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ABSTRACT

From a visual standpoint it is often easy to point out whether a system is considered to be

self-organizing or not, though a quantitative approach would be more helpful. Information

theory, as introduced by Shannon, provides the right tools not only quantify self-organ-

ization, but also to investigate it in relation to the information processing performed by

individual agents within a collective.

This thesis sets out to introduce methods to quantify spatial self-organization in collective

systems in the continuous domain as a means to investigate morphogenetic processes.

In biology, morphogenesis denotes the development of shapes and form, for example

embryos, organs or limbs. Here, I will introduce methods to quantitatively investigate

shape formation in stochastic particle systems.

In living organisms, self-organization, like the development of an embryo, is a guided

process, predetermined by the genetic code, but executed in an autonomous decentralized

fashion. Information is processed by the individual agents (e.g. cells) engaged in this

process. Hence, information theory can be deployed to study such processes and connect

self-organization and information processing. The existing concepts of observer based

self-organization and relevant information will be used to devise a framework for the

investigation of guided spatial self-organization.

Furthermore, local information transfer plays an important role for processes of self-organ-

ization. In this context, the concept of synergy has been getting a lot attention lately.

Synergy is a formalization of the idea that for some systems the whole is more than the sum

of its parts and it is assumed that it plays an important role in self-organization, learning and

decision making processes. In this thesis, a novel measure of synergy will be introduced,

that addresses some of the theoretical problems that earlier approaches posed.
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» The most exciting phrase to hear in science, the one that heralds new
discoveries, is not ‘Eureka!’ (I found it!) but ‘That’s funny...’ «

ISAAC ASIMOV, Unknown

» The difference between life and non-life is a matter not of substance but
of information. «

RICHARD DAWKINS, The Greatest Show on Earth
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» To anyone who understands information theory and security and is in an infuri-
ating argument with someone who does not (possibly involving mixed case), I
sincerely apologize «

XKCD, 936
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1
INTRODUCTION

» It is the pervading law of all things organic and inorganic,

Of all things physical and metaphysical,

Of all things human and all things super-human,

Of all true manifestations of the head,

Of the heart, of the soul,

That the life is recognizable in its expression,

That form ever follows function. This is the law «

LOUIS SULLIVAN, The Tall Office Building Artistically Considered

1.1 MOTIVATION

Morphogenesis is the term used in biology to denote the development of shapes in organisms.

One of the first theoretically inspired studies on morphogenesis were made by Alan Turing

in the fifties with reaction-diffusion systems (Turing, 1952). Reaction diffusion systems

are models of the concentration of substrates distributed in space. In these models two

processes can change the concentration: local ‘chemical’ reactions and diffusion. This leads

to the development of spatial patterns, like stripes, spots or spirals and explains how certain

patterns can form from a homogeneous initial state (Harrison, 1994).

The study of morphogenesis in biology was pioneered by Thompson and Bonner (1992),

but it was not until the development of modern genetics, molecular biology and import-

antly the discovery of DNA that the field gained traction. One of the earlier treatments

of morphogenesis by Townes and Holtfreter (1955) considers the early stage of biological

development in an organisms life, also known as embryogenesis, where a transformation

from a simple ball of cells towards predetermined cell arrangements takes place. In par-

ticular, they studied the significance of cell-adhesion and cell-motility for the process of

cell segregation and cell differentiation in the early stages of embryogenesis. Some of their

experiments included the reshuffling of cells of different types that show selective cell-adhe-

sion properties with respect to the cell type. In these cell aggregates they were able to

show that over time cells segregated by type. These experiments were later modelled in

simulations by Glazier and Graner (1993) using a model from statistical mechanics.

Subsequently, morphogenesis and especially embryogenesis stay very active fields of research

in biology. Nowadays, there are ten known basic cellular mechanisms that seem to drive

all morphogenetic processes in nature (Davies, 2005,2008). While the mechanisms of

morphogenesis on a subcellular and molecular level are better explored today, less is known

about interplay of these mechanism in the later stages of development (Davies, 2008). As

the development of an organism is orchestrated by gene regulatory networks (Wolpert

et al., 2002), the better understanding of these has an important impact on the study of

morphogenesis. While functional cell differentiation or the development is more and more

understood, the question about the principles guiding the development of a nervous sys-

tem or the organization of muscles together with bones, tendons and ligaments remains
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unsolved (Bard, 2008). Furthermore, are there a few common principles underlying all

these processes?

The history of science has many examples where common principles were found via abstrac-

tion. In a very abstract sense, morphogenesis is a process of spatial self-organization guided

by predetermined parameters that evolve over time. In this thesis, I want to propose an

information-theoretic perspective on morphogenetic processes by connecting informa-

tion-theoretic formulations of self-organization with methods from spatial statistics and

information-theoretic models of multi-agent systems.

Information theory has come a long way from its initial purpose as a theory of commu-

nication by Shannon (1948). Here I will hold a view in the spirit of Ashby (1956), Barlow

(1959) and Lwoff (1962) considering living organisms and, further down the hierarchy,

their organs and their cells as information processing entities. Information, as defined by

Shannon (1948), is a versatile measure that can be used to quantify the costs associated to

decision making (Tishby and Polani, 2010) and requirements to sensor input with respect

to extrinsic reward (Polani et al., 2006). It is versatile as it can be applied any model that

can be captured in the language of random variables. Furthermore, it can be used to pos-

tulate conservation laws, bandwidth limitations or efficiency constraints. For example,

information theory provides conservation laws concerning the information that needs

to be injected into a system to control it (Touchette and Lloyd, 2004). This is of great

relevance as conservation laws make it possible to state constraints and requirements that

then can be applied to self-organising systems to make characterizations or predictions.

As information processing is usually associated with some kind of metabolic cost, informa-

tion-theoretic constraints are grounded in the physical world. This opens an evolutionary

perspective on information processing, where organisms that are parsimonious with inform-

ation have an evolutionary advantage (Polani, 2009). In this context parsimony means that

only information that is needed to achieve a certain level of fitness or adaptability is pro-

cessed, and thus called relevant.

Self-organization, seen as an increase of complexity over time (Shalizi, 2001), can be the

result of distributed information processing in collectives. This observation suggests that

complexity as well can be captured by information-theoretic means and there are indeed

several approaches using statistical and information-theoretic methods to define complexity

and self-organization (Crutchfield and Young, 1989, Shalizi, 2001 and Polani, 2008).

This thesis can be divided into two parts. The first one deals with morphogenesis and shape

formation of multi-agent systems, while the second part is about information-theoretic

notions of synergy and redundancy. Synergy is the formalization of the idea that the whole

is more than the sum of its parts. Though a direct relation to spatial self-organization

is not yet discernible, there is much evidence, that synergy is an important driver of

self-organization (Flecker et al., 2011 and Lizier et al., 2013).
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In the main part of the thesis, I will show that currently available information-theoretic

methods can be used to quantify self-organization in large collective systems. In particular,

this method will be employed to study spatial stochastic dynamical systems that are mod-

elled to roughly emulate biological cells. Finally, I will relate the information-theoretic

notion of self organization to the concept of relevant information and provide a general

information-theoretic framework to further investigate the constraints and properties of

information processing in multi-agent that self-organize in a guided way towards spatial

configurations.

1.2 OVERVIEW

This thesis is structured as follows:

Chapter 2 provides an introduction to the basics of information theory and Causal

Bayesian Networks. Moreover, related literature is discussed with the aim to give an

overview of applications of information theory to embodied cognition as well as self-organ-

ization.

Chapter 3 gives an introduction to the quantification of self-organization. Two meas-

ures, statistical complexity self-organization and observer self-organization are discussed

regarding an application to spatial continuous systems. This chapter concludes with a

quantitative comparison of multi-information estimation, which is used in the calculation

of observer based self-organization.

Chapter 4 introduces a model of particle systems roughly mimicking biological cell

motility and adhesion. A method to measure observer based self-organization from particle

system simulations is developed. This method is then used to investigate the influence of

types and particle interactions on the system’s self-organization.

Chapter 5 formally introduces the concept of relevant information for multi-agent sys-

tems and discusses the perception-action loop as a model of embodied cognition, including

the control theoretic implications of such a model. It is then shown how morphogenetic

tasks can be investigated using the relevant information formalism. At last, multi-agent

relevant information is set in relation to the self-organization of agent collectives and the

implications of agent coordination are studied in the context of shared control.

Chapter 6 discusses the problems with currently available approaches to quantify redund-

ant information between random variables with respect to another variable. A new measure

of bivariate redundant information is developed and it shown that it resolves most of the

earlier discussed problems and can be used in the decomposition of mutual information.

Furthermore, an extension of the measure to the multivariate setting is proposed.
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1.3 CONTRIBUTION

Parts of this thesis have been published in the following articles

• Harder, M., Salge, C. and Polani, D. (2013). Bivariate measure of redundant information.

Physical Review E, 87(1), 012130.

• Harder, M. and Polani, D. (2012). Self-organizing particle systems. Advances in Complex

Systems, pp. 1250089.

• Harder, M., Polani, D. and Nehaniv, C. L. (2010). Two agents acting as one. In Feller-

mann, H., Dörr, M., Hanczyc, M., Ladegaard, L. L. and Maurer, S. et al., editors,

Artificial Life XII: The 12th International Conference on the Synthesis and Simulation of
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The contributions of this thesis are

• A comprehensive literature review on currently available methods for the estimation of

multi-information in the continuous domain.

• A quantitative comparison of existing multi-information estimators in high-dimen-

sional continuous domains.

• A framework to compute observer self-organization in spatial collective systems.

• An investigation of particle dynamics and the impact of type differentiation and inter-

actions on the expressed amount of self-organization.

• An additional axiom for bivariate measures of redundant information.

• A novel bivariate measure of redundant information based on information geometric

projections which is consistent with the partial information decomposition of mutual

information (Williams and Beer, 2010) and can be easily computed using numeric

optimization techniques.

• The extension of the bivariate measure of redundant information to a multivariate

measure that also uses information projections and fulfils the required axioms, however
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is not easy to compute and it remains open whether it is consistent with regard to the

partial information decomposition of multivariate mutual information.

• The extension of the relevant information formalism (Polani et al., 2006) to multi-agent

scenarios, in particular with episodic morphogenetic tasks of guided self-organization.

• A theoretical limit on the amount of collective self-organization depending on the

information processing performed by individual agents of the collective as a generaliza-

tion of information-theoretic limits to control by Touchette and Lloyd (2004).

• A formulation of efficient shared control by comparing information processing and actu-

ator coordination with the achieved performance of a collective regarding a particular

task.
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2
BACKGROUND

» I just wondered how things were put together. «

CLAUDE SHANNON, Unknown

2.1 INFORMATION THEORY

Information Theory was initially introduced by Shannon (1948) to provide a theory to

the problem on how to quantify and optimize transmission rates in noisy communication

channels. Many of the mathematical ideas and tools used for this by Shannon (1948) stem

from works on probability theory and thermodynamics by Kolmogorov (1946), Boltzmann

(1866) and Gibbs (2010) and many others. Even though thermodynamics and statistical

mechanics share the same mathematical foundations as information theory does, it took

a little more than a decade until the first connections between information theory and

physics were drawn by physicists as Landauer (1961,1991) and Jaynes (1957). A first step in

this general direction was made by Wiener (1948) in the same year as information theory

was formally introduced (Shannon, 1948). In his workWiener already draws the connection

between communication, control, robotics, social complexity and living organisms and

one is tempted to say that his thoughts were ahead of his time.

Nowadays, after the rise of new scientific fields (complex systems, computational mechanics,

quantum computing, systems biology, to name a few) and a digital revolution in society,

information theory has grown in importance. Applications can be found in a myriad of

disciplines (see (Attneave, 1959, Jade and Sarkar, 1993, Rashid et al., 2002, Topp et al.,

2013 and Effenberger, 2013) for a small selection of applications to different fields), but

it still serves its original purpose as a theory of communication underlying much of the

technology that most of us are using daily to communicate with each other.

The main measure used in information theory is called entropy and it measures the uncer-

tainty of the outcome from a set of possible events. Another interpretation of entropy is

the average length of a symbol (in bits) when data is compressed in the best possible way.

This has apparent applications for communication and compression. But in practice, any

probabilistic model can be examined using information-theoretic methods, and it will be

seen in Section 2.2 that this often provides new insights that would not have been accessible

otherwise.

2.1.1 Foundations of Information Theory

Shannon (1948) introduced information theory as a mathematical theory of communication

and stressed that “semantic aspects of communication are irrelevant to the engineering

problem” (Shannon, 1948, p. 1). This means that the foundations of information theory do

not require any semantics of the information dealt with. This is true for the “engineering

problem”, but even more so for the mathematical basis of information theory. However, this

does not mean that information theory cannot be set in relation to semantics. Semantics
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is simply not an inherent property of information in the information-theoretic sense

and need to be incorporated by adding context. For example, the concept of relevant

information introduced by Polani et al. (2006) provides an information-theoretic measure

of ‘meaningful’ information in a specific context.

Information theory itself is agnostic to the context it is used in. The initial conceptual

coupling with the construct of the communication channel consisting of Source, Trans-

mitter, Channel, Receiver and Destination (Shannon, 1948) presented it very much as an

engineers’ tool. Thus, despite its connections to physics, early ideas about using information

theory to assess biological and cognitive systems using information theory were dismissed

on the basis that living organisms do not communicate with the world around them and

especially not the other way around (Gibson, 1986). Here, it is important to stress that the

engineers’ model of a communication channel already defines the semantic context it is

used in, namely sender and receivers acting with intent, even though the semantics of the

information that is transmitted are ignored in this particular context.

Not only the concept of having a sender and receiver acting with intent is generally

misleading, but also thinking of entities that share information as observers or agents is

generally not correct. Information is a stochastic observer-independent and non-causal

quantity. As it turns out later, it is however possible to incorporate observers and causality

in the specific model that is used, in the same spirit as done with semantics.

2.1.2 Random Variables & Probabilities

Before I introduce entropy and its related measures, I will give an overview of the notation

used. Random variables are denoted by italic capital letters e.g. 𝑋, 𝑌 or 𝑍. Capital letters
are also used to denote index sets and power sets, for which the letters 𝐴, 𝐵, 𝑉 and 𝑅 are

reserved. Random variables are as usual defined via probability spaces (see (Klenke, 2008)

for details). Let (Ω, ℱ, 𝑃) be a probability space, with sample space Ω, a set of events ℱ
and the probability measure 𝑃. An (𝐸, ℰ)-valued random variable on a measurable space

(𝐸, ℰ) is a measurable map 𝑋 : Ω → 𝐸. Unless otherwise specified, random variables used

in this thesis are finite. Furthermore, if no measurable space is explicitly given, a random

variable 𝑋 is considered to be (𝔛, 𝒳)-valued where 𝔛 is a finite set of atomic events and

𝒳 = 𝒫(𝔛) is the 𝜎 -algebra generated by the powerset of 𝔛. Real valued random variables

map into (ℝ, ℬ(ℝ)) where ℬ(ℝ) is the Borel 𝜎 -algebra of ℝ.

Now the probability measure 𝑃𝑋 := 𝑃 ∘ 𝑋−1 is called the distribution of 𝑋 . The cumulative

distribution function 𝐹𝑋 of a real valued random variable𝑋 is defined as 𝐹𝑋(𝑥) := 𝑃(𝑋 ≤ 𝑥).
Respectively its probability density function is denoted 𝑓𝑋 and

𝐹𝑋(𝑥) =
𝑥

∫
−∞

𝑓𝑋(𝑡)𝑑𝑡. (2.1)
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If 𝔛 is a discrete set and 𝑋 an (𝔛, 𝒳)-valued random variable, then 𝑝𝑋 : 𝔛 → [0, 1] denotes
the probability mass function associated with the distribution 𝑃𝑋 and 𝑝𝑋(𝑥) := 𝑃𝑋({𝑥}) =
𝑃(𝑋−1({𝑥})) for all 𝑥 ∈ 𝔛. I will use 𝑝(𝑥) as a shorthand for 𝑝𝑋(𝑥) if it is clear from the

context which distribution and probability mass function is meant. The space of all possible

probability distributions 𝑃𝑋 on (𝔛, 𝒳) is denoted Δ(𝑋). In the finite case, Δ(𝑋) is a |𝒳| − 1
dimensional simplex.

A joint distribution of several random variables, e.g. 𝑋, 𝑌, 𝑍 is denoted as 𝑃𝑋,𝑌,𝑍. Respect-

ively a conditional distribution is denoted as 𝑃𝑋|𝑌,𝑍. In the same way joint or conditional

probability mass functions as well as joint or conditional probability density functions will

be denoted. Again, if it is clear form the context I will omit the indices denoting the random

variables and simply use 𝑝(𝑥|𝑦) instead of 𝑝𝑋|𝑌(𝑥|𝑦) to denote the value of a conditional

probability mass function.

As the random variables used in this thesis are mainly finite and real valued there is no need

to be concerned about transition kernels and other concepts from the measure theoretic

foundations of probability theory. The underlying probability space (Ω, ℱ, 𝑃) is implicitly

assumed to be expressive enough to capture all the desired random variables and their

distributions and thus is not further specified.

2.1.3 Bits & Entropy

Suppose 𝑋 is a random variable, then its entropy is defined as

𝐻(𝑋) := − ∑
𝑥∈𝔛

𝑝(𝑥) log 𝑝(𝑥), (2.2)

where the logarithm is to the base 2 and 0 log 0 = 0 by convention. Entropy is measured

in bits and quantifies the average amount of uncertainty about the outcome of 𝑋 . An

analogous explanation is that it measures the amount of symbols from a binary alphabet

that are needed on average to transmit an outcome of 𝑋 with the best possible compression.

Entropy is non-negative and becomes maximal for uniformly distributed random variables

𝐻(𝑋) = log |𝔛|. On the other hand for any distribution where there is an 𝑥, such that

𝑝(𝑥) = 1, the entropy vanishes.

The conditional entropy of 𝑋 given 𝑌 , is defined as the difference between joint entropy

and the entropy of the conditioned variable:

𝐻(𝑋|𝑌) := 𝐻(𝑋, 𝑌) − 𝐻(𝑌) (2.3)

= − ∑
𝑥,𝑦

𝑝(𝑥, 𝑦) log 𝑝(𝑥|𝑦). (2.4)

= − ∑
𝑦

𝑝(𝑦) ∑
𝑥

𝑝(𝑥|𝑦) log 𝑝(𝑥|𝑦). (2.5)

This measure is also non-negative and can be interpreted as the remaining average uncer-

tainty of the whole system of two variables if the result of one is known. As entropy is only
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additive if 𝑋 and 𝑌 are independent, that means 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) for all 𝑥 ∈ 𝔛, 𝑦 ∈ 𝔜,

it follows that 𝐻(𝑋|𝑌) = 𝐻(𝑋) if and only if 𝑋 and 𝑌 are independent.

2.1.4 Mutual-Information

There are several definitions of information (Floridi, 2010 and Dretske, 1981), some even

include the meaning (semantics) of information. I will not be concerned with such a

definition here, as explained Section 2.1.1. In information theory, information is defined as

a reduction of uncertainty. This is a quantitative and non-semantic definition. Therefore,

the mutual information between 𝑋 and 𝑌 is defined as the difference between the entropy

𝐻(𝑋) and the conditional entropy 𝐻(𝑋|𝑌).

𝐼(𝑋; 𝑌) := 𝐻(𝑋) − 𝐻(𝑋|𝑌) (2.6)

= 𝐻(𝑌) − 𝐻(𝑌|𝑋) (2.7)

= ∑
𝑥,𝑦

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦) . (2.8)

It is obvious from the above definition of conditional entropy (2.3) that mutual inform-

ation is symmetric. Moreover, because 𝐻(𝑋|𝑌) ≤ 𝐻(𝑋) it is also non-negative. Mutual

information is the information that 𝑋 and 𝑌 share about each other. This is also what I

mean when I speak of a variable containing information about another. It is quite easy to

prove that 𝐼(𝑋; 𝑋) = 𝐻(𝑋) and hence, entropy is sometimes called self-information.

If 𝑝(𝑥|𝑦) describes the communication over a communication channel with 𝑌 being the

source and 𝑋 the output, then the mutual information 𝐼(𝑋; 𝑌) denotes the channel capacity,
the amount of information that is transferred on this channel when the input has the distri-

bution 𝑝(𝑦). The relation between entropy, conditional entropy and mutual information

is illustrated using a Venn diagram Figure 2.1.

It is possible to condition mutual information on a third random variable 𝑍, resulting in

the non-negative measure of conditional mutual information:

𝐼(𝑋; 𝑌|𝑍) := 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍) (2.9)

= ∑
𝑧

𝑝(𝑧) ∑
𝑥,𝑦

𝑝(𝑥, 𝑦|𝑧) log
𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧) . (2.10)

While 𝐻(𝑋|𝑌) ≤ 𝐻(𝑋), the respective inequality does not hold for the relation between

mutual information and conditional mutual information. Thus, 𝐼(𝑋; 𝑌) − 𝐼(𝑋; 𝑌|𝑍) may

be positive, negative or zero. This means that knowing the outcome of a third variable

can decrease the information shared by 𝑋 and 𝑌 . The difference 𝐼(𝑋; 𝑌) − 𝐼(𝑋; 𝑌|𝑍) is

sometimes called interaction information (McGill, 1954) or co-information (Bell, 2003)

and denoted by 𝐼(𝑋; 𝑌; 𝑍) (sometimes also the negative 𝐼(𝑋; 𝑌|𝑍) − 𝐼(𝑋; 𝑌) is used for a

definition). Some sources use the term multi-information for 𝐼(𝑋; 𝑌; 𝑍). However, I will
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𝐻(𝑋|𝑌) 𝐻(𝑌|𝑋)𝐼(𝑋; 𝑌)

𝐻(𝑋) 𝐻(𝑌)

𝐻(𝑋|𝑌, 𝑍) 𝐻(𝑌|𝑋, 𝑍)

𝐻(𝑍|𝑋, 𝑌)

𝐼(𝑋; 𝑌; 𝑍)

𝐻(𝑋) 𝐻(𝑌)

𝐻(𝑍)

𝐼(𝑋; 𝑌|𝑍)

𝐼(𝑋; 𝑍|𝑌) 𝐼(𝑌; 𝑍|𝑋)

a) Relations between
two variables 𝑋 and 𝑌 .

b) Relations among three
variables 𝑋 , 𝑌 and 𝑍.

FIGURE 2.1 Illustration of relations between (conditional) entropy and (conditional) mutual information.

use the term multi-information solely to denote multivariate mutual information as will be

introduced below. Interaction information is obviously symmetric in all three variables

and measures how ‘entangled’ the three variables are. If it is negative, there is a lot of

‘entanglement’ while in the case of positive interaction information, often one of the

variables is a common cause or consequence of the other two. I will show Chapter 6 that

this is not always strictly true and there are cases in between where this naive interpretation

does not work.

2.1.5 Kullback-Leibler Divergence

There is another important measure in information theory, called Kullback-Leibler (KL)

divergence. It differs from the previous three as it does not measure a quantity from a single

distribution of one or more random variables, but it measures the divergence between two

distributions defined on the same measurable space. Let 𝑃𝑋 and 𝑄𝑋 be two distributions of

(𝔛, 𝒳)-valued random variables, then the KL-divergence between 𝑃𝑋 and 𝑄𝑋 is defined as

𝐷KL (𝑃𝑋 ∥ 𝑄𝑋) := ∑
𝑥∈𝔛

𝑝𝑋(𝑥) log
𝑝𝑋(𝑥)
𝑞𝑋(𝑥) . (2.11)

Again, by convention 0 log 0
0 = 0, 0 log 0

𝑞 = 0 and 𝑝 log 𝑝
0 = ∞. The KL-divergence is

similar to a distance, though not being a proper metric as it is not symmetric. It measures the

inefficiency when using a code that assumes a different underlying distribution: Suppose

some data occurs with distribution 𝑃𝑋, but the code for its description is constructed

assuming the distribution 𝑄𝑋, then the average symbol length of the data for which the

true underlying distribution is given by 𝑃𝑋 will be 𝐻(𝑃𝑋) + 𝐷KL (𝑃𝑋 ∥ 𝑄𝑋) (Cover and

Thomas, 2006) (here 𝐻(𝑃𝑋) is written instead of 𝐻(𝑋) to address the existence of several

(𝔛, 𝒳)-valued distributions).
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Interestingly, the mutual information between𝑋 and𝑌 can now be defined as the KL-diver-

gence between the joint distribution 𝑃𝑋,𝑌 and the distribution 𝑄𝑋,𝑌, which probability mass

function is defined via the marginals of 𝑋 and 𝑌 , i.e. 𝑞𝑋(𝑥, 𝑦) := 𝑝𝑋(𝑥)𝑝𝑌(𝑦). Therefore
mutual information measures the inefficiency of assuming 𝑋 and 𝑌 being independent.

2.1.6 Important Properties

There are many equalities and inequalities in information theory and specifically a whole

theory regarding information-theoretic inequalities has recently been developed (Yeung,

2008). Here I will only present a few, specifically those that will be needed throughout this

thesis. First of all, entropy obeys a chain rule equality. For random variables 𝑋1, ..., 𝑋𝑛 the

following is true:

𝐻(𝑋1, ..., 𝑋𝑛) =
𝑛

∑
𝑖=1

𝐻(𝑋𝑖|𝑋𝑖−1, ..., 𝑋1), (2.12)

where the term in the sum reduces to 𝐻(𝑋1) for 𝑖 = 1. A similar equality holds for mutual

information between the 𝑋𝑖 and another random variable 𝑌 :

𝐼(𝑋1, ..., 𝑋𝑛; 𝑌) =
𝑛

∑
𝑖=1

𝐼(𝑋𝑖; 𝑌|𝑋𝑖−1, ..., 𝑋1). (2.13)

Now, let 𝑋 → 𝑌 → 𝑍 be a Markov chain of random variables, then

𝐼(𝑋; 𝑍) ≤ min{𝐼(𝑋; 𝑌), 𝐼(𝑌; 𝑍)} (2.14)

which is called the data-processing inequality. The idea is that each processing step limits the

information that input 𝑋 and output 𝑍 share if there is no other (hidden) channel between

𝑋 and 𝑍. The Markov condition, i.e. 𝑋 → 𝑌 → 𝑍 being a Markov-chain, states this now

by guaranteeing that the only information channel between 𝑋 and 𝑍 goes through 𝑌 .

Another important inequality is the convexity of the KL-divergence: Let (𝑃1, 𝑄1) and

(𝑃2, 𝑄2) be pairs of distributions of (𝔛, 𝒳)-valued random variables, then for 𝜆 ∈ [0, 1]

𝐷KL (𝜆𝑃1 + (1 − 𝜆)𝑃2 ∥ 𝜆𝑄1 + (1 − 𝜆)𝑄2) ≤ 𝜆𝐷KL (𝑃1 ∥ 𝑄1)

+ (1 − 𝜆)𝐷KL (𝑃2 ∥ 𝑄2) . (2.15)

The proofs for these properties as well as a thorough introduction to information theory

can be found in (Cover and Thomas, 2006).

2.1.7 Multi-Information

Multi-information is one of several possibilities (James et al., 2011) to extend mutual inform-

ation to more than two variables. For random variables 𝑋1, ..., 𝑋𝑛, multi-information can be

defined as a difference of entropies or via a KL-divergence, similar to mutual information:
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𝐼(𝑋1, ..., 𝑋𝑛) := ⎛⎜
⎝

𝑛
∑
𝑖=1

𝐻(𝑋𝑖)⎞⎟
⎠

− 𝐻(𝑋1, ..., 𝑋𝑛)

= ∑
𝑥1,...,𝑥u�

𝑝(𝑥1, ..., 𝑥𝑛) log
𝑝(𝑥1, ..., 𝑥𝑛)

𝑝(𝑥1)⋯𝑝(𝑥𝑛) .

This quantity measures the correlation between more than two variables. It is also non-neg-

ative, and will later play an important role in the assessment of self-organization.

2.1.8 Differential Entropy

Most of the concepts for discrete random variables can be transferred to continuous random

variables. Let 𝑋 be a continuous random variable where 𝒳 ≃ ℝ𝑛 and 𝑓 its probability

density function (pdf), then differential entropy is defined analogously as

𝐻(𝑋) := − ∫
supp(𝑋)

𝑓 (𝑥) log 𝑓 (𝑥)𝑑𝑥, (2.16)

where supp(𝑋) denotes the support of 𝑋 , that is the closure of all 𝑥 ∈ 𝒳 , such that

𝑓 (𝑥) > 0. It is important to note here, that this integral might not be defined for some pdfs

and moreover differential entropy can be negative. Hence, it is problematic to interpret

differential entropy in the same way as entropy. Mutual and multi-information can now

be defined in the same fashion as they are defined for discrete distributions.

𝐼(𝑋; 𝑌) := ∫
supp(𝑋)

∫
supp(𝑌)

𝑓 (𝑥, 𝑦) log
𝑓 (𝑥, 𝑦)

𝑓 (𝑥)𝑓 (𝑦)𝑑𝑥𝑑𝑦 (2.17)

and

𝐼(𝑋1, ..., 𝑋𝑛) := ∫
supp(𝑋1)

⋯ ∫
supp(𝑋u�)

𝑓 (𝑥1, ..., 𝑥𝑛) log
𝑓 (𝑥1, ..., 𝑥𝑛)

𝑓 (𝑥1)⋯𝑓 (𝑥𝑛)𝑑𝑥1⋯𝑑𝑥𝑛. (2.18)

While differential entropy can become negative, differential multi-information is the

limit of quantized multi-information terms and therefore non-negative. Again, a good

introduction to differential entropy can be found in (Cover and Thomas, 2006), however

I will not need much more than these definitions here. The corresponding estimators that

will be introduced in Section 3.6.

2.1.9 Causal Bayesian Networks

A Bayesian network is a directed acyclic graph 𝐺 = (𝑉, 𝐸) where the vertices 𝑣 ∈ 𝑉
are indices of random variables 𝑋𝑣 and the distribution of the joint random variable 𝑋 =
(𝑋𝑣)𝑣∈𝑉 can be written as a product of conditional distributions, conditioned on the parent

variables of a vertex. That is

𝑝(𝑥) = ∏
𝑣∈𝑉

𝑝(𝑥𝑣|𝑥parents(𝑣)), (2.19)
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where 𝑝(𝑥𝑣|𝑥parents(𝑣)) = 𝑝(𝑥𝑣) by convention if the set parents(𝑣) is empty. Conversely,

given a joint distribution of random variables 𝑋 = (𝑋1, ..., 𝑋𝑛) and a directed acyclic

graph 𝐺 = (𝑉, 𝐸) with a bijection between 𝑉 and 𝑋 , then (𝑋, 𝐺) is a Bayesian network

if all the nodes fulfil the Markov property, which means that it is independent of all its

non-descendants if it is conditioned on all parents.

In a Bayesian network the directions of the arrows (the edges) are not given by the graph.

For example in a Markov chain, which is also a special Bayesian network, the direction

of all arrows can be reversed while the distribution stays the same, resulting in another

Bayesian network for the same distribution. This means that a Bayesian network is not

uniquely determined by its underlying distribution. In a causal Bayesian network (CBN) it

is therefore required that all arrows are causal (Pearl, 2000), that means for an intervention

at a specific random variable, the consequences of this intervention are only to be seen

in the descendent within the CBN. With this restriction, it is possible to get a better

interpretation of results that incorporate such a Bayesian network.

2.1.10 The Perception-Action Loop

The perception-action loop is a model that allows to study an embodied agent interacting

with its environment using information-theoretic measures. It is an infinite CBN with

random variables modelling the agent’s sensors 𝑆𝑡, the agent’s actuators 𝐴𝑡 and the state of

the world 𝑊𝑡. The index 𝑡 denotes the time step and assumes a discrete or quantized model

of time. The perception-action loop is a stochastic model of an agent interacting with its

environment unrolled over time. The CBN of the perception-action loop is illustrated

in Figure 2.2. The dynamics of the world 𝑝(𝑤𝑡+1|𝑤𝑡) are determined by the policy of the

agent 𝑝(𝑎𝑡|𝑠𝑡), its sensor 𝑝(𝑠𝑡|𝑤𝑡) and the world dynamics reacting to the agents action

𝑝(𝑤𝑡+1|𝑎𝑡, 𝑤𝑡):

𝑝(𝑤𝑡+1|𝑤𝑡) = ∑
𝑎u�

𝑝(𝑤𝑡+1|𝑎𝑡, 𝑤𝑡) ∑
𝑠u�

𝑝(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡|𝑤𝑡). (2.20)

The model can be extended to systems with multiple agents and agents with memory. I

will introduce details of these extensions in Chapter 5. This particular model was pioneered

by Klyubin et al. (2004), Capdepuy et al. (2007a), Anthony et al. (2008), Salge and Polani

(2009) and van Dijk et al. (2010), even though the insight that sensors are information

processing mechanisms is not new and indeed has been in the focus of research for quite a

while and earlier results in this area (Attneave, 1954, Barlow, 1959, Shepard, 1984 and Ashby,

1956) were a motivation to formally express embodied agents informationally.

𝑊𝑡

𝑆𝑡 𝐴𝑡

𝑊𝑡+1

𝑆𝑡+1 𝐴𝑡+1

𝑊𝑡+2

FIGURE 2.2 Illustration of the CBN of the perception-action loop of a memoryless agent.
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2.2 RELATEDWORK

I will now give an overview of related work drawing connections between information

theory and the cognition and organization of living organisms. Towards the end of this

section, a particular emphasis on self-organization and biological morphogenesis is taken,

concluding in a summary of some result of recent research on information processing in

actual biological embryogenesis.

