs, and if the optical depth for
each absorber has the same mean value〈τ〉 and dispersionσ (τ) at
each wavelength (i.e. redshift),τeff should obey a Gaussian distri-
bution at each redshift, centered atNabs〈τ〉 and with a dispersion√

Nabsσ (τ). These statements are completely independent of the
form of evolution of the intergalactic neutral hydrogen, aslong as
the transmission factor can be expressed in the form of equation
(12).

In order to test whether the values ofDA obey a lognormal
distribution, we computeDA using the MMC and BMC models for
an ensemble ofNLOS = 4·103 lines-of-sight at a given redshift, and
from these values we compute the mean and standard deviationof
ln DA according to the equations

µ (ln DA) ≡ 1
NLOS

NLOS
∑

i=1

ln D i
A , (17)

and

σ2(ln DA ) ≡ 1
NLOS − 1

NLOS
∑

i=1

(

ln D i
A − 〈ln DA〉

) 2
, (18)

With these parameters, we generate for each redshift a set of
normally distributed random numbers using a standard random-
number generator, and compare them statistically to the lnDA val-
ues from our simulations at each given redshift, in order to deter-
mine whether the latter are normally distributed. Recall that lnDA

is distributed normally if and only ifDA obeys a lognormal proba-
bility distribution. As a first approach, we choose to compare both

Figure 1. Values ofδ for the MMC model assuming a lognormal (heavy
solid line) and Gaussian (heavy dashed line) parent distribution. The shaded
area indicates the rangeδ 6 0.05, that corresponds to a probability of 1.9 ·
10−5 that the data are not drawn from the same parent distribution. Note how
the assumption of a Gaussian parent distribution improves with redshift, but
that a lognormal distribution is a better assumption for lowredshifts. The
light solid and light dashed lines correspond to the MMC model without
Lyman limit systems (see Section 3.2.1). Note that the approximation to a
lognormal distribution, is better when these systems are included (see text
for discussion). The fluctuations seen with respect to a perfect smooth curve
in each case are due to the random nature of the process at eachredshift,
and are not significant.

data sets via aχ2-test similar method, and to this end we com-
pute for each set of values the 50 per cent quantile (median),and
the±34.13,±43.32,±47.72,±49.38, and±49.87 per cent quantiles
around the median. We define the following measure

δ2 ≡
Nq
∑

i=1

(

Q i − q i

Q i

) 2

, (19)

where theQ’s are the quantiles determined from the set of random
numbers distributed normally, theq’s are the corresponding quan-
tiles of the lnDA values at a given redshift that result from our
simulations, andNq = 11 is the number of quantiles. By definition,
δ explicitly gives the absolute deviation of one data set as charac-
terised by these 11 quantiles with respect to the other data set, and
thus quantifies the departure of the assumed distribution. Indeed,
the smaller the value ofδ, the larger the probability that both data
sets belong to the same parent distribution. The values ofδ com-
puted in this way turn out to lie in the range (5· 10−2, 5 · 10−1),
which may seem vanishingly small. However, since the distribu-
tion of the random variableδ itself is unknown, we determine the
significance of the results by generating two sets of normally dis-
tributed random numbers with mean and standard deviations dis-
tributed uniformly, and comparing them to the values found for our
simulated data. We do this for 1.2 · 106 pairs of sets, and deter-
mine from these what is the fraction of realisations with a value of
δ smaller than a given value. According to these estimates, there is
a probability of{1.4 · 10−2,3.1 · 10−3, 1.9 · 10−4, 2.3 · 10−5} that
a valueδ 6 {0.50, 0.25, 0.10, 0.05} will be produced by chance,
respectively. In Figure 1 we show the values forδ as a function
of redshift for the full MMC model, assuming a lognormal parent
distribution forDA (heavy solid line). The result are qualitatively
the same for the BMC model and are not shown for clarity. Note
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Figure 2. Distribution of theDA values at a given redshift computed from simulations based on the MMC model (histogram). The distribution is normalised
to unit area. The bin size used to compute the histogram at each redshift has been arbitrarily chosen to be given bymax{ DA (z)}/100, and is hence different
at each redshift. The binning of the data,i.e. the DA values at each redshift obtained from the simulations, is intended only for display purposes. Shown are
also the analytic lognormal distribution (solid line) computed according to equations (14), (17), and (18), and the analytic Gaussian distribution (dashed line)
computed using the same equations as before but replacing lnDA by DA . They-axis indicates the probability of the correspondingDA value on thex-axis.
Note that the binned data have not been used in any form to estimate the parameters of the corresponding probability distribution. Hence, the curves shown
are not fits to the binned data, but are computed using only themean and standard deviation of the raw data. Note the excellent agreement between the data
and the analytic lognormal distribution, especially with respect to the skewness and the cut-off at DA = 0. The distribution of the data is not well described
by a Gaussian distribution at the lowest redshifts shown. However, the approach of the data distribution to a Gaussian distribution increases with increasing
redshift, as expected (see text for details).

that for the whole redshift range shown,δ . 0.5, and in particular
δ . 0.1 for zem> 1.5.

It follows from the Central Limit Theorem that the larger the
number of absorbersNabs, the closer the approach of the distribu-
tion ofΦ to a lognormal distribution, since the distribution of lnΦ
approaches a Gaussian. Given thatNabs increases with redshift, it
should be expected that the accuracy with which the distribution of
Φ approaches a lognormal distribution also increases with redshift.
Furthermore, if the integral in equation (13) is approximated by a
sum of the form

Φ z ≈
1
N

N
∑

i=1

Φ i ∆λ i ,

whereN is the number of pixels, it is apparent that for a sufficiently
largeN, and assuming thatΦ has the same mean value〈Φ〉 and dis-

persionσ(Φ) at each pixel, the distribution ofΦ z should approach a
Gaussian distribution with mean〈Φ〉 and dispersionσ(Φ)/N. Since
the width of a given restframe wavelength range,i.e. the number
of pixels also increases with redshift as (1+ z), it is expected that
the approximation of the distribution ofΦ z and hence ofDA to a
Gaussian becomes better with increasing redshift. We thus have the
superposition of two effects: On the one hand, the distribution of
Φ at a fixed wavelength approaches a lognormal distribution atany
given redshift, with the accuracy increasing with redshift. On the
other hand, the distribution ofΦ z andDA (z) approaches a Gaus-
sian distribution with increasing redshift. The net resultshould be
thatΦ z and DA are distributed lognormally at low redshifts, and
that their distribution approaches a Gaussian for higher redshifts.
SinceDA asymptotically converges to unity for very high redshifts,
its distribution at these redshifts is expected to be highlypeaked
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8 T. Tepper-Garcı́a and U. Fritze

around the mean value. This is naturally given by the fact that the
dispersion ofΦ z scales likeσ(Φ)/N around〈Φ〉, and thatN in-
creases with redshift, as stated above.

In order to test this expectation, we compute the analyticallog-
normal (Gaussian) probability distribution ofDA as given by equa-
tion (14) with the mean and standard deviation of lnDA (DA) com-
puted using equations (17) and (18) from the ensemble of values
that result from our simulations at each redshift. The comparison
of the analytic distribution thus obtained to the distribution of sim-
ulatedDA values is shown for the full MMC model in Figure 2. The
results for the BMC model are qualitatively the same and are hence
not shown. Note the excellent agreement at all redshifts between the
lognormal probability distribution and the distribution of the DA

values resulting from our simulations. We want to emphasizethat
the curves shown are not fits to the binned data, but are computed
using only the mean and standard deviation of the unbinned data. At
lower redshift, the agreement at the lower cut-off, i.e. at DA = 0 is
worth mentioning. It is remarkable that this cut-off, which is phys-
ically given by the fact that absorption as measured byDA can-
not take on values smaller than zero, arises in a natural way due
solely to the fact thatDA is distributed lognormally. Note, in con-
trast, that a Gaussian distribution does not satisfactorily describes
the distribution of the data at these low redshifts; in particular, the
Gaussian distribution does not display the sharp cut-off at DA = 0.
Nevertheless, the description of the data by a Gaussian distribu-
tion becomes better with increasing redshift, as expected,and also
the corresponding Gaussian distribution becomes narrowerat ev-
ery increasing redshift (taking into account the change in the scale
of the x-axis from the first to the last panel). Moreover, note that
the analytic lognormal and Gaussian distribution become visually
indistinguishable from each other atzem > 3.0. In order to assess
quantitatively the differences between these distributions with re-
spect to the distribution of the data, we compute again the value of
δ at each redshift, assuming now that theDA values obtained from
the MMC model are drawn from a Gaussian parent distribution.We
compare these values to the corresponding values computed before
for an assumed lognormal parent distribution. This comparison is
shown in Figure 1. As can be seen, the values ofδ for both distri-
butions are low at all redshifts, and the difference between them at
zem & 2 is negligible small. This explains why the lognormal and
Gaussian distribution functions shown in Figure 2 are practically
indistinguishable from each other. However, note that the values of
δ for a assumed Gaussian parent distribution become vanishingly
small with increasing redshift, eventually becoming smaller than
the corresponding values for the lognormal distribution. Besides, it
can be see also that theδ values for a assumed lognormal distribu-
tion rise again towards high redshifts, implying that the distribution
of the data at these redshifts is no longer well described by alog-
normal distribution.This confirms our statement made above, that
DA is expected to be distributed lognormally at low redshifts and
normally at higher redshifts. The redshift at which the transition
from a lognormal to a Gaussian distribution takes place may de-
pend on the particular set of input distributions used. For redshifts
where the distribution ofDA is well approximated by a lognormal
distribution, the optical depth should be distributed normally. This
result is however not in agreement with the results frome.g.Madau
(1995, his Figure 1), Meiksin & White (2004, their Figure B1), or
Bernardi et al. (2003, their Appendix C), where the distribution of
the mean flux,i.e. the averaged transmission factorΦ z is claimed
to be highly inconsistent with a Gaussian distribution. It is usually
assumed that the presence of the high-density Lyman limit systems

Figure 3. Curve of growth of the Lyα absorption line, for three typical val-
ues of the Doppler parameter. The shaded region correspondsto the column
densities characteristic to Lyman limit systems.

is responsible for this behaviour, and we next make use of oursim-
ulations to address this question.

3.2.1 The Effect of the Lyman limit systems (LLSs)

In order to quantify the effect that the LLSs have on the distribu-
tion of DA , we compare, following the analysis of Section 3.2, the
results of the simulations for the MMC model with and withoutthe
optically thick LLSs. We find thatDA is lognormally distributed as
well with a high confidence for the case where the LLSs are ex-
cluded, as can in Figure 1, where the values forδ computed at each
given redshift are shown. Again, the results for the BMC model
are qualitatively the same and are omitted here. Note that the val-
ues ofδ for the MMC model without LLSs are larger at redshifts
zem . 3 than those for the full MMC model. This is due to the
fact that the absence of the optically thick LLSs enhances the prob-
ability of the attenuation factor exp (−τ) to be closer to unity at
a given wavelength along a random line-of-sight. This meansef-
fectively that the number of factors in equation (12) are reduced.
Hence, when the LLSs are absent, the approach to a lognormal dis-
tribution should be worse with respect to the case where the LLSs
are included. Furthermore, this effect should be enhanced towards
lower redshifts, for which the number of factors,i.e. of absorbers
decreases as∝ (1 + z) γ. Note that the trend is the opposite in the
case of a assumed Gaussian parent distribution.

We hence find when computing the evolution ofDA with
the MMC model with and without LLSs that the predictions for
the evolution ofDA with redshift for the full MMC model are
practically indistinguishable from the results of the MMC model
without LLSs, which implies that the effect of these systems
on the total absorption is small. Furthermore, it turns out that
the distribution ofDA is lognormal irrespective of the presence
of LLSs. All these results point to the fact that the LLS have a
negligible impact on the evolution ofDA , as long as the input
distributions used here correctly describe the number density
evolution of the absorbers. This would confirm similar results
already found by Desjacques et al. (2007). Also, as pointed out by
McDonald et al. (2005), the picture would not be fundamentally
different if higher column density systems such as damped Lyα

systems were present. We will come back to this point in Section
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5.