2.2.1 Embodied Cognition & Information

The law of requisite variety (Ashby, 1956) states that a controller can only reduce the entropy

of a controlled variable by at most the entropy of the controller. The formalization and

extension of this law to modern concepts of control theory and information theory was

undertaken by Touchette and Lloyd (2000,2004) and Shalizi (2001). There is a more

accessible way of formulating the law of requisite variety: to reduce entropy of a controlled

variable, the controller first has to acquire this information from the controlled variable.

Ashby (1956) proposed this law in the 1950s and had cybernetic machines as an application in

mind, but every living organism processes information from sensors to actuators, even if the

boundaries between them are not always so clear. Polani (2009) took this idea and developed

it even further by postulating that information might be a ‘currency of life’, meaning that

information processing might not only be a necessary condition for life to emerge, but an

existential part of defining it. In this light the perception-action loop introduced above and

variations thereof become key concepts to study information processing in living systems.

Moreover it becomes clear that sensors of living organisms play an important role in the

study of organisms as information processing systems.

2.2.1.1 Information Trade-offs and Relevance

Literature on the capabilities of sensors of living organisms, as Polani (2009) noted, show

that perception in living organisms often takes place in the proximity of physical limits:

Human ears can operate closely at the channel capacity prescribed by thermodynamics

(Denk and Webb, 1989), eyes can detect small photon clusters and for some species even

single photons (Baylor et al., 1979 and Hecht et al., 1942) and it has been estimated that

the photo receptors of a human eye process information in the magnitude of 106 bit/s
(Atick and Redlich, 1992). Hence, information seems to play a very important role for

living systems.

On the other hand, Atick and Redlich (1992) note that the visual pathways in the cortex

only process ∼ 40 bit/s, which shows that a lot of the raw information is processed and

compressed on the way before reaching the cortex. Barlow (2001) calls this redundancy

reduction, and hypothesizes that this happens because Information processing and transmis-

sion costs energy (Laughlin et al., 1998) and energy is a limited resource for an organism.
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But there can be more to it than just a redundancy reduction, as Polani (2009) emphas-

izes. The visual cortex is possibly not just processing compressed data coming from photo

receptors of the eye but it seems that also a filtering for relevance exists (Lee and Mumford,

2003 and de Ladurantaye et al., 2012). A simple example for this is given in (de Ladurantaye

et al., 2012) by noting that eye-movements already filter for relevant information “thus,

the eyes strategically move to pick up relevant information for goal-directed action, and

they are tightly bound to this task.” (de Ladurantaye et al., 2012, p. 151). It is conjectured

by Polani (2009), that the trade-off between energy and information processing makes

organisms that can extract relevant parts from their sensor information perform better on an

evolutionary scale. Wasting metabolic energy for information processing of non-relevant

information will be disfavoured. At the same time leaving relevant information out to save

metabolic energy results in the reaching of only a suboptimal policy. The implications of

informational drives for sensor evolution have been discussed in (van Dijk and Polani, 2012).

The picture here is simplified as adaptability may also favour a lower amount of information

processing with the advantage of being less specialized but requiring less energy. Recent

investigations show that metabolic constraints might further implications and for example

increase the robustness of distributed learning (Balduzzi et al., 2013).

The formalization of a trade-off between information processing capabilities and perform-

ance of an agent with respect to some utility has been as far as I am aware introduced by

Polani et al. (2006). The minimal amount of information needed to achieve an optimal

policy with respect to some utility is called relevant information. Relevant information can

also be defined for suboptimal policies leading to a trade-off curve which is illustrated

in Figure 2.3. Relevant information is not to be confused with the similar concepts of

Optimal Causal Inference (Still et al., 2007) and the information-theoretic approach to

interactive learning by Still (2009). Relevant information connects to a utility that is not

necessarily informationally motivated, whereas the latter concepts are concerned with

trade-offs between the information that action and internal state share with the future, and

the information that needs to be obtained for an internal model of the world.

Returning to the evolutionary view as taken above, all organisms operate in the achievable

area and evolutionary drives work towards the limit of this area. Better performance as

well as less information processing are favoured by evolution. Polani (2009) concludes

this thought with the hypothesis that small variations at the limit of the achievable region

enable the exploration of evolutionary advantages and thus gradually increase the organisms’

performance, and therefore a drive to maximize information processing might be an

evolutionary advantage. In the sense, that increasing information processing allows to

explore better performing policies. If the shape of the trade-off curve is as in Figure 2.3, this

will certainly be true for policies with only very small mutual information between sensor

and actuator. Increasing information processing capabilities, allows an agent to reach much

higher levels of performance, given that the agent is informationally parsimonious. For

agents already having close to optimal performance simply increasing their information
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Relevant Information Trade-off

FIGURE 2.3 Illustration of the relevant information trade-off curve. To reach a higher utility more information
needs to be processed. The top right corner of the curve marks the relevant information, the amount of informa-
tion that is needed to follow a policy that is optimal in utility. The shape of the curve in this illustration is typical
for relevant information curves of reinforcement learning scenarios: Much of the information needed by the agent
only contributes to a small amount of utility at the top of the curve.

processing capabilities only gives way for small performance increases and thus in these

areas a simple maximization of information processing is possibly not favoured by evolution.

In general, agents being informationally parsimonious, meaning they only process relevant

information, have an inherent evolutionary advantage, if the processing of information is

connected to some metabolic cost.

Information maximization is a pattern that appears repeatedly in the context of cognition.

It was used to optimize neural networks by maximizing the mutual information between

input and output of nodes in a multi-layer neural network (Linsker, 1988) and is the basis

of Infotaxis (Vergassola et al., 2007) where an artifical moth is aims to maximize the

information gain about an odour source and thereby approaches the target in a biological

plausible way.

2.2.1.2 Empowerment

Relevant information looks at the arrow from sensors to actuators in the CBN of the

perception-action loop. Empowerment, another information-theoretic measure, looks at

the path from actuator to sensor via the environment of an agent (Klyubin et al., 2007). It

also uses a maximization approach as it is defined as the channel capacity between actuators

and sensors. The empowerment of an agent can be calculated for every state of the world

and gives insight into the agent’s ability to perform actions whose consequences can be

sensed by the agent itself at a later time. States with high empowerment often correlate

with ‘interesting’ states and empowerment maximization can be used as an intrinsic drive to
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achieve certain tasks. For example, empowerment maximization can be used to balance an

inverted pendulum (Salge et al., 2013) or to produce automatic collision avoidance (Glackin

et al., 2013) without explicit design of the desired behaviour. In collectives, empower-

ment maximization can even lead to the formation of cell-like shapes with a membrane

(Capdepuy et al., 2007b).

2.2.1.3 Predictive Information

The perception-action loop is a very abstract model of cognition and interaction of bio-

logical systems with their environment. However, at the boundary between biology and

physics the perception-action loop cannot be used it since there is no clear concept of

embodiment in this region. In this case the complexity, structure and interactions of

time series are important quantities to investigate such systems. There are many inform-

ation-theoretic measures to study time series of random variables without the definition

of a perception-action loop. One of these measures is predictive information. It is defined

as the mutual information between past and future of a time series of random variables

at a given time step (Bialek et al., 2001). Predictive information therefore poses an upper

bound on what can be known about future observations given all past observations. This

quantity is related to the complexity of the time-series (Bialek et al., 2001 and Shalizi, 2001)

and has an inherent connection to learning. Part of learning is the extraction of predictive

information from past observations to be able to anticipate future observations. The inform-

ation between infinite past and infinite future can be defined as a limit of the sequence

of information between finite pasts and finite futures. The convergence behaviour of this

quantity allows conclusions about the complexity of the underlying model (Bialek et al.,

2001).

In the framework of the perception-action loop, predictive information is usually measured

between past and future sensor readings of an agent. Maximizing this quantity leads to

interesting behaviours where agents explore their environment autonomously (Ay et al.,

2008) or coupled agents begin to cooperate (Zahedi et al., 2009). The learning rules to

maximize predictive information are in this case similar to the principle of homeokinesis

(Der et al., 1999) where an agent minimizes the prediction error of its self-model. Predictive

information, empowerment and relevant information are possibly related quantities, but

not in an obvious way that one is the complement of the other nor necessarily an upper

bound.

2.2.2 Information Theory, Structure & Complexity

Predictive information is related to the question of the complexity of a time series. There are

many definitions of complexity and structure, Chapter 3 will give a detailed introduction

into the information-theoretic concepts of complexity and in Chapter 6 I will take a look at
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the informational structure of CBNs. Here, I will only give a brief overview and introduce

some related concepts.

Early works connecting complex systems and information theory include (Bennett, 1990

and Tononi et al., 1994). The notion of statistical complexity, based on the entropy of a

time series’ causal state automaton, was introduced by Crutchfield (1990,1992) and later

extended by Shalizi (2001). There is a close connection between statistical complexity and

predictive information which allows to quantify self-organization in terms of prediction

efficiency. A very good overview of many of these information-theoretic measures that

can be used on a time series of random variables can be found in (James et al., 2011).

While statistical complexity is mainly used in the temporal dimension of a system, there are

other measures that are helpful to investigate the structure of correlations between individual

parts of a system. For example, interaction complexity (Kahle et al., 2009 and Ay et al.,

2006a) is an information-theoretic measure that quantifies correlations between 𝑘 parts of

a system. It measures interaction between exactly 𝑘 parts and gives an orthogonal view in

comparison to multi-information by providing a decomposition of it into informational

contributions of 𝑘-interactions.

Another important measure to mention at this point is transfer entropy (Schreiber, 2000),

which is simply the mutual information between the current state of one time series and

the next state of another, conditioned on the current state of the other time series. Transfer

entropy provides an insight into how much one time series is influencing another. It has

been extended by (Lizier et al., 2007 and Lizier, 2011) to measure local information transfer

and storage in multi-agent systems (Wang et al., 2011), and cellular automata (Lizier et al.,

2013).

2.2.2.1 Redundancy, Synergy and Integration

Informational quantities are usually averages and new methods are needed to identify

information that is identical, for example to detect redundancies when the measures intro-

duced in the last section are used to study interaction between several time series. Being

able to detect identical information enables the decomposition of the structure of the

information that several random variables share with another random variable. With the

partial-information decompositionWilliams and Beer (2010) provide a systematic approach

to distinguish between redundant, unique or synergistic contributions to mutual informa-

tion. It is based on lattice theory and provides a formalism once one defines the underlying

measure of redundant information. This field gained a lot of traction over the recent years

(Griffith, 2011, Griffith and Koch, 2012 and Bertschinger et al., 2012) and one of its applica-

tions is the structural decomposition of multivariate transfer entropy (Flecker et al., 2011

and Lizier et al., 2013). I will give a detailed introduction to this formalism in Chapter 6.

Related to the decomposition into redundant and synergistic information terms, is the meas-

ure of integrated information (Tononi et al., 1994 and Balduzzi and Tononi, 2008,2009).
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FIGURE 2.4 Examples of Turing patterns generated with diffusion-reaction systems.

It measures how much a system consisting of several parts, that evolves over time, can be

decomposed into components with independent dynamics. If it is possible to partition a

system into independent components, the measure vanishes and there is no integration in

the system (Balduzzi and Tononi, 2008).

2.2.2.2 Causality

As a last remark on information-theoretic measure, I want tomention the causal information

flow. While most of the measures introduced earlier only quantify correlations between

random variables of a CBN, there is also a way to quantify causal influences within a

CBN. Equipped with the causal structure (which is known from construction or was

reconstructed using a structural learning algorithm (Pearl, 2000)), one can use the causal

information flow formalism (Ay and Polani, 2008) to quantify the strength of causality in

a CBN using an interventional approach similar to the 𝑑𝑜 notation of Pearl (2000).

2.2.3 Self-Organization

There is a plethora of examples for self-organization and self-organizing systems which

have attracted researchers from various fields in the last century. From fluid dynamics to

geophysics, pattern recognition to neural networks, population dynamics tomorphogenesis,

all these fields deal with phenomena of self-organization.

The foundations for a quantitative analysis of self-organization are closely related to the

quantification of complexity and were laid by (Kolmogorov, 1963, Chaitin, 1969, Wolfram,

1986, Feldman and Crutchfield, 1998 and Shalizi, 2001). In Chapter 3, I will give a review

of the work on quantification of self-organization and will use the approach by Polani

(2008) to measure self-organization via multi-information. Here, I want to review some

of the actual simulations of self-organizing systems that were performed and their relation

to biology.

2.2.3.1 Simulations of Morphogenesis

I am mainly interested in simulations of self-organizing systems for the purpose of this

theses, especially multi-agent system and simulations of morphogenesis. One of the first
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work in this area deals with the famous Turing-patterns (Turing, 1952), simulating pattern

formation via diffusion-reaction systems as illustrated in Figure 2.4. Key works in this area

are also the reaction diffusion systems by Gierer and Meinhardt (1972). They considered

specific variants of reaction-diffusion models, activator-inhibitor systems, and used them to

explain the formation of organising regions and primary gradients (Gierer and Meinhardt,

1972 and Meinhardt, 1982,2006). A general introduction to pattern formation in an artificial

life context can be found in (Bonabeau, 1997).

A well known benchmark for morphogenesis is the French flag problem, that is, the

formation of three bands of distinctly differentiated cells using a gradient of a morphogen

(Wolpert, 1969, Miller, 2004 and Knabe et al., 2008). The challenge is that a cell on a local

scale has to decide into which colour it needs to differentiate where the colour depends on

its absolute position, which is a global property of the system.

Beyond that, more specific work has been done on morphogenesis within the artificial

life community (Graner and Glazier, 1992, Theraulaz and Bonabeau, 1995, Jones, 2010

and Hogeweg, 2000). To highlight a few: Simulations of morphogenesis by Doursat

(2008b,2008a) show how neural networks can be evolved to control a coordinated growth

of limbs and other forms. The formation of Physarum transport networks has been simulated

usingmulti-agent models (Jones, 2010). Odell et al. (1980) simulated the gastrulation stage in

embryonic development using a multi-cellular model where the cell boundaries are loaded

springs. Gastrulation is a key phase during embryonic development and understanding the

drivingmechanisms behind it is key to understand morphogenesis in general. A biologically

precise simulation of gastrulation of chick embryos was done by Vasiev et al. (2010). These

simulations are closer to the actual biological processes of morphogenesis, and are not only

explanatory models but nowadays even serve as predictors. Where earlier models mainly

explored what principles could in theory lead to certain morphogenetic processes, recent

models like the work of Jakobsson et al. (2010) on vascular morphogenesis, or Bentley et al.

(2005) on models of diatom valve morphogenesis, were built with the aim of being used as

predictive models.

Robotics and especially nano-robotics are concerned with the problem of morphogenesis in

the design of self assembling systems. Here agent based models are generally used and there

are several constructive approaches to create languages that specify formation processes.

Christensen et al. (2008) deployed a system to the SWARM-BOT platform (Mondada et

al., 2004) that allows a collective of robots to assemble in specific shapes by passing rules

between connected robots; Rosa et al. (2008) presented a language based on predicates

that can be used to specify local interactions between modules of a modular robot and

hence its shape. Furthermore, a group at Harvard specifically deals with the problem of

self-assembly from a theoretical (Werfel and Nagpal, 2006 and Cheng, 2005) and practical

(Rubenstein et al., 2012 and Yu and Nagpal, 2011) point of view, providing links between

the simulations and the actual implementations.
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2.2.3.2 Biological Morphogenesis & Information

Early studies of biological morphogenesis have been mentioned in the introduction. A

well written introduction to the general field of biological development is provided by

Wolpert et al. (2002). Research in this area has been quite active in the last 50 years (Townes

and Holtfreter, 1955, Sinnott, 1960, Wolpert, 1969, Summerbell et al., 1973, Tickle et al.,

1975, Thom, 1989, Bard, 1990, Gumbiner et al., 1996 and Davies, 2005), including research

of overlapping fields like genetic regulatory networks that control the process of cell

differentiation (Wolpert et al., 2002). As remarked earlier, I will not be as concerned in this

thesis with the distinction between morphogenesis, cell differentation, regulation timing

or patterning, as some of the biological literature does. These mechanisms are not only

related, but often work together in the process of biological development. Even more so,

from an abstract point of view I propose that it is sometimes impossible to distinguish

between them.

As in several other areas within biology, the fruit fly Drosophila melanogaster is a refer-

ence organism on which much of the research of morphogenetic processes has been done

(together with the African clawed frogXenopus laevis, and the embryos of zebrafish, chicken

and mice) (Wolpert et al., 2002). Much of the research is about understanding gene reg-

ulatory networks in connection with morphogenesis. In the Drosophila embryo, gene

expression levels provide a ‘blueprint’ of body axis and segmentation. While the under-

lying regulatory mechanisms and maternal factors for the expression levels have already

made it into the textbooks (Wolpert et al., 2002), a quantitative analysis of the regulatory

mechanisms is quite recent.

Noise in gene expression has been studied in (Ozbudak et al., 2002 and Blake et al., 2003)

and Dubuis et al. (2011) even use information-theoretic methods to quantify the amount of

positional information that is encoded in the gene expression levels of Drosophila embryos.

They investigated whether the information provided by the gene expression levels is

enough to explain the pattern along the anterior-posterior axis of the embryo. Not only

were they able to show that the information provided by the gene expressions level suffices

to determine the position of a cell only with a 1% error along the anterior-posterior body

axis (Dubuis et al., 2011), it was moreover possible to see that the positional uncertainty is

constant over the whole span along the anterior-posterior axis. This result is quite intriguing

as it is what was predicted to be the positional uncertainty for a regulatory network that is

informationally optimal (Tkačik et al., 2008,2009) and therefore seems to suggest that a

selection for optimal positional information processing has happened in the development of

Drosophila embryos. Hence the result provides yet another example for biological organisms

operating at the physical limits of information processing.

In another article Gregor et al. (2007) show that in Drosophila embryos the gene expression

of the Hunchback gene, which is a read out of the Bicoid gene, has a precision close to the

physical limit with the given noise constraints induced by random arrival of individual
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molecules. This is not only interesting because these are additional examples for biology

operating at physical limits, but also because it requires a change in thinking about the early

stage of morphogenesis and the layout of body plans. It was thought (Houchmandzadeh

et al., 2002 and Von Dassow et al., 2000) that understanding these processes would be

much about understanding how noisy mechanisms in connection with input data of high

entropy lead to precise body layouts (Gregor et al., 2007). However, it seems that the input

data has surprisingly low entropy, close to the physical limit, and the actual question is, how

is such a precision achieved in the first place, namely in the very first stage of embryonic

development (Gregor et al., 2007).
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3
QUANTIFYING SELF-ORGANIZATION

» Living organisms are metastable Maxwell demons whose stable state is to be dead. «

NORBERT WIENER, Cybernetics

3.1 INTRODUCTION

Although it seems quite easy for humans, from a visual standpoint, to point out whether we

consider a system as self-organizing (‘I know it when I see it’), I am aware of surprisingly few

quantitative characterizations of self-organization that could be applied to the examples of

self-organization as introduced in Section 2.2.3.1. Obviously, there is a connection between

the concepts of organization, complexity, structure and patterns, even though the terms

cannot be used interchangeably. There is a large body of literature on pattern recognition

(see (Bishop et al., 2006) for an overview) and pattern formation (Harrison, 1994 and

Bonabeau, 1997), but mostly these accounts fail to give a concise theory of what a pattern

inherently is or how to detect patterns, and thus do not help in the process of detecting the

emergence of patterns. Turning to treatises on biological organization does not shed any

more light into the darkness, as they mainly describe specific models of self-organizing

systems (Lwoff, 1962, Quastler, 1964, MacMahon et al., 1978, Meinhardt, 1982 and Weng et

al., 1999) and, as Shalizi (2001) noted, sketch only what a theory of organization ought to

do, but not what it should be. In this context, the work of Lwoff (1962) on ‘biological order’

stands out as it is one of the few earlier works already drawing a systematic connection

between biology, order and entropy as well as information.

Possibly one of the earliest most explicit definitions for organization is given by Wolfram

(1986), who defines organization as the reduction of thermodynamic entropy. There are

several points of critique speaking against the use of entropy reduction as a measure of

organization. The most fundamental argument speaking against entropy (either thermo-

dynamic or information-theoretic) as a measure of organization comes from Bennet, who

argues “the human body is intermediate in entropy between a crystal and a gas” (Bennett,

1993) and by such a process transforming a human into a crystal would be considering as

organizing.

3.2 SELF-ORGANIZATION & COMPLEXITY

It seems that the intuitive definition that organization is an increase of complexity over time

has many proponents (Dalenoort, 1989, Bennett, 1990, Shalizi, 2001 and Polani, 2008) and

can be useful, as long as there is a good definition of complexity available. But this shifts the

problem only infinitesemally forward. The question posed now is: what is a good definition

of complexity? There is the well known picture of the complexity curve (Crutchfield and

Young, 1989), where disorder or entropy is on the x-axis and complexity on the y-axis

and complexity is maximized somewhere between periodic sequences like ‘AAAAA...’ and

randomness on the other extreme of the x-axis (see Figure 3.1 for an illustration).
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FIGURE 3.1 The “one-humped complexity curve” as introduced by Crutchfield and Young (1989), illustrating the
idea that systems of high complexity lie somewhere between simple deterministic and completely random sys-
tems.

Bennett states that subjective organization is not additive and gives the example of a bacterial

culture in a nutrient solution (Bennett, 1990). He proposes that growth of the bacteria

does not show any more organization than what is already available in the seed bacterium.

One bacterium contains more organization than no bacterium, but two identical sibling

bacteria contain only slightly more than one of them (Bennett, 1993), an idea put forward

already by Lloyd and Pagels (1988). Ladyman et al. remark, that these ideas basically capture

the idea that “complexity [and thus organization] has something to do with how difficult

it is to produce something” (Ladyman et al., 2011, p. 18).

I will now give an overview of some of the available complexity measures and discuss why

most of them seem unfit in general or for the purposes of this thesis. This is by no means

a complete overview of all complexity measures. A query on ‘definition of complexity

measure’ on Google Scholar shows that such a project would possibly fill a whole encyclo-

paedia. A thorough review with an extensive discussion on what a complex system is can

be found in (Ladyman et al., 2013), where in particular a list of several properties associated

with complex systems is presented. These properties are, in short: Nonlinearity, feedback,

spontaneous order, robustness, emergence, hierarchical organization and numerosity (as in

many interacting entities). Without going into the detail here, this list should not be seen

as a definition of a complex system, but as properties related to, implied by or necessary for

complexity.

3.2.1 Logical & Thermodynamic Depth

Bennett, who sees self-organization as the spontaneous occurrence of a complexity increase,

hence introduces a complexity measure called logical depth (Bennett, 1990). Similar to

Kolmogorov-Chaitin complexity (Kolmogorov, 1963 and Chaitin, 1969) universal Turing
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machines are used in the definition. The Kolmogorov-Chaitin complexity of a sequence

of symbols from a finite alphabet is measured by the length of the minimal program on a

universal Turing machine that outputs the given sequence. However, looking at the length

of a minimal program makes randomly generated data maximally complex.

Thus, instead of considering the length of a minimal program, logical depth quantifies how

long a program that is compressible by 𝑠 bit needs to output a sequence. In this context

compressible by 𝑠 bit means that the minimal program generating the considered sequence

is 𝑠 bit shorter. For example, for an incompressible string of randomly generated symbols,

the shortest program simply copies the string to the output, which is the fastest way to

produce the data. On the other hand if it is possible to compress the string and the runtime

of the program is longer (compared with the uncompressed version that simply copies the

string to the output), the string is considered to be more complex.

This measure directly operates on sequences and not on statistical ensembles. However,

the definition uses Kolmogorov-Chaitin complexity which is non-computable (Li and

Vitanyi, 1993) and is therefore not practical to use with empirical data, as it is the case for any

other measure based on Universal Turing Machines like for example effective complexity

(Gell-Mann and Lloyd, 2004).

On the other side there are complexity definitions like thermodynamic depth (Lloyd and

Pagels, 1988) which are computable, however turn out to be merely a measure of complexity

but randomness (Crutchfield and Shalizi, 1999 and Ladyman et al., 2013).

3.2.2 Statistical Complexity

One point that was brought forward by Crutchfield (1992) and Shalizi (2001), is that

most complexity measures cannot distinguish between qualitatively different kinds of

organization, they are called over-universal. The lack of a well-behaving (in terms of

randomness) and non over-universal measure was the motivation for Crutchfield and

Young (1989) and later Shalizi (2001) to develop new ways of quantifying complexity

which lead to the development of an elegant framework to study the structure of a process,

which can also be used for the classification of processes. The complexitymeasure within this

framework is called statistical complexity and will be described in more detail Section 3.3.

3.2.3 Information as Organization

The idea that there is a connection between mutual information and organization has

been around for a while. Bennett (1993) already mentions that “subjectively organized

objects generally have the property that their parts are correlated”. He considers long range

mutual information, i.e. the correlation between remote parts of a system, as a measure

of organization, but dismisses it for several reasons. First of all, he states that some not

very organized objects like igneous rock or other polycrystalline solids have long range
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mutual information through crystal defects or grain boundaries. The second argument

is, that mutual information does not obey the law of slow growth. He gives the example

of an ordinary glass that is worked with a hammer contains quickly more remote mutual

information than a genome.

With respect to the first point, I am adopting the position that the process in which for

example grain boundaries are formed should be considered as organization, as long as there

is an actual increase of information between remote parts of the system, they just might

not organize as much as for example a growing plant does.

The misconception of the latter point however is, to assume that the shattering of the glass

introduces a lot of correlation and not just mainly an increase of entropy in all parts of

the system. Small variations in the points of impact, noise in the dynamics, will lead to

completely different configurations so that there will be almost no correlation between the

position and shape of the shards. If there is no variation in the system, i.e. a deterministic

system with a single starting state it does not make sense to employ information-theoretic

methods in the first place as there is no phase space with variations to study. I would propose

the view that not the complexity measure has to obey the law of slow growth, but that

given the locality of interactions in physics complex systems usually obey the law of slow

growth.

3.2.4 What is Needed for Self-Organization besides Complexity?

Before I continue to present how self-organization can be defined formally in the context

of a complexity measure, I want to discuss what ‘self’ denotes within the term ‘self-organiz-

ation’. The idea is, that there is a difference between the observation of organization and

an actually self-organizing system in the sense of “self-generated complexity” (Grassberger,

1986). First consider what self-organization is not: Most importantly, there should not be

an external or central force that controls the process in a ‘top-down’ fashion. Ladyman et

al. (2013) assert that lack of central control is an inherent property of a complex system,

however this does not explain how to distinguish a complex system from a system that

seems complex but is actually causally dependent (Pearl, 2000 and Ay and Polani, 2008)

on another self-organizing system, but is not complex itself. The dependent system should

not be considered as self-organizing. This means that a self-organizing system needs to

be autonomous, for which there is no obvious characterization (Bertschinger et al., 2008).

External influences need to be separable in a quantitative manner, which can be investig-

ated using the measure of causal information flow (Ay and Polani, 2008). The focus on the

distinction between organization and self-organization was emphasized by Polani (2008),

who also proposed the information-theoretic methods mentioned here for the study of

this specific question. However, I will not consider these problems here, they are more

apparent if the underlying model is unknown. In this thesis, I will only look at systems

where the model is known or designed to exclude any unknown external influences.
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𝑞0𝑞1

𝑞2

𝑞3 ⋱

𝑞𝑛

Finite Control

𝑞1

Reading and Writing Head

FIGURE 3.2 Illustration of a (universal) Turing machine (based on an illustration from http://texample.net by
Ludger Humbert licensed under CC-BY 2.5). A Turing machine consists of a finite control (finite number of states)
a reading and writing head and an infinite tape consisting of symbols of an alphabet and a set of transition rules
from state and input to a new state and a tapte shift (Turing, 1936). A Universal TuringMachine is a TuringMachine
that first reads in the description of a Turing Machine and then simulates this Turing Machine on arbitrary input.

This still leaves the question of how to quantify organization. As mentioned above, increase

of complexity over time is a common definition for organization and I will use it as well.

Its usefulness and quality still depends on the used measure of complexity. It is noteworthy

that the definition also captures an increase of structure over time as organization, given

that structure and hierarchies, like for example spatial correlations between parts of the

whole system, are reflected in the complexity measure. I will now give two definitions of

self-organization, the first one by Shalizi (2001) and the second by Polani (2008) to then

discuss their respective areas of application.

3.3 STATISTICAL COMPLEXITY

Crutchfield and Young (1989) introduced statistical complexity by extending the definition

of Kolmogorov-Chaitin complexity (Kolmogorov, 1963 and Chaitin, 1969). The measure of

Kolmogorov-Chaitin complexity itself is defined as the size of the minimal representation

(denoted 𝑀𝑟) of a sequence 𝑥 where the representation is a program for a Universal Turing

Machine (UTM, see Figure 3.2) that outputs 𝑥

𝐾(𝑥) := ∥𝑀𝑟(𝑥|𝑈𝑇𝑀)∥ . (3.1)

It is possible to replace the UTM by another class of languages, one situated lower in Chom-

sky’s hierarchy of languages (Chomsky, 1956), for example Deterministic Finite Automata

(DFA) or Stack Automata (SA) resulting in another complexity measure, which necessarily
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𝑞0𝑞1
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𝑅

Reading and Writing Head

FIGURE 3.3 Illustration of a Bernoulli Turing Machine (based on an illustration from http://texample.net by
Ludger Humbert licensed under CC-BY 2.5). A Bernoulli Turing Machine is a Universel Turing Machine which trans-
ition rules have access to a register containing true (thermodynamical) randomness.

measures a larger or equally large complexity, due to the more limited expressiveness of

the language than UTMs. Crutchfield and Young (1989) replace the UTM by a Bernoulli

Turing Machine (BTM, see Figure 3.3) which is a Universal Turing machine that has an

additional instruction to sample a random register. This allows to generate periodic as well

as purely random sequences with a very small program on the BTM. Hence, they define

statistical complexity as

𝐶𝜇(𝑥) := ∥𝑀𝑟(𝑥|𝐵𝑇𝑀)∥ . (3.2)

This definition now switched context, from 𝑥 denoting a sequence of symbols to 𝑥 denot-

ing a random process. Furthermore, it is still quite impractical, as there is no algorithm

for finding a minimal BTM (or even UTM for that matter) representation of a random

process. But it is possible to go down in the hierarchy of languages and equip those less

expressive languages with a stochastic component. Crutchfield and Young (1989) and

Shalizi (2001) do this with DFA and SA, by assigning probabilities to the transitions, in

the former case leading to Stochastic Deterministic Automate SDFA (not to be confused

with Non-deterministic Finite Automata, NFA). Now it is possible to reconstruct the

minimal SDFA for empirical data of a conditonal stationary stochastic process. A stochastic

process is defined with respect to the underlying probability space (Ω, ℱ, 𝑃) as follows: Let

𝐼 ⊂ ℝ an arbitrary index set, then a stochastic process is a family of random variables

𝑋 = (𝑋𝑡, 𝑡 ∈ 𝐼) (on (Ω, ℱ, 𝑃)) with values in a measurable space (𝐸, ℰ). Here I will assume

that 𝐼 = ℤ. Now, let 𝑋
⟷

= ..., 𝑋−2, 𝑋−1, 𝑋0, 𝑋1, 𝑋2, ... denote a conditionally stationary

stochastic process of countable random variables 𝑋𝑡. Conditional stationarity of 𝑋
⟷

means
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that the empirical transition probabilities are time translation invariant. Furthermore, 𝑋
←

𝑡

denotes the semi-infinite past at 𝑡 ..., 𝑋𝑡−2, 𝑋𝑡−1 and 𝑋
→

𝑡 the semi-infinite future at 𝑡 given
by 𝑋𝑡, 𝑋𝑡+1, .... Now the states of the minimal SDFA representing 𝑋

⟷
are called causal states

and are denoted by 𝒞 . Moreover, there is also a map from all historical realizations 𝑥← (at

any time) of the process to a causal state

𝜖( 𝑥←) :𝒳
←

→ 𝒞. (3.3)

The map 𝜖 and the transition matrix of the SDFA, denoted 𝑇𝐶, is now called the 𝜖-machine

of the process (Crutchfield, 1994 and Shalizi, 2001). The epsilon machine now determines

how histories of the process are mapped to causal states and represents the dynamics of the

causal states. This induces a random variable 𝐶 on the causal states 𝒞 which is now used to

define the statistical complexity of the process 𝑋
⟷

as

𝐶𝜇(𝑋
⟷

) := 𝐻(𝐶). (3.4)

A nice property of this measure is that, it is possible to reconstruct 𝜖-machines from

empirical data of random processes and the software for doing so is available under an open

source license (Shalizi and Klinkner, 2004).

3.3.1 Definition of Self-organization via Statistical Complexity

To use statistical complexity for the definition of self-organization, a minor tweak of the

measure is needed. In the current form, it measures the complexity of the whole process,

but for a definition of self-organization an increase of complexity over time needs to

be observed (Shalizi, 2001). Instead of using a steady-state or equilibrium distribution

underlying the causal states 𝐶, an initial distribution of the causal states at the starting time

𝑡 = 0 is taken and the distribution is evolved over time with the transition probabilities of

the SDFA (Crutchfield, 1992). Now, the statistical complexity at time 𝑡 can be defined as

𝐶𝜇(𝑡) := 𝐻(𝐶𝑡) (3.5)

where the probability mass function of 𝐶𝑡 is defined by

𝑝𝐶u�+1
= 𝑝𝐶u�

𝑇𝐶. (3.6)

This gives way for a formal definition of (self-)organization.