We think that, as long as the distribution functions realistically
describe the evolution of the Lyα absorbers, the LLSscannottruly
have a great impact neither on the absorption as measured byDA ,
nor on its statistics because of the following reasons: 1) They are
scarce, and even more compared to the thinner Lyα forest systems
(e.g.of the order of 5 LLSs on average along a random line-of-sight
compared to approximately 103 Lyα forest absorbers out toz= 3.0,
according to the MMC model); 2) Their contribution to the absorp-
tion is due solely to the absorption at the resonant wavelength of
the Lyα line, and the equivalent width of the Lyα absorption line
arising in systems with column densities NHI = 1017.21−18 cm−2 is
not too different from that of the systems with column densities
NHI = 1014−15 cm−2 (cf. the curve-of-growth in Figure 3), which
are by far more numerous. In order to estimate the relative contribu-
tion of each population at a given redshift, we weight the equivalent
width W(N, b) of the Lyα absorption line as a function of the col-
umn densityN and Doppler parameterb with the column density
distribution, and compute the ratio

̺ (zem; b) ≡
〈W〉Lyα

〈W〉LLS
, (20)

where

〈W〉 i ≡
∫ zem

0

∫ Nmax

Nmin

(1+ z) ·W0 (N,b) f i (N, z) d N dz, (21)

Here, f i is the distribution function of populationi ∈ {Lyα, LLS},
W0 (N,b) is the rest equivalent width of a Lyα absorption line for a
column densityN and Doppler parameterb, andNmin andNmax are
the column density limits that define each population, respectively.
For a reasonable value for the Doppler parameter of 36 km s−1, and
the input distributions of the MMC model, we find that̺ >> 1 at all
redshifts. The result is qualitatively the same for the BMC model.
Hence, It follows from these models that the Lyα forest systems
dominate the absorption over the optically thicker Lyman limit sys-
tems at all epochs. This would explain at least in part why thedif-
ference between the predictions forDA from the MMC model with
and without LLSs, is small. Also, it is consistent with the theoret-
ical expectation that the distribution ofDA should not be far from
lognormal or Gaussian, with or without LLSs, since this onlyde-
pends on the fact that the absorption factor be expressed in the form
of equation (12), and this is truly independent of the form ofthe in-
put distributions, as stated previously.

3.3 Scatter inDA

We expect the intrinsic scatter in the absorption due to cosmic vari-
ance to be strongest at lines-of-sight of middle length. At low red-
shifts, both the number of thin Lyα forest clouds and thick Lyman
limit systems is small, and the addition of a few more does not
change dramatically the amount of absorption. However, themean
number of Lyα forest clouds and LLS increases withz, and thus
the probability of encountering more or less systems than average
increases as well. Correspondingly, the absorption increases and so
does its scatter. At even higher redshifts, the number of Lyα forest
systems increases so dramatically and the absorption is so severe
that the addition of more systems does not make any difference
neither to the absorption nor to the scatter. Thus, we shouldexpect
the stochastic effect, i.e. the scatter in absorption, to peak at some
intermediate redshiftzint.

We compute the intrinsic scatter at theσ level for the values

Figure 4. Evolution of the intrinsic scatter ofDA due to the stochastic na-
ture of the absorption in the intergalactic medium for the two competing
models MMC (dashed line) and BMC (dotted line). The dot-dashed line
corresponds to the MMC without Lyman limit systems (see Section 3.2.1
for details). Note that the behaviour ofσ(DA ) is qualitatively the same for
all three models. As expected, the amount of scatter for the MMC model is
less in the case where the Lyman limit systems are absent.

of DA at each given redshift obtained from our simulations using
equations (15), (16), (17), and (18). The result is shown in Figure
4, where we show the evolution of the scatter inDA with redshift
for the MMC model with and without LLSs. We also include for
comparison the result from the BMC model. It can be seen that,
irrespective of the model, the scatter peaks at a intermediate redshift
betweenzem ≈ 3.5 andzem ≈ 4.0. Note that the peak is significant,
since it represents an increase in the scatter of 2.5 times with respect
to its value atzem≈ 1. It is interesting that this result had also been
found by Zuo (1993, their Figure 2), who using a semi-analytic
approach and different input distributions, reported thatσ (DA) is
largest at redshifts near 3.7. Thus, the qualitative behaviour of the
intrinsic scatter ofDA shown in Figure 4 may be an unavoidable
feature of this observable, which could explain at least in part the
large scatter in the measurements ofDA seen in the same redshift
interval (cf. Figure 6). As will be shown in Section 5, however,
there is a disagreement at the 3σ level between theamplitudeof
the scatter in the observations at these redshifts and that predicted
by the models.

When comparing models that only differ by the presence of
the optically thick Lyman limit systems, we find that the scatter in
DA is larger at any given redshift when the LLS are present, as
expected. None the less, the absolute value of the scatter does not
differ significantly between the situation where these systems are
present and where they are absent. Thus, the net effect of the LLSs
is to enlarge the intrinsic scatter in the absorption, contributing only
marginally to the mean value of the absorption itself. However, note
that for redshiftszem & 4.0, the amount of scatter at the 1σ level
becomes indistinguishable between both scenarios, owing to the
fact that the thinner Lyα forest systems are overwhelmingly more
numerous at these redshifts.

The results stated above are consistent with the previous con-
clusion obtained from our simulations that the optically thick LLSs
cannot have a great impact on the absorption as measured byDA

and on its scatter.
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4 OUR DA MEASUREMENTS

We want to compare the predictions for the evolution ofDA

that result from the models described above to observations. For
this purpose, we use previous measurements ofDA reported in
the literature, and we perform ourselves new measurements of
this quantity, using QSO spectra from the SDSS Data Release 5
(Adelman-McCarthy et al. 2007), thus extending the redshift range
of the measurements tozem= 5.41.

Our selection procedure of sources suitable for this purpose
was as follows: Since the wavelength range available from SDSS
(DR5) isλ ∈ [380, 920] nm, and we measure the continuum depres-
sionDA in the restframe wavelength intervalλ ∈ [105, 117] nm, the
redshift of our sample is restricted tozmin > 380/105− 1 = 2.62.
We choosezmin = 2.7 as our lowest redshift in order to avoid the
low S/N at the blue end of the spectrograph. A simple query for
high-z quasi-stellar objects on the SDSS SkyServer Spectroscopic
Query Form with this restriction alone returns around 2400 spectra.
From this first selection, we rejected those objects for which the
redshift was either not measured, the measurement had failed, or
the measured photometric and spectroscopic redshifts wereincon-
sistent with each other. We binned the quasars in redshift intervals
of ∆z= 0.1 and selected for each redshift bin the spectrum with the
highest S/N, leaving us with 28 sources, from which we removed
three further objects due to low data quality. The resultingsample
is listed in Table 3.

4.1 Continuum fit

The continuum of a quasar is often assumed to be of the
form f ν = f 0

ν · ν−α ν (seee.g. Steidel 1987b, Laor et al. 1997), or
equivalently, f λ = f 0

λ
· λ−α λ , where both indices are related by

αλ = 2− α ν, and f 0
λ
= f 0

ν · c1−α ν , andc is the speed of light. Em-
pirical evidence in favour of the assumption of an underlying con-
tinuum in form of a power-law has been given bye.g.O’Brien et al.
(1988), who derived an average power-law index ofα ν = 2.36 for
λ ∈ [80, 121.6) nm andα ν = 0.67 for λ ∈ [121.6, 190] nm. This
is consistent with the result already found by Neugebauer etal.
(1979) that the spectral indexαλ varies over large wavelength
ranges. Zheng et al. (1997) found by constructing a composite QSO
spectrum from 284 HST FOS spectra that a single power-law de-
scribes well the continuum for wavelengths between 105 and 220
nm withα ν = 0.99±0.05, but that the continuum steepens (flattens
in λ) significantly forλ 6 105 nm (α ν = 1.96± 0.15). Similarly,
Telfer et al. (2002) reported, using a sample nearly twice aslarge
as the Zheng et al.’s sample, that the continuum in the extreme UV
region betweenλ = 50 nm andλ = 120 nm and in the near UV
betweenλ = 120 nm andλ = 300 nm is well described by a sin-
gle power-law withα ν = 1.76± 0.12 andα ν = 0.69± 0.06, re-
spectively. Furthermore, by constructing a composite QSO spec-
trum from a homogeneous sample of over 2200 SDSS QSOs,
Vanden Berk et al. (2001) concluded that the continuum in therest-
frame wavelength range 121.6 < λ < 500 nm can be very well
modeled by a single power-law either in wavelength or frequency,
with α ν = 0.44± 0.1. However, they did not estimate a spectral
index for wavelengthsλ < 121.6 nm. While it is the consensus that
the optical/NIR continuum of quasar spectra is due to synchrotron
emission (Whiting et al. 2001), the physical origin of the quasar
UV/optical continuum is not yet established. On the hand hand, the
observed soft X-ray/UV/optical spectral shape of quasars is found
to be consistent with free-free emission of optically thin gas at tem-
peratures 105 − 106 K (Barvainis 1993), which is well described

by a power-law. On the other hand, it has been argued that the
emission from a geometrically thin, optically thick accretion disk
also reproduces well the observed quasar SED in this spectral re-
gion (Kawaguchi et al. 2001). Either model, however, is consistent
with an underlying continuum in the form of a power-law. Alter-
natively, as already mentioned in Section 2, other authors prefer to
fit quasar continua locally using spline functions (seee.g.Lu et al.
1996, Kirkman et al. 2003, Tytler et al. 2004a,b) searching for re-
gions apparently free of absorption blueward of the Lyα emission
line.

Since the Lyα forest region is severely absorbed due to inter-
vening H systems, especially for high-z QSOs, and a local fit to the
continuum in this region is difficult, with the uncertainty increasing
with redshift (seee.g.Faucher-Giguere et al. 2007), we choose to
estimate the continuum of our selected sources in the Lyα forest
region by fitting a power-law to the QSO spectrum redward of the
Lyα emission line and extrapolating it forλ 6 121.567 nm. As long
as the assumption of the underlying power-law holds, this approach
has the advantage that the continuum estimate is completelyinde-
pendent of the spectral resolution and S/N in the Lyα forest region.
Nevertheless, this method may lead to an systematic overestimate
of the continuum flux and thus to an corresponding overestimate
of DA . It follows from the results quoted above that the quasar’s
intrinsic continuum in spectral regions below and above theLyα
emission line may both be well described by power-laws, but with
potentially different spectral indices. More specifically, the spec-
trum in the region below 121.6 nm (rest-frame) may be steeperin
frequency, and hence flatter in wavelength4, with respect to the con-
tinuum in the region above 121.6 nm (seee.g.Telfer et al. 2002,
their Figure 4). Thus, fitting a continuum in the form of a power-
law at wavelengthsλ > 121.6 nm and extrapolating it towards
λ < 121.6 nm may well lead to an overestimate of the continuum
level in that region, as first pointed out by Seljak et al. (2003), ac-
cording to whom theDA may be overestimated by at least 0.05 at
zem= 2.72. We will take this systematic bias into account when es-
timating the uncertainty in ourDA measurements (cf. Section 4.2).

The power-law that we fit to each spectrum is of the form

f c (λ;αλ) = f 0
λ · (λ + λ 0)

−α λ . (22)

where the flux amplitudef 0
λ
, the wavelength off-set λ 0, and the

spectral indexαλ are the parameters to be determined. We fit the
continuum in the wavelength range [130· (1+ zem), 900] nm, in or-
der to avoid the red emission wing of the Lyα line and the red end of
the spectrograph, respectively. Note that the available wavelength
range decreases with redshift, and this may introduce an increasing
uncertainty in the fitted continuum. The fit parameters and their un-
certainties were obtained with help of the IDL task CURVEFIT. It
turns out that the continuum fit is rather insensitive to the uncertain-
ties in the flux amplitude and the wavelength off-set, and extremely
sensitive to the uncertainty in the spectral index. Becauseof this
and for simplicity, in our further analysis we neglect the error in
the first two parameters and consider only the uncertainty inthe
spectral index to be of relevance5. An example of a QSO spectrum
and its corresponding fit are shown in Figure 5. The spectral index
and its uncertainty for each source are listed in Table 3 (columns
three and four, respectively). The uncertainty in the spectral index

4 Recall thatαλ = 2− α ν, which implies dαλ = −dα ν.
5 The full list of fit parameters for each source and
their uncertainty are available in machine-readable form at
http://astro.physik.uni-goettingen.de/˜tepper/da/fitparam.txt
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Table 3.QSO sample selected from the SDSS DR5. The first four columns include the object designationa, the emission redshift as quoted in the SDSS DR5
catalog, the spectral index used for fitting the continuum, and its uncertainty, respectively. The last three columns list the measurement ofDA and its total
uncertainty, and the uncertainty due to different error sources, respectively (see text for details.)