Definition 1. (Shalizi (2001)) A system (random process) has organized between time 𝑡 and
time 𝑡 + 𝑇 if and only if 𝐶𝜇(𝑡) < 𝐶𝜇(𝑡 + 𝑇).

In the original definition the word self-organization is used and the system is required to

be dynamically autonomous. Many of the investigated systems can be easily identified as

autonomous, some even are simply so because they were modeled in such a way. In all
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other cases it is still possible to speak of organization and I will refer the reader to look

into measures of causal information flow (Ay and Polani, 2008) and information-theoretic

autonomy (Bertschinger et al., 2008) with regard to the question of determining how

much of the organization actually comes from within.

Measuring self-organization via statistical complexity has the limitation and advantage

that it assumes no structure on the space underlying the time-series. It is an advantage

because the measure is very versatile and does not need to be changed for different spatial

or compositional structures. On the other hand it is a limitation, because the structure of

the environment will be implicitly encoded in the states of the 𝜖-machine, which makes it

less accessible for further analysis (Shalizi, 2001). There is an extension of 𝜖-machines called

spatial 𝜖-machines which have a structural assumption about the space they are defined on.

This gives rise to a spatial measure of statistical complexity (Shalizi et al., 2004). The spatial

version of statistical complexity requires a definition of light cones, which are areas in space

and time that are affected from a given point in space and time. Statistical complecity was

measured for cellular automata (Shalizi et al., 2004) and random Markov fields (Shalizi and

Shalizi, 2003) using the spatial version of statistical complexity. However, this measure

is limited to discrete variables in practice. For continuous spatial systems I will present

another measure of self-organization in Section 3.4.

3.3.2 Predictive Information and Emergence

There is a distinction between emergence and self-organization, emphasized by Shalizi

(2001) and Polani (2008), which has been often overlooked. Depending on the definition

of self-organization there are different definitions of emergence (Shalizi, 2001 and Polani,

2004).

To understand the definition of an emergent process as introduced by Crutchfield (1994), I

need to introduce the measure of predictive information first. Predictive information is the

mutual information shared between the semi-infinite past of a process with the semi-infinite

future of a process, i.e. in the notation as above

𝐄(𝑋
⟷

) := 𝐼(𝑋
←

; 𝑋
→

). (3.7)

This quantity, sometimes also called excess entropy, was extensively studied by Crutchfield

and Feldman (2001), who investigated its relation to entropy rates and block entropy in

random processes. Predictive information was also proposed as a complexity measure by

Grassberger (1986) under the name of effective measure complexity. It is shown in (Shalizi,

2001), that the predictive information is always less or equal than the statistical complexity

of a process:

𝐄(𝑋
⟷

) ≤ 𝐶𝜇(𝑋
⟷

). (3.8)
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The difference between both quantities can be seen as the overhead of storage/computation

capacity that is needed to reduce the semi-infinite pasts to a single causal state which in

turn defines the future of the process. Causal states are similar to a bottleneck variable

in the information bottleneck method (Shalizi and Crutchfield, 2002). The information

bottleneck is a general framework for constrained optimization based on mutual informa-

tion quantities in CBNs (Tishby et al., 1999). In this case the bottleneck is taken between

past and future, that means the bottleneck variable maximizes the information about the

future while minimizing or being constraint by the information from the past. Similarly to

predictive information being smaller than statistical complexity, ‘squeezing’ information

into a bottleneck usually creates a variable with larger entropy than the mutual information

between the original variables.

The prediction efficiency is now defined as the fraction of the complexity that is actually

used to predict the future

𝑒(𝑋
⟷

) :=
𝐄(𝑋

⟷
)

𝐶𝜇(𝑋
⟷

)
. (3.9)

Prediction efficiency therefore is the amount of “historical memory stored in the process

which does ‘useful work’ in the form of telling [us] about the future” (Shalizi, 2001). A

process is now called emergent if there is a functional relation to another process that results

in a higher prediction efficiency.

Definition 2. (Shalizi (2001)) A random process 𝑋
⟷

′ is called emergent if there exists a

function 𝑓 such that 𝑋𝑡′ = 𝑓 (𝑋𝑡) for all 𝑡 and 𝑒(𝑋
⟷

′) > 𝑒(𝑋
⟷

).

An interesting remark is that an emergent process can be identified with a grouping of

sub-machines of the 𝜖-machine of the original process (Shalizi, 2001). A sub-machine is a

coarsening of the causal states by grouping strongly connected components of its SDFA

(that is there are transitions from each state to each other of the component), while leaving

the transitions between the grouped states consistent and deterministic.

This is one of the few formal definitions of emergence and it follows the idea that emer-

gent descriptions are those that simplify the understanding of the process by looking at a

higher level, but without including any additional information about the process (i.e. solely

depending on a lower level description). As the predictive information 𝐄(𝑋
⟷

) cannot be
increased using a derived process via a function 𝑓 , a simplification can only be reached by

lowering the complexity of the process and possibly losing a smaller amount of predictabil-

ity. It can already be seen here that emergence and self-organization in this definition are

distinct concepts, not necessarily implying each other, even if in many complex systems

both occur at the same time, i.e. self-organization often has an emergent description and

therefore is listed in (Ladyman et al., 2013) among the properties that are associated with

complex systems.
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In literature on self-organization and emergence, the word emergence is often used in

the sense of ‘patterns emerging over time’ and not as introduced above as ‘emergent

description of a process’. However, it is not hard to come up with a time dependent

version of prediction efficiency 𝑒(𝑡), where an emerging pattern would be captured by an

increase of the difference of the prediction efficiency of the emergent process 𝑒′(𝑡) and the

underlying one 𝑒(𝑡) over time.

3.4 SELF-ORGANIZATION VIA OBSERVERS

I will now introduce a different measure of self-organization that was first advocated by

Polani (2002). It is based on multi-information and has some interesting applications for

spatial systems or systems that have some clearly identifiable components. Self-organization

is now considered to be an increase of multi-information between observer variables

𝐼(𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 ) as introduced by Polani (2002). Observers are defined as follows:

Definition 3. (Polani (2002)) A collection of random variables 𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 are called

observers of a system 𝑋(𝑡) if the system is fully determined by the collection of random variables.

Where fully determined means that 𝐻(𝑋(𝑡)|𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 ) vanishes, and all variables only

depend on 𝑋(𝑡), meaning 𝐻(𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 |𝑋(𝑡)) also vanishes. As long as they fulfil this

condition, the observers impose a ‘coordinate system’ on the observed random variable and

can be chosen freely. Now organization, in the sense of Polani (2002), is formally defined

as

Definition 4. (Polani (2002)) A system 𝑋(𝑡) has organized between time 𝑡 and 𝑡 + 𝑇 if and

only if 𝐼(𝑋(𝑡+𝑇)
1 , ..., 𝑋 (𝑡+𝑇)

𝑛 ) > 𝐼(𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 ) for some observers 𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑛 of 𝑋(𝑡).

Specifying observers is an additional assumption. This is not very problematic in practice,

as there are often natural choices for observer variables, as many systems are just a collection

of individual random variables.

For a uniform random process, this measure never detects any self-organization, as there is

no increase in correlation between observer variables. Note that there could be correlation

between observers because they observe the same part of 𝑋 . The other extreme case

is that the entropy of the whole system vanishes, e.g. an attractor, in which case there

also cannot be an increase of multi-information between the observers. So, to achieve

self-organization, the system requires, besides the earlier mentioned autonomy of the

process, which I consider as intuitively given by the system’s isolation, without defining

it in detail, some remaining degree of freedom. In the following I will adopt the labels

used by Polani (2008) and call organization via observers O-organization and organization

defined via statistical complexity SC-organization. Unless otherwise stated, organization,

without further qualification, always denotes O-organization from here on.
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Low Multi-Information

High Multi-Information

FIGURE 3.4 Illustration of systems exhibiting different amounts of multi-information. Each row depicts samples
from different distributions of points in the unit square. The first two rows illustrate the extreme cases of low
multi-information (between the random variables of the positions of individual points), in the top row there is no
variation at all and in the second row there is no correlation between the points. The bottom rows show samples
fromdistributionswith a high degree of correlation, which therefore exhibit a larger amount ofmulti-information.

3.4.1 Coarse Graining

Interestingly, this definition also gives the opportunity to build hierarchies by considering

coarse to fine grained observers, which then leads to a decomposition of self-organization.

If 𝑘-observers are grouped to one coarse-grained observer variable 𝑋̃(𝑡)
𝑖 , the multi-inform-

ation term

𝐼(𝑋(𝑡)
𝑖0 , ..., 𝑋(𝑡)

𝑖1⏟⏟⏟⏟⏟
𝑋̃(u�)

1

, 𝑋(𝑡)
𝑖1+1, ..., 𝑋(𝑡)

𝑖2⏟⏟⏟⏟⏟⏟⏟
𝑋̃(u�)

2

, ..., 𝑋(𝑡)
𝑖u�−1+1, ..., 𝑋(𝑡)

𝑖u�⏟⏟⏟⏟⏟⏟⏟
𝑋̃(u�)

u�

) (3.10)

can be decomposed into 𝑘 + 1 multi-information terms (see Friedman et al. (2006) and

Polani (2008) for a derivation)
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= 𝐼(𝑋̃(𝑡)
1 , ..., 𝑋̃(𝑡)

𝑘 ) +
𝑘

∑
𝑗=1

𝐼(𝑋(𝑡)
𝑖1 , ..., 𝑋(𝑡)

𝑖u� ). (3.11)

The decomposition now allows the separation of organization that is apparent within indi-

vidual parts of the system, where each part is a coarse-grained observer, and organization,

that can only be explained as an interaction between coarse-grained observers.

This allows to see whether there are parts of the system that dominate the process of

self-organization. For example by grouping individual observers by common properties

of the observed variables, it is possible to see whether a specific property has a higher

contribution to the self-organization or whether most of the self-organization is a result of

interaction between different coarse-grained observers.

It should be noted that coarse-graining allows easy regrouping of the variables, but it is

not possible to simply recode the variables i.e. introducing a new set of observer variables

𝑌𝑖 = 𝑓𝑖(𝑋1, ...𝑋𝑛) and deduce a simple relation between the two multi-information terms

𝐼(𝑋1, ..., 𝑋𝑛) and 𝐼(𝑌1, ...𝑌𝑛) (Polani, 2008).

3.4.2 Choice of Observers

In many cases there are natural choices for observers: multi-dimensional measurements

where each measurement device is an observer variable, spatial structures that allow for a

decomposition or multi-agent scenarios where the state of each agent acts as an observer.

But sometimes there might be no obvious choice. By choosing observers that are max-

imally independent, the multi-information gets as small as possible, one might lose the

appropriate ‘perspective’ to detect organization. These observers do however correspond to

an independent component analysis and the concept of ‘emergent descriptions’ by Polani

(2004,2006).

On the other hand, a maximization of multi-information in general does not lead to the

desired outcome either. For 𝑛 variables, one can simply observe the whole system 𝑛 times to

maximize the multi-information to (𝑛 − 1)𝐻(𝑋1, ..., 𝑋𝑛) and organization would coincide

with an increase of entropy. This is certainly not a desired outcome.

𝑋1;1 𝑋1;2 𝑋1;3

𝑋2;1 𝑋2;2 𝑋2;3

𝑋3;1 𝑋3;2 𝑋3;3

𝑋1;1 𝑋1;2 𝑋1;3

𝑋2;1 𝑋2;2 𝑋2;3

𝑋3;1 𝑋3;2 𝑋3;3

a) Dependencies at 𝑡1 b) Dependencies at 𝑡2

FIGURE 3.5 Showing the dependencies of random variables at different times for the observer choice example.
Connected variables are copies of each other, unconnected variabled are independent.



Quantifying Self-Organization

49

One might be tempted to define maximal observers as those that maximize the increase of

multi-information between time 𝑡 and 𝑡+𝑇 and subsequently call this increase the objective

amount of organization. But the following example shows why this is doomed to fail. Let

𝑋𝑖;𝑗 denote a matrix of binary random variables and 1 ≤ 𝑖, 𝑗 ≤ 3. Furthermore, the rows

and columns as joint variables are denoted 𝑋𝑖; = (𝑋𝑖;1, 𝑋𝑖;2, 𝑋𝑖;3) and 𝑋;𝑗 = (𝑋1;𝑗, 𝑋2;𝑗, 𝑋3;𝑗)
respectively. Now, consider a random process consisting of such a matrix at every time 𝑡
where at 𝑡1 all variables in each row are copies of each other, but the rows themselves are

independent of each other. On the other hand at time 𝑡2 the dependencies are rotated by

90∘ and all variables in each column are copies of each other but the columns themselves

are independent (see Figure 3.5). Using the rows and columns as observer variables the

calculation of multi-information leads to

𝐼(𝑋(𝑡1)
1; , 𝑋(𝑡1)

2; , 𝑋(𝑡1)
3; ) = 0 bit, 𝐼(𝑋(𝑡1)

;1 , 𝑋(𝑡1)
;2 , 𝑋(𝑡1)

;3 ) = 2 bit,

𝐼(𝑋(𝑡2)
1; , 𝑋(𝑡2)

2; , 𝑋(𝑡2)
3; ) = 2 bit and 𝐼(𝑋(𝑡2)

;1 , 𝑋(𝑡2)
;2 , 𝑋(𝑡2)

;3 ) = 0 bit.

So depending on whether the rows or columns are observed the system seems to organize

or actually loose organization. Even though, only a rotation (transposition of indices) is

performed. Taking the individual variables as observers reveals that there has been no

change in the organization of this system

𝐼(𝑋(𝑡1)
1;1 , …, 𝑋(𝑡1)

3;3 ) = 6 bit,

𝐼(𝑋(𝑡2)
1;1 , …, 𝑋(𝑡2)

3;3 ) = 6 bit.

Removing the amount of observer induced organization via rotations and translations will

be part of the next chapter, where I will revisit this problem in spatial systems. As Polani

(2008) remarks, O-organization is not objective but depends very much on the perspective

of the beholder, “but in a formally precise way” (Polani, 2008, p. 33). In practice this means

that the choice of observers has to be done carefully and with the possible implications in

mind.

3.4.3 TSE Complexity

It should be mentioned that multi-information is just one measure of a whole class of

similar measures whose weighted average is called TSE-complexity (Tononi et al., 1994

and Ay et al., 2006a). For the definition I will use the index set notation with 𝑉 = {1, ..., 𝑛}
and 𝑋𝑉 = (𝑋1, ..., 𝑋𝑛). The complexity measures are now defined as

𝐶(𝑘)(𝑋𝑉) :=
𝑛

𝑘(𝑛
𝑘)

∑
𝐴⊆𝑉,|𝐴|=𝑘

𝐻(𝑋𝐴) − 𝐻(𝑋𝑉). (3.12)

For 𝑘 = 1 the multi-information 𝐼(𝑋𝑉) = 𝐼(𝑋1, ..., 𝑋𝑛) can be recovered, for 1 < 𝑘 < 𝑛
other complexity measures are the result. The averaged TSE-complexity is now defined as
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𝐶(𝑋𝑉) :=
𝑛−1
∑
𝑘=1

𝑘
𝑛𝐶(𝑘)(𝑋𝑉). (3.13)

These measures all share the desired property that they vanish if all 𝑋𝑘 are either inde-

pendent or deterministically related. The multi-information measures the deviation of the

uncertainty of each variable to the overall mean stochastic dependence. Similarly 𝐶(𝑘)(𝑋𝑉)
measures the deviation of the mean stochastic dependence of 𝑘-subsets of variables to the

overall mean stochastic dependence. It can be shown that the 𝐶(𝑘) are monotonic (Ay et

al., 2011), i.e.

𝐶(𝑘)(𝑋𝑉) ≤ 𝐶(𝑘−1)(𝑋𝑉). (3.14)

Using 𝐶(𝑘)(𝑋𝑉) for 𝑘 ≥ 2 or 𝐶(𝑋𝑉) as a measure of O-organization can be a viable altern-

ative, especially considering the remarks by Ay et al. (2011) who shows that multi-inform-

ation is maximized by pairwise interactions (for example the distribution of n-binary

variables which are synced 𝑝(111…1) = 𝑝(000…0) = 0.5 displays only pairwise interac-

tions), whereas the maximizers for TSE-complexity as well as 𝐶(𝑛−1)(𝑋𝑉) show interactions

on all levels. Here I will continue using multi-information as the underlying measure of

O-organization, firstly for practical reasons, including the availability of estimators for

the computation of larger continuous systems and secondly, because it is not clear why

higher order interactions necessarily have to make the system more complex than pair-

wise interactions. It seems that in biology complex systems use compartmentalization and

build a hierarchy of lower order interactions to achieve higher complexity (Lehn, 2002

and Kolasa, 2005). The question whether this is due to information-theoretic or physical

limitations would shed more light onto the question which measure is more suitable to

measure organization.

3.4.4 Interaction Complexity

Speaking of higher and lower order interactions can be formalized: Kahle et al. (2009)

construct interaction measures that give an interesting insight into what multi-information

and TSE-complexity measure by offering an orthogonal view to them. The interaction

measures are constructed using a hierarchy of interaction spaces (for the construction of

these spaces, I refer the reader to (Ay et al., 2011))

ℰ1 ⊆ ℰ2 ⊆ … ⊆ ℰ𝑛 ⊂ Δ(𝑋𝑉) (3.15)

where Δ(𝑋𝑉) denotes the space of all probability distributions over 𝑋𝑉 . Now it is possible

to measure the Kullback-Leibler divergence between a probability distribution 𝑃 ∈ Δ(𝑋𝑉)
and an interaction family ℰ𝑖 given by

𝐷KL (𝑃 ∥ ℰ𝑖) := inf
𝑄∈ℰu�

𝐷KL (𝑃 ∥ 𝑄) . (3.16)
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The interaction measure can now be defined using the divergence

𝐼 (𝑘)(𝑃) := 𝐷KL (𝑃 ∥ ℰ𝑘−1) − 𝐷KL (𝑃 ∥ ℰ𝑘) . (3.17)

This quantity measures the dependencies between 𝑘 variables that cannot be explained by

interactions of fewer variables. The interaction measures have an interesting relation to

TSE-complexity as well as multi-information (Ay et al., 2011) as

𝐼(𝑋𝑉) =
𝑛

∑
𝑘=2

𝐼 (𝑘)(𝑃𝑋u�
), (3.18)

𝐶(𝑋𝑉) =
𝑛

∑
𝑘=2

𝑘(𝑘 − 1)
2 𝐼 (𝑘)(𝑃𝑋u�

). (3.19)

Now, this also sheds a light onto the question why the maximizers of TSE-complexity

show interactions on all levels, while the multi-information maximizers only show pairwise

interactions. The coefficients for higher order interactions are increasing in the decomposi-

tion of TSE-complexity while the decomposition of multi-information stays flat (Ay et al.,

2011). This means that keeping the total amount of TSE-complexity or multi-information

fixed, there is a trade-off between contributions of different orders of interactions, which in

case of TSE-complexity favors higher order interactions and in case of multi-information

pair-wise interactions. Kahle et al. (2009) remark that, although 𝐼 (2) measures only pairwise

interactions in a closed system this does not mean that there cannot be higher-order correl-

ations in an open or time evolving system that locally displays only pairwise interactions,

i.e. 𝐼 (2) is not the only positive of all interaction measures.

Thus, it is possible to get further insight into the structure of interactions, and multi-inform-

ation thus also allows to distinguish different kinds of organization. Taking into account

the remark by Bennett (1993) that self-organization obeys a law of slow growth it might

be that there is a connection between the maximization of multi-information by locally

pairwise interaction.

3.5 COMPARISON OF SC-ORGANIZATION AND O-ORGANIZATION

Both measures, SC-organization and O-organization, are good candidates to measure

self-organization. The question of autonomy put aside, they both are defined as the increase

of complexity measures. They have different areas of application and are “essentially ‘ortho-

gonal’” (Polani, 2008). SC-organization uses statistical complexity, based on the entropy

of the causal state partition, whereas O-organization uses multi-information of observer

variables as the underlying complexity measure.

SC-organization simply takes a time-series and without any prior knowledge tries to

reconstruct the structure of the process. The obvious advantage of this is that there is no

need to choose observer variables, as needs to be done when using O-organization. On the

other hand it can be a disadvantage when dealing with spatial systems as the spatial structure
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will be encoded in the global 𝜖-machine, but not necessarily in a transparently accessible

way (Shalizi, 2001). There is a spatial version of the 𝜖-machine reconstruction algorithm,

which can be used for all graph-like spatial structures using ‘light-cones’ instead of the

one-dimensional past. Though, it seems not easy to use it for continuous environments.

The focus of this measure is clearly on temporal dynamics, especially if there are no or no

accessible compositional or spatial aspects, SC-organization is the better fitting device to

employ.

O-organization on the other hand requires the choice of observer variables and focuses on

spatial or compositional dynamics (Polani, 2008). In many cases there is a natural choice for

observer variables as can be seen from the example as well from the next Chapter. From the

properties associated with complex systems in (Ladyman et al., 2013) this measure reflects

very well that an increase in complexity, hence organization, is expressed in correlations

that are the result of interactions between parts of the system (spontaneous order). Further-

more, does the coarse graining allow for an easy investigation of hierarchical organization.

If the system is continuous and not easily discretized, the measure of choice would be

O-organization.

Ladyman et al. (2013) emphasize, that statistical complexity, though called ‘complexity’, is

actually a measure of order. In particular statistical complexity is maximal for a periodic

counter, that counts through all elements of |𝒳| which is a system in perfect order. They

conclude, that the picture of the one-humped curve (Figure 3.1) is misleading, and a true

measure of complexity would assign such a system of perfect order a value of zero. As they

proceed, a crystal has a perfectly ordered structure but lacks the adaptiveness, of for example

a flock of birds, to be considered a complex system. However, as a measure of order in a

noisy setting produced by a complex system, statistical complexity is considered a good

candidate in (Ladyman et al., 2013). Thus adaptiveness is seen as a property of the complex

system, but does not need to be a property of the complexity measure.

While I do believe that these are important considerations about complexity and that

statistical complexity actually measures order in the presence of noise, however I would

consider the crystal analogy in conjunction with adaptiveness possibly to vague in this

context. It is not clear to me how the causal states of a continuous system with perfect

spatial order and without adaptiveness would look like if the structure of the system is

disturbed, for example the crystal is broken, as described in (Ladyman et al., 2013).

Moreover, it can be seen in the next chapter, that the O-organization of a spatially ordered

system like a crystal is very low, unless local variations of individual particles are reflected

elsewhere in the system. However, this is not an answer to the question of adaptiveness,

and there might be adaptive structures that exhibit perfect order similar to a crystal, unless

they interact for example with an obstacle where the structure adaptively recovers from the

interaction. The question is now, if the complexity measure cannot distinguish both should

it still be considered a complexity measure? If not, it seems to me that an interventional
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measure of complexity is needed, one that measures the structure of the system under

perturbations.

Before I give an overview of methods to estimate multi-information from empirical data to

quantify O-organization, I will make a last remark that show another connection between

both measures of self-organization: There is an interesting parallel between SC-organiza-

tion and O-organization which supports the ‘orthogonality’ analogy remarked by Polani

(2008). As mentioned earlier, statistical complexity is maximal for a periodic counter. This

also means that for any process 𝑋
⟷

it is possible to increase the complexity simply by adding

a counting state and thus copying the original state space 𝑛 times (where 𝑛 is a prime). So

instead of 𝒳 the underlying state space is now 𝒳 × {1, ..., 𝑛} and the dynamics is changed so

that in each time step the counter is increased by one, independent of the dynamics of the

actual process, thus the causal states will also include this counter. This shows that statistical

complexity requires that states are consistent over time, i.e. a random permutation of states

(or better their labels, as not the individual samples are permuted in a different way, but

only the labels of the states) in each time step would lead to zero statistical complexity (or

the same value as the original system if only the counting state are permuted).

On the other hand, a permutation of the state labels in each time step leaves O-organization

unchanged as multi-information among observers is independent of the dynamics of the

process (unless observers are chosen that depend on the dynamics). A similar effect can be

observed, however not in the dimension of time, but in the, possible spatial, dimension of

the observers. Suppose, there are 𝑙 observers 𝑋(𝑡)
1 , ..., 𝑋 (𝑡)

𝑙 then the multi-information can

simply be increased by making 𝑛 coupled copies of the system and now considering 𝑙 ⋅ 𝑛
observers for this system. Here the implicit underlying assumption is not consistency of

states over time, but consistency among observers, and thus often spatial consistency. Again

if the state labels of all observers are randomly permuted, and thus there is no consistency

among observers, the multi-information of the whole system will be zero (and the same

value of the original system if the same permutation is applied among all observers of one

copy). This demonstrates nicely where the idea of ‘orthogonality’ stems from.

3.6 ESTIMATION OF MULTI-INFORMATION

A practical advantage of O-organization is that it is quite easy to apply it to continuous

processes. I will now give an overview over available estimation methods. There are several

methods to estimate mutual-information, most of which can also be used to estimate

multi-information. There are mainly four classes of estimators: Kernel based approaches

(Moon et al., 1995, Steuer et al., 2002 and Suzuki et al., 2008), binning estimators (Hausser

and Strimmer, 2009, Strong et al., 1996, Treves and Panzeri, 1995 and Panzeri and Treves,

1996), partition estimators (Fraser and Swinney, 1986 and Darbellay and Vajda, 1999)

and estimators based on the Kozachenko-Leonenko entropy estimator (Kozachenko and

Leonenko, 1987, Victor, 2000 and Kraskov et al., 2004) .
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3.6.1 Kernel Based Approaches

Kernel density estimators can be used to estimate the probability density functions 𝑝(𝑥1, ..., 𝑥𝑛)
and 𝑝(𝑥1),...,𝑝(𝑥𝑛) involved in the calculation of multi-information (as done with mutual

information in (Moon et al., 1995 and Steuer et al., 2002)). The probability density functions

are estimated using Gaussian kernels

𝑝̂(𝐱 = 𝑥1, ..., 𝑥𝑛) =
1

𝑚(2𝜋ℎ)𝑑/2

𝑚
∑
𝑖=1

exp (−
(𝐱(𝑖) − 𝐱)⊤(𝐱(𝑖) − 𝐱)

2ℎ𝑑 ) (3.20)

where 𝑑 is the dimension of the space underlying the joint distribution 𝑋1, ..., 𝑋𝑛, 𝑚 the

number of samples and 𝐱(𝑖) is the 𝑖-th vector valued sample. The marginals are estimated

respectively and the kernel bandwidth is determined by Silverman’s (1986) rule

ℎ = 𝜎 (
4

𝑚(𝑑 + 2))
1

u�+4
(3.21)

with 𝜎 being the average marginal standard deviation of the samples. The estimate is now

obtained by numerical integration of the multi-information integral

𝐼(𝑋1, ..., 𝑋𝑛) = ∫
𝑥1,...,𝑥u�

𝑝̂(𝑥1, ..., 𝑥𝑛) log
𝑝̂(𝑥1, ..., 𝑥𝑛)

𝑝̂(𝑥1)⋯𝑝̂(𝑥𝑛)𝑑𝑥1⋯𝑥𝑛 (3.22)

or as Steuer et al. (2002) noted by using the simplified formula

𝐼(𝑋1, ..., 𝑋𝑛) =
1
𝑚 ∑

𝑥1,...,𝑥u�

log
𝑝̂(𝑥1, ..., 𝑥𝑛)

𝑝̂(𝑥1)⋯𝑝̂(𝑥𝑛) (3.23)

as a cheap plugin for a numerical integration, which can be used if the samples were drawn

independently.

However, directly approximating the pdfs involves the division of estimated quantities,

which can be overcome by directly estimating the ratio in the logarithm. This approach,

called MLMI (Maximum Likelihood Mutual Information), was introduced by Suzuki et al.

(2008) for mutual information, but the approach is easily generalized for multi-information.

It uses kernel density estimation via a maximum likelihood optimization on

𝑤(𝑥1, ..., 𝑥𝑛) :=
𝑝(𝑥1, ..., 𝑥𝑛)

𝑝(𝑥1)⋯𝑝(𝑥𝑛) . (3.24)

The problem with this approach is that it involves convex optimization and bandwidth

parameter selection via cross validation. In tests this resulted in an estimator several orders

of magnitude slower than all the other estimators that I will introduce in the next sections.

Therefore, I will only consider the pdf based kernel based estimator in my quantitative

comparison.
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3.6.2 Binning Estimators

Discrete entropy estimators can be used for multi-information estimation of continuous

samples if the samples are quantized using a binning algorithm. A good review on histogram

binning can be found in (Scott and Sain, 2005). There are several ways to determine the

bins for continuous samples. Hausser and Strimmer (2009) use the Freedman-Diaconis

inter quartile rule (Freedman and Diaconis, 1981) for estimating mutual information in

gene regulatory networks while Slonim et al. (2005) and Lee et al. (2012) advocate adaptive

approaches such as maximum entropy binning (Olsson et al., 2005) because fixed bins

“break the coordinate invariance of mutual information” (Slonim et al., 2005, p. 2). Sturges’

and Scott’s rule (Scott and Sain, 2005) are also used often to determine bin widths.

Once the continuous samples are quantized, an entropy estimator 𝐻̂ is used to estimate

multi-information:

𝐼(𝑋1, ..., 𝑋𝑛) :=
𝑛

∑
𝑖=1

𝐻̂(𝑋𝑖) − 𝐻̂(𝑋1, ..., 𝑋𝑛). (3.25)

The entropy estimator 𝐻̂(𝑋) takes event counts 𝑐𝑖 (that is the number of occurences of

each event 𝑥𝑖 ∈ 𝒳 in the samples) as inputs. In the case of binned data, 𝑖 denotes the index
of the bin and 𝑋 is the quantization of the continuous distribution according to the bins.

Now, the most simple estimator is the plug-in estimator

𝐻̂ := −
|𝒳|
∑
𝑖=1

𝑝̂𝑖 log 𝑝̂𝑖 (3.26)

where 𝑝̂𝑖 is a frequency estimate. In the case where the maximum likelihood estimator

𝑝̂𝑀𝐿
𝑖 = 𝑐u�

𝑚 is used, 𝑚 is the amount of observed samples. While 𝑝̂𝑀𝐿
𝑖 is unbiased as a

probability estimator, the derived plug-in entropy estimator 𝐻̂𝑀𝐿 however is biased. A first

order bias correction is provided by the Miller-Meadow estimate

𝐻̂𝑀𝑀 := 𝐻̂𝑀𝐿 +
𝑐>0 − 1

2𝑚 (3.27)

where 𝑐>0 is the amount of events with positive counts (Miller, 1955). There is also a whole

class of Bayesian estimators that assume a prior distribution on 𝑋 to estimate probabilities

(Hausser and Strimmer, 2009). The NSB estimator (Nemenman et al., 2002) also uses a

Bayesian approach, but with a prior that assumes a uniform distribution of all possible

entropy values.

At last there are two other discrete estimators discussed in (Hausser and Strimmer, 2009).

Firstly, the Chao-Shen Estimator 𝐻𝐶𝑆 which is a combination of the Horovitz-Thompson

entropy estimator in combination with a corrected probability estimate (Vu et al., 2007).

And secondly, introduced in (Hausser and Strimmer, 2009), the James-Stein Shrinkage

Estimator 𝐻̂𝑆ℎ𝑟𝑖𝑛𝑘 which is a regularized Maximum-Likelihood estimator. I will not intro-

duce these estimators in further detail here, a review of these discrete entropy estimators
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can be found in (Hausser and Strimmer, 2009). The result of their comparison is that the

maximum likelihood and Miller-Meadow estimators perform worst of all tested estimators

on the considered discrete scenarios, while the Bayesian estimators give very mixed results

depending on the data. The NSB, Chao-Shen and shrinkage estimators perform best, but

the NSB estimator was slower than the shrinkage estimator by a factor of roughly 1000.

The main problem of these estimators is that in scenarios with only few samples their

bias correction approaches do not work sufficiently (Victor, 2000). This is also true for

the so-called shuffled information bias correction for mutual-information (Optican et al.,

1991 and Chee-Orts and Optican, 1993) which generates a bootstrapped estimate of the

joint distribution of the independent marginal variables which is then subtracted from the

actual mutual information estimate. This method is easily extended to multi-information,

however Panzeri and Treves (1996) show that in different scenarios this method may over-

and underestimate the bias of the information estimation.