Object zem αλ σ fit (αλ) DA σ fit (DA ) σ sys(DA )

SDSS J115538.60+053050.5 2.712 -1.213 0.002 0.390+0.010
−0.040

+0.010
−0.010 0.039

SDSS J112107.99+513005.4 2.843 -1.256 0.003 0.281+0.015
−0.032

+0.015
−0.016 0.028

SDSS J010619.24+004823.3 2.882 -1.170 0.003 0.294+0.018
−0.035

+0.018
−0.018 0.029

SDSS J075618.13+410408.5 2.956 -1.320 0.007 0.329+0.038
−0.052

+0.038
−0.040 0.033

SDSS J164219.89+445124.0 3.125 -1.550 0.001 0.349+0.005
−0.035

+0.005
−0.005 0.035

SDSS J004054.65-091526.8 3.185 -1.278 0.000 0.459+0.000
−0.046

+0.000
−0.000 0.046

SDSS J124306.55+530522.1 3.317 -1.255 0.012 0.426+0.057
−0.077

+0.057
−0.064 0.043

SDSS J083122.57+404623.4 3.365 -1.230 0.003 0.261+0.017
−0.031

+0.017
−0.017 0.026

SDSS J085343.32+370402.3 3.475 -1.115 0.005 0.527+0.019
−0.056

+0.019
−0.020 0.053

SDSS J093523.32+411518.7 3.566 -1.407 0.007 0.396+0.036
−0.055

+0.036
−0.039 0.040

SDSS J094349.65+095400.9 3.713 -1.199 0.014 0.529+0.057
−0.083

+0.057
−0.064 0.053

SDSS J023137.64-072854.5 3.750 -1.269 0.008 0.462+0.037
−0.061

+0.037
−0.039 0.046

SDSS J144717.97+040112.4 3.931 -1.303 0.016 0.525+0.062
−0.089

+0.062
−0.072 0.052

SDSS J162331.15+481842.1 3.990 -1.113 0.006 0.494+0.022
−0.055

+0.022
−0.023 0.049

SDSS J014049.18-083942.5 4.112 -1.181 0.010 0.488+0.041
−0.066

+0.041
−0.044 0.049

SDSS J234150.01+144905.9 4.155 -1.094 0.010 0.558+0.035
−0.067

+0.035
−0.038 0.056

SDSS J081240.68+320808.6 4.332 -1.074 0.028 0.517+0.100
−0.137

+0.100
−0.127 0.052

SDSS J103601.03+500831.8 4.449 -1.149 0.012 0.612+0.039
−0.075

+0.039
−0.043 0.061

SDSS J162626.50+275132.4 4.580 -1.187 0.023 0.681+0.057
−0.097

+0.057
−0.069 0.068

SDSS J005006.35+005319.2 4.663 -1.204 0.018 0.693+0.043
−0.085

+0.043
−0.049 0.069

SDSS J083914.14+485125.7 4.885 -1.350 0.030 0.737+0.057
−0.104

+0.057
−0.073 0.074

SDSS J163950.52+434003.7 4.976 -1.321 0.024 0.694+0.056
−0.098

+0.056
−0.069 0.069

SDSS J233446.40-090812.3 5.107 -1.332 0.000 0.735+0.000
−0.073

+0.000
−0.000 0.073

SDSS J101447.18+430030.1 5.275 -1.220 0.029 0.758+0.058
−0.107

+0.058
−0.076 0.076

SDSS J142123.98+463317.8 5.414 -1.321 0.080 0.825+0.087
−0.192

+0.087
−0.173 0.082

a The designation of each object meets the IAU nomenclature, as required. For details on the official SDSS designation of an object, please consult
www.sdss.org/dr5/coverage/IAU.html

quoted in column four and denoted byσ fit (αλ) includes the for-
mal error inherent to the fitting process, which is due to the error in
the detected flux, the removal of broad emission lines in the region
λ > 121.6 nm – which makes the wavelength range become patchy
–, and the systematic uncertainty due to the decreasing available
wavelength range with redshift mentioned above. The systematic
effect of the latter in particular can clearly be seen on the overall
trend for the uncertainty in the spectral index to increase with red-
shift.

4.2 Measurement ofDA

For each QSO spectrum, we compute thetotal absorption pixel by
pixel in the restframe rangeλ ∈ [105, 117] nm according to the
expression6

DA(zem;αλ) ≡ 1− 1
Npix

Npix
∑

i=1

fobs(λ i)
f c(λ i ;αλ)

, (23)

where Npix is the total number of pixels between
λ1 = 105· (1+ zem) nm and λ2 = 117· (1+ zem) nm. The lower
limit of this range is chosen as to avoid the wings of the Lyβ +
O emission lines, while the upper limits is such that the blue
wing of the Lyα emission line is excluded in the computation of

6 This is just the discrete version of equation (2).
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Figure 5. Spectrum of the QSO SDSS J112107.99+513005.4 at
zem= 2.843. The heavy solid and heavy dashed line indicate the power-
law fit to the continuum and its uncertainty, respectively. The corresponding
spectral index isαλ = 1.256± 0.003.

DA . The measurement ofDA for each source together with its
corresponding uncertainty are listed in Table 3 (column five).

There are two independent sources of uncertainty in the mea-
surement ofDA : 1) The error in the spectral index inherent to the
continuum fitting,i.e.σ fit (αλ), and 2) the possibility that the con-
tinuum level may have been systematically overestimated due to the
change in slope of the power-law atλ = 121.6 nm (cf. Section 4.1).
We shall refer to the uncertainty inDA due to the first and second
sourcesσ fit (DA) andσ sys(DA), respectively. The total uncertainty
in the measurement ofDA –quoted in column five of Table 3– is
then assumed to be given byσ2 (DA) = σ2

fit (DA) + σ2
sys(DA).

As a consistency check, we adopt two different
methods to estimateσ fit(DA). The first method assumes
that the ±σ range for each measurement is given by
DA [zem;αλ ± σ fit (αλ)] − DA [zem;αλ], respectively, for the
corresponding values ofσ fit (αλ) listed in Table 3. The second
method is based on error propagation, according to which theerror
σ ( f ) in the estimate of a quantityf (x i), which depends onn
independent random variables{x i}, each with an uncertaintyσ(x i),
is given by

σ2 ( f ) =
n

∑

i=1

σ2(x i) ·
(

∂ f
∂x i

) 2

. (24)

In the case of our measurements ofDA , only the uncertainty in the
index αλ is relevant, and hence equation (24) becomes, with the
appropriate notation,

σ fit (DA) ≡ σ fit (αλ) ·
1

Npix

Npix
∑

i=1

ln (λ i + λ 0)
fobs(λ i)

f c(λ i ;αλ)
, (25)

where we have used equations (22) and (23). Note that we do not
include the term due to the error in the detected fluxfobs, since this
is already included inσ fit (αλ). The error computed according to
the first method is asymmetric, as expected, while the error com-
puted using equation (25) approximately (in some cases exactly)
corresponds to the arithmetic mean of the former. Since the error
estimates computed according to both these methods are consistent
with each other, we may use either to estimate the uncertainty in
DA due to the uncertainty in the continuum fit; we choose to use

the values computed according to method 1, which are listed in Ta-
ble 3 (column six).

It is not clear based on the results found in the literature (cf.
Section 4.1) whether the continuum blueward of Lyα mayalways
be overestimated when assuming it to be described by an extrapo-
lation of the power-law redward of Lyα. However, we will assume
that this is the case in order to allow for the possibility that our
DA measurements may have been systematically overestimated.In
order to compute the corresponding uncertainty inDA , we make
the following assumptions: First, the continuum in the region blue-
ward of Lyα shall be described by a power-law as well, but with a
smaller spectral index –i.e. the continuum isflatter – with respect
to the region redward of Lyα. Since it is not possible to fit a power-
law in this regime for the data we use, we assume that both power-
laws (above and below Lyα) are normalised atλ = 121.6 nm. Fur-
thermore, and for simplicity, we take the difference in the spectral
indices below and above Lyα to be equal 1 (which corresponds
roughly to the findings in the literature quoted in Section 4.1). Un-
der these assumptions, the value ofDA for our sample turns out to
be overestimated on average by less than ten per cent. This value
is slightly lower for our measurement ofDA at zem = 2.71 than
the correction estimated by Seljak et al. (2003). However, they also
remark that the exact value of the bias depends on the particular
method applied to extrapolate the continuum in the Lyα Forest re-
gion. We hence make the rather conservative assumption thateach
measurement ofDA has an additional uncertaintyσ sys(DA) of ten
per cent, and add this uncertainty only to thelow error bound, since
we are assuming that the continuum, and henceDA , may have been
overestimated. We could in principle correct ourDA estimates by
shifting all measurements by ten per cent towards a lower value,
but since it is not clear whether the continuum has been overesti-
mated forevery singlemeasurement, we prefer to express this bias
as an uncertainty. The uncertaintyσ sys(DA) for each measurement
is listed in the last column of Table 3.

Note that we do not correct our measurements for contamina-
tion of metal lines. However, this should not introduce a large error,
since their contribution is small. For example, Tytler et al. (2004a)
find that they contribute by 2.3±0.5 per cent to the total absorption
atz= 1.9. The validity of this assumption will be tested in the next
section by the comparison ofDA-measurements to the results of
our simulations, in which the absorption due to metal lines is not
included.

5 RESULTS & DISCUSSION

5.1 Observations vs. Models

We compute the evolution ofDA in the redshift interval 0.35 <
zem < 6.0 using the models MMC (with and without Lyman limit
systems) and BMC presented in the Section 3, which include the ef-
fect of different populations of absorbers,i.e.Lyα forest clouds and
Lyman limit absorbers. For comparison, we include also the values
of DA computed using Meiksin (2006)’s model (see Section 1.1).
We refer to this model as MTC. For the MMC (with and without
LLS) and BMC models, we simulate an ensemble ofNLOS = 4·103

lines-of-sight at fixed redshift, and compute for each of them the
flux decrementDA according to equation (23). In this way we get
for each given redshift an ensemble of an equal number ofDA val-
ues for each model, from which we estimate the 50 per cent quan-
tile (median), and the±34.13,±43.32,±47.72,±49.38, and±49.87
per cent quantiles around the median, which correspond to the
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±1,±1.5,±2,±2.5 and±3σ ranges. We do not compute the mean
andσ ranges in the standard way, since the distribution ofDA is
strictly speaking unknown a priori. However, according to the re-
sults from Section 3, the distribution ofDA is not too far from a
lognormal or even a Gaussian distribution; hence, the identifica-
tion of mean with median, of±σ range with the±34.13 quantile
around the median, and so on, is justified. Since the MTC model
only provides a (mean) transmission function at each redshift, we
compute for this model one single value forDA at each redshift by
numerically integrating the corresponding transmission function in
the restframe wavelength range [105, 117] nm.

We compare our simulations to measurements ofDA accu-
mulated in the literature over the past two decades, performed with
different methods and approaches. This compilation is by no means
intended to be complete. The reason for choosing these measure-
ments is mainly that they were performed in more or less mutu-
ally exclusive redshift ranges which all together cover therange
0 < zem < 4. Our measurements extend this redshift range out to
zem = 5.41. Therefore, these previous measurements together with
our own allow a comparison to the models presented here over a
wide redshift range, but with the caveat that using measurements
from different groups may introduce an artificial bias in the evo-
lution of DA due to the differences in the particular method used
and the different redshift ranges probed in each case, as previously
mentioned. The literature data and our measurements are shown to-
gether with our model calculations in Figure 6 (see cited references
for details on the corresponding measurements).

As can be seen in this figure, the predictions for the evolution
of the meanDA from all three models, MMC, BMC, and MTC, are
practically indistinguishable from each other when compared to ob-
servations for redshiftszem . 3. We do not include in this figure the
predictions forDA based on the MMC model without LLSs, since
the difference between this and the full MMC model is negligi-
ble. At higher redshifts, the values ofDA obtained from the MMC
and MTC models match the observations quite well. Note that in
spite of the fundamentally different approaches and input physics
of these models, their results are very similar. As a result,it is not
possible yet to discriminate between these models due to theuncer-
tainty and the strong scatter in the observations, especially around
zem ≈ 3.5 (cf. Section 3.3). In contrast to the MMC and the MTC
models, the predictions from the BMC model strongly deviatefrom
the measurements ofDA at zem > 3, underestimatingthe absorp-
tion. Since the MMC and BMC models differ only in terms of the
input distributions and not in terms of the method, this result sug-
gests that the evolution of the Lyα absorbers implied by the input
distributions of the BMC model is slower than expected from the
evolution ofDA (cf. equation 3). If used to compute the magnitude
changes for high-redshift galaxies due to intergalactic absorption
as done bye.g.BCG99, the difference in the predicted evolution
of DA between the MMC and BMC models corresponds to a dif-
ference of slightly more than 0.6 mag in the predicted magnitude
change fore.g.an Sd-type galaxy –with a constant Star Formation
Rate– atzem = 4.0 in the F450W filter. The corresponding differ-
ence between the MMC and MTC model amounts to less than 0.3
mag.