Another approach to estimation of entropy, mutual information as well as multi-inform-

ation uses an extrapolation of estimates to achieve a bias correction (Strong et al., 1996

and Slonim et al., 2005). For mutual information it can be shown (Herzel and Groe, 1995

and Treves and Panzeri, 1995) that the estimate corrected by the first order term of the

systematic error is given by

𝐼(𝑋1; 𝑋2) ≈ 𝐼(𝑋1; 𝑋2) +
𝐵𝑋1𝑋2

− 𝐵𝑋1
− 𝐵𝑋2

+ 1
2𝑚 (3.28)

where 𝐵𝑋1𝑋2
is the number of bins for the joint variable and 𝐵𝑋1

and 𝐵𝑋2
the number of

bins for the individual variables respectively. In most cases 𝐵𝑋1𝑋2
= 𝐵𝑋1

𝐵𝑋2
, however the

joint variable could be binned independently (for example in the case of multi-information

where the jont bin size quickly grows to computationally expensive sizes). Now the estimate

is a linear function of 1/𝑚 and the estimate can be improved by a linear approximation of

𝐼(𝑋1, 𝑋2) using estimates with different numbers of samples. This approach is called the

‘direct approach’ to mutual information estimation. Slonim et al. (2005) use this approach

to calculate the multi-information between three variables via the chain-rule and thus

reducing multi-information estimation to several mutual information estimations. The

optimal number of adaptive bins 𝐵∗ (for all dimensions) in (Slonim et al., 2005) is then

determined by increasing the number of bins to the largest number where the shuffled

information is still zero.

3.6.3 Partition estimators

Partition estimators use a similar approach as binning estimators, however here a histogram

is not created using bins, but via an adaptive partition of the joint variable space. One

of the earliest mutual-information estimators by Fraser and Swinney (1986) uses such an

adaptive partition. Another popular partitioning estimator was presented by Darbellay and

Vajda (1999). It recursively splits cells of the partition, starting with one cell containing
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all samples, into equally sized subcells. The splitting is then tested using a 𝜒2-test for the

dependence of the new subcells and in case the cells are independent enough, the new

splitting is added to the partition. This is repeated until there is no partition with at least two

samples in it, that can still be split. Now the estimation of mutual information is calculated

via the number of sample points in the cells. In theory these methods could be transferred

to estimate multi-information, but especially in high dimensional spaces the required trees

to store the partition will quickly exceed available memory limitations.

3.6.4 Kraskov-Stögbauer-Grassberger Estimator

The Kraskov-Stögbauer-Grassberger Estimator (KSG) (Kraskov et al., 2004) based on the

Kozachenko-Leonenko entropy estimator (Kozachenko and Leonenko, 1987) can be used

to estimate multi-information directly from continuous samples. First applications of the

entropy estimator to mutual information estimation were done by Victor (2000). The KSG

estimator is a direct method, as it does not include the calculation of intermediate entropy

estimations. The estimate is based on a 𝑘-nearest-neighbor search. The estimator for 𝑚
samples and 𝑛 variables is given by

𝐼(𝑋1, ..., 𝑋𝑛) ≜ 𝜓(𝑘) + (𝑛 − 1)𝜓(𝑚) − ⟨𝜓(𝑐1) + 𝜓(𝑐2) + ... + 𝜓(𝑐𝑛)⟩𝑥 (3.29)

where 𝜓 is the digamma function and the brackets denote the average taken over all samples.

The 𝑐𝑖 depend on the samples and are defined as follows: let 𝑁𝑘(𝑥) denote the 𝑘-th neighbor
of the sample 𝑥 in the set of all samples using the following metric

|𝑥′ − 𝑥| := max
𝑖∈{1,...,𝑛}

|𝑥𝑖′ − 𝑥𝑖|2 (3.30)

which is the maximum over the euclidean distance over the marginal samples. Now 𝑐𝑖 is

defined as

𝑐𝑖 = ∣{𝑥′ ∈ 𝒳 : |𝑥′𝑖 − 𝑥𝑖|2 < |𝑁𝑘(𝑥)𝑖 − 𝑥𝑖|2}∣ − 1. (3.31)

The idea is that a high correlation between the variables leads on average to a low count (at

least 𝑘 − 1 by the definition of the norm used for 𝑘-th neighbour) of samples per variable

that are closer to the sample itself, in the 𝑖-th variable, than the 𝑘-th neighbor over all

variables, thus maximizing the estimator.

3.6.5 Comparison of Estimators in Literature

For the estimation of mutual-information there are several sources of estimator comparisons

available (Victor, 2000, Kraskov et al., 2004, Hausser and Strimmer, 2009, Khan et al.,

2007 and Papana and Kugiumtzis, 2008). The comparison performed in (Hausser and

Strimmer, 2009) only deals with discrete distributions (the only exception is the shrinkage

estimator which is used with the Freedman-Diaconis binning rule on continuous data).
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In (Victor, 2000) it is suggested that estimators based on the Kozachenko-Leonenko

estimate converge slower as a function of the number of samples, but exhibit a lower

variance compared to binning estimators and are unbiased. Kraskov et al. (2004) remark

that while adaptive binning is better than using equal sized bins, the general problem of

binned estimators is the systematic error introduced by approximating the actual mutual

information 𝐼(𝑋1; 𝑋2) with the value of the quantized mutual information. Furthermore,

they compare the KSG-estimator with Darbellay and Vajda’s (1999) adaptive partitioning

estimator for different bivariate probability distributions and conclude that, while the latter

is faster to compute, the KSG-estimator shows a smaller bias by approximately one order

of magnitude. They also compare the KSG-estimator to kernel based approaches. Where

Steuer et al. (2002) showed that kernel density estimators have smaller bias and smaller

standard deviation compared to binning estimators using the direct method by Strong et

al. (1996), Kraskov et al. (2004) criticize that in Steuer et al. (2002) the kernel bandwidth

is chosen to large. Though Silverman’s (1986) rule is recommended in literature to avoid

statistical errors, they argue that the estimator thus is “insensitive to the finer details of the

distribution” (Kraskov et al., 2004, p. 11).

Among the more recent comparisons of mutual information estimators are Suzuki et al.

(2008), Khan et al. (2007), Lee et al. (2012) and Papana and Kugiumtzis (2008). Suzuki et al.

(2008) compare the KDE method, the KSG estimator and the Edgeworth approximation (a

polynomial estimator (Hulle, 2005)) with their MLMI approach and conclude that MLMI

performs better or as good as the best of all the other estimators in all scenarios tested (linear,

quadratic, and non-linear dependence as well as independence). They also remark that

the Edgeworth approximation works only well if the underlying distribution is close to a

bivariate normal distribution. However, as I already mentioned earlier, MLMI is several

orders of magnitude slower than direct KDE approaches, which are already among the

slower estimators, and will therefore be dismissed for further comparisons.

Khan et al. (2007) compare the KDE estimator, the KSG estimator, Edgeworth approx-

imation and an adaptive partitioning approach (Cellucci et al., 2005) in several scenarios

(linear, quadratic, periodic and chaotic) with different signal-to-noise ratios. They conclude

that the KDE estimator is the best choice for samples from high noise settings and the

KSG estimator is the best choice for samples from low noise settings where 𝑚 ≈ 100. For
𝑚 ≈ 1000 samples, KSG performs best (independent of the noise level). They also provide

parameters for the kernel bandwidth and 𝑘 in case of the KSG-estimator. Best results are

attained in their scenarios with the choice of a bandwidth as introduced by Silverman (1986)

and with 𝑘 = 3.

Lee et al. (2012) compare a fixed sized binning estimator, the KDE estimator and Darbellay

and Vajda’s (1999) adaptive partitioning estimator on respiratory and blood gas concentra-

tion data. They conclude that the adaptive partitioning approach was the only one that

could detect mutual-information in agreement with the experimental results. Papana and

Kugiumtzis (2008) compare binning estimators (fixed width and adaptive) with the KDE
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estimator, the KSG estimator and also Darbellay and Vajda’s (1999) adaptive partitioning

estimator. They compare them on data obtained from Monte-Carlo simulations of determ-

inistic chaotic maps. Again the KSG estimator provides one of the best results and depends,

as Kraskov et al. (2004) already remarked, the least on the choice of the parameter.

3.6.6 Comparison of Selected Estimators

In the literature review above it became clear that the KDE estimator as well as the KSG

estimator are good, and often the best, choices for measuring mutual information in a

small data scenario. However most of the comparison only looked at mutual-information

between one dimensional variables. Only Kraskov et al. (2004), Slonim et al. (2005) and Lee

et al. (2012) consider examples where the dimension of the joint distribution exceeds two,

but none of them explore systems of higher dimensionality than three. Furthermore, there

have been no quantitative comparisons of the Chao-Shen and the Shrinkage estimators

with the KDE and KSG estimators.

Hence, I will compare several multi-information estimators here. The comparison will

be between the kernel density estimator with Silverman’s (1986) bandwidth rule as intro-

duced above (KDE), the Kraskov-Stögbauer-Grassberger estimator (KSG) (Kraskov et

al., 2004), as well as the Chao-Shen (CS) estimator (Vu et al., 2007), the Shrinkage (SH)

estimator (Hausser and Strimmer, 2009) and the direct approach using the chain-rule of

multi-information (DA) (Slonim et al., 2005). The following comparisons are considered:

1. Binning estimators:As there is no quantitative analysis of (CS) and (SH) asmulti-inform-

ation estimators, I compare them to the direct approach (DA) (using four sample points

for the linear extrapolation as in (Strong et al., 1996)). Fixed sized bins with the Freed-

man-Diaconis rule as well as adaptive binning is used for (CS) and (SH). In the adaptive

binning case the bin number is determined as the maximum number of bins where the

shuffled information of the data still vanishes (for this 50 bootstrap samples are drawn

and the value ). Estimators are compared in a low dimensional (𝑑 = 3 dimensions over 3
variables) and high dimensional (𝑑 = 10 dimensions distributed over 7 variables) setting

with 𝑚 = 500 and 𝑚 = 10000 samples.

2. Values of 𝒌 in higher dimensions: For (KSG) the question is whether the proposed

values for 𝑘 are also valid for higher dimensions. Different values for 𝑘 = {2, 3, 5, 10, 50}
are compared in a 10 dimensional setting with 500 samples.

3. High dimensional comparison: The (KSG) and (KDE) estimators are compared in

even higher dimensional settings with 𝑑 = {10, 25, 100, 200} dimensions and 𝑚 = 500
as well as 𝑚 = 1000 samples. This comparison is not done with any of the binning

estimators, which already foreshadows their bad performance in high dimensional

settings.
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The comparison is done on multivariate continuous samples drawn from distributions

where the multi-information can be calculated analytically. These are the three test scen-

arios:

1. Multivariate Gaussian (MG): Samples are drawn from a multivariate Gaussian distri-

bution 𝑋1, ..., 𝑋𝑛 ∼ 𝒩(0, Σ). The multi-information is

𝐼((𝑋1, ..., 𝑋𝑙1), (𝑋𝑙1+1, ..., 𝑋𝑙2), ..., (𝑋𝑙u�−1
, ..., 𝑋𝑛)) =

1
2 log2

∏𝑑−1
𝑗=0 ∣Σ𝑙u�,𝑙u�+1

∣
|Σ| (3.32)

where 𝑙0 = 1, 𝑙𝑑 = 𝑛 + 1, |Σ| the determinant of Σ and Σ𝑙u�,𝑙u�+1
the block matrix of Σ

spanning from (𝑙𝑗, 𝑙𝑗) to (𝑙𝑗+1 − 1, 𝑙𝑗+1 − 1). In this scenario, the covariance matrix is

simply

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝜌 ⋯ ⋯ 𝜌
𝜌 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝜌
𝜌 ⋯ ⋯ 𝜌 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.33)

where 𝜌 ∈ [0, 1) is a correlation parameter determining the correlation between all

variables.

2. Multivariate Gaussian, Random Covariance (RCMG): This scenario is equivalent

to the last one, except that Σ = 𝐼 + 1
𝑛𝐴⊤𝐴 where 𝐴 is a random matrix with coefficients

in [𝜌, 1) (lower coefficients lead to a small value of multi-information and are thus not

very interesting). This gives similar results as the previous one, but the correlations

between the variables are not as regular.

3. Uniform boxes (UBX): In this scenario samples are drawn from a uniform distribution

over a set of random hyper-rectangles in [0, 1]𝑛 (intersecting hypercubes result in a

higher probability of a sample drawn from the intersection). Entropy can be calcu-

lated in this scenario as a sum of integrals over constant functions on the intersections

and differences of all hyper-rectangles. Now multi-information can be simply calcu-

lated as the difference of entropies as usual. Several runs with different sets of random

hyper-rectangles are performed.

Each scenario is used for each comparison and in each run 𝑚 samples are drawn 50 times.

3.6.6.1 Comparison Results

I will now discuss the results of the comparison of the estimators starting with the results

for the binning estimators:
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1. Binning estimators: From Figure 3.6 and Figure 3.7 it can be seen that the only sensible

estimates are attained in the low dimensional setting of the (MG) scenario among which

the Shrinkage estimator with the Freedman-Diaconis binning rule leads to the best

results. The maximum entropy binning interestingly leads to the worst estimations.

The problem is that in the case of maximum entropy binning, the shuffled information

quickly reaches a non zero value in high dimensional settings, therefore keeping the

amount of bins low to reduce the bias of the estimator. This however leads to a larger

error in the estimate and especially in the high dimensional setting there is no good

intermediate number of bins leading to a trade-off between bias from using to many

bins and error from using few bins that would outperform the Freedman-Diaconis rule.

I did not continue to investigate this in further detail as the overall performance in the

𝑑 = 10 dimensional setting was so poor, that binning estimators were not considered

for the next two comparisons.

2. Values of 𝒌 in higher dimensions: The proposed values for 𝑘 in the available literature

tend to be somewhere between 2 and 50 (Kraskov et al., 2004). Furthermore Kraskov

et al. (2004) remarked that the result of the estimator is not very dependent on 𝑘 . I
was able to confirm this for a higher dimensional (𝑑 = 10) setting as the results in

Figure 3.8 show. It can be seen that choosing a small 𝑘 is preferable, especially in the

case of close to Gaussian data. However, varying 𝑘 in the range of 2 to 10 does not lead

to drastic changes in the estimated information for a sample size of 𝑚 = 500. What can

be observed is an increasing bias with the actual amount of multi-information. There

might be a possibility to account for this by using additional correction terms. For the

purpose of this thesis though, it suffices that the estimation preserves the character of

the mutual information, i.e. it is roughly monotonic with respect to the actual mutual

information.

3. High dimensional comparison: The last comparison was conducted to compare the

KSG estimator (with 𝑘 = 2) and the KDE estimator in high dimensional scenarios

(𝑑 = 10, 20, 50). It can be seen from Figure 3.9 that the KSG estimator provides better

results in both theMG and RCMG scenario, while the result in the UBX scenario is

not that clear. In the 𝑑 = 10 dimensional case the KSG estimator correlates better with

the actual mutual information, while for the 𝑑 = 20 dimensional case both estimators

seem to give fitting results, except for some outliers where the KDE estimator drasticly

overestimates non-existing information. This seems to be a systematical problem of

the KDE estimator: For small values of multi-information the errors of the marginal

density estimations are first multiplied and then divided, which leads to an increase of

the estimated value for distribution that have low multi-information. The difference

between 𝑚 = 500 or 𝑚 = 1000 is only a fraction of the estimated value, in case of the

KSG estimator the difference is within the errors of the 50 samples of estimates.
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In summary, the KSG estimator is the only estimator which provided satisfactory res-

ults in the comparison and while still being biased can be used to detect the increase of

multi-information in high-dimensional (𝑑 ≥ 20) systems with only few (𝑚 ≈ 500) samples

available. As a final benchmark, I tested the KSG estimator in even higher dimensions

(𝑑 = 100, 200) with different sample sizes (see Figure 3.10), the results show that already

100 samples give results that do not differ much from the estimates with a larger number

of samples (taking the overall bias into account). Obviously the variance of the estimate

decreases with a larger sample size. The second interesting result is that the bias scales

almost linearly with the dimension. Thus it might be possible to add an additional bias

correction term, at least for close to Gaussian data.

3.7 DISCUSSION

In this chapter, I introduced the concept of self-organization and presented several defini-

tions and remarks about self-organization. I considered the definition of self-organization

via statistical complexity by Crutchfield and Young (1989) and Shalizi (2001) and compared

it to the alternative definition of self-organizatin via observers by Polani (2002). While

these concepts are not new, the main contribution of the first part of this chapter is the

literature review relating O-organization to other information-theoretic measures and the

discussion about the observer choice, which will be continued for specific spatial systems

in the next chapter.

The second part of this chapter consists of a comprehensive literature review of methods

for the estimation of mutual information and concludes with a comparison of several estim-

ators in the case of high-dimensional multi-information estimation. The results show that

the Kraskov-Stögbauer-Grassberger Estimator (Kraskov et al., 2004) is the only suitable

estimator for this task. An application of the results and methods discussed in this chapter

can be found in the next chapter where multi-information estimation is employed to detect

self-organization in spatial particle systems. In my initial search for good estimators of

multi-information, I also tried some information geometric methods, which, to my know-

ledge have not been used for the estimation of mutual information or multi-information

alike. The advantage of an information geometric formulation of mutual and multi-inform-

ation is, that it is a one dimensional integral along a curve on a statistical manifold (Amari

and Nagaoka, 2007). However, are the resulting terms not easier to estimate, on the con-

trary, the calculations get more complicated than the terms in the integral of the definition

of continuous multi-information.
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the dimension of the distribution, 𝑚 the number of samples per estimate) (part 1/2, see Figure 3.7 for part 2/2).
Error bars denote one standard deviation from 50 estimation samples.
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4
SELF-ORGANIZATION OF PARTICLE SYSTEMS

» It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life. «

LEWIS WOLPERT, Unknown

The development of organisms is one of the most prominent examples of self-organization

and the emergence of shapes. The process of forming shapes is usually an interplay between

environmental dynamics (e.g. global physical rules), and agent actuations (e.g. a change of

local properties) regulated through complex networks.

In the early stage of laying out body plans, morphological changes are induced mainly due

to control of cell adhesion, cell motility and oriented cell division. In particular, differential

cell adhesion prevents areas consisting of different tissues to mix and starts an automatic

sorting process. This happens, if for example cells have been forced to mix in a solution

(Wolpert et al., 2002). Gastrulation, the process of rearranging a ball of cells in the early

stage of embryonic development into a more complex body structure, can be simulated by

contractions in cell shape that then lead to an automatic rearrangement of cells forming an

inner structure (Odell et al., 1980).

One important aspect of all these processes is that, in many cases, the information processing

capabilities of the individual cells (i.e. agents) are severely limited, especially in scenarios

that consider large collectives. In these cases the environmental dynamics dominate the

process of organization while individual agents actively guide the process. Cells for example

can change adhesion properties or partially contract.Morphogenesis, the formation of shapes,

as will be seen, can be achieved purely by environmental dynamics up to certain limits.

The process of shape formation can be seen as a selection of a configuration which fulfills

certain properties. Thus, the course of a given process typically leads to a reduction of

entropy. In the context of this thesis, I would like to reinterpret this as saying that there

are information processing capabilities in the environment. This is justified by the view of

the controlled dynamics of a system as an entropy reduction mechanism (Touchette and

Lloyd, 2004).

These capabilities are often rooted in the structure of the space and the physical laws that

govern it. Polani (2011) shows that consistency in the embodiment of agents reduces cog-

nitive load, lack of such consistency increases it. Considering agents and environment

as a joint information processing system, it follows that consistency or homogeneity of

the space can also increase the information processing capabilities of the environment. A

reduction of cognitive load for an agent means that the information needs to be processed

elsewhere, one could say that embodied agents exploit the structure of the environment to

process information. The information processing/entropy reduction capabilities that a sys-

tem provides can also be used by non-reactive systems (for example, I consider particles here

instead of autonomous agents). In particular they can be a driving force of self-organization.

In order to investigate the information processing capabilities of a morphogenetic process,

I will use a model of particle collectives similar to the models by Doursat (2008b,2008a)



Self-Organization of Particle Systems

69

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2
3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

12

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

FIGURE 4.1 Example of a particle configuration.

and Sayama (2009) that mimics features of cell adhesion and cell motility to a certain

grade. A human observer easily detects organizational patterns in simulation runs of this

model. In many cases the resulting particle configurations even resemble the morphology

of biological structures, showing features that look like membranes or nuclei, see Figure 4.1

for an example generated using the model I will introduce. However, a human observer is

a quite subjective measure and not transferable. Using quantitative methods it is possible

to investigate such a formation process in greater detail.

In self-organizing processes, individual parts of the whole system usually interact with each

other, this is the case in particular in the particle model considered here. Interactions have

been the basis for information-theoretic investigations before (Kahle et al., 2009), and can

be closely linked to information storage and transfer (Wang et al., 2011, Lizier et al., 2008

and Lizier, 2011). A requirement that organization can occur is the spread of information

through the system, which in turn requires interaction between individual parts of the

system (Steudel and Ay, 2010).

4.1 PARTICLE COLLECTIVES & SELF-ORGANISATION

4.1.1 The Particle Model

There are numerous models of morphogenesis and pattern formation including reac-

tion-diffusion models (Meinhardt, 1982), cellular automata (Wolfram, 1986), diffussion-lim-
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ited aggregation (Witten Jr and Sander, 1981), L-systems (Prusinkiewicz, 1993) and agent

based models (Bonabeau, 1997). The particle model I will use is based on the model by

Doursat (2008b,2008a), and shares some similarities with the Swarm Chemistry model

(Sayama, 2009). It mimics the way biological cells stick together by cell adhesion, allowing

different types to recognize each other.

In the model, each particle interacts with all particles within a certain cut-off radius 𝑟𝑐. For

reasons of simplicity, as well as to be able to have long range interactions, a cell-like tessel-

lation, where interactions can only take place between direct neighbors of the tessellation,

will be ignored as opposed to the model by Doursat (2008b). The equation of motion for

each particle is given by

𝑧̇𝑖 = ∑
𝑗∈𝑁u�u�(𝑖)

−𝐹𝛼𝛽(|Δ𝑧𝑖𝑗|2)Δ𝑧𝑖𝑗 + 𝑤 (4.1)

where Δ𝑧𝑖𝑗 = 𝑧𝑖 − 𝑧𝑗, 𝑁𝑟u�
(𝑖) denotes the set of indices of particles within radius 𝑟𝑐 of particle

𝑖 and 𝐹𝛼𝛽 is a force-scaling function, 𝛼 the type of particle 𝑖, 𝛽 the type of particle 𝑗 and 𝑤
an additive white Gaussian noise term, where 𝑤 ∼ 𝒩(0, 𝜎) with 𝜎 ∈ [0, 0.1] throughout
all experiments. The velocity is proportional to the force applied and thus the dynamics are

studied in the strong limit of friction. This assumption holds for example for the motion

of insects and cellular motility, in contrast to the movement of larger animals and humans

which can build up momentum.

Now, the equation of motion can be solved using Euler-Maruyama integration (Kloeden

et al., 1994 and Press et al., 1986). I used the following force-scaling function, similar to

the model used in Doursat (2008b) (see Figure 4.2 for a function plot). In (Harder et al.,

2011) two different force-scaling functions were considered. For the sake of clarity I only

consider the first of the two functions from (Harder et al., 2011) here. The results with the

second force-scaling function are comparable to the first function with a smaller cut-off

parameter.

𝐹𝛼𝛽(𝑥) = 𝑘𝛼𝛽 (1 −
𝑟𝛼𝛽

𝑥 ) (4.2)

The matrices 𝑘𝛼𝛽, 𝑟𝛼𝛽 define the interactions between the particles and have a strong impact

on the dynamics of the experiment. Furthermore, there are two cut-off parameters 𝑟𝑏 and

𝑟𝑐 used in the simulation. The former limits the force that acts on particles that are very

close to each other, such that if |Δ𝑧𝑖𝑗|2 < 𝑟𝑏 only a force of 𝐹𝛼𝛽(𝑟𝑏) is applied. The latter

sets the applied force to zero if |Δ𝑧𝑖𝑗|2 > 𝑟𝑐, see Figure 4.2 for a plot of 𝐹𝛼𝛽 including the

cut-offs. Values for the parameters were chosen from the following ranges: 𝑘𝛼𝛽 ∈ [0.0, 1.0],
𝑟𝛼𝛽 ∈ [0.25, 8.0] and 𝑟𝑏 = 0.25 throughout all experiments. Choosing a non-symmetric

matrix often leads to unstable dynamics or cycling patterns as in this case the preferred

distance is mutually different, I therefore only consider symmetric matrices in what follows.

The force-scaling function defines how much attraction or repulsion the particles show

among each other depending on the type and distance between particles. For each type,
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0
‖Δ𝑧𝑖𝑗‖

𝑟𝑏

𝑟𝑐

𝑟𝛼𝛽

FIGURE 4.2 Plot of the force scaling function used for the particle dynamics, 𝑟𝛼𝛽 denotes the prefered distance
between particles of type 𝛼 and 𝛽. This radius can be directly specified as a parameter of the function. The long
range attraction of is cut off by the radius 𝑟𝑐, whereas 𝑟𝑏 limits the repellent force for particle that are very close.
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FIGURE 4.3 Examples of equilibrium states of particle collectives with different number of types.

the force-scaling function has a preferred distance of particles of other types, denoted 𝑟𝛼𝛽.

By using smaller diagonal values than the off-diagonal elements in 𝑘𝛼𝛽 or 𝑟𝛼𝛽 it is possible

to force clustering of particles of the same type.

In Figure 4.3 are three examples of equilibrium states of particle collectives. For the particle

collective with only one type, a simple disc shaped pattern can be seen. The collective is

considered to be in equilibrium, if for several time steps the sum of the 𝐿2 norm of the sum

of all forces acting on each particle is below a specific threshold.

4.1.2 Measuring organization in particle collectives

To measure self-organization within a particle collective using multi-information as intro-

duced in Section 3.4 observer variables need to be defined. A natural choice would simply

be the collection of variables denoting the positions of each individual particle. However,

one needs to consider that certain transformations of the configuration leave the shape of

the particle collective invariant. So, if these invariants are not considered, the measured
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multi-information can be different from what I want to consider as organization towards

a shape. But even if, in the stochastic limit, rotations and translations are equidistributed,

factoring them out reduces the sparsity of samples in the space of possible configuration of

particles in any case.

There are several accounts on spatial statistics and stochastics (Schinazi, 1999 and Liggett,

1985), however in these references interacting particle systems are defined as (continuous

time) Markov processes on discrete domains while our experiments are in the continuous

domain. In the area of geo-information systems and medical image processing, there is a

large interest in statistical models of shapes, and there is a large body of literature on shape

models (Davies et al., 2008, Small, 1996 and Dryden and Mardia, 1998). One particular

problem, the alignment of overlapping images or shapes, is similar to the problem of

reducing our experiment samples (i.e. the simulations) to an invariant representation.

Rotation, translation as well as permutation of particles of the same type leave the observable

shape, as well as the dynamics involved, invariant. Let 𝐼𝑆𝑂+(2) denote the group of direct

isometries (rotation, translation and identity) of the euclidean plane. This group now acts

on the space of particle configurations 𝒵 by rigid body motions:

𝒵 × 𝐼𝑆𝑂+(2) → 𝒵. (4.3)

To account for permutations, let 𝑆𝑛 denote the permutation group of 𝑛-elements, which

also naturally acts on the space of samples by permuting the particle vectors for all time

steps. Now it is possible to consider the subgroup 𝑆∗
𝑛 ⊂ 𝑆𝑛 that permutes only particles

of the same type. The direct product 𝐹 = 𝐼𝑆𝑂+(2) × 𝑆∗
𝑛 then classifies all shape invariant

transformations.

Note here that these transformations also have the property that they leave the dynamics

of the system invariant. Let 𝑧(𝑡) ∈ 𝒵 denote the configuration of the particle collective at

time 𝑡, then

𝑝(𝑧(𝑡)|𝑧(𝑡−1)) = 𝑝(𝑓 𝑧(𝑡)|𝑓 𝑧(𝑡−1)) for all 𝑓 ∈ 𝐹 and all 𝑧(𝑡), 𝑧(𝑡−1). (4.4)

This means that a configuration that is transformed will lead to a distribution of configura-

tions in the future that is equivalent to the distribution of the transformed future states of

the original configuration.

In the case that additionally the initial state is invariant under the action of this transforma-

tion group, that means 𝑝(𝑧(0)) = 𝑝(𝑓 𝑧(0)) for all 𝑓 ∈ 𝐹, it follows that 𝑝(𝑧(𝑡)) = 𝑝(𝑓 𝑧(𝑡)) for
all 𝑡 and all 𝑓 ∈ 𝐹. Thus it is easy to factor out the transformation group, and get random

variables over the space of shapes (transformation invariant particle configurations). Factor-

ing out all symmetries 𝐹 from 𝒵 then leads to a reduced space of particle configurations

𝒲 over which a random variable 𝑊 (𝑡) (the whole collective at time 𝑡) and corresponding

observer variables 𝑊 (𝑡)
1 , ..., 𝑊 (𝑡)

𝑛 for a collective with 𝑛 particles can be defined. Measuring

multi-information on these derived random variables 𝑊 (𝑡)
1 , ..., 𝑊 (𝑡)

𝑛 now ignores certain
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degrees of freedom, i.e., rotation, permutations of particles of the same type and translation.

Now every configuration of particles 𝑧 can be expressed as a permutation, translation

and rotation of invariant coordinates 𝑤, i.e. for all 𝑧 there exists 𝑤 and 𝑓 ∈ 𝐹 such that

𝑧 = 𝑓 𝑤. Due to the group structure of 𝐹 and the invariance of the states (at all times) under

transformations of 𝐹

𝐼(𝑍1, ..., 𝑍𝑛) = ∫
𝒵

𝑝(𝑧1, ..., 𝑧𝑛) log
𝑝(𝑧1, ..., 𝑧𝑛)

𝑝(𝑧1)⋯𝑝(𝑧𝑛)𝑑𝑧

= ∫
𝐹

∫
𝒲

𝑝(𝑓 (𝑤1, ..., 𝑤𝑛)) log
𝑝(𝑓 (𝑤1, ..., 𝑤𝑛))
𝑝(𝑓 𝑤1)⋯𝑝(𝑓 𝑤𝑛)𝑑𝑤𝑑𝑓

= ∫
𝐹

∫
𝒲

𝑝(𝑤1, ..., 𝑤𝑛) log
𝑝(𝑤1, ..., 𝑤𝑛)

𝑝(𝑤1)⋯𝑝(𝑤𝑛)𝑑𝑤𝑑𝑓

= 𝐼(𝑊1, ..., 𝑊𝑛).

Therefore, factoring out the transformation group 𝐹 does not change the multi-information

of the observers, in the case of an invariant system. I use an initial distribution of particles,

which is uniform within a certain radius around the origin, so that particles are initially

placed uniformly and independently on a centered disc. This initial distribution is still

invariant with respect to rotation and permutation, but not translation invariant. However,

the multi-information is generally invariant under transformation of homeomorphisms

(Kraskov et al., 2004), therefore the above equality holds at all time as long as all elements

of 𝑓 ∈ 𝐹 are homeomorphisms of 𝒵 , which is the case here.

4.1.2.1 Indistinguishable particles

If I make predictive statements about particles it is required that particles can be identified

through time, otherwise the statistics about the future of a particular particle are skewed.

That the interchangeability of variables has an impact on information processing and

measurements has been considered before in terms of recoding equivalence (Crutchfield,

1990). By reordering the particles, the information to identify the same particle over time

is lost and they become indistinguishable. To measure self-organization of shapes indistin-

guishable particles (if they have the same type) are desired and therefore I introduced the

permutation group 𝑆∗
𝑛 as one set of shape invariant transformations. Distinguishing them

would mean that there can be an event that increases the measurement of self-organization,

but is not reflected in the shape and structure of the particle configuration. For example

there could be a permutation of two particles of the same type that is always reflected by

a permutation of two particles of same type elsewhere in the system. This would then

be taken into account by the multi-information, but has no impact on the shape that is

formed.

On the other hand I do not want to equate particles which have a different type, and show

different interactions. Particles of different types should be distinguishable as permutations
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of particles of different type would change the shape of the configuration. Additionally, if

particles of different type would be indistinguishable this the particle dynamics would not

be invariant to permutation anymore

The problem of indistinguishable particles and the related change of entropy is also a

problem in thermodynamics where it is known as Gibbs phenomenon and Mixing paradox

(Gibbs, 1874 and Jaynes, 1992). Only making a distinction between particles that show

observably different behavior also agrees with the solution to this problem in physics

(Jaynes, 1992). This is a very subtle problem, as the value of thermodynamic entropy now

depends on how well the observer can distinguish them and the same is true for the value

of multi-information. However, here I am measuring multi-information in a model, where

it is known from construction which particles are distinguishable.

4.2 METHODS

This section describes how I derived estimates of multi-information from simulation samples

of particle dynamics. Each simulation runs with a fixed number of 𝑛 particles, 𝑙 different
types and each particle gets a fixed type assigned at the start of the simulation. The particles

are located in the infinite two-dimensional plane ℝ2 and are initialized with a uniform

distribution on a disc of fixed radius. Each particle is of a specific type. The types can vary

between different experiments, but the properties (𝑟𝛼𝛽, etc.) of each type are fixed for all

simulation samples of one experiment. The assignment of a type to a particle is fixed over

the time of the simulation run. Each simulation run is a sample and is denoted by

𝑧̄ = (𝑧(1), ..., 𝑧(𝑡max)) (4.5)

where each time step is a vector of particle coordinates

𝑧(𝑡) = (𝑧(𝑡)
1 , ..., 𝑧 (𝑡)

𝑛 ). (4.6)

To gather statistics for an experiment, the simulation needs to run multiple times. The

collection of all 𝑚 samples is denoted

𝔷 = (𝑧̄1, ..., 𝑧̄𝑚)⊤ = (𝔷(1), ..., 𝔷(𝑡max)). (4.7)

Now, let the space of all particle vectors 𝑧 = (𝑧1, ..., 𝑧𝑛) be denoted 𝒵 and 𝑍(𝑡) the random

variable over 𝒵 at time step 𝑡, so all 𝑧(𝑡) ∈ 𝔷(𝑡) are samples of 𝑍(𝑡).