It is worth mentioning at this point that, in contrast to previous
models (e.g.Zuo 1993), we explicitly avoid normalising in any way
the used distributions to match the observedDA at some given red-
shift, or manipulating the models whatsoever to satisfy anyother
restriction. We simply take the distributions as reported in the liter-
ature, where they were determined directly by means of line statis-
tics by the authors and references therein. We mention this in order

Figure 6. Evolution of the meanDA computed according to the MMC
(dashed line), BMC (dotted line), and MTC (dot–dashed line)models, com-
pared to observations performed over the past twenty years by different
groups and different methods: (1) Zuo & Lu (1993). (2) Schneider et al.
(1991), (3) Kirkman et al. (2007), (4) O’Brien et al. (1988).The data points
display 1σ error bars. Note that, in spite of the heterogeneity of the ap-
proaches to measureDA , its mean evolution as computed using the MMC
and MTC models matches well the observations over the entireredshift
range shown, while they disagree strongly with the BMC modelat redshifts
zem > 3.0. Below this redshift, the models are practically indistinguishable
from each other. For completeness, we include the empiricalfits to the evo-
lution of DA from: (5) Zhang et al. (1997), and (6) Kirkman et al. (2005).

to emphasize the rather good agreement between the observations
and the evolution of the meanDA predicted by all three models at
zem < 3, and by the MMC model at higher redshifts, further re-
inforced by the similarity between the results of the MTC andthe
MMC models, which are completely independent from each other.

We include in Figure 6 the empirical fits of Zhang et al. (1997)
of the form DA (z) = D0

A eα (1+z) with D0
A = 0.01 andα = 0.75

and of Kirkman et al. (2005) of the formDA (z) = A (1+ z) γ with
A = 0.0062 andγ = 2.75. These empirical fits match the observa-
tions quite well atzem . 4.5, and may be useful as a rough esti-
mate of the mean absorption at those redshifts. However, as stated
before, they should be taken with caution, especially at high red-
shifts. WhileDA asymptotically converges to unity as the redshift
approaches the epoch of reionisation,zreion, these empirical fits di-
verge. In contrast, the predicted evolution ofDA from all models
described above does satisfy the expected and observed asymptotic
behaviour. The rate of convergence to this limiting value certainly
depends on the particular set of input distributions used, as shown
by the comparison between the MMC to the BMC model. In gen-
eral, the stronger the number density evolution, the fasterthe con-
vergence. In other words, different input distribution functions im-
ply different values forzreion, and this information may be used as
a further constraint on the accuracy of a particular set of input dis-
tributions. Extending the computations of the evolution ofDA with
the MMC model to redshiftszem > 6.0, it turns out thatDA is al-
most unity atzem ≈ 7.0. This value is slightly higher than the value
of 6.5 quoted by Fan et al. (2002) for the epoch of reionisation.

The compilation ofDA measurements shown in Figure 6
displays a large scatter at all redshifts, in particular at redshifts
zem> 3. Previously, concerns were raised about the possibility that
the amplitude of the intrinsic scatter due to cosmic variance may
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Figure 7. Evolution of the meanDA according to the MMC model (solid
line) in the range 0.2 < zem < 6. Here we show again our measurements
of DA and those from O’Brien et al. (1988), together with the most recent
measurements from Kirkman et al. (2007). The data points display 1σ error
bars. The white and shaded areas around the solid line indicate the intrin-
sic scatter at the±1 and±3σ level, respectively, due to variation in the
absorption from one random line-of-sight to another.

be enhanced by combining measurements performed with different
methods and using heterogeneous data samples. Hence, we select a
subset from our compilation following the criteria stated below, and
compare this observations to the scatter as predicted by oursimu-
lations. The results of this comparison are summarised in Figure 7.
Here, we show the redshift evolution ofDA as computed from the
MMC model. We include the 50 per cent quantile,i.e. the median,
and the±34.13, and±49.87 per cent quantiles, which correspond to
the±1-, and±3σ ranges around the median at each redshift. Again,
the difference between the predictions of the MMC with and with-
out LLSs is negligible, and thus we show only the results for the
full MMC model. We do not include the BMC model in this anal-
ysis in view of the disagreement with the observations at redshifts
zem > 3. Our new data subset consists of our own measurements
together with the measurements of O’Brien et al. (1988), whouse
power-law fits to estimate the continuum level of the quasars, and of
the measurements from Kirkman et al. (2007), who fit the contin-
uum locally using b-splines. We select these measurements for the
following reasons: O’Brien et al.’s data allow a more directcom-
parison to our data due to the similarity in method to estimate DA ;
Kirkman et al. (2007)’s data are the most recent and accuratemea-
surements ofDA available to date. Furthermore, these data sets in-
dividually cover the largest redshift ranges, and togetherthey con-
stitute the smallest set of individual measurements fully spanning
the redshift range 0.2 < zem< 5.41 with some overlap.

Within the quoted uncertainty, the observations are well
matched by the evolution ofDA as predicted by the MMC model
in the redshift range 0.2 < zem < 5.41, with the exception of some
outliers aroundzem ≈ 3, where the scatter of our observations
alone as well as the scatter in the full sample of measurements
is large, as can be seen in Figure 6. It is apparent from Figure7
that the largest scatter in the observed values ofDA at a given red-
shift cannot be ascribed to theintrinsic scatter in the absorption
due to variations from one line-of-sight to another as computed
with the MMC model, not even at the±3σ level. Nevertheless,
note that this is only the case for O’Brien et al. (1988)’s andour

measurements, while Kirkman et al. (2007)’s measurements are all
nicely contained within the±3σ envelope of the model. This sug-
gests that the observed scatter –or at least part of it– is notreal,
but only an artifact introduced by combining observations based
on different methods to measureDA . This assumption is supported
by the small amplitude of the scatter in the distribution of high-
redshift galaxy colors already found by BCG99 (cf. their Figure
6) for a variety of input distribution functions. Also, the fact that
Kirkman et al. (2007)’s measurements are well matched by the
MMC model points to the fact that the particular method chosen
by O’Brien et al. (1988) and ourselves to estimate the continuum
in the Lyα Forest region does introduce a bias in the measurements
of DA . On the one hand, there is very likely a bias do to the al-
ready discussed systematic overestimate of the continuum level.
Furthermore, neither O’Brien et al. (1988) nor we correctedour
corresponding measurements for metal-line absorption. These facts
together would explain in part why precisely our and their measure-
ments are higher on average than the median value ofDA predicted
by the MMC model, as can be seen in Figure 7. Even though its ef-
fect is expected to be small, including the absorption of metal lines
should eventually increase the agreement between the results from
the models and the observations.