4.2.1 Factoring out symmetries

Next step is factoring out the symmetries for each time step as introduced in Section 4.1.2.

The samples 𝑧(𝑡) ∈ 𝔷(𝑡) for each time step 𝑡, the raw output of the simulations, are still with

respect to a common coordinate system. I proceed by factoring out translations, rotations

and permutations resulting in processed samples 𝑤(𝑡) ∈ 𝔴(𝑡) for each time step 𝑡. In practice
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this is done by expressing all particle configuration samples 𝑧(𝑡) ∈ 𝔷(𝑡) with respect to its

centroid. This is followed by aligning all configuration samples 𝑧(𝑡) for each time step

using an ICP (Iterative Closest Point) algorithm (Zhang, 1992 and Rusu and Cousins, 2011).

The ICP algorithm, associates mutual points of two sets and minimizes the squared mean

distance between the associated points by a linear transformation of all points of one set.

This is iterated several times, where the associations are recreated after each minimization,

so that each iteration gives a refinement of the associations and transformation.

For the application of the alignment the particle configuration is transferred to a three

dimensional representation where the third coordinate of each particle is represented by

its type, where the type coordinates are scaled by a factor a magnitude larger than the

diameter of the collective. Thus the alignment respects the type of the particles. After

the alignment the coordinates of all particle are reordered by types and correspondences.

Correspondences between particles of different samples, but of the same type, are found

using a nearest neighbor search within the ICP algorithm (implementation from the point

cloud library (Rusu and Cousins, 2011)). This means that particles close to each other in

different samples at the same time are considered to represent the same particle. Note that

the notion of same particle establishes a correspondence between different samples at a

specific time step. The correspondence between particles of the same sample, but different

time steps is, however, lost in this process.

Equipped with this preprocessing, an isometry- and permutation-reduced representation

of the particle collective is reached in terms of processed samples 𝑤(𝑡) ∈ 𝔴(𝑡). I can now

use the statistics of these samples to calculate the multi-information 𝐼(𝑊 (𝑡)
1 , ..., 𝑊 (𝑡)

𝑛 ).

The invariant representation also has the advantage that the samples are much denser

in the space of possible configurations which improves the quality of the estimates. It is

important to note, that for statistics that need to track particles over time, one cannot use

the permutation-reduced representation because one would lose any correspondence of

particles over time, e.g. (Kondor, 2008).

4.2.2 Estimation of multi-information

To estimate the multi-information I used the Kraskov-Stögbauer-Grassberger Estimator

(Kraskov et al., 2004) as introduced and compared to other approaches in Section 3.6. The

estimate is based on a 𝑘-nearest-neighbor search. As the results of the comparison and

literature review suggest a rather small value, 𝑘 = 5 was chosen for all experiments. In

my experiments the sample sizes vary from 500 to 1000. The comparison in Section 3.6

showed that the estimator is surprisingly good especially for such a sparse sampling in a

high dimensional setting, even though there is a clear bias that increases with the amount of

actual multi-information. Therefore the estimated multi-information is possibly less than

the actual multi-information, however the estimator does capture increases and decreases

of multi-information.



Examples

76

For large collectives, the alignment of samples and the estimation of the multi-information

can still be a computationally expensive task. However, it is possible to reduce the dimen-

sionality of the problem by introducing mean random variables. To do this a 𝑘-means

clustering on the set of particles of each type can be performed and thus 𝑙 ⋅ 𝑘 mean variables

𝑊̂(𝑡)
1 , ..., 𝑊̂(𝑡)

𝑙𝑘 are recovered, where 𝑙 is the number of types. Now taking 𝐼(𝑊̂(𝑡)
1 , ..., 𝑊̂(𝑡)

𝑙𝑘 ) as
an approximation measure for the multi-information 𝐼(𝑊 (𝑡)

1 , ..., 𝑊 (𝑡)
𝑛 ) reduces the compu-

tation time. This must be done carefully, because the clustering process itself can introduce

structure into the collective of particles, and thus can lead to a higher measurement of

multi-information than actually is present. On the other hand, the clustering ignores all

small scale self-organization processes, and hence the measured multi-information is less

than the actual value. The experiments performed here are not using this clustering method.

4.3 EXAMPLES

One of the most simple examples is a particle system consisting of a single type (with a

preferred distance between particles of 𝑟𝛼𝛼) and three particles. The particles in this system

move towards three points of mutual distance 𝑟𝛼𝛼. In (Harder et al., 2011), we only looked

at dynamics with a fixed noise of 𝜎 = 0.05. Here, I want to take a look at the three particle

system first without noise (𝜎 = 0). In this case, the equilibrium distribution is a Dirac

delta function (where the three particles form an equilateral triangle in the configuration

space) and thus the multi-information vanishes. Plotting the multi-information at each

time step shows however, that there is an initial phase where the system organizes, followed

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

14

16

Time

𝐼(
𝐖

(𝑡
)

1
,..

.,𝐖
(𝑡

)
𝑛

)

𝜎 = 0 𝜎 = 0.005 𝜎 = 0.01

FIGURE 4.4 Multi-information between three particles of the same type for different noise levels (𝑚 = 1000
samples, 𝑟𝑐 = 10, 𝑟𝛼𝛼 = 2.5).
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a) Particle configuration samples at 𝑡 = 200

b) Particle configuration samples at 𝑡 = 1000

FIGURE 4.5 Plotof the samples fromthenoise free threeparticleexampleat twodifferent timesteps. Theparticle
configurations are shaded by sample. Therefore, it can be seen in a) that the outliers along the three axes belong
to the same samples. This is a sign for correlation between the particles and hints towards a larger amount of
multi-information.
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FIGURE 4.6 Multi-information between three particles with 𝑙 = 1 and 𝑙 = 3 types (𝑚 = 1000 samples, 𝑟𝑐 = 10,
𝑟𝛼𝛽 = [[2.5, 0.1, 5], [0.1, 1, 0.5], [5, 0.5, 2]] and 𝑘𝛼𝛽 = [[0.05, 0.5, 0.1], [0.5, 0.2, 0.5], [0.1, 0.5, 0.3]] ).

by a ‘cooling down’ period where the system settles to the equilibrium configuration (see

Figure 4.4).

In Figure 4.5 all samples of the noise free system are shown in an overlay plot. It can be

seen that there is no variation in the samples at 𝑡 = 1000, whereas at 𝑡 = 200 the particle

configuration can still vary with respect to the mutual distance of particles, though in a

very constrained way.

If the dynamics are noisy (𝜎 = 0.005, 𝜎 = 0.01), the cooling down period does not happen

and the equilibrium is attained at a level of maximal organization over the evolution of

the system (see Figure 4.4). There is a small dip in the initial phase, but it is not clear

from a visual inspection where this short phase of cooling down comes from. Here, also

the entropy estimates of the whole particle system and the sum of entropies of individual

particles do not provide an explanation, as the estimators operate on spaces of different

dimensions with different biases and are therfore hardly comparable (which is also the

reason why a special estimator like the KSG estimator was needed in the first place).

What this initial example emphasizes is that a stochastic dynamical system needs a source

of entropy to self-organize. In the case of deterministic dynamics, the source of entropy

is the uniform initial disitribution (on a disc of radius 5), but the dynamics decrease the

individual entropies until they vanish, in which case the multi-information is also zero

and therefore it looks as if no self-organization occured. In the three-particle system with

noise in the dynamics, the noise is reflected not only in the sum of individual entropies
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but also in the overall systems entropy, but here correlated via the interaction between

the particles and thus the multi-information does not drop. This is similar to the measure

of information flow (Ay and Polani, 2008), where a causal influence between random

variables is measured via the intervention at variables in a CBN. In this case, however, there

are no direct interventions, only noise is added to the dynamics. In practice, measurements

of the physical system are usually noisy, but in the case of quantized data or simulated

systems one needs to be careful as the system might appear as if it disorganizes while the

correlations between individual parts of the system cannot expressed. This happens due

to missing noise in the system, which ‘probes’ the mechanisms that cause the correlation.

Hence, in all experiments that follow an additive Gaussian noise with 𝜎 = 0.01 is used.

4.3.1 Multiple Types

Having only one type of particles is quite a severe limitation on the possibe interaction

of particles. With three particles and three different types the configurations show more

variation in shape (see Figure 4.7) though the actual organization (increase of multi-inform-

ation) is less than the organization achieved by a system where all particles are of the same

type (see Figure 4.6) suggesting that the varations in shape are not that correlated and the

individual particles have a higher degree of freedom.

Most of the interesting self-organizing systems, however, do consist of more than three

parts, especially living organisms, which consist of a large number of cells. Hence, I will now

show an example of a systems with 𝑛 = 70 particles and 𝑙 = 3 types. The first observation

is that this method can be used in practice to detect self-organization of high dimensional

systems and there is a visual correlation between the formation process and the increase of

the multi-information estimate as depicted for the 𝑙 = 3 types example in Figure 4.8. In

the beginning the sum of the marginal entropies 𝐻(𝑊 (𝑡)
𝑖 ) is as large as the overall entropy

of the system because there is no correlation between particles at all (this is not measured,

however at 𝑡 = 0 the entropies can still be calculated analytically). Over time, the marginal

entropies decrease, however the overall entropy decreases even faster as the variations of

individual particles are correlated. This then leads to an increase of multi-information over

time. In Figure 4.8 it can also be seen that the final shapes show a certain variety, and there

are two visually distinguishable categories of shapes which are shown at different time steps

of the simulation runs.

4.4 RESULTS

After presenting some simple examples, I want to show first what happens when the number

of particles is increased. In Figure 4.9 it can be seen that, in case of the three type system,

the organization is increasing almost monotonically with the number of particles. This

effect cannot be observed for the system with only a single type, where the organization

is increasing less in comparison with the three particle system and interestingly decreases
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a) Particle configuration samples at 𝑡 = 150

b) Particle configuration samples at 𝑡 = 2000

FIGURE 4.7 Plotof all samplesofparticle configurationsof the threeparticle and three typesexampleatdifferent
time steps. Each shade denotes a different type, all samples of configurations of three particles of three different
types are overlayed in this plot.
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FIGURE 4.8 Multi-information between particles plotted against time with 𝑛 = 70, 𝑙 = 3, 𝑟𝑐 = 6.0, 𝑟𝛼𝛽 =
[[2.5, 5, 4], [5, 2.5, 2], [4, 2, 3.5]] and 𝑘𝛼𝛽 = [[0.6, 0.1, 0.1], [0.1, 0.6, 0.6], [0.1, 0.6, 0.6]] (𝑚 = 500 samples). The
increase ofmulti-information correlateswith the visual organization shownby snapshots of two samples at differ-
ent times.
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FIGURE 4.9 Increase of multi-information between 𝑡 = 0 and 𝑡 = 5000 for particle systems of different size
(𝑚 = 500 samples, 𝑟𝑐 = 10, 𝑙 = 1 and 𝑙 = 3 types using the same type specifications as in Figure 4.4 and
Figure 4.6).

for certain numbers of particles. This has to do with the amount of similar geometric

formations that are possible in a system consisting of particles of a single type, even though

there is not an obvious systematic way in which this happens depending on the number of

particles.

The small amount of organization for the six particle system, for example, can be explained

by inspecting the individual samples at 𝑡 = 5000. There are two different types of samples,

forming either a pentagon, where the sixth particle is situated slightly off center, or a

hexagon (see Figure 4.10). Now knowing the position of several particles still leaves a

high entropy about the position of the remaining particles, as the configurations can be

partially aligned, which means that there is a larger variation in shapes but, not an increase

in variation in the individual particle positions.

There is another interesting effect in systems of particles of a single type. While it can be

seen in Figure 4.9 that such a system organizes, both for a very small number of particles

𝑛 = 3 and a larger collective of particles 𝑛 = 20, this is not true if the cut-off radius 𝑟𝑐

is decreased such that 𝑟𝑐 ≤ 2𝑟𝛼𝛼. So in the settings from above, but with a cut off radius

of 𝑟𝑐 = 3, the organization of the small system is still around 13 bit and the plot of the

multi-information over time looks almost the same as for the same system with 𝑟𝑐 = 10
(compare with Figure 4.4) while the organization of the large collective drops to around

2 bit (see Figure 4.11).
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a) Pentagon configuration b) Hexagon configuration

FIGURE 4.10 Plot of the samples from the noise free three particle example at two different time steps. The
particle configurations are shaded by sample. Therefore, it can be seen in a) that the outliers along the three axes
belong to the same samples. This is a sign for correlation between the particles and hints towards a larger amount
of multi-information.
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FIGURE 4.11 Multi-information between 𝑛 = 3 and 𝑛 = 20 particles of the same type with a smaller cut-off
radius (𝑚 = 1000 samples, 𝑟𝑐 = 3, 𝑟𝛼𝛼 = 2.5).

For the small system of three particles, reducing the cut-off radius does not change much

(as long as the particles are initialized on a disc of radius 0.5𝑟𝑐, which they are in these

experiments): In fact the equilibrium configuration is the same because every particle is

still interacting with each other particle. This is not true for the larger collective of 20

particles. Here the resulting equilibrium configuration is always a regular grid and the

self-organization is very low. This is due to two effects: The regular grid is also always

roughly in the form of a disc, there is no variety in shapes, so the entropy for each particle
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is already very low in general (after alignment), and more important, small perturbations

in the grid structure are local and do not spread through the grid.

For the larger cut off radius (𝑟𝑐 = 10) the particles configure into two concentric regular

polygons where the rotation of the inner polygon with regard to the outer polygon shows

one degree of freedom (see Figure 4.12). For the small cut off radius noise and the initial

random distribution of particles result in local variations, that are not correlated through the

collective, thus increasing individual particles entropies but also the entropy of the whole

system. Hence the lower value of multi-information in the equilibrium. For the larger cut

off radius, noise is still reflected in local variations, but these are correlated through the

collective resulting in a larger amount of organization (compare Figure 4.11 and Figure 4.9).

4.4.1 Comparison of interaction types

Simulations with 𝑙 = 3 to 5 types and 𝑛 = 20 to 75 particles almost always showed

quantifiable self-organization reflected in an increase of multi-information (see Figure 4.8

for a typical example). It can be seen in Figure 4.13 that there is a decrease in self-organization

with a larger number of types after an initial increase (for a fixed number of particles). This

decrease can be attributed to the lower correlation in collectives with a high ratio of types to

particles (this was already observed in the three particle example, compare Figure 4.6). A low

ratio leads to clustering of particles of the same type, where the initial distribution of particles

at 𝑡 = 0 only shows a small influence on the final configuration. This is not the case if there

are almost as many types as there are particles. In this case small fluctuations in the initial

configuration can lead to quite different equilibrium configurations and thus a correlation

amongst the particles in the equilibrium is harder to establish. These fluctuations are thus

conserved over time. Nonetheless, in Figure 4.13 the maximal organization is reached by

the systems consisting of four types which indicates that a certain amount of distinct types

is actually helpful to reach a larger amount of organization.

Already in Figure 4.11 could be seen that the cut-off radius has a strong influence on the

organization of a collective of a single type and reducing the radius below 2𝑟𝛼𝛼 leads a large

drop in organization. In the simulation above, the cut-off radius was set to 𝑟𝑐 = 7.5 while

the preferred mutual distances were 𝑟𝛼𝛽 ∈ [1.0, 5.0] and the initial particle configurations

were drawn from a uniform distribution on a disc of radius 10. So initially not all particles

are necessarily interacting with each other and the cut-off radius is smaller than twice the

mutual preferred distance for some pairs of types.

In Figure 4.14 the increase of organization with an increase of 𝑟𝑐 is shown. A decrease in

organization for a high type to particle ratio, the effect that was mentioned above, can still

be observed also for large cut-off radii. However, the decrease is more prominent for small

values of 𝑟𝑐. Thus, long range interactions increase the organization of the particle system,

but it seems that systems with only a few types can organize better when the dynamics

dictate locally limited interactions.
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a) 𝑟𝑐 = 3

b) 𝑟𝑐 = 10

FIGURE 4.12 Plot of all particles of all samples at time 𝑡 = 5000, the system consists of 20 particles of a single
type, shading of the particle denotes different samples. In a) a regular grid can be seen and in b) it can be seen
that the outer ring has been much better aligned so that for each particle samples match more closely (denser
clusters), while this is not possible for the inner ring of particles as their alignment related to the outer ring is a
degree of freedom.
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FIGURE 4.13 Increase of multi-information between 𝑡 = 0 and 𝑡 = 1500, for different numbers of types (𝑛 = 20
particles, 𝑟𝑐 = 7.5 and 𝑚 = 250 samples). Averaged over 30 randomly generated types with mutual preferred
distance radii 𝑟𝛼𝛽 ∈ [1.0, 5.0] and 𝑘𝛼𝛽 ∈ [0.25, 0.75].

Spatial regularities are not a necessary condition for self-organization, but the mutual

interactions define possible attractors to which the particles then organize. Because of

the large number of different types compared to particles the structure is not (and cannot

expected to be) regular. On the other hand, if the interactions are locally limited, for example

because of a small cut-off radius, the self-organization is limited as well. Comparing this to

the self-organization exhibited by systems with the same amount of particles, same local

limitations on interactions, but considerably fewer different types, it possible to make the

following observation: The increase of multi-information over time in these systems is

much higher than in those being local and having as many types as particles.

To reach an increase in correlation (i.e. multi-information) among the particles, information

needs to spread through the collective (Steudel and Ay, 2010). And hence, it is not surprising

that long-range interactions lead to a lot of self-organization. What is, however, quite

interesting is that self-organization is also possible in the case where the interactions are

local but homogeneous. In these cases, where interactions are local, there are almost always

smaller clusters interacting with each other. Each cluster shows a very regular structure

and consists of particles of one type.

4.4.1.1 Localization of organization

If there is a cluster structure with spatially confined subsystems, there is a natural question: Is

it possible to locate where the largest contribution to the organization is made? In Section 3.4,

I explained that it is possible to decompose the multi-information of the observer variables

into the several multi-information terms, that each measure the multi-information of a
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FIGURE 4.14 Increase ofmulti-information between 𝑡 = 0 and 𝑡 = 1500, for different cut of radii 𝑟𝑐 and numbers
of types 𝑙, (𝑛 = 20 particles and 𝑚 = 250 samples). Averaged over 30 randomly generated types with mutual
preferred distance radii 𝑟𝛼𝛽 ∈ [1.0, 5.0] and 𝑘𝛼𝛽 ∈ [0.25, 0.75].

subset of the observer variables, and one term that measures the multi-information between

these coarse-grained joint observer variables. I now consider the joint random variable

of all observers of a given type of particles as coarse-grained observers 𝑊̃1, ..., 𝑊̃𝑙 (see

Section 3.4.1), and calculate the multi-information individually. A general observation

is that in every experiment it is possible to see organization on all levels. For a specific

experiment with 5 different types of particles, I was able to observe the following: If the

decomposition (coarse graining with respect to type) is normalized with respect to the

multi-information for each time step, it can be seen that in the beginning of the experiment

the relative contribution of each decomposition term still varies and it is possible to detect

two different phases in the phase of organization from 𝑡 = 0 to 𝑡 = 120. In the first phase

𝑡 ∈ [0, 30] the largest contribution comes from interactions between type 0 particles. The

next phase 𝑡 ∈ [30, 120] is dominated by a constant amount multi-information between

the coarse grained observes, and an increase of type 2 observer multi-information (see

Figure 4.15). This correlates with the dynamics where the interactions between particles of

type 0 act with the largest forces, whereas the interactions between particles of type 2 are

the smallest and thus, the organization of particles of type 0 will dominate the initial phase

of organization. The coarsening with respect to type therefore allows to identify phases

where different interactions are driving the organization process.
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FIGURE 4.15 Contribution of the different terms of the decomposition normalized with themulti-information in
each time-step. The total multi-information is normalized to fit the scale.

4.5 DISCUSSION

I used multi-information as a measure for self-organization and applied it to experiments

of interacting particle systems. Estimations of multi-information were obtained using

the Kraskov-Stögbauer-Grassberger estimator (Kraskov et al., 2004). As mentioned in

Chapter 3, defining a measure for self-organization is not a straightforward task. With the

definition used here one has to be careful in the choice of the observer variables. However,

the results show that particle/type-based observers are a practicable approach to measure

self-organization in spatial systems.

The first observation was, that a uniform collective (only one type) when forming regular

grids only shows a small amount of measurable self-organization. If the cut-off radius

limiting the interaction was increased, the collectives did not form regular grids anymore,

but several concentric rings of particles with a rotational degree of freedom between them.

The process from randomly distributed states to a regular grid structure is similar to the

formation of crystals, which often is put forward as a classic example of self-organization.

Even though, from a quantitative standpoint the self-organization of simple crystals seems

to be not very high.

The main observation of the self-organization of particle systems concerned the variation

of the cut-off radius 𝑟𝑐 and the number of types in the particles. Here it is possible to see that

given unconstrained interactions (𝑟𝑐 = ∞) the self-organization can be very high even if the
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FIGURE 4.16 Examples of emergent structures in particle collectives.

particles have many distinct types with different mutual interactions. This was surprising

insofar that the particle configuration in these settings do not show much spatial structure,

and there is generally no emergent description in terms of clusters interacting with each

other. However, the configurations show a lot of statistical structure, i.e. correlations,

that the multi-information is able to detect. This can be related to the retrieval of spatial

configuration of sensors using information-distance (Olsson et al., 2004). The distances

are in this case represented by the 𝑟𝛼𝛽 radii and the experiment with 𝑟𝑐 = ∞ is similar

to the relaxation procedure that was used by Olsson et al. (2004) for the reconstruction

of spatial structure. Another interesting point here is, that self-organization can occur

without exhibiting a visually emergent spatial structure (e.g. 20 particles with 10 different

types, large cut-off radius), this could support the idea put forward in (Shalizi, 2001) that

self-organization and emergence are separate concepts.

Now, decreasing the cut-off radius 𝑟𝑐 also decreases the observable self-organization (for a

fixed number of types). This supports another assumption about self-organization: Informa-

tion spread through the system is a crucial property of self-organizing systems. By limiting

the cut-off radius, I am constraining the particles ability to transfer information through

the system and therefore its ability to organize.

Now, if the number of types is decreased to three or four types (for a fixed value of 𝑟𝑐), the

self-organization increases and one can observe emergent structures like balls enclosed in

circles, layers of different types (see Figure 4.16). It seems that the emergence of clustered

structures is a result of the way a system can achieve higher overall self-organization when

interactions are locally constrained. Even with limited 𝑟𝑐, the homogeneity of the space as

well as the homogeneity of local structures allow long-range structural interactions between

groups of particles, which in turn allows to produce to a higher amount of self-organization

of the whole system.
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5
INFOGENESIS

» All things physical are information-theoretic in origin and this is a participatory universe. Observer participancy gives

rise to information; and information gives rise to physics. «

JOHN ARCHIBALD WHEELER, Information, physics, quantum: The search for links

5.1 INTRODUCTION

The adaptation of an organism to its environment is driven by evolution, which takes place

on a larger time-scale than the development of an individual organism, which is a guided

process of self-organization towards an evolution-determined target form, obviously with

some degrees of freedom for variations. The layout of body plans and cell differentiation is

information that is implicitly encoded in the genetic code of every individual cell. This is

different to what I have studied in Chapter 4, where the formation of shapes was induced by

the dynamics of the environment, the particles were completely passive. This is not the case

for living organisms where cells can sense molecules like neurotransmitters or hormone

concentrations. More importantly, they also react to their sensor inputs by changing

adhesion properties, cell motility, cell differentiation or even programmed cell death. The

development of a living organism is, in a very abstract sense, a massive parallel information

processing effort. And as Gregor et al. (2007) and Tkačik et al. (2009) show, apparently a

very efficient one.

The terms self-organization or emerging structures are often considered to be opposite

concepts to targets, optimization and control. I want to embrace a perspective where

these concepts coexist. Self-organization, for example in a multi-agent system, does not

contradict the existence of a (set of) target configuration(s), as long as the process towards

the target configuration is autonomous. This makes it sensible that the target configuration

is available to the agent collective from the beginning of the morphogenetic process,

although possibly this information may be implicitly encoded in the policy of individual

agents (as genetic code is in cells). If the target shapes are encoded in the physics that govern

the collective as in Chapter 4 the agents can remain passive (i.e. they are just particles),

but if the dynamics of the environment do not lead to an organization of the collective,

the agents need to exert a certain level of control over their environment to reach the

target configuration. This process can now be investigated using information-theoretic

methods. I propose that, the transition from passive particles to reactive agents marks also

the boundary between physics and biology and that the question of how dynamical systems

can cross this boundary is possibly one of most prominent questions regarding the origin

of life.

While nature provides evolution as an optimization process (roughly speaking and assuming

a fixed environment), it is not always the ideal way to reach an optimum. If the interest

lies only in the result and not in a study about evolutionary processes, other optimization

methods can be used to obtain information-theoretic limits on control, self-organization

and coordination. One might ask at this point whether such an optimized system has
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anything to do with self-organization. I propose to answer this question positively. The

optimization process is only used to obtain a collective that is optimally adapted, i.e. reaches

a target configuration in an optimal way (given some constraints). The optimization of

collective behaviour (the policy) is offline in the sense that the agent is not optimizing its

own policy by exploring the world and thus learning. The collective equipped with such

an optimal policy, however still organizes autonomously. Similar as evolution is an offline

optimization guiding the development of living organisms, albeit this does not imply that

evolution is actively controlling the development of an individual organism.

To begin, I will revisit the concept of relevant information as introduced by Polani et al.

(2006) and introduce the work on information-theoretic control theory by Touchette and

Lloyd (2004,2000). I will then discuss the embodiment of agents and the representation

of agent collectives in the perception-action loop, as this will be required to create an

information-theoretic perspective on morphogenesis.

5.2 INFORMATION-THEORETIC CONTROL THEORY

Touchette and Lloyd (2004) were the first to establish a formal link between control theory

and information theory. Control theory is concerned with controllable dynamical systems,

i.e. systems with an input. Depending on whether the state of the system is fed back into

the controller or not, the control is called closed-loop or open-loop control. CBNs are ideal

to formalize stochastic control systems (see Figure 5.1). Here, 𝑊 denotes the system state, 𝐶
the controller and 𝑊′ the state of the system after control was applied. The random variables

of CBNs in this chapter are assumed to be defined on finite spaces. A first application of

information theory is a formal definition of open-loop and closed-loop control via mutual

information: If 𝐼(𝑊; 𝐶) = 0 the control is called open-loop, and hence the arrow in the

CBN can be omitted, if 𝐼(𝑊; 𝐶) > 0, it is called closed-loop.

Touchette and Lloyd (2004) relate control theoretic concepts like controllability and observ-

ability to information-theoretic formulations. Here, I will be mainly concerned with their

work on optimal control as this gives some valuable insight into the information processing

of control systems. The entropy reduction for an open-loop control system is defined by

them for each control state 𝑐 ∈ 𝒞 as follows:

Δ𝐻 𝑐
open := 𝐻(𝑊) − 𝐻(𝑊′|𝐶 = 𝑐) (5.1)

𝑊

𝐶

𝑊′ 𝑊

𝐶

𝑊′

a) Closed-loop
control

b) Open-loop control

FIGURE 5.1 CBN of control systems, 𝑊 is the random variable that denotes the system state, 𝐶 the controller
and 𝑊′ the system after control was applied.
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where 𝐻(𝑊′|𝐶 = 𝑐) is the entropy of 𝑊′ controlled by an open loop controller 𝐶. The

maximal entropy reduction achievable for an open-loop controller is now given by

Δ𝐻max
open = max

𝑝(𝑤)∈Δ(𝑊),𝑐∈𝒞
Δ𝐻 𝑐

open. (5.2)

In (Touchette and Lloyd, 2004) it is shown that any non-deterministic open-loop controller

can only achieve as much entropy reduction as a deterministic one, therefore Δ𝐻max
open is

the maximum achievable entropy reduction, for any distribution of 𝑊 given the dynamics

𝑝(𝑤′|𝑤, 𝑐).

In a similar way the actual entropy reduction of a closed-loop control is defined as

Δ𝐻closed = 𝐻(𝑊) − 𝐻(𝑊′). (5.3)

One of the main results of (Touchette and Lloyd, 2004) is the following inequality

Δ𝐻closed ≤ 𝐼(𝑊; 𝐶) + Δ𝐻max
open. (5.4)

This is a very elegant result, because it states that for every additional bit of entropy reduction

in the system (compared to the best possible open-loop controller), the controller needs to

take one bit from the system and process it. A related observation was made by Klyubin

et al. (2004) who showed that information about the initial state of an gradient following

agent passes through the agents action sequence.

Following (Touchette and Lloyd, 2004), a closed-loop controller is considered optimal or

maximally efficient if

Δ𝐻closed − Δ𝐻open = 𝐼(𝑊; 𝐶) (5.5)

where Δ𝐻open is the actual entropy reduction, i.e 𝐻(𝑊) − 𝐻(𝑊′) but with 𝑝(𝑤′, 𝑤, 𝑐) =
𝑝(𝑤′|𝑤, 𝑐)𝑝(𝑤)𝑝(𝑐), where 𝑝(𝑐) is the marginal of 𝐶, hence making 𝑊 and 𝐶 independent

in the transition of the system.

Now, it is in theory possible to maximize the entropy reduction for closed-loop control to

maximize control over the system. At the same time there are systems where information

processing is costly, so it is natural to assign a cost on information processing. I propose the

following trade-off formulation of the entropy reduction, in the spirit of a rate-distortion

minimization (Cover and Thomas, 2006),

min
𝑝(𝑐|𝑤)

𝐼(𝑊; 𝐶) − 𝛽Δ𝐻closed. (5.6)

For 𝛽 → 0 the resulting controller will approximate the best possible open-loop controller

because 𝐼(𝑊; 𝐶) → 0 whereas for 𝛽 → ∞ information processing is only of secondary

interest and entropy reduction will be maximal. I did not prove whether the resulting

controllers are also maximally efficient in general or not, as this is not important in what
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follows. If Δ𝐻max
open = 0, that is open-loop control is ineffective, and maximally efficient

controllers exist for all possible values of 𝐼(𝑊; 𝐶), then the solution of Eq. (5.6) for any 𝛽 is

obviously from this set of maximally efficient controllers.

In Eq. (5.6) the reduction of entropy was the only goal (with an information processing

constraint). In practice this would be a rather unspecific goal, although in conjunction with

the oberserver self-organization introduced in Chapter 3, this might be used to maximize

self-organization in collectives, albeit in a unguided way. Most control theoretic algorithms

optimize control towards a desired system state. A subfield within the field of optimal control

developed into the field of dynamic programming and reinforcement learning Bellman

and Kalaba (1965) and Sutton and Barto (1998), where control is optimized to maximize

an arbitrary reward function for state transitions. Now, a small change in Eq. (5.6) relates

reinforcement learning and information-theoretic control. This was initially proposed by

Polani et al. (2006) under the label of relevant information which will be introduced in

the next section. Related problem are considered in (Saerens et al., 2009 and Todorov,

2009). In the former optimization is concerned with randomized shortest paths in networks

with information constraints, thus there is no model of embodied agents, whereas in the

latter the information-theoretic constraints are imposed on the general state transition

and not on the information processing of the controller. All these problems are similar to

rate-distortion problems (Cover and Thomas, 2006), however with a distortion function

that depends on the conditional distribution of the channel, which needs special attention

for solving these problems, as will be seen later in this chapter.

Hence, although Eq. (5.6) has not much practical relevance because blind entropy reduction

is rarely desired, it is true that most controllers reduce entropy and thus Eq. (5.4) is an

important limit for control systems. Furthermore, as I will show in the next sections, it

is possible to consider embodied agents as controller of their environment and hence use

the information-theoretic limits of control systems to obtain limits for the information

processing of embodied agents.

5.3 RELEVANT INFORMATION

Instead of the single time-step control system, I will now consider the perception-action

loop as introduced in Section 2.1.10. The perception-action loop in its most simple form

is a closed-loop control system unrolled over time (see Figure 5.2). In contrast to the

perception-action loop as it was introduced before, there are no random variables for the

sensors and it is assumed that the agent has access to the full world state𝑊𝑡 at every time-step

𝑡. The controller is now the agent’s actuator and hence denoted 𝐴𝑡. The random variables

of the perception-action loop are indexed by time and the distribution 𝑃𝑊u�
denotes the

actual distribution at time 𝑡 and 𝑊𝑡 as well as 𝐴𝑡 are defined on the world state space 𝒲
and action space 𝒜 respectively. The random variables 𝑊 , 𝑊′ and 𝐴 (also defined on 𝒲
and 𝒜 respectively) stand for a typical transition in the perception-action loop where the
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distribution 𝑃𝑊 is a time average and 𝑃𝑊′|𝐴,𝑊 is equal to 𝑃𝑊u�+1|𝐴u�,𝑊u�
as the world state

transition are time translation invariant (the world has constant dynamics). For a stationary

world this does not change much, as 𝑃𝑊 = 𝑃𝑊u�
for all 𝑡. If stationarity is not given, a naive

approach would be to assume 𝑃𝑊 to be uniform. This can always be done if the calculation

of a time average world state distribution is not possible, however the results might be

skewed heavily if the uniform prior is used. In episodic scenarios it is possible to average

episodes over time. The actual calculation will be shown in Section 5.7.