There is thus rather strong evidence that most of the ampli-
tude in the observed scatter inDA displayed in Figures 6 and 7
is introduced by combining measurements performed on heteroge-
neous data samples using different methods. If real, however, the
observed scatter would indicate that the models, in particular the
MMC model, cannot account for the variation ofDA among differ-
ent lines-of-sight, even though it reproduces well itsmeanredshift
evolution.

According to the results from our simulations (cf. Section 3.2),
it is expected thatDA as predicted by the MMC model be lognor-
mally distributed with a high confidence at redshiftszem . 6, and
consequently, that lnDA and hence the optical depth of H should
obey a Gaussian distribution. However, this result is not supported
by the observations given the poor agreement between the scat-
ter predicted by the MMC models and the observed distribution
of DA at a given redshift. On the other hand, the expectation that
DA should be either lognormally or Gaussian distributed is based
solely on the fact that the transmission factor be written inthe form
of equation (12), which is certainly independent of the particular
model accounting for the evolution of the Lyα absorbers. A dif-
ferent set of input distribution functions may have an effect on the
mean value and the spread of the distribution ofDA at each redshift,
but not the on the form of the distribution. It may be thus possible
that a different (more accurate) set of input distribution functions of
the absorber properties may help to reconcile the lack of agreement
between theamplitudeof the predicted and the observed scatter,
but even in this case the disagreement regarding theform of the
distribution when compared to previous studies (e.g.Madau 1995,
Bernardi et al. 2003, Tytler et al. 2004a, Meiksin & White 2004)
remains.

Even though the amplitude of the observed and simulated scat-
ter do not quite match, it is interesting to note that the redshift
at which the intrinsic scatter in evolution ofDA peaks (cf. Fig-
ure 4) roughly coincides with the redshift at which the observa-
tions show a strong scatter (cf. Figure 6). This redshift matches the
redshift at which Bernardi et al. (2003) reported a local decrement
in the evolution of the Lyα optical depthτeff , recently confirmed
by Faucher-Giguere et al. (2007), which has been interpreted by
Bernardi et al. as a signature of the reionisation of He. Note, how-
ever, that at this redshift theDA measurements lie predominantly
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above the mean value as given by the models (cf. Figure 6), and
hence the trend suggested by these observations is exactly the op-
posite from that found by Bernardi et al. (2003), since a decrease
in τeff implies a decrease inDA . This strongly indicates that the
difference in method and the heterogeneity of the samples of the
different surveys does introduce an artificial bias in the observed
evolution ofDA , in particular in its scatter.

We finally want to highlight the following curiosity: By taking
a close look at Figures 4 and 7 it becomes apparent that the max-
imum in the evolution ofσ (DA) roughly coincides with the point
of inflection of the curve that describes the expected redshift evo-
lution of the meanDA . Mathematically, this would imply that the
intrinsic scatter ofDA is proportional to the rate of change of the
meanDA with redshift,i.e.

σ (DA) ∝ ∂ 〈DA〉
∂ z

. (26)

Indeed, if one computes numerically the derivative of〈DA〉 with
respect toz, it turns out that it qualitatively matches the evolution
of σ (DA), up to a scale transformation. A physical interpretation
may be gained in light of equation (3): A rapid evolution of the ab-
sorbers, quantified by the parameterγ, implies a stronger evolution
of DA with z. Since the evolution is however different in general
for different lines-of-sight, this in turn implies a larger variation in
the absorption from line-of-sight to line-of-sight, and thus a larger
value ofσ (DA ). This is mathematically consistent with the fact
that the scatter given by the derivative of equation (3) withrespect
to z is proportional toγ.

6 SUMMARY & CONCLUSIONS

(i) We measured the cosmic flux decrementDA and its uncer-
tainty due to statistical and systematic errors for 25 QSOs of the
SDSS DR5 catalog in the redshift range 2.716 zem6 5.41.

(ii) We modeled the redshift evolution of the meanDA and its
distribution at each given redshift in a Monte Carlo fashion, adopt-
ing two among the various models presented by Bershady et al.
(1999). We found that the predictions of the MMC model for the
evolution of the meanDA reproduce well the observations in the
range 0.2 < zem < 5.41, in contrast to the BMC model. We con-
clude from this that the underlying input distributions of the BMC
model may not accurately account for the evolution of the Lyα ab-
sorption on the IGM. Hence, estimates of the impact of the inter-
galactic attenuation on the photometric properties of high-redshift
galaxies using this particular model should be taken with caution.
Incidentally, by showing the rather good agreement betweenone
particular set of simulations and the data, we show the powerof the
relatively simple approach used here to model the effect of inter-
galactic absorption, as compared to models based on hydrodynam-
ical simulations which are by far more complex.

(iii) Through the comparison between the MMC and BMC mod-
els, we showed that different input distribution functions may have
very different predictions regarding the evolution ofDA , a quan-
tity which is intimately related –and hence very sensitive–to the
amount of H present along the line-of-sight. Therefore, we state
that any model of the intergalactic absorption should first of all re-
produce the observed evolution ofDA and its distribution before it
is used toe.g.correct synthetic or observed spectra for intergalactic
absorption.

(iv) The results from our simulations suggest that the distribu-
tion of DA at a given redshift be well described by a lognormal

distribution at low redshifts and by a Gaussian distribution at high
redshifts, in agreement with our theoretical expectation based on
the fact that the absorption is mathematically expressed asthe prod-
uct of small, statistically independent factors. This result implies
that at redshifts whereDA is distributed lognormally, the effective
optical depth of the intergalactic H should obey a normal distribu-
tion, contrary to the results of previous studies. However,this result
should be taken with caution in light of the fact that the models, in
particular the MMC model, cannot reproduce the amplitude ofthe
observed scatter inDA .

(v) We argue that most of the observed scatter inDA is intro-
duced by combining measurements based on different methods.
Nevertheless, the reason for the lack of agreement between the
scatter predicted by the MMC model and the observed distribu-
tion of DA is not ultimately settled. Because of this and until this
discrepancy is clarified, we may warn about using any attenuation
model based on the input distributions of the MMC model to esti-
mate magnitude changes in the spectra of background sources.

(vi) A larger, homogeneous sample of accurate measurementsof
DA over a wide redshift range is needed in order to allow for a more
faithful comparison to models, and in particular, to determine the
intrinsic formandamplitudeof the distribution ofDA as a function
of redshift.
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