Now consider a utility function 𝑈𝜋(𝑤, 𝑎), that assigns a value to each state action pair

(𝑤, 𝑎) if the agent acts according to some policy 𝜋 . In traditional reinforcement learning

the agent’s goal is now to maximize the expected utility, by changing its own policy 𝜋
(Sutton and Barto, 1998), which is used as a shorthand notation for conditional distribution

𝑃𝐴|𝑊 .

max
𝑃u�|u�

𝔼[𝑈𝜋(𝑤, 𝑎)]. (5.7)

where the expectation is averaging over 𝑝(𝑤, 𝑎).

However, this maximization completely ignores the information processing burden the

agent has to carry. The resulting policy could be overly complex as long as it is optimal

with respect to utility. To address this problem Polani et al. (2006) introduced the following

optimization term:

min
𝑃u�|u�

𝐼(𝑊; 𝐴) − 𝛽𝔼[𝑈𝜋(𝑤, 𝑎)]. (5.8)

The result is a minimization of mutual information between world state and agent actuator

with the expected utility as a constraint. Here, one needs to be aware that, unless 𝑊 is

assumed to be uniformly distributed, a change of the agent’s policy 𝑃𝐴|𝑊 also changes the

distribution of 𝑃𝑊 as it is a time average.

By varying 𝛽 a trade-off between information processing and performance (expected

utility) is made. For 𝛽 → 0 the policy approximates, similar as above, the optimal open-loop

control policy, whereas 𝛽 → ∞ converges to an optimal policy that requires the least

amount of information (per time step) from the world state. Plotting 𝐼(𝑊; 𝐴) against

𝔼[𝑈𝜋(𝑤, 𝑎)] results in trade-off curves as illustrated in Figure 2.3.

𝑊𝑡

𝐴𝑡

𝑊𝑡+1

𝐴𝑡+1

𝑊𝑡+2

FIGURE 5.2 Illustration of the CBN of the perception-action loop of a memoryless agent with full access to the
world state.
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a) Information-utility trade-off curve for a simple goal finding task in a grid world.

b) Optimal policy, without
information constraint

c) Relevant information
policy at 𝛽 = 10

d) Relevant information
policy at 𝛽 = 0.25

e) Relevant information
policy at 𝛽 → 0

FIGURE 5.3 Illustration of the relevant information formalism for a simple goal finding task in a 5 × 5 grid world.
In a) the trade-off curve between relevant information and performance is shown, b) shows an optimal policy that
can be the result of an optimizationwithout any information constraint and c) - d) showpolicies for different value
of β.
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5.3.1 Value and Utility

The utility function encodes a reward structure that defines the actual goal(s) of the agent.

For every step the agent gets a reward that is determined by a reward function 𝑟(𝑤′, 𝑎, 𝑤)
which depends on the current state, the action taken and the state of the world after the

action was executed. The reward function and the perception-action loop now define a

Markov Decision Process (MDP). The utility function 𝑈𝜋(𝑤, 𝑎) is then defined recursively

via a state value function 𝑉𝜋(𝑤) that gives the expected future reward while currently

being in some state 𝑤 ∈ 𝒲 and following the constant policy 𝜋 (=𝑃𝐴|𝑊):

𝑉𝜋(𝑤) = ∑
𝑎

𝑝(𝑎|𝑤)𝑈𝜋(𝑤, 𝑎), (5.9)

𝑈𝜋(𝑤, 𝑎) = ∑
𝑤′

𝑝(𝑤′|𝑎, 𝑤) (𝑟(𝑤′, 𝑎, 𝑤) + 𝑉𝜋(𝑤′)) . (5.10)

5.3.2 Blahut-Arimoto Iteration

The definition of the state value function is recursive and the correct value function is a

fixed point of this equation. Classic reinforcement learning now states that iterating the

recursive definition of the value function converges to the correct value function for a

given policy (Sutton and Barto, 1998). It is now possible to combine the value iteration with

the Blahut-Arimoto algorithm (Blahut, 1972), which on itself can be used to solve rate-dis-

tortion problems (Cover and Thomas, 2006). This combination was, to my knowledge,

first introduced by Polani et al. (2006). The Blahut-Arimoto iteration is given by

𝑝𝑘+1(𝑎|𝑤) =
𝑝𝑘(𝑎)

𝑍𝑘(𝑤, 𝛽) exp(𝛽𝑈𝜋(𝑤, 𝑎)), (5.11)

𝑝𝑘+1(𝑎) = ∑
𝑤

𝑝𝑘(𝑤)𝑝𝑘(𝑎|𝑤), (5.12)

where 𝑘 denotes the iteration step, 𝑍𝑘(𝑤, 𝛽) is a normalisation term and 𝛽 > 0 the trade-of

between optimality and relevant information as introduced above. Now the iteration is

alternated with an update of the state probabilities 𝑝𝑘(𝑤) according to the current policy

and a value iteration to get a consistent utility 𝑈𝜋u� . For the combined policy iteration the

iterations steps are then done in the following order

𝑝𝑘(𝑎|𝑤) → 𝑝𝑘(𝑤) → 𝑉𝜋u� → 𝑈𝜋u� → 𝑝𝑘+1(𝑎|𝑤). (5.13)

The algorithm then minimises the term in Eq. (5.6) for a given value of 𝛽 and returns an

optimal policy for the agent given the constraints and thus allows to calculate the relevant

information for different information processing capabilities.

5.4 EMBODIMENT & PERCEPTION-ACTION LOOPS

The perception-action loop was introduced in Section 2.1.10 as a CBN capturing the

embodiment of an agent (see Figure 5.4). In the case of the simplified perception-action
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𝑊𝑡

𝑆𝑡 𝐴𝑡

𝑊𝑡+1

𝑆𝑡+1 𝐴𝑡+1

𝑊𝑡+2

FIGURE 5.4 Illustration of the CBN of the perception-action loop of a memoryless agent.

loop with full world access (see Figure 5.2), this is only partially true. For example, a policy

𝑃𝐴|𝑊 obtained from the relevant information optimization also determines how the agent

accesses information from the environment and this is implicitly describing its sensors, the

sense that an information bottleneck (Tishby et al., 1999) could be used to obtain a distinct

sensor variable 𝑆 based on the policy 𝑃𝐴|𝑊 (maximizing the information 𝑆 contains about

𝐴 and minimizing the information 𝑆 contains about 𝑊 ).

Besides sensors, many organisms have an internal information storage and information

processing apparatus (of which the brain is an important part) which I call memory. In

the perception-action loop it is denoted by the random variable 𝑀𝑡. It is separated from

the dynamics of the external world via sensors and actuators. While in Figure 5.4, sensor

and actuator are Markovian with respect to the world state, this is not the case for memory

which operates parallel to the world. The perception action-loop for an agent with memory

(see Figure 5.5) is actually symmetric along the sensor-actuator axis from an informa-

tion-theoretic point of view. In the reinforcement learning perspective from above, the

perception-action loop with memory, together with a reward function define a partially

observable Markov decision process (POMDP) with finite discrete belief states (Hansen,

2008).

The answer to the question of how to detect embodiment within a dynamical system is

far from simple and part of ongoing research (Biel and Polani, 2012). The importance of

embodiment for the cognitive process has been emphasized in Artificial Intelligence as

well as philosophy, though there is no exact definition of what embodiment is (Clark, 1998,

Pfeifer and Scheier, 2001, Gallagher, 2005 and Pfeifer and Bongard, 2007). In the context of

the perception-action loop an embodied agent represents an entity that performs informa-

tion processing parallel to everything else that goes on in the world, while interacting with

the world through some prescribed communication channels. Depending on the actual

model of the perception-action loop, there are several implicit assumptions that are usually

taken for granted, especially in spatial environments.

Consistency of Actions: For example in a two dimensional environment, the actions

are usually modelled in a consistent way, such that an action labelled ‘left’ actually moves

the agent to the left as long as no obstacle is encountered, but never to the right, upwards or

downwards. In this case this means that actions are translation invariant. This consistency

has implications on the information processing as Polani (2011) showed. The reader familiar

with differential geometry might be reminded of an affine connection by this assumption,

which allows parallel transport along a curve on a Riemannian manifold (Lee, 1997). The
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idea, that an agent can choose the same actions in every world state, seems similar to

the isomorphism of tangent spaces that follows from an affine connection, even though

the manifold itself can look different locally, similar like the reaction of the environment

to actions of the agent can depend on the state of the world. But an affine connection

not only identifies the tangent spaces with each other, furthermore the exponential map,

connects the tangent vector to the manifold, so, even with local curvature, the tangents are

consistently identified along curves on the manifold. Consistency thus means, in a spatial

system, that actuators can be considered to be global and agents are able to select actions

independent of the state of the world, while their effect is local but consistent (it depends

on the current state of the world as given by 𝑃𝑊u�+1|𝐴u�,𝑊u�
).

Locality of Sensors: Sensors are similar, usually their cause is local: their state depends

on the state of the world and in many models the sensor is simply a local read-out of some

part of the world state (i.e. a projection). Nonetheless sensors also need to show some

consistency, which introduces a global connection between sensor variables. The lack of

consistent sensors would possibly influence information processing of the agent in a similar

way as inconsistent actuators do in (Polani, 2011).

Conditional Stationarity: While this assumption is often not true for biological systems,

many models assume that the conditional distributions in a perception-action loop are time

translation invariant. This has two implications: The embodiment of the agent is constant

and it does not perform any learning. So, while conditional stationarity does not hold for

more complex organisms, it suffices as an assumption on a lower level where only a minimal

amount of cognition is involved and changes in the embodiment are considered slow in

comparison with more complex organisms. For the model of monocellular organisms for

example, the perception-action loop of an agent with memory as illustrated in Figure 5.4

can be a good fit with the exception of cell-division which however has not yet been

incorporated into the perception-action loop framework.

The first two consistency assumptions are rather vague and are currently missing a formal

framework. I believe that there are many analogies to differential geometry (Lee, 1997)

and possibly discrete differential geometry (Grinspun et al., 2006) provides helpful insights

towards a formal definition of a consistent embodiment within the perception-action loop.

Here, it suffices to note that at this point, that a physical embodiment, as it is often considered,

is not entirely informational. There are some natural assumptions underlying the sensor

and actuator random variables that are physical. While a purely information-theoretic

embodiment, which is implicitly encoded in the transition 𝑃𝑊u�+1|𝐴u�,𝑊u�
, could in theory

look quite unlike any biological organism.
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FIGURE 5.5 Illustration of the CBN of the perception-action loop of an agent with memory.
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FIGURE 5.6 Illustration of the CBNs of the perception-action loops of a collective of 𝑛 memoryless agents.

5.5 MULTI-AGENT RELEVANT INFORMATION

The perception-action loop formalism easily extends to multi-agent systems. Figure 5.6

shows the extensions of the memory-less perception-action loops to a multi-agent system

of 𝑛 agents. The sensor and actuator random variables are now denoted 𝑆 (1)
𝑡 , ...𝑆 (𝑛)

𝑡 and

𝐴 (1)
𝑡 , ...𝐴 (𝑛)

𝑡 respectively. Furthermore, in the multi-agent setting, let 𝑆𝑡 = (𝑆 (1)
𝑡 , ...𝑆 (𝑛)

𝑡 ),
with 𝑠𝑡 = (𝑠 (1)

𝑡 , ..., 𝑠(𝑛)) and 𝐴𝑡 = (𝐴 (1)
𝑡 , ...𝐴 (𝑛)

𝑡 ) with 𝑎𝑡 = (𝑎 (1)
𝑡 , ..., 𝑎(𝑛)) respectively. In

practice the sensors and actuators of agents in a collective are often identical, however this

is not a requirement of the formalism. As above, the time averaged random variables in the

perception-action loop are denoted by the index-less variables.

Now it is possible to use the relevant information formalism to gain informationally optimal

policies for a given reward function 𝑟(𝑤′, 𝑎, 𝑤). The reward is depending on the current

state of the world, the next state of the world and the joint action 𝑎 = (𝑎(1), ..., 𝑎(𝑛))
of all agents. The relevant information minimization term for an agent collective with

full-world access now looks almost the same except for a minor change. As the agents are

acting individually, there is an additional constraint that the joint policy needs to fulfil:

𝑝(𝑎|𝑤) = 𝑝(𝑎(1)|𝑤)⋯𝑝(𝑎(𝑛)|𝑤), (5.14)
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namely, given the world state all agent policies need to be independent of each other. Then

the relevant information minimization is as follows

min
𝑃u�|u� ,𝑝(𝑎|𝑤)=𝑝(𝑎(1)|𝑤)⋯𝑝(𝑎(u�)|𝑤)

(𝐼(𝑊; 𝐴) − 𝛽𝔼[𝑈𝜋(𝑤, 𝑎)]) . (5.15)

In case of an agent collective that does not have full world access but where each agent

is equipped with a sensor the minimization term changes. The information processing

of each agent happens between sensor and actuator and therefore, the sum of all mutual

informations is minimized. At the same time, the utility is still defined via the state of the

world and the joint action:

min
𝑃u�(1)|u�(1),...,𝑃u�(u�)|u�(u�)

⎛⎜
⎝

𝑛
∑
𝑖=1

𝐼(𝑆(𝑖); 𝐴(𝑖)) − 𝛽𝔼[𝑈𝜋(𝑤, 𝑎)]⎞⎟
⎠

. (5.16)

The collective joint policy given the world state is now

𝑝(𝑎|𝑤) = ⎛⎜
⎝

∑
𝑠(1)

𝑝(𝑎(1)|𝑠(1))𝑝(𝑠(1)|𝑤)⎞⎟
⎠

⋯ ⎛⎜
⎝

∑
𝑠(u�)

𝑝(𝑎(𝑛)|𝑠(𝑛))𝑝(𝑠(𝑛)|𝑤)⎞⎟
⎠

. (5.17)

Now the iteration that was used for a single agent with full world access to compute

relevant information can also be used to compute relevant information in multi-agent

scenarios where the agents have full world access. The iteration is now alternated between

the agents. For each agent a value iteration and a Blahut-Arimoto iteration is performed

using the current policy of the other agents as a predictor in the utility update. That is for

the value iteration of each agent, the policy of the collective is assumed to be independent

𝑃𝐴(1)|𝑆(1), ..., 𝑃𝐴(u�)|𝑆(u�). This means each agent can anticipate the action of the other agents

as it is intrinsically aware of their policies. This makes sense if the agents are assumed to be

identical and have a shared evolutionary history. In other cases it is possible in the value

iteration step to replace the policies of all other agents by uniform distributions and assume

no prior knowledge of the other agents’ actions. The general scheme of iterations is now

(similar to the iterations of the multivariate information bottleneck (Friedman et al., 2006))

𝑝𝑘(𝑎(1)|𝑤), ..., 𝑝𝑘(𝑎(𝑛)|𝑤) → 𝑝𝑘(𝑤) → 𝑉𝜋 1
u� → 𝑈𝜋 1

u� → 𝑝𝑘+1(𝑎(1)|𝑤) → ...

... → 𝑉𝜋 u�
u� → 𝑈𝜋 u�

u� → 𝑝𝑘+1(𝑎(𝑛)|𝑤).

First, there are the policies for each agent from which the common environmental state

distribution is calculated. This is followed by a value iteration step for the first policy and

a Blahut-Arimoto update that gives the new policy for the first agent. Using this policy

and the current policy of all other agents as a predictor, the value iteration step for the

next agent is done, again followed by a Blahut-Arimoto step, and so on until the last

agent is reached at which point an iteration ends. This iteration now converges to optimal

policies for all agents while minimizing 𝐼(𝑊; 𝐴(𝑖)) of each agent. As the value iterations

are independent of each other for the collective (in so far as each agent has its own value

and utility function), the reward is scaled by the factor 1
𝑛 , so that the total reward for
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FIGURE 5.7 Illustration of the CBNs of the perception-action loops of a collective of 𝑛 memoryless agents.

the collective per step is still 𝑟(𝑤′, 𝑎, 𝑤), where 𝑎 = (𝑎(1), ..., 𝑎(𝑛)) as mentioned earlier. A

simple calculation shows that this also means that the performance of the policy of the

whole collective (𝑝(𝑎|𝑤) = 𝑝(𝑎(1)|𝑤)⋯𝑝(𝑎(𝑛)|𝑤)) is equal to the sum of the individual

performances in the collective

𝔼[𝑈𝜋(𝑊, 𝐴)] =
𝑛

∑
𝑖=1

𝔼[𝑈𝜋 u�(𝑊, 𝐴(𝑖))]. (5.18)

This will be important later when the performance of an agent collective with independent

agents (𝑝(𝑎|𝑤) = 𝑝(𝑎(1)|𝑤)⋯𝑝(𝑎(𝑛)|𝑤)) is compared to a collectives with shared control of

the agents, that means the collective is seen a a single distributed agent with a policy 𝑃𝐴|𝑊 .

5.5.1 Observable Agent Collectives

To connect the measure of O-self-organization with the relevant information formalism

and the perception-action loop, each agent needs to have an observer variable. For this each

agent is observed by a variable 𝑋 (𝑖)
𝑡 where 𝒳1 = ... = 𝒳𝓃 = 𝒳 with 𝒳 being the state space

of an individual agent (e.g. position, type). This extends the multi-agent perception-action

loop as illustrated for the agent collective with full world access in Figure 5.7

The state representing location and other agent related states (for example the type of an

agent as in Chapter 4), will now be changed by the agent as part of an actuation. If agents

can sense and act on their own state and there is no interaction between state and the rest

of the world, the state acts as an internal memory and a different perception-action loop

model makes more sense (see Section 5.4). If however, the world dynamics interact with

the state or other agents can sense an agent’s state like their position, the state is more of an

external memory and is part of the world state.

A requirement for the agent observers is that they are fully determined by the world state,

that is

𝐻(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 |𝑊𝑡) = 0 for all 𝑡, (5.19)
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as well as being time translation invariant, i.e. 𝑝(𝑥 (1)
𝑡 |𝑤𝑡) = 𝑝(𝑥(1)

𝑡+1|𝑤𝑡+1) if 𝑤𝑡 = 𝑤𝑡+1 for

all 𝑖 and all 𝑡. This means that for each agent there is a projection function 𝜌𝑖 : 𝒲 → 𝒳𝑖

extracting the agent’s state from the world state.

If the converse is also true, namely

𝐻(𝑊𝑡|𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ) = 0 (5.20)

the collective will be called isolated. If the collective is not isolated it is helpful to model the

world as a joint variable of agent state as well as a random variable 𝑅𝑡 capturing the rest of

the world, that is 𝑊𝑡 = (𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 , 𝑅𝑡).

5.6 RELEVANT INFORMATION & SELF-ORGANIZATION

In the case of an isolated agent collective the observer variables can be used to measure the

self-organization of the whole system via observers as introduced in Chapter 3. If the agent

collective is not isolated, it is still possible to measure the organization of the collective itself,

but possible correlations to other parts of the world need to be considered, for example by

having a random variable encoding the state of the rest of the world as mentioned above.

In what follows I will consider an isolated system for simplicity, though the general ideas

should be easy to transfer to models where the world state consists of more than the agents’

locations and states.

Relevant Information provides a lower bound on the information that an agent collective

at least needs to process on average per time step to reach a configuration at a given

performance level. Now I want to look into the amount of information a collective needs

to process to reach a specific amount of self-organization. Here, I will assume, that for the

system, for each transition 𝑊𝑡 to 𝑊𝑡+1,

Δ𝐻max
open = 0, (5.21)

that is, there is no joint action of the collective that independently of the state of the system

decreases its entropy. This is unlike to the particle systems in Chapter 4 where the dynamics

of the environment already did reduce the entropy of the whole system. On the other hand

it also means that there is no noise in the system or more correctly that entropy production

(noise) and reduction (e.g. particle dynamics) are balanced unless the collective performs

information processing.

Now there are two drives, that can increase organization, the increase of the individual

entropies 𝐻(𝑋 (𝑖)
𝑡 ) and the decrease of the joint entropy 𝐻(𝑋 (1)

𝑡 , ..., 𝑋 (𝑛)
𝑡 ). The increase of

individual entropies, while keeping the joint entropy constant, requires something like

correlated entropy production, this would require highly non-local world dynamics or

a high degree of coordination, i.e. agents producing correlated entropy, for example by

performing correlated random walks. Coordination and shared control will be the topic of
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the next section. In many scenarios the individual entropies are actually decreasing over

time, because the collective was initialized with maximal or high individual entropies. With

the assumption that 𝐻(𝑋 (𝑖)
𝑡 ) ≥ 𝐻(𝑋(𝑖)

𝑡+1) it follows from (5.4) that

𝐼(𝑋(1)
𝑡+1, ..., 𝑋(𝑛)

𝑡+1) − 𝐼(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ) ≤ Δ𝐻 𝑡
closed ≤ 𝐼(𝑊𝑡; 𝐴𝑡). (5.22)

where Δ𝐻 𝑡
closed = 𝐻(𝑋 (1)

𝑡 , ..., 𝑋 (𝑛)
𝑡 ) − 𝐻(𝑋(1)

𝑡+1, ..., 𝑋(𝑛)
𝑡+1) as introduced above. With the

assumption that 𝐼(𝑋(1)
0 , ..., 𝑋(𝑛)

0 ) = 0 it follows that

𝐼(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ) ≤
𝑡−1
∑
𝜏=0

𝐼(𝑊𝜏 ; 𝐴𝜏). (5.23)

This result is relevant, as it limits the amount of self organization, that is achievable in 𝑡
time steps by the total information processed in this time. For systems, where Δ𝐻max

open = 0
does not hold, this generalizes to

𝐼(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ) ≤ 𝑡Δ𝐻max
open +

𝑡−1
∑
𝜏=0

𝐼(𝑊𝜏 ; 𝐴𝜏). (5.24)

Furthermore, if the agents do not have full world access, it follows from the data processing

inequality (Cover and Thomas, 2006) that also

𝐼(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ) ≤ 𝑡Δ𝐻max
open +

𝑡−1
∑
𝜏=0

𝑛
∑
𝑖=1

𝐼(𝑆 (𝑖)
𝜏 ; 𝐴 (𝑖)

𝜏 ). (5.25)

This also means that any organization exceeding the level induced by the dynamic of the

environment (accounted for by the term 𝑡Δ𝐻max
open) needs to be processed by the collective.

5.7 EPISODIC TASKS & SHAPES AS GOALS

For a morphogenetic process of guided self-organization, the guiding consists of a certain

target configuration to which the collective should organize itself. This can simply be a

shape, i.e. an n-tuple of coordinates, but also include the state of agents. For example if

agents are of three different types, as in the classic French-flag example (Wolpert, 1969),

would lead to a target where the agents form a rectangle with three stripes, where for each

stripe all the agents in it have to have the same type. A target configuration is therefore

simply an element (𝑥1, ..., 𝑥𝑛) ∈ 𝒳1 × … × 𝒳𝓃 .

Now it is possible to have more than one target configuration. For example if small vari-

ations are unimportant, several configurations could be considered as targets. The set of

target configurations will be denoted 𝒳̃ . Moreover, as in Section 4.1.2, there are trans-

formations of 𝒳1 × … × 𝒳𝓃 which leave the configuration invariant with respect to the

specification of a target. The set of configuration invariant transformations, denoted 𝐹,
depends, except for the identity map, on the actual model of the world, but in most cases

it will include translations, rotations and permutation of agents that share the same state.
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Equipped with the set of target configurations 𝒳̃ and the set of invariant transformations 𝐹
it is now possible to define a reward function 𝑟𝒳̃;𝐹 on 𝒲 × 𝒜 × 𝒲 . The reward is negative,

whenever the collective is not reaching one of the target configurations and zero when a

target is reached:

𝑟𝒳̃;𝐹(𝑤′, 𝑎, 𝑤) = −𝛿(𝑤′) (5.26)

where

𝛿(𝑤) =
⎧{
⎨{⎩

0, if ∃(𝑥1, ..., 𝑥𝑛) ∈ 𝒳̃ ∧ 𝑓 ∈ 𝐹 : 𝜌(𝑤) = 𝑓 (𝑥1, ..., 𝑥𝑛)
1, else

with 𝜌(𝑤𝑡+1) = (𝜌1(𝑤𝑡+1), ..., 𝜌𝑛(𝑤𝑡+1)) being a tuple of projections to the observer vari-

ables. Now it is possible to investigate the process of shape formation in the context of

the relevant information formalism, as for any policy of the collective a utility function is

defined. This in turn reveals the information processing that is required on average by the

collective per time step to reach a desired target configuration at a certain performance

level.

The task of shape formation towards a set of target configurations is episodic. That means

the task ends, whenever the collective reaches a target. At the end of an episode the world

state simply stays constant for all future times 𝑡, as otherwise the definition of 𝑊𝑡 for time

steps where some episodes already ended would be problematic. Strictly speaking this

makes the world dynamics non-Markovian. This is circumvented, by encoding the target

states into the world dynamics, that is, once the collective reaches a target state, any action

leaves the world state constant. Now 𝑃𝐴|𝑊 is defined to be uniform on all target states, that

is 𝛿(𝑤) = 0.

The time average distribution of the world states, denoted by the random variable 𝑊 , is

calculated for such a scenario as follows: The initial distribution of the world states at the

beginning of an episode is given by 𝑃𝑊0
. Let 𝑇 denote the uniformly distributed random

variable of the time up until a time step 𝑡max and 𝐿 denote the binary random variable

determining whether an agent is living 𝑙 = 1 or the episode has ended 𝑙 = 0. These depend
on the actual world state random variables within the perception-action loop as illustrated

in Figure 5.8. Now the marginal distribution of 𝑃𝑊 is the limit of the future time average of

the world states (for 𝑡max → ∞), and the conditional distribution 𝑃𝑊|𝑇 is defined as follows:

𝑊0 𝑊1 𝑊2 𝑊3 𝑊4

𝑇𝑊 𝐿

FIGURE 5.8 Illustration of the CBN of the perception-action loop of a memoryless agent with full access to the
world state.
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𝑝(𝑤|𝑡) = ∑
𝑤0

𝑇 𝑡(𝑤, 𝑤0)𝑝(𝑤0) (5.27)

where 𝑇 is the world state transition matrix defined by 𝑝(𝑤′|𝑤). However, I am only

interested in the distribution of the world states given that the episode of an agent collective

has not ended. Thus I will simply set 𝑃𝑊 = lim𝑡max→∞ 𝑃𝑊|𝐿=1. In practice, it is often simpler

to estimate this distribution from actual simulations of episodes. However, in some cases it

is desirable to determine 𝑃𝑊|𝐿=1 by its analytic definition as

𝑝(𝑤|𝑙 = 1) =
𝑝(𝑙 = 1, 𝑤)

𝑝(𝑙 = 1) (5.28)

=
∑𝑡max

𝑡=0 𝑝(𝑙 = 1, 𝑤|𝑡)

∑𝑡max
𝑡=0 𝑝(𝐿 = 1|𝑡)

. (5.29)

As the world dynamics are known to ignore actions once a target was reached, the term in

the sum of the denominator is simply

𝑝(𝑙 = 1|𝑡) = ∑
𝑤

𝛿(𝑤)𝑝(𝑤|𝑡). (5.30)

Now the term in the sum in the nominator is

𝑝(𝑙 = 1, 𝑤|𝑡) = 𝑝(𝑙 = 1|𝑤, 𝑡)𝑝(𝑤|𝑡) = 𝛿(𝑤)𝑝(𝑤|𝑡). (5.31)

And in turn it is possible to approximate 𝑃𝑊 as the limit of 𝑃𝑊|𝐿=1 for 𝑡max → ∞.

In the episodic scenario, the following change of the definition of the value function is

made

𝑉(𝑤) := 0 if 𝛿(𝑤) = 0 (5.32)

i.e. the values of world states with agents in a target configuration end the recursion of the

value and utility function. The value of a world state 𝑤, namely 𝑉𝜋(𝑤) is the negative of
the expected number of time steps until the collective in world state 𝑤𝑡 reaches a target

configuration if the current policy is followed. This follows directly from the recursive

definition of the value and utility function. Let 𝑊0 denote the random variable of world

state in the initial time step of each episode. The expected number of time steps an episode

lasts is then given by

𝑡𝜋 := 𝔼𝑊0
[𝑉𝜋(𝑤0)] (5.33)

Thus, the total amount of information processed on average can be defined naively as

ℐ(𝑝(𝑎|𝑤)) := 𝐼(𝑊; 𝐴)𝑡𝜋 . (5.34)

The definition for agent collectives with sensors is analogously, however this definition is

as remarked naive, since multiplying two averages might be different from the actual total
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amount of information processed on average by an agent collective in an episode. There

is a related concept called Information To-Go introduced by Tishby and Polani (2010),

that directly optimizes the total information that an agent processes over the course of an

episodic task, which I will only mention here as a possibly alternative to calculate the total

amount of information in a information trade-off scenario.

5.7.1 Organization in Episodic Scenarios

If the collective follows a policy 𝑃𝐴|𝑊 to form configurations specified by a target set 𝑋̃ it

is possible that different episodes need a different number of time steps to reach one of the

target configurations. Hence, it is not possible to simply calculate the multi-information of

the observers, as there is in general not a time 𝑡 where all possible episodes are guaranteed

to have ended. In this case the organization of the collective forming a target configuration

is only defined in a meaningful way in the limit of time. I will now assume that at 𝑡 = 0
the multi-information between all location read-outs is zero, and thus the organization of

the collective is as follows

𝐶org = lim
𝑡→∞

𝐼(𝑋 (1)
𝑡 , ..., 𝑋 (𝑛)

𝑡 ). (5.35)

The limit exists if for each state 𝑤0 with positive probability, a target is expected to be

reached in finite time, that is
𝜋
𝑡 < ∞, where the runtime is defined as in Eq. (5.33). This is

because for any non target configuration (𝑥 (1)
𝑡 , ..., 𝑥 (𝑛)

𝑡 ) and any 𝜀 > 0, there exists a 𝑡 > 0
such that 𝑝(𝑥 (1)

𝑡 , ..., 𝑥 (𝑛)
𝑡 ) < 𝜀 and for all other states, namely target configurations, the

dynamics of the world states are constant. That is the system if converging to a state where

all world states with positive probabilities are target configurations. Hence 𝐶org takes on a

value that is the multi-information of an actual distribution denoted 𝑃𝑋 (1),...,𝑋 (u�), i.e.

𝐶org = ⎛⎜
⎝

𝑛
∑
𝑖=1

𝐻(𝑋(𝑖))⎞⎟
⎠

− 𝐻(𝑋(1), ..., 𝑋(𝑛)). (5.36)

The convergence curve of the multi-information can now provide information about

speed of self-organization, as seen in Chapter 4.

5.8 SHARED CONTROL AND SENSOR COORDINATION

In Section 5.5 the following constraint was introduced for the relevant information method

for agent collectives

𝑝(𝑎|𝑤) = 𝑝(𝑎(1)|𝑤)⋯𝑝(𝑎(𝑛)|𝑤). (5.37)

The interpretation is, that each agent comes to its own decision concerning what action

is to be taken. However a performance gain at a fixed level of information processing

could be achieved by having a shared controller, that is coordination that goes beyond the

knowledge of the distribution of other agents’ actuators but actual correlation between
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actions performed. I am not concerned with how this would be achieved and there are

several possibilities: In models of biological cells, this could be achieved by a mechanism

of intercellular communication or models of proto-nerves, in swarm robotics wireless

communication might be possible. Here I am just interested in the theoretical limitations

and possibilities that can be achieved by allowing such a shared control. Agent coordination

has been considered earlier in an information-theoretic way in the context of empowerment

by Capdepuy (2010).

Another part where a coordination between agents is helpful is the sensor part. This only

becomes apparent if the collective does not have full world access and the exchange of sensor

readings might improve the collectives performance, even in the case where each agent acts

as an individual without shared control. Initial research showed, that for chains of agents,

the information local sensors provide about some feature of the global configuration of the

collective can be drastically improved by sharing sensor information with neighbouring

agents (Harder et al., 2011).

In the following sections I will distinguish agent collectives with shared control. The policies

of collectives with shared control are free from the constraint of conditional independence

between the individual agent policies. In what follows, let 𝐴̄ = (𝐴̄(1), ..., 𝐴̄(𝑛)) denote the
joint actuator random variable of a collective with shared control and 𝐴 = (𝐴(1), ..., 𝐴(𝑛))
the joint actuator of a collective without shared control, as before.

5.8.1 Intrinsic Coordination

The amount of shared control can be measures by the intrinsic coordination of the actions,

which is defined as the conditional multi-information between the agents’ actuators given

the world state

𝐼 ic(𝐴̄) = 𝐼(𝐴̄(1), ..., 𝐴̄(𝑛)|𝑊). (5.38)

It is easy to check that 𝐼 ic(𝐴) i.e. the intrinsic coordination of a collective without shared

control, is zero. Using the relevant information mechanism it is possible to obtain two

policies 𝜋̄ and 𝜋 for the same task, the former with shared control, the latter without. It is

now possible to compare policies, that operate on the same level on information processing,

that is 𝐼(𝐴; 𝑊) = 𝐼(𝐴̄; 𝑊). It is obvious that

𝔼[𝑈𝜋(𝑤, 𝑎)] ≤ 𝔼[𝑈 𝜋̄(𝑤, 𝑎)]. (5.39)

If the inequality is strict the sensor information processing of the collective is more efficient

with shared control. However, this does not cover all information processing per time step,

as the shared control also requires an information processing of 𝐼 ic(𝐴̄) bit. Depending on

the metabolic cost for this information channel, intrinsic coordination might be efficient

or not, depending on the model of the
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5.9 EXPERIMENTS

I will now, present some initial results I obtained in simulations with two agents, which

have the task to form a bond in the center of the world. The setup consists of two agents,

determined by a joint state 𝑤 = (𝑥(1), 𝑥(2)) ∈ 𝒲 in the state space 𝒲 = 𝒳 × 𝒳 − Δ where

𝒳 is a 𝑤𝑥 × ℎ𝑥 grid-world and Δ = {(𝑥, 𝑥)|𝑥 ∈ 𝒳} the diagonal. Hence, only one agent

is allowed to occupy a particular grid cell per time step. As before, the random variable

representing the state of the environment is denoted by 𝑊 . The goal is given by two

particular adjacent cells in the centre of the grid-world and it is not relevant which agent

occupies which goal cell, hence there are two goal states in the state space 𝒲 .

Each agent has five possible actions {𝑁, 𝑆, 𝑊, 𝐸, 𝐻}, go to one of the four neighbouring cells
or halt. The actions are denoted by the random variables 𝐴(1), 𝐴(2), and their joint action

𝑎 = (𝑎(1), 𝑎(2)) by the random variable 𝐴 as introduced in Section 5.5. The distribution of

the actions only depends on the location of the two agents. In this scenario the transitions

to the next step are deterministic 𝑝(𝑤𝑡+1|𝑎𝑡, 𝑤𝑡) ∈ {0, 1} and reflect the movement of the

two agent in the grid-world, blocked by the walls and blocking each other symmetrically

(see Figure 5.9). The agents are blocked if they try to move to the same field or if one agent

moves to a field where the other agent stays.

For every step the agents get a reward that is determined by a reward function 𝑟(𝑤𝑡+1, 𝑎𝑡, 𝑤𝑡)
which depends on the current state, the action taken and the state of the world after the

action was executed. A negative reward of −1 is given unless both agents occupy a goal

cell in which case no reward or penalty is given.

5.9.1 Results

In the experiment, iterations were performed with different environment sizes (6 × 7,6 ×
5,4 × 5, 4 × 3, 4 × 2 and 𝑛 × 1 with 𝑛 = 5, 6, 7, 8). Samples were taken for different values of

𝛽 ranging from 0.05 to 10.0 with steps ranging from 0.005 to 0.1, greater worlds required

a larger step size due to computational limitations. Each value 𝛽 leads to a policy and a state

distribution, the performance of the policy can be plotted against the mutual information

FIGURE 5.9 In this 6 × 5 grid-world, the two dark-grey rectangles show the goal configuration, the light-grey
rectangles show a configuration where the agents block each other if they move in the directions of the arrows.
This causes that the agents stay at their current position.
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FIGURE 5.10 Performance of agents with shared controller and individual controllers with summed expectation
of utility per agent and relevant information for the joint distribution of (𝑎(1), 𝑎(2)). Both graphs show the same
features but the scales differ.

between actions and states as can be seen in Figure 5.10. At the upper limit of 𝛽 = 10.0
the trade-of was already completely in favour of an optimal policy. For each sample the

iteration was stopped when ∑𝑠 |𝑉𝜋
𝑘+1(𝑤) − 𝑉 𝜋

𝑘 (𝑤)| < 10−6. In all runs the setup with

a shared controller/policy outperforms the case where the actions are independent (see

Figure 5.10). However the optimal (𝛽 → ∞) shared controller shows almost no intrinsic

coordination, that is 𝐼 ic(𝐴̄(1), 𝐴̄(2)) vanishes. Here the agents perform equally well with a

shared controller as with independent controllers (compare Figure 5.10 and Figure 5.11).

This suggests that in the optimal limit intrinsic coordination does not help to perform

better. Similarly (Zahedi et al., 2009) showed that for linked robots, those performed better

that had split controllers for their motors, although this was in the context of maximising

predictive information.

In the suboptimal region, especially small values of 𝛽, the shared controller performs better

with the same amount of relevant information. In this region the coordination behaves

differently depending on the kind of controller. With independent controllers the coordin-

ation tends to zero, as less relevant information is processed (see also Figure 5.11). While

this was expected due to coordination limited by relevant information, the coordination is

not even close to the possible limit. The shared controller shows the opposite behaviour:

the coordination increases as less relevant information is processed. This is also valid for

the intrinsic coordination, which vanishes in the optimal limit.

The maximum of coordination of the shared controller depends closely on the size and

geometry of the world (see Figure 5.12). The spikes in the graph are due to convergence

problems for certain values of 𝛽. For larger worlds the coordination still increases for 𝛽 → 0,
but by a significantly smaller amount: In a 6 × 7 grid world the difference between the

coordination for small and large values of 𝛽 is only ≈ 0.05 bit whereas in a 4 × 5 world
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FIGURE 5.11 Coordination of agents with shared controller on a 6 × 1 field, comparison of intrinsic coordina-
tion for shared control 𝐼(𝐴̄(1); 𝐴̄(2)|𝑊) with coordination for shared control 𝐼(𝐴̄(1); 𝐴̄(2)) and individual control
𝐼(𝐴(1); 𝐴(2)).

the difference is ≈ 1.54 bit. For very narrow worlds (size 𝑛 × 1) the coordination even

reached its maximum max 𝐻(𝐴̄(1)) = max 𝐻(𝐴̄(2)) = 1 bit. It may seem unintuitive that

this can happen while the relevant information is positive, as it means that one action

fully determines the other and each of the two possible actions is chosen with probability
1
2 . However the coordination takes the expectation over all states: the actions can be

totally synchronised, that is, 𝐻(𝐴̄(1)|𝐴̄(2)) = 0 while 𝐻(𝐴̄(1)|𝑊) is not maximal. Thus the

distribution of the possible two synchronous actions is not uniform, but this effect can

vanish when the expectation over all states is taken, which can also be seen by that fact that

the intrinsic coordination does not equal the coordination and therefore the actions cannot

be independent of the states.

The distribution of the states is not uniform and 𝑊 has rather low entropy as the cells that

are closer to the goal are visited more often by the agents. To ensure that the observed

behaviour of coordination is prevalent over the whole state space and not just appearing

close to the goal the resulting policies were also analysed assuming a uniform distribution

of 𝑊 , which resulted only in insignificant differences.
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FIGURE 5.12 Coordination of agents with shared controllers in worlds of different sizes.

5.10 DISCUSSION

In this chapter I extended the concept of relevant information (Polani et al., 2006) to

multi-agent systems and introduced an abstract episodic model of morphogenetic shape

formation processes that can be used in conjunction with relevant information to study the

information processing of collective self-organization. Moreover, I linked the information

processing by individual agents to the measure of self-organization by (Polani, 2009)

as introduced in Chapter 3 and introduced a formal information-theoretic definition of

coordination between agents.

While the representation of embodied agents using perception-action loops was touched,

this topic is still very young and there are not many results to start with, even though I

propose that the transition from a simple Markov chain to a perception-action loop might

be closely related to a transition from physics to biology and thus related to the origin of

life.

The link between self-organization and information processing via information based

control theory is very promising, but still carries at lot of assumptions with it. Possible

extensions include the separation of noise and deterministic dynamics as done in (Touchette

and Lloyd, 2004), which might provide a better insight into the effect of Δ𝐻max
open which at
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the moment includes entropy production from noise as well as entropy reduction from the

dynamics of the world.

The setting in which I investigated the introduced coordination measure is a grid world

with two agents and a goal to form a bond at the center of the world. As both agents

have the same possible two goal states, they have to cooperate to reach the goal in an

optimal way. The actions only depend on the current location of the agent (the agents are

memoryless) thus the joint intent to move to the goal states is explicitly encoded in the

controllers. Using an alternated fixed point iteration method I computed optimal policies

for the agents under information processing constraints.

The results show that agents use intrinsic coordination to overcome limitations of their

environment. This coordination is not needed in the optimal case where every agent can

get all the relevant information from the environment that it needs to choose an optimal

action. Though plausible, this is not entirely obvious a priori and depends on the particular

task. One could think of various scenarios where the controllers are stochastic and the

precise knowledge of the others agent action would lead to a better performance.

Now, large agent collectives will usually perform suboptimal policies as each agents’ abilities

will be limited: In real environments, the size of the agent and its supply of energy are just

some limiting factors to information processing capabilities. Furthermore having many

agents acting in the environment leads to spatial limitations that were here matched by

the situation of narrow grid-worlds. In these cases intrinsic coordination seems to perform

better than just prediction of the other agents’ behaviour: The shared controller cannot be

split into two independent controllers. The intrinsic coordination now also gives a measure

of how strong this behaviour is.

The introduced coordination measure only gives a theoretical limit on the raw information

processing capabilities of such a distributed system. In the setup above I studied the intrinsic

communication is not limited and the information-theoretic limit can be reached: the

two agents share a common ‘brain’. But often coordination is only ‘routed’ through the

environment: In the case of stigmergy the environment takes the role of the communication

channel (Klyubin et al., 2004). Other ways of communication that have low interference

with the environment like sound, hormones, neurotransmitters, morphogens, or radio

signals qualify more to be modelled as intrinsic coordination, although their limited channel

capacities must be considered. Examples where collectives of cells use molecular signalling,

with almost no interference, to activate a certain behaviour in the whole collective (Marée

and Hogeweg, 2001) could then be modelled as intrinsic coordination. With the help of

interaction complexity (Ay et al., 2011) or the inference of common ancestors (Steudel

and Ay, 2010) it might be possible to use the relevant information approach to devise also

a network structure, maybe even hierarchies among agents that lead to a constructive

approach of optimal distributed information processing in the collective.
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What is still missing are implementations of the relevant information formalism for larger

multi-agent systems. The currently used implementations of the algorithms for relevant

information do not scale well and as it could be seen here allow only to study small systems.

I hope that the advancement of information-theoretic methods for continuous random

variables, including kernel based methods, will help to apply the formalism to systems with

many dimensions, as in these settings continuous models are often surprisingly easier to

handle than discrete models. The review of the multi-information estimators in Chapter 3

showed, that there are possibilities to employ information theory in those high dimensional

settings. From a theoretical standpoint, there is not much stopping to transfer the framework

presented here, to the continuous domain and during my research I started to work on

the implementation of continuous relevant information algorithms with promising results

obtained from a few very early tests.
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6
REDUNDANT INFORMATION

» My definition of a redundancy is an air-bag in a politician’s car. «

LARRY HAGMAN, Unknown

6.1 WHAT IS REDUNDANCY

Studies of synergies and redundancies have received attention in several areas including

computational neuroscience (Gat and Tishby, 1999, Latham and Nirenberg, 2005, Brenner

et al., 2000 and Balduzzi and Tononi, 2008), complexity sciences and genetic regulatory

networks (Liang and Wang, 2008 and Margolin et al., 2006). However, there is no agree-

ment how to best measure redundancy and synergy in an information-theoretic fashion as

information is a very intricate concept. The colloquial use of the term information does

not fully capture its information-theoretic meaning. This insufficiency holds also for the

term redundancy and therefore the properties of redundant information can at times con-

flict with an intuitive, but vague feeling for what redundancy should mean. If that was

not enough, it is also disputed what the formal requirements for a measure of redundant

information are. I will use the term redundant information to denote information that is

shared between variables (with respect to a third variable). This quantity is also sometimes

denoted as shared information and is not to be confused with the idea of redundancy with

respect to compression and entropy of an individual random variable.

My initial motivation to use a measure of redundant information and the partial information

decomposition by Williams and Beer (2010) was to reach a better understanding of the

morphological computation of agents in a collective. Consider a particle system as in

Chapter 4, but with agents that can manipulate for example their type or act by changing

the effects of interactions. The transition from one world state to the next consists of

information processing performed by the agents but also by the environment. In this

scenario I wanted to understand the relations between these two ‘channels’ of information

processing. However, it became quickly apparent that the current measures are flawed

according to some basic intuitions about redundancy and synergy. Hence, I set out to

understand these concepts better to address these issues and will here introduce a new

bivariate measure of redundant information and discuss its properties and relation to existing

approaches.

Though studies on the transition of world states in the perception-action loop have not yet

been giving conclusive results the measure presented here has some important applications

to the study of information processing in distributed systems as for example multi-agent

collectives.

6.1.1 A Naive Approach

Given three (finite) random variables 𝑋1, 𝑋2 and 𝑍, it is possible to measure the mutual

information between the joint variable (𝑋1, 𝑋2) and 𝑍 denoted by 𝐼(𝑍; 𝑋1, 𝑋2). The
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question of redundant information is now the question of how much information that

𝑋1 contains about 𝑍 is also contained in 𝑋2 (about 𝑍)? A naive answer would be that

𝐼(𝑍; 𝑋1) − 𝐼(𝑍; 𝑋1|𝑋2), also called interaction information (Bell, 2003), measures the amount

of redundant information, as it is the difference between the information about 𝑍 that is

contained in 𝑋1 and the information that is still contained in 𝑋1 about 𝑍 if 𝑋2 is known.

However, interaction information is not sufficient to capture redundancy because it also

measures synergy, whereby synergy contributes negatively to the interaction information.

So, in the example of a XOR-gate 𝑍 = 𝑋1 ⊕ 𝑋2 where there is no redundant informa-

tion, interaction information is −1 bit. More importantly, in a situation where there is

redundant and synergistic information this means that both terms interfere with each other.

Therefore, the actual structure of the informational contributions is opaque to the measure

of interaction information and new approaches are needed.

6.2 MEASURE CANDIDATES

As mentioned above, the term redundancy has been used in several contexts denoting

different quantities. Here, I will specificly consider information about another random

variable that is shared among several random variables and specificly mean the same ‘piece’

of information. The general setting consists of a set of finite random variables 𝑋𝐕 =
{𝑋1, ..., 𝑋𝑛}, the index set 𝐕 = {1, ..., 𝑛} and a finite random variable 𝑍 with values from

𝒳1 × ... × 𝒳𝑛 and 𝒵 respectively. The mutual information between 𝑍 and 𝑋𝑉 is denoted as

follows:

𝐼(𝑍; 𝑋𝐕) := 𝐼(𝑍; 𝑋1, ..., 𝑋𝑛). (6.1)

In the bivariate setting this contracts simply to 𝐼(𝑍; 𝑋1, 𝑋2). The main question in this

chapter is how to quantify redundancy between the variables 𝑋𝑖 with respect to 𝑍 and in

turn get a deeper insight into the structure of mutual information. For this, I will be using

a framework introduced by Williams and Beer (2010). Here, an introduction to existing

approaches to redundant information will be given including a comparison with the newly

constructed measure.

6.2.1 Minimal Information

The first candidate measure for redundant information I consider is called minimal informa-

tion. In the following it is denoted by 𝐼min (Williams and Beer, 2010). Following Williams

and Beer (2010), the construction of the measure starts by considering the (non-negative)

specific information (DeWeese and Meister, 1999), which is the increase in likelihood (or

reduction in surprise) of the outcome of a specific event 𝑧 ∈ 𝒵 and 𝑥𝐀 with respect to an

index set 𝐀 ⊆ 𝐕 and is defined by
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𝐼sp(𝑍 = 𝑧; 𝐀) := ∑
𝑥𝐀

𝑝(𝑥𝐀|𝑧) [log
1

𝑝(𝑧) − log
1

𝑝(𝑧|𝑥𝐀)] (6.2)

= 𝐷KL (𝑃𝑋𝐀|𝑍 ∥ 𝑃𝑋𝐀
) (6.3)

where the equality results from applying Bayes’ rule. This definition is in turn used to

define the minimal information that a set of (joint) random variables contains about the

outcome (Williams and Beer, 2010) as

𝐼min(𝑍; 𝐀1, ..., 𝐀𝑘) := ∑
𝑧

𝑝(𝑧) min
𝑖

𝐼sp(𝑍 = 𝑧; 𝐀𝑖). (6.4)

Minimal information is obviously non-negative and, in fact, positive if all variables 𝑋𝐴u�

with respect to the index sets 𝐴𝑖 contain some information about a specific outcome (for

outcomes having positive probabilities).

The notation deviates from many information theoretic measures as the parameters of 𝐼min

are index sets and not random variables. Nonetheless, I adopt this notation from Williams

and Beer (2010) for multivariate measures of redundant information to make comparisons

between the measures easier to comprehend. For the bivariate case the notation changes

slightly and I will use the random variables directly instead of the index set notation, so

instead of writing 𝐼min(𝑍; 𝐴1, 𝐴2), where 𝐴1 and 𝐴2 are index sets of some collection of

random variables, I will simply write 𝐼min(𝑍; 𝑋1, 𝑋2).

6.2.2 Comparing Apples & Oranges

This measure contradicts a basic intuition about redundancy. Consider the case of two

binary input variables 𝑋1, 𝑋2 (i.e. 𝒳1 = 𝒳2 = {0, 1}) that are independent, uniformly dis-

tributed and where 𝑍 = (𝑋1, 𝑋2) is an unaltered copy of both variables, i.e. the underlying

distribution of 𝑍 is the joint distribution of 𝑋1 and 𝑋2. Now it is to be expected that there is

be no redundancy between 𝑋1 and 𝑋2 with regard to 𝑍 because 𝑋1 and 𝑋2 are independent,

so the information contained about 𝑍 in 𝑋1 and 𝑋2 respectively is clearly not the same.

However, an easy calculation leads to 𝐼min(𝑍; 𝑋1, 𝑋2) = 1 bit.

Minimal information information is observed because for each outcome of 𝑋1 or 𝑋2 a

reduction of entropy regarding an outcome 𝑧 is observed (i.e. the specific information

between 𝑋1 and 𝑧 as well as 𝑋2 and 𝑧 is positive). This ignores that even though 𝑋1 and 𝑋2

give the same amount of information about an outcome 𝑧, they tell something different

about the change of the distribution 𝑃𝑍. In this particular example 𝑋1 gives information

about the first component of 𝑍 while, 𝑋2 gives information about the second component

of 𝑍. This example is used to demonstrate the effect with full impact, though measuring a

larger minimal information than what is considered to be redundant can also occur in more

practical situations. Whenever there is a process that has independent sub-components

over time and these components contain some information about their future states, the

measure 𝐼min will report this information as redundancy between the components.
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More precisely the a posteriori distributions of 𝑍, 𝑃𝑍|𝑋1
and 𝑃𝑍|𝑋2

, when either 𝑋1 or 𝑋2 have

been observed, give a different kind of information (have different content) even though

they give the same amount of information. The core idea to resolve this issue therefore is

to separate the contributions of 𝑋1 and 𝑋2 by adopting a geometric view in the space of

probability distributions over 𝑍.

6.2.3 Axiomatic Approach

Before looking into other proposed measures, I will describe an axiomatic approach that

will be considered for all measures introduced from here on. Williams (2011) states three

axioms any redundancy measure 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘) has to fulfil:

Weak Symmetry (S𝟎) 𝐼∩ is symmetric with respect to permutations of the 𝐴𝑖’s.

Self-Redundancy (I) 𝐼∩(𝑍; 𝐴) = 𝐼(𝑍; 𝑋𝐴).

Monotonicity (M) 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) ≤ 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1)
with equality if 𝐴𝑘−1 ⊆ 𝐴𝑘.

These axioms follow the intuition that redundancy with regard to a variable is symmetric

with respect to permutations of the input variables and similar to how entropy can be

viewed as self-information, i.e. 𝐻(𝑋) = 𝐼(𝑋; 𝑋), mutual-information can be viewed as

self-redundancy 𝐼(𝑍; 𝑋𝐴) = 𝐼∩(𝑍; 𝐴). The last axiom is also intuitive, considering that

redundancy denotes information about 𝑍 that is contained in every variable 𝑋𝐴u�
, each

additional variable is a further constraint, so that the redundancy can only be reduced. The

only exception is where the additional variable is a joint variable of an already used variable

and any arbitrary other random variable, in this case the redundancy stays constant.

From these axioms follows the non-negativity of the redundancy measure, as well as that it

is bounded from above by the mutual information between Z and each source. To prove

this, note that 𝐴𝑖 are subsets of 𝑉 that could be empty, and for consistency 𝐼∩(𝑍; ∅) = 0 by

definition. It is easy to check that all three axioms are fulfilled by the measure 𝐼min (Williams,

2011).

6.2.3.1 Identity Axiom

To address the shortcoming of the minimal information which was identified above, I

propose to add an additional axiom to the axioms introduced above and call it the identity

property, as it states how redundancy should behave with respect to a joint random variable

of identical copies of the two source variables. It requires that for any redundancy measure

𝐼∩ the following axiom holds:

Identity (Id𝟐) 𝐼∩ ((𝑋𝐴1
, 𝑋𝐴2

); 𝐴1, 𝐴2) = 𝐼(𝑋𝐴1
; 𝑋𝐴2

)
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The idea behind this additional axiom is, that if the (bivariate) mechanism that is considered

is just copying the input, the redundancy must be exactly the mutual information between

the variables. Given a multivariate redundancy measure the monotonicity automatically

states that the multivariate redundancy is then bounded from above by the minimum of

pairwise mutual information terms. Later on I will discuss this property in more detail, as

there is also a point of view, that does neither agree with the identity axiom nor with the

redundancy calculated via 𝐼min.

6.2.4 Synergistic Mutual Information

An approach coming from cryptography is to use intrinsic conditional mutual information

(ICMI) to measure the unique contributions to mutual information (Maurer and Wolf,

1999). These unique contributions could in theory be used to define a redundancy measure

using the structure of mutual information as it will be introduced in Section 6.4.1. However,

as noted by Bertschinger et al. (2012), the ICMI does not obey the consistency of the partial

information decomposition which will be introduced later in Section 6.4 and it is fair to

say that this measure does not add up for this use case. Therefore, I will not go into the

details of its construction here.

However, there is a measure of synergistic information byGriffith and Koch (2012), denoted

synergistic mutual information, whose construction is inspired by the construction of ICMI.

Again, using the structure of mutual information it is possible to deduce a measure of

redundant information from this.

The measure first defines union information, denoted 𝐼∪, as the amount of information in

the individual 𝑋𝐴u�
about 𝑍, but without counting the same ‘piece’ of information twice.

This is achieved as follows:

𝐼∪(𝑍; 𝑋𝐴1
, ..., 𝑋𝐴u�

) := min
𝑝(𝑧̄|𝑧)

(𝑋u�1
,...,𝑋u�u�

)→𝑍→ 𝑍
∀𝑖:𝐼(𝑋u�; 𝑍 )=𝐼(𝑋u�;𝑍)

𝐼( 𝑍 ; 𝑋𝐴1
, ..., 𝑋𝐴u�

), (6.5)

where 𝑍 is a truncated version of 𝑍 of same cardinality, similar to the bottleneck variable

in an information bottleneck (Tishby et al., 1999). The minimization constraint denotes

that (𝑋𝐴1
, ..., 𝑋𝐴u�

) → 𝑍 → 𝑍 forms a Markov chain, where the information between each

individual variable and 𝑍 is preserved in 𝑍 . The synergistic information is now defined as

𝑆(𝑍; 𝑋𝐴1
, ..., 𝑋𝐴u�

) := 𝐼(𝑍; 𝑋𝐴1
, ..., 𝑋𝐴u�

) − 𝐼∪(𝑍; 𝑋𝐴1
, ..., 𝑋𝐴u�

). (6.6)

Again, it is possible to use this quantity to define a corresponding redundancy measure.

However, as I will discuss Section 6.5.2, this measure does not allow a consistent decom-

position.
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6.2.5 Shared Information

A recent article by Bertschinger et al. (2012) extends the discussion about redundancy, or

as it is called in the article, shared information. In the article the authors introduce three new

axioms or properties that they argue are necessary for a measure of redundant information.

In comparison to the axioms mentioned above, the left side variable 𝑍 plays a role in these

properties:

Strong Symmetry (S𝟏) 𝐼∩ is symmetric with respect to permutations of 𝑍 and

the 𝐴𝑖’s.

Left Monotonicity (LM) 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) ≤ 𝐼∩(𝑍, 𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘).

Left Chain Rule (LC) 𝐼∩(𝑍, 𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) = 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘)
+ 𝐼∩(𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘 |𝑍).

They go on and show that there are certain subsets of these axioms that cannot be fulfilled

by any measure, which obviously is an important result and already gives an additional

insight into the structure of mutual information. The article continues by defining two

measures of shared information, but both having quite drastic shortcomings. I postpone

a comparison of all measures to Section 6.5 where my newly proposed measure and also,

very importantly, the decompositional structure of mutual information will have been

introduced.

6.3 CONSTRUCTION OF A NEWMEASURE

To define a new (bivariate) redundancy measure I will take a geometric view on inform-

ational quantities. Information geometry is a powerful tool-set to investigate informa-

tion-theoretic question in the context of Riemannian manifolds (Amari, 2001 and Amari

and Nagaoka, 2007). Geometric arguments and algorithms have profound application to

information theory and statistics (Csiszar and Shields, 2004), and have been successfully

employed to construct information-theoretic multivariate interaction measures (Kahle et

al., 2009). Information geometry deals with statistical manifolds of probability distribu-

tions equipped with the Fisher metric (Amari and Nagaoka, 2007). The Kullback-Leibler

divergence is now a divergence function on the statistical manifold and thus certain helpful

properties and theorems, such as the Pythagorean Theorem, can be used. Here, I will

introduce concepts of information geometry only as needed, because most arguments can

be done on an ad-hoc basis.

6.3.1 Preliminaries

The redundancy measure that is constructed in the subsequent sections is based on the

notion of projected information which I will introduce shortly. In what follows, let Δ(𝑍)
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denote the space of all probability distributions over 𝑍. An information projection is now

defined as the minimization of the Kullback-Leibler divergence between a probability

distribution in 𝑃 ∈ Δ(𝑍) and a subset 𝐵 ⊂ Δ(𝑍):

𝜋𝐵(𝑃) := arg min
𝑅∈𝐵

𝐷KL (𝑃 ‖ 𝑅) . (6.7)

The Kullback-Leibler divergence is not symmetric, therefore it is possible to define a dual

projection 𝜋𝐵
∗(𝑃) where the parameters of 𝐷KL (⋅ ‖ ⋅) are reversed (in (Csiszár and Matus,

2003), 𝜋𝐵(𝑃) is called reverse information projection and 𝜋𝐵
∗(𝑃) information projection).

Here I will exclusively use the projection 𝜋𝐵(𝑃).

For 𝐵 ⊆ Δ(𝑍), let

𝐶cl(𝐵) = {𝜆𝑃 + (1 − 𝜆)𝑄| 𝑃, 𝑄 ∈ 𝐵, 𝜆 ∈ [0, 1]} (6.8)

denote the convex closure of 𝐵 in Δ(𝑍). As Δ(𝑍) is convex it follows that 𝐶cl(𝐵) ⊆ Δ(𝑍).
Observing an event 𝑥1 in 𝑋1 or 𝑥2 in 𝑋2 leads to a distribution over 𝑍, 𝑃𝑍|𝑥1

∈ Δ(𝑍) and
𝑃𝑍|𝑥2

∈ Δ(𝑍) respectively. Let

⟨𝑋1⟩𝑍 := {𝑃𝑍|𝑥1
: 𝑥1 ∈ 𝒳1} (6.9)

denote the set of all conditional distributions of 𝑍 for the different events of 𝑋1. Because

the marginal distributions over 𝑍 are a convex combination of the conditional distributions,

namely

𝑝(𝑧) = ∑
𝑥1

𝑝(𝑧|𝑥1)𝑝(𝑥1), (6.10)

the space of distributions over 𝑋1, i.e. Δ(𝑋1), is embedded in Δ(𝑍) in the following way

𝐶cl(⟨𝑋1⟩𝑍) = 𝐶cl ({𝑃𝑍|𝑥1
: 𝑥1 ∈ 𝒳1}) (6.11)

and thus 𝐶cl(⟨𝑋1⟩𝑍) ⊆ Δ(𝑍). Assuming that the mechanism 𝑃𝑍|𝑥1
is known for all 𝑥1, the

convex closure of ⟨𝑋1⟩𝑍 in Δ(𝑍) now contains all marginals 𝑃𝑍 that could be the actual

marginal of 𝑍 if the underlying distribution of 𝑋1 is not known. Conversely, for each

𝑃𝑍 ∈ 𝐶cl(⟨𝑋1⟩𝑍) there is a way to represent 𝑃𝑍 as a convex combination of the distributions

𝑃𝑍|𝑥1
(because 𝐶cl(⟨𝑋1⟩𝑍) is a convex closure of a finite set of points), the coefficients of

the convex combination are then the probabilities 𝑝(𝑥1).

For example, the problem of finding the maximal channel capacity between two random

variables 𝑋1 and 𝑍, with a given input distrubtion on 𝑋1 and 𝑍 as output, can now be

rephrased as finding the point 𝑃𝑍 in the convex closure 𝐶cl(⟨𝑋1⟩𝑍) that maximizes its

Kullback-Leibler divergence from all extremal points 𝑃𝑍|𝑥1
of the convex closure (weighted

by the respective probabilities 𝑝(𝑥1)), i.e. that maximizes

𝐼(𝑋1; 𝑍) = ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍)) . (6.12)
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𝑃𝑍|(1 ↘ 𝑋2)

𝑃𝑍|(0 ↘ 𝑋2)

𝑃𝑍|𝑥2=0

𝑃𝑍|𝑥2=1

𝑃𝑍|𝑥1=0

𝑃𝑍|𝑥1=1

𝑃𝑍

FIGURE 6.1 Illustration of the construction of projective information for binary input variables. Points represent
thedistributions in the spaceof distributions over the variable𝑍. The lines connectingpoints denote the subspace
of conditional distributions depending on the distribution of 𝑋1 and 𝑋2 respectively.

6.3.2 Projective Information

Information projections can now project the conditionals of one variable onto the convex

closure of the other. I will denote this projection by

𝑃𝑍|(𝑥1 ↘ 𝑋2) := 𝜋𝐶cl(⟨𝑋2⟩u�)(𝑃𝑍|𝑥1
). (6.13)

The projection is not guaranteed to be unique (for uniqueness, the set onto which is

projectedwould need to be log-convex and not convex (Csiszár andMatus, 2003)), however

this does not matter for my purposes as can be seen in the next lemma.

Now, the projected information of 𝑋1 onto 𝑋2 with respect to 𝑍 is defined as

𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) := ∑

𝑧,𝑥1

𝑝(𝑧, 𝑥1) log
𝑝𝑍|(𝑥1 ↘ 𝑋2)(𝑧)

𝑝(𝑧) . (6.14)

The rationale behind this construction is that the projected information quantifies the

amount of information that two variables share with each other, here 𝑋1 and 𝑍, that can
be expressed in terms of the information 𝑋2 shared with 𝑍 (projecting onto 𝑋2). This is

illustrated for binary input variables Figure 6.1.

Lemma 6.1. Projected information 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) is well-defined, finite and non-negative.

Proof. First, note that projected information can be written as the difference of two Kull-

back-Leibler divergences

𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) = ∑

𝑥1

𝑝(𝑥1) [𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍)

− 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2))] . (6.15)
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Therefore, if the projection is not unique, projected information only takes the KL-diver-

gence into account which is the same for all possible solutions of the minimization prob-

lem in (6.7). Now 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2)) ≤ 𝐷KL (𝑃𝑍|𝑥1

∥ 𝑃𝑍) for all 𝑥1 ∈ 𝒳1 because

𝑃𝑍 ∈ 𝐶cl(⟨𝑋2⟩𝑍) and the definition of 𝑃𝑍|(𝑥1 ↘ 𝑋2) as the distance minimizing distribution

to 𝑃𝑍|𝑥1
in 𝐶cl(⟨𝑋2⟩𝑍). Hence 𝐼 𝜋

𝑍 (𝑋1 ↘ 𝑋2) ≥ 0. Furthermore

𝐼(𝑋1; 𝑍) = ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍) < ∞. (6.16)

6.3.3 Definition of Bivariate Redundancy

The (bivariate) redundancy measure is now simply defined as the minimum of both pro-

jected information terms

𝐼red(𝑍; 𝑋1, 𝑋2) := min{𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) , 𝐼 𝜋

𝑍 (𝑋2 ↘ 𝑋1)}. (6.17)

At this point it is possible to take the minimum over both values because the values are

already corrected for the change of the distributions in different directions by projecting

the conditionals. This definition is different to the approach taken by Williams and Beer

(2010), where the minimization does not consider that events in different source variables

may change the distribution of the outcome in different directions in the geometrical space

of distributions. Self-redundancy is now explicitly defined as

𝐼red(𝑍; 𝑋1) := 𝐼red(𝑍; 𝑋1, 𝑋1) = 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋1) (6.18)

to fulfil the redundancy axioms.

6.3.4 The Proposed Measure is a Bivariate Redundancy Measure

To show that this is actually a redundancymeasure, it needs to be shown that it fulfils the four

axioms (weak-symmetry, self-redundancy, monotonicity and identity). Weak-symmetry

is obviously fulfilled, self-redundancy is also very quick to prove:

𝐼red(𝑍; 𝑋1) = 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋1) (6.19)

= ∑
𝑧,𝑥1

𝑝(𝑧, 𝑥1) log
𝑝𝑍|(𝑥1 ↘ 𝑋1)(𝑧)

𝑝(𝑧) (6.20)

= ∑
𝑧,𝑥1

𝑝(𝑧, 𝑥1) log
𝑝(𝑧|𝑥1)
𝑝(𝑧) (6.21)

= 𝐼(𝑍; 𝑋1). (6.22)

The inequality part of the monotonicity axiom is directly given by the following proposi-

tion.

Proposition 6.1. 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼(𝑍; 𝑋1)



Redundant Information

123

Proof. Using the expression of projected information as a difference of Kullback-Leibler

divergences leads to

𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) (6.23)

= ∑
𝑥1

𝑝(𝑥1) [𝐷KL (𝑃𝑍|𝑋1
∥ 𝑃𝑍)

− 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2))] (6.24)

= 𝐼(𝑍; 𝑋1)

− ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑋1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2)) . (6.25)

Hence it follows that 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼(𝑍; 𝑋1) as the KL-divergence is non-negative

(Cover and Thomas, 2006). □

The following is needed to show equality holds if 𝑋2 = (𝑋1, 𝑋3), where 𝑋3 is an arbitrary

finite random variable.

Lemma 6.2. For all 𝑥1 ∈ 𝒳1 and random variables 𝑋2 and 𝑋3,

∑ 𝑝(𝑧|𝑥1) (log 𝑝𝑍|(𝑥1 ↘(𝑋2,𝑋3))(𝑧) − log 𝑝𝑍|(𝑥1 ↘ 𝑋2)(𝑧)) ≥ 0. (6.26)

Proof. Let 𝑥1 ∈ 𝒳1, as𝐶cl(⟨𝑋2⟩𝑍) ⊆ 𝐶cl(⟨(𝑋2, 𝑋3)⟩𝑍) (note that 𝑝(𝑧|𝑥2) = ∑𝑥3
𝑝(𝑥3|𝑥2)𝑝(𝑧|𝑥2, 𝑥3))

it follows due to the definition of the projection that

∑ 𝑝(𝑧|𝑥1) log
𝑝(𝑧|𝑥1)

𝑝𝑍|(𝑥1 ↘(𝑋2,𝑋3))(𝑧) ≤ ∑ 𝑝(𝑧|𝑥1) log
𝑝(𝑧|𝑥1)

𝑝𝑍|(𝑥1 ↘ 𝑋2)(𝑧) (6.27)

⟺ ∑ 𝑝(𝑧|𝑥1) log 𝑝𝑍|(𝑥1 ↘(𝑋2,𝑋3))(𝑧) ≥ ∑ 𝑝(𝑧|𝑥1) log 𝑝𝑍|(𝑥1 ↘ 𝑋2)(𝑧) (6.28)

□

Lemma 6.3. For all (𝑥2, 𝑥3) ∈ 𝒳2 × 𝒳3

∑ 𝑝(𝑧|𝑥2, 𝑥3) (log 𝑝𝑍|((𝑥2,𝑥3) ↘ 𝑋1)(𝑧) − log 𝑝𝑍|(𝑥2 ↘ 𝑋1)(𝑧)) ≥ 0. (6.29)

Proof. Here 𝑅 = 𝑃𝑍|((𝑥2,𝑥3) ↘ 𝑋1) is minimizing 𝐷KL (𝑃𝑍|𝑥2,𝑥3
∥ 𝑅) by definition, therefore

∑ 𝑝(𝑧|𝑥2, 𝑥3) log
𝑝(𝑧|𝑥2, 𝑥3)

𝑝𝑍|((𝑥2,𝑥3) ↘ 𝑋1)(𝑧) ≤ ∑ 𝑝(𝑧|𝑥2, 𝑥3) log
𝑝(𝑧|𝑥2, 𝑥3)

𝑝𝑍|(𝑥2 ↘ 𝑋1)(𝑧)

⟺ ∑ 𝑝(𝑧|𝑥2, 𝑥3) log 𝑝𝑍|((𝑥2,𝑥3) ↘ 𝑋1)(𝑧) ≥ ∑ 𝑝(𝑧|𝑥2, 𝑥3) log 𝑝𝑍|(𝑥2 ↘ 𝑋1)(𝑧)

□

Proposition 6.2. 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼red(𝑍; 𝑋1, (𝑋2, 𝑋3))
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Proof. From Lemma 6.2 it follows directly that 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) ≤ 𝐼 𝜋

𝑍 (𝑋1 ↘ (𝑋2, 𝑋3)), fur-
thermore from Lemma 6.3, 𝐼 𝜋

𝑍 (𝑋2 ↘ 𝑋1) ≤ 𝐼 𝜋
𝑍 ((𝑋2, 𝑋3) ↘ 𝑋1) respectively. Hence the

conclusion 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼red(𝑍; 𝑋1, (𝑋2, 𝑋3)). □

Proposition 6.1 states that 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼(𝑍; 𝑋1) and thus for 𝑋2 = (𝑋1, 𝑋3) also

𝐼red(𝑍; 𝑋1, (𝑋1, 𝑋3)) ≤ 𝐼(𝑍; 𝑋1), the proposition above now also proves that the inequality

in the other direction also holds

𝐼(𝑍; 𝑋1) = 𝐼red(𝑍; 𝑋1) (6.30)

= 𝐼red(𝑍; 𝑋1, 𝑋1) (6.31)

≤ 𝐼red(𝑍; 𝑋1, (𝑋1, 𝑋3)). (6.32)

Hence, the equality case of the monotonicity (M) holds.

Now it is only left to show that the measure also fulfils the new identity property (Id𝟐),

namely

𝐼red((𝑋1, 𝑋2); 𝑋1, 𝑋2) = 𝐼(𝑋1; 𝑋2). (6.33)

To prove the identity property the following technical lemma is needed

Lemma 6.4. If 𝑍 = (𝑋1, 𝑋2) and (𝑥′
1, 𝑥′

2) denotes an event of 𝑍 then 𝑝𝑍|(𝑥′
2 ↘ 𝑋1)(𝑥′

1, 𝑥′
2) =

𝑝𝑍|(𝑥′
1 ↘ 𝑋2)(𝑥′

1, 𝑥′
2) = 𝑝(𝑥′

1|𝑥′
2)𝑝(𝑥′

2|𝑥′
1).

Proof. Let 𝑅 ∈ 𝐶cl(⟨𝑋1⟩𝑍), it is of the form

𝑟(𝑥′
1, 𝑥′

2) = ∑
𝑥

𝛼𝑥𝑝(𝑥′
1, 𝑥′

2|𝑥1) = 𝛼𝑥′
1
𝑝(𝑥′

2|𝑥′
1), (6.34)

where 𝛼𝑥 ≥ 0 and ∑ 𝛼𝑥 = 1. This means that any distribution of 𝑋1 is embedded in

(𝑋1, 𝑋2) by scaling with the conditional distribution 𝑃𝑋2|𝑋1
, which is nothing else than

basic probability calculus with 𝛼𝑥′
1

= 𝑝(𝑥′
1) representing the embedded distribution. Now

let

𝐿𝑥2
(𝛼𝑥′

1
) := 𝐷KL (𝑃𝑍|𝑥2

∥ 𝑅) (6.35)

= ∑
𝑥′

1,𝑥′
2

𝑝(𝑥′
1, 𝑥′

2|𝑥2) log
𝑝(𝑥′

1, 𝑥′
2|𝑥2)

𝛼𝑥′
1
𝑝(𝑥′2|𝑥′

1) (6.36)

= ∑
𝑥′

1

𝑝(𝑥′
1|𝑥2) log

𝑝(𝑥′
1|𝑥2)

𝛼𝑥′
1
𝑝(𝑥2|𝑥′

1) . (6.37)

In Eq. (6.36) the definition of the KL-divergence is used and 𝑟 is replaced with its form

from Eq. (6.34). The next step takes into account that 𝑝(𝑥′
1, 𝑥′

2|𝑥2) = 0 if 𝑥′
2 ≠ 𝑥2, and

thus it is possible to replace 𝑥′
2 by 𝑥2 throughout the term. A simple, but tedious, and

therefore here omitted calculation shows now that the point at 𝛼𝑥′
1

= 𝑝(𝑥′
1|𝑥2) fulfils the

optimality conditions of Karush-Kuhn-Tucker (KKT) (Kuhn and Tucker, 1951) for the
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minimization of 𝐿𝑥2
(𝛼𝑥′

1
) with the simplex constraint of 𝛼𝑥′

1
. The KL-divergence is convex

in the second parameter (Cover and Thomas, 2006) and thus it follows from the KKT

conditions (Boyd and Vandenberghe, 2004) that 𝛼𝑥′
1

= 𝑝(𝑥′
1|𝑥2) is a global solution for

the constrained minimization of 𝐿(𝛼𝑥′
1
) and in turn, the constrained minimization of the

KL-divergence 𝐷KL (𝑝(𝑍|𝑥2) ∥ 𝑟) gives 𝑟(𝑥′
1, 𝑥′

2) = 𝑝(𝑥′
1|𝑥2)𝑝(𝑥′

2|𝑥′
1).

Now for the proof of the lemma, the projected distribution 𝑃𝑋 ′
1,𝑋 ′

2|(𝑥′
2 ↘ 𝑋1), which is evalu-

ated at (𝑥′
1, 𝑥′

2) is not using an arbitrary 𝑃𝑍|𝑥2
as it was done so far in this proof, but specific-

ally 𝑃𝑍|𝑥′
2
. Therefore it is possible to set 𝑥2 = 𝑥′

2, so that 𝑟(𝑥′
1, 𝑥′

2) = 𝑝(𝑥′
1|𝑥′

2)𝑝(𝑥′
2|𝑥′

1) and
it follows that 𝑝𝑍|(𝑥′

2 ↘ 𝑋1)(𝑥′
1, 𝑥′

2) = 𝑝(𝑥′
1|𝑥′

2)𝑝(𝑥′
2|𝑥′

1). The converse 𝑝𝑍|(𝑥′
1 ↘ 𝑋2)(𝑥′

1, 𝑥′
2) =

𝑝(𝑥′
1|𝑥′

2)𝑝(𝑥′
2|𝑥′

1) is shown analogously. □

Hence the proof of Lemma 6.4 concludes with the following proposition:

Proposition 6.3. 𝐼𝜋
𝑋1,𝑋2

(𝑋1 ↘ 𝑋2) = 𝐼𝜋
𝑋1,𝑋2

(𝑋2 ↘ 𝑋1) = 𝐼(𝑋1; 𝑋2)

Proof. Without loss of generality,

𝐼𝜋
𝑋1,𝑋2

(𝑋1 ↘ 𝑋2) (6.38)

= ∑
𝑥′

1,𝑥′
2,𝑥1

𝑝(𝑥′
1, 𝑥′

2, 𝑥1) log
𝑝𝑋1,𝑋2|(𝑥 ↘ 𝑋2)(𝑥′

1, 𝑥′
2)

𝑝(𝑥′
1, 𝑥′2) (6.39)

= 𝐻(𝑋1, 𝑋2) + ∑
𝑥′

1,𝑥′
2

𝑝(𝑥′
1, 𝑥′

2) log 𝑝𝑋1,𝑋2|(𝑥′
1 ↘ 𝑋2)(𝑥′

1, 𝑥′
2) (6.40)

= 𝐻(𝑋1, 𝑋2) + ∑
𝑥1,𝑥2

𝑝(𝑥1, 𝑥2) log[𝑝(𝑥1|𝑥2)𝑝(𝑥2|𝑥1)] (6.41)

= 𝐻(𝑋1, 𝑋2) − 𝐻(𝑋1|𝑋2) − 𝐻(𝑋2|𝑋1) (6.42)

= 𝐼(𝑋1; 𝑋2). (6.43)

□

Thus 𝐼red is a good candidate for measuring redundancy (in terms of bivariate redundancy

with respect to some target variable).

6.4 PARTIAL INFORMATION DECOMPOSITION

So far, I only considered redundant information, especially in its bivariate version. How-

ever, there is the broader framework of partial information decomposition introduced by

Williams and Beer (2010) within which redundancy plays a key role. The motivation for

the partial information decomposition of multivariate mutual information (in the form of

𝐼(𝑍; 𝑋1, ..., 𝑋𝑛)) is a better insight into its structure and the informational contributions

of the input variables 𝑋1,...,𝑋𝑛 to the outcome of 𝑍. This also includes a measure for a

complementary concept of redundancy called synergy, which denotes information that is

only available if the outcome of several input variables is known. One of the important
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property of the decomposition given a compliant redundancy measure is the non-negat-

ivity of all its terms. I will now introduce the partial information (PI) decomposition for

multivariate mutual information (Williams and Beer, 2010) in further detail and, after a

short excursion into multivariate terrain, show that, for the bivariate case, the proposed

measure of redundant information also leads to a positive decomposition.

6.4.1 The Structure of Mutual Information

Let 𝐼∩ denote an arbitary redundancy measure fullfilling the axioms from Section 6.2.3.

This redundancy measure 𝐼∩ is is now used to construct partial information atoms (PI-atoms)

which measure the contributions of sets of random variables to a multivariate mutual

information term. For simplicity I present the bivariate case first: From the axioms it is

clear, that the redundancy 𝐼∩(𝑍; 𝑋1, 𝑋2) is less than (or equal to) the mutual information

𝐼(𝑍; 𝑋1, 𝑋2). Or put simply, the redundant information about 𝑍 in each variable is less than

(or equal) the overall information 𝑋1 and 𝑋2 contain about 𝑍. The redundant information is

also less than the information each individual variable contains about 𝑍, i.e. 𝐼∩(𝑍; 𝑋1, 𝑋2) ≤
𝐼(𝑍; 𝑋) and 𝐼∩(𝑍; 𝑋1, 𝑋2) ≤ 𝐼(𝑍; 𝑋2). Using these quantities it is possible to capture three

further quantities: The unique information of 𝑋1 (and 𝑋2 respectively) which denotes the

information about𝑍 that is exclusively contained in𝑋1, and not shared redundantly with𝑋2.

Finally, there is synergistic information which denotes all information that 𝑋1 and 𝑋2 contain

about 𝑍, but which is neither available individually in 𝑋1 nor 𝑋2. The classical example for

this case is a XOR-gate, where knowing the state of one of the inputs does not give any more

certainty about the state of the output, whereas knowing both inputs determines the output

state without uncertainty. The decomposition of the mutual information 𝐼(𝑍; 𝑋1, 𝑋2) into
redundant, unique and synergistic information is illustrated in Figure 6.2

Given more random variables, this concept can be extended to decompose mutual inform-

ation terms of the form

𝐼(𝑍; 𝑋1, ..., 𝑋𝑛), (6.44)

and it is possible to ask what the redundant and synergistic contributions between any

subsets of source random variables 𝑋1,...,𝑋𝑛 are. As in Section 6.2.1 the set of all source

random variables is denoted by 𝑋𝐕 = {𝑋1, ..., 𝑋𝑛} where 𝐕 is the index set. The redund-

ancy measure 𝐼∩ can now be used to quantify the redundant information between several

random variables. Specificly the redundancy between joint variables of index subsets of 𝐕
is considered. For example if 𝐕 = {1, 2, 3, 4, 5}, 𝐀 = {1, 2, 3}, 𝐁 = {1, 4} and 𝐂 = {5} then
the term

𝐼∩(𝑍; 𝐀, 𝐁, 𝐂) (6.45)

denotes the redundancy with respect to 𝑍 between the three random variables (𝑋1, 𝑋2, 𝑋3),
(𝑋1, 𝑋4) and (𝑋5). To shorten notation I will follow the notation of Williams and Beer

(2010) and drop the commata
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Red(𝑍;𝑋1,𝑋2)

Syn(𝑍;𝑋1,𝑋2)

Unq𝑋(𝑍;𝑋1,𝑋2) Unq𝑌(𝑍;𝑋1,𝑋2)

FIGURE 6.2 Illustration of the Partial Information Decomposition into redundant, unique and synergistic terms.

𝐼∩(𝑍; {123}{14}{5}) (6.46)

to denote 𝐼∩(𝑍; {1, 2, 3}, {1, 4}, {5}) and 𝐼∩(𝑍; 𝐀, 𝐁, 𝐂) respectively.

6.4.1.1 Anti-Chains and The Redundancy Lattice

Now, the idea is to look at all possible redundancies between sets of source variables.

Here the monotonicity axiom (M) comes in handy, as it constrains the possibilities that

need to be considered to all sets of sets of source random variables where no two sets of

variables share a sub-/superset relation. For example, by the monotonicity axiom, the term

𝐼∩(𝑍; {123}{12}{4}) is equal to 𝐼∩(𝑍; {12}{4}) because {12} is a subset of {123}. Formally,

all these sets are determined as follows

𝒜(𝐕) = {𝛼 ∈ 𝒫1(𝒫1(𝐕))|∀𝐀𝑖, 𝐀𝑗 ∈ 𝛼, 𝐀𝑖 ⊈ 𝐀𝑗}, (6.47)

where 𝒫1(𝐕) denotes the power set of 𝐕 without the empty set. Now it is possible to

define a partial order on the set 𝒜(𝐕) which reflects the structure of redundant information

of the corresponding variables. A partially ordered set is a set with a relation that satisfies
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reflexivity (each element is less than or equal to itself), antisymmetry (if an element is less

than or equal to another and the converse is also true, then it follows that both are equal)

and transitivity. The partial order ≼ on 𝒜(𝐕) is defined by the following relation

∀𝛼, 𝛽 ∈ 𝒜(𝐕) : (𝛼 ≼ 𝛽 ⟺ ∀𝐁 ∈ 𝛽 ∃𝐀 ∈ 𝛼 : 𝐀 ⊆ 𝐁). (6.48)

The set 𝒜(𝐕) is also called an anti-chain or Sperner family on a set of |𝐕| = 𝑛 elements

(Frank, 1980). The set 𝒜(𝐕) together with the partial order ≼ forms a lattice, which means

that for any two elements of 𝒜(𝐕) there is a unique least upper bound and a unique greatest
lower bound in 𝒜(𝐕) (Frank, 1980). Furthermore, any finite lattice is bounded, meaning

there is an element that is less than every other element (bottom, ⊥) and an element that

is greater than every other element (top, ⊤). In the case of 𝒜(𝐕) these are the the two

sets ⊥ = {1}{2}...{𝑛} and ⊤ = {12...𝑛}. Returning to the redundancy measure the lattice

gathers further meaning: the measure 𝐼∩ is monotonic with respect to the partial order,

i.e. for any two elements 𝛼, 𝛽 ∈ 𝒜(𝐕) where 𝛼 ≼ 𝛽 it follows that 𝐼∩(𝑍; 𝛼) ≤ 𝐼∩(𝑍; 𝛽).
This follows directly from the axioms for a measure of redundant information. As pointed

out by Williams and Beer (2010) the lattice, also called redundancy lattice, already gives

some insight into the structure of redundant information. The top element for example

corresponds to the self-redundancy of 𝐼(𝑍; 𝑋𝐕) and is thus an upper bound for 𝐼∩. The

lattices for the cases 𝑛 = 2 and 𝑛 = 3 are illustrated in Figure 6.3.

6.4.1.2 Partial Information Atoms

Starting from the bottom element of the redundancy lattice, which represents the amount

of redundant information about 𝑍 that is contained in all individual variables 𝑋𝑖, going

toward the top element, the associated amount of redundant information increases. It is now

possible to ask the question what is the information that is contained redundantly in {2} (i.e.
the self-redundancy) but not redundantly in {1}{2}. This would be the aforementioned

unique information of𝑋2. However, it is also possible to ask for the information redundantly

contained in {1}{23} but not redundantly in {1}{2} or {1}{3}. These quantities are called
partial information atoms, they are denoted by Π∩

𝐕(𝑍; 𝛽) where 𝛽 ∈ 𝒜(𝐕). The definition
depends on the underlying redundancy measure and is implicitly given by

𝐼∩(𝑍; 𝛼) = ∑
𝛽≼𝛼

Π∩
𝐕(𝑍; 𝛽). (6.49)

Recursively the partial information atoms are now defined as

Π∩
𝐕(𝑍; 𝛼) = 𝐼∩(𝑍; 𝛼) − ∑

𝛽≺𝛼
Π∩

𝐕(𝑍; 𝛽). (6.50)

In the bivariate case, this leads to the decomposition of mutual information 𝐼(𝑍; 𝑋1, 𝑋2)
into four partial information atoms. Here the index contains only two elements, 𝐕 = {1, 2}.
Still following Williams and Beer (2010) the atomic terms are,
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{12}

{1} {2}

{1}{2}

{123}

{13}{12} {23}

{12}{13} {12}{23} {13}{23}

{1} {2} {3} {12}{13}{23}

{1}{23} {2}{13} {3}{12}

{1}{2} {1}{3} {2}{3}

{1}{2}{3}

a) Redundancy
lattice for |𝑉| = 2

b) Redundancy lattice for |𝑉| = 3

FIGURE 6.3 Redundancy lattices for different sizes of index sets. Vertices represent elements of𝒜(𝐕), edges are
connected if an element is ``smaller’’ with respect to the partial order ≼ and there is no other element in 𝒜(𝐕)
that is smaller than the larger and larger than the smaller element.

• Π∩
𝐕(𝑍; {1}{2}) = 𝐼∩(𝑍; 𝑋1, 𝑋2) which is the redundant information contained in 𝑋1

and 𝑋2 about 𝑍,

• the unique information about 𝑍 which is only contained in 𝑋1 or 𝑋2 respectively,

denoted as Π∩
𝐕(𝑍; {1}) = 𝐼(𝑍; 𝑋1) − 𝐼∩(𝑍; 𝑋1, 𝑋2) and Π∩

𝐕(𝑍; {2}) = 𝐼(𝑍; 𝑋2) −
𝐼∩(𝑍; 𝑋1, 𝑋2).

• and Π∩
𝐕(𝑍; {1, 2}) = 𝐼(𝑍; 𝑋2, 𝑋2) − 𝐼(𝑍; 𝑋1) − 𝐼(𝑍; 𝑋2) + 𝐼∩(𝑍; 𝑋1, 𝑋2), synergistic

information, the information about 𝑍 that is only available if 𝑋1 and 𝑋2 are both

known.

The sum of these terms is exactly the mutual information between 𝑍 and all sources, i.e.

𝐼(𝑍; 𝑋1, 𝑋2) = Π∩
𝐕(𝑍; {1}{2}) + Π∩

𝐕(𝑍; {1})

+ Π∩
𝐕(𝑍; {2}) + Π∩

𝐕(𝑍; {1, 2}). (6.51)

as well as

𝐼(𝑍; 𝑋1) = Π∩
𝐕(𝑍; {1}{2}) + Π∩

𝐕(𝑍; {1}) (6.52)
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and for 𝑋2 respectively.

This decomposition allows a deep insight into the structure of multivariate information,

however the decomposition is not necessarily non-negative for an arbitrary measure of

redundancy. The decomposition has been introduced specifically to avoid the problems

with interaction information. Therefore, I subscribe to the requirement that the redundancy

measure should support a non-negative decomposition and negative partial information

atoms should be avoided at all costs. In (Bertschinger et al., 2012) this is introduced as an

additional axiom or property:

Local Non-negativity (LN) Π∩
𝐕 ≥ 0

For 𝐼min the non-negativity of the corresponding PI-atom decomposition had been shown

by Williams and Beer (2010) and was later discussed in greater detail by Williams (2011).

Furthermore, they also introduce a closed form for the calculation of the partial information

atoms based on 𝐼min. I will now continue to show that in the bivariate case the decomposi-

tion of the earlier introduced measure 𝐼red also leads to a non-negative decomposition.

6.4.2 Bivariate Decomposition Using Redundancy

To show the non-negativity of the bivariate partial information decomposition using 𝐼red

the reader needs to be reminded that 𝐼red(𝑍; 𝑋1, 𝑋2) is non-negative, as shown earlier. Fur-

thermore, it follows from the self-redundancy and monotonicity axioms of the redundancy

measure that 𝐼red(𝑍; 𝑋1, 𝑋2) ≤ 𝐼(𝑍; 𝑋1) and with the same argument 𝐼red(𝑍; 𝑋1, 𝑋2) ≤
𝐼(𝑍; 𝑋2) which immediately implies that the unique information terms are non-negative.

The following lemma now gives the non-negativity of the synergistic term:

Lemma 6.5. 𝐼(𝑍; 𝑋1, 𝑋2) − 𝐼(𝑍; 𝑋1) − 𝐼(𝑍; 𝑋2) + 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) ≥ 0.

Proof. It is possible to reformulate the left hand side

𝐼(𝑍; 𝑋1, 𝑋2) − 𝐼(𝑍; 𝑋1) − 𝐼(𝑍; 𝑋2) + 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) (6.53)

= 𝐼(𝑍; 𝑋1, 𝑋2) − 𝐼(𝑍; 𝑋2)

− ∑
𝑥

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥 ↘ 𝑋2)) (6.54)

= ∑
𝑥1,𝑥2,𝑧

𝑝(𝑧, 𝑥1, 𝑥2) log
𝑝(𝑧|𝑥1, 𝑥2)

𝑝(𝑧)

− ∑
𝑥1

∑
𝑥2,𝑧

𝑝(𝑥1|𝑧, 𝑥2)𝑝(𝑧, 𝑥2) log
𝑝(𝑧|𝑥2)
𝑝(𝑧)

− ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥 ↘ 𝑋2)) (6.55)

= ∑
𝑥1,𝑥2

𝑝(𝑥1, 𝑥2) ∑
𝑧

𝑝(𝑧|𝑥1, 𝑥2) log
𝑝(𝑧|𝑥1, 𝑥2)

𝑝(𝑧)
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− ∑
𝑥1,𝑥2

𝑝(𝑥1, 𝑥2) ∑
𝑧

𝑝(𝑧|𝑥1, 𝑥2) log
𝑝(𝑧|𝑥2)
𝑝(𝑧)

− ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥 ↘ 𝑋2)) (6.56)

= ∑
𝑥1,𝑥2

𝑝(𝑥1, 𝑥2)𝐷KL (𝑃𝑍|𝑥1,𝑥2
∥ 𝑃𝑍|𝑥2

)

− ∑
𝑥1

𝑝(𝑥1)𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥 ↘ 𝑋2)) (6.57)

= ∑
𝑥1

𝑝(𝑥1) ⎛⎜
⎝

⎛⎜
⎝

∑
𝑥2

𝑝(𝑥2|𝑥1)𝐷KL (𝑃𝑍|𝑥1,𝑥2
∥ 𝑃𝑍|𝑥2

)⎞⎟
⎠

− 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2))⎞⎟

⎠
(6.58)

and now by the convexity of the Kullback-Leibler divergence:

≥ ∑
𝑥1

𝑝(𝑥1) ⎛⎜
⎝

𝐷KL ⎛⎜
⎝

∑
𝑥2

𝑝(𝑥2|𝑥1)𝑃𝑍|𝑥1,𝑥2

∥∥∥∥
∑
𝑥2

𝑝(𝑥2|𝑥1)𝑃𝑍|𝑥2
⎞⎟
⎠

− 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2))⎞⎟

⎠
(6.59)

= ∑
𝑥1

𝑝(𝑥1) (𝐷KL (𝑃𝑍|𝑥1
∥ 𝑅𝑍|𝑥1

) − 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2))) (6.60)

where 𝑅𝑍|𝑥1
:= ∑𝑥2

𝑝(𝑥2|𝑥1)𝑃𝑍|𝑥2
∈ 𝐶cl(⟨𝑋2⟩𝑍) and thus for all 𝑥1 ∈ 𝒳1

𝐷KL (𝑃𝑍|𝑥1
∥ 𝑅𝑍|𝑥1

) − 𝐷KL (𝑃𝑍|𝑥1
∥ 𝑃𝑍|(𝑥1 ↘ 𝑋2)) ≥ 0. (6.61)

□

Thus the introduced measure can be used to decompose mutual information in a consistent

manner.

6.4.3 Examples

I will now present examples of the partial information decomposition using 𝐼red in the

bivariate case. These examples will also serve as comparisons in the next section.

6.4.3.1 Copying - From Redundancy to Uniqueness

The first example is a very simple mechanism which simply copies the binary input vari-

ables 𝑋1 and 𝑋2 into 𝑍, i.e. 𝑍 = (𝑋1, 𝑋2). However, I also add a control parameter

𝜆 ∈ [0, 1] which determines how correlated 𝑋1 and 𝑋2 are. This is done as follows:

Let 𝑊 be a uniformly distributed binary random variable, 𝑝(𝑥1|𝑤) = 1
2𝜆 + (1 − 𝜆)𝛿𝑥1𝑤 and

𝑝(𝑥2|𝑤) = 1
2𝜆 + (1 − 𝜆)𝛿𝑥2𝑤. The underlying model is the Bayesian network as depicted

in Figure 6.4a. For 𝜆 = 1, 𝑋1 and 𝑋2 are independent, as the Bayesian network describes
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𝑋1

𝑊

𝑋2

𝑍

𝜆

𝜆
1 (Red)

0 (Syn)

0 (Unq) 0 (Unq)

0 (Red)

0 (Syn)

1 (Unq) 1 (Unq)

a) Bayesian model b) PI-diagram for 𝜆 = 0 (RDN) c) PI-diagram for 𝜆 = 1 (UNQ)

FIGURE 6.4 Copy Example. Complete redundancy and complete uniqueness using 𝐼red.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

𝜆

bi
ts

𝐼(𝑍; 𝑋1, 𝑋2) 𝐼min(𝑍; 𝑋1, 𝑋2) 𝐼red(𝑍; 𝑋1, 𝑋2)

FIGURE 6.5 Comparison of total mutual information 𝐼(𝑍; 𝑋1, 𝑋2) (dotted gray line), the new redundancy meas-
ure 𝐼red (solid line) and 𝐼min (dashed line) for varying values of𝜆, where𝜆 controls the correllation between𝑋1 and
𝑋2. It can be seen 𝐼min measures a constant amount of redundancy and therefore does not distinguish between
redundancy and uniqueness with varying 𝜆 as desired, whereas 𝐼red does.

the complete model, recovering the example ‘UNQ (Unique Information)’ as introduced

by Griffith (2011). At the other extreme, where 𝜆 = 0, 𝑋1 and 𝑋2 are identical copies

of 𝑊 and therefore 𝑍 is equivalent to 𝑊 from an information-theoretic point of view.

This is also reflected in the decomposition as in this case 𝐼(𝑍; 𝑋1, 𝑋2) = 𝐼(𝑊; 𝑋1, 𝑋2)
and 𝐼red(𝑍; 𝑋1, 𝑋2) = 𝐼red(𝑊; 𝑋1, 𝑋2). This is the example ‘RDN (Redundant Information)’

from (Griffith, 2011). By varying 𝜆 the entropy of the outcome 𝑍 is varied and at the

same time unique information is exchanged for redundancy. Figure 6.4bc illustrates the

decomposition at both extremal values of 𝜆 and it can be seen that the resulting values

of 𝐼red coincide with the proposed values in (Griffith, 2011). The effect of changing 𝜆 is

shown in Figure 6.5.
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0 (Red)

1 (Syn)

0 (Unq) 0 (Unq)

𝑋1

XOR 𝑍

𝑋2

a) PI-diagram b) circuit diagram

FIGURE 6.6 XOR Example. A purely synergistic mechanism.

6.4.3.2 XOR

The XOR gate (⊕), is a classical example for the appearance of synergy, in the sense of the

whole being more than the sum of the individuals. Thus it is expected to only observe

synergistic information, as the result is only known if both inputs are available, and the

uncertainty given one input is the same as knowing no input at all. Here, the inputs

are uniformly distributed independent binary random variables 𝑋, 𝑌 and the output is

𝑍 = 𝑋 ⊕ 𝑌 . In fact, in this case 𝐼red(𝑍; 𝑋, 𝑌) = 𝐼min(𝑍; 𝑋, 𝑌) = 0 resulting in the purely

synergistic decomposition as illustrated in Figure 6.6. The redundancy measure vanishes

here because 𝑃𝑍 = 𝑃𝑍|𝑥 = 𝑃𝑍|(𝑥 ↘ 𝑌), as well as 𝑃𝑍 = 𝑃𝑍|𝑦 = 𝑃𝑍|(𝑦 ↘ 𝑋), i.e. the information

about the outcome of 𝑍 is zero even if one input is known. This would change if correlation

between 𝑋 and 𝑌 is introduced. Note that 𝐼red defines the redundancy, other terms are all

derived by the decomposition.

6.4.3.3 AND - Mechanisms at Work

The next example is the AND gate, 𝑍 = 𝑋1 ∧ 𝑋2. This turns out to be an interesting case,

because it demonstrates the subtle difference between redundant information that is due to

the ‘ignorance’ of the mechanism with respect to the source, and redundancy that is already

apparent in the sources. In (Griffith, 2011 and Griffith and Koch, 2012) it is argued that

vanishing mutual information between the sources 𝑋1 and 𝑋2 themselves implies vanishing

redundant information1. This feature is also shared by the synergy measure introduced

in (Griffith and Koch, 2012). However, here I would like to embrace a different view on

redundant information: even if the sources are independent, there can be a correlation

in the change of the distribution over 𝑍 given observations in 𝑋1 and 𝑋2 respectively.

Observing one input does not give any information about the other input, but part of the

information gain about the distribution of the output can be the same as one gets from the

other input alone. In particular in the case of the AND gate, observing a 0 in either input

1 “However, because 𝑋1 and 𝑋2 are independent, [...], thus necessitating there is zero redundant information
[...].”,(Griffith, 2011)
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0.3111 (Red)

0.5 (Syn)

0 (Unq) 0 (Unq)

𝑋1

AND 𝑍

𝑋2

a) PI-diagram b) circuit diagram

FIGURE 6.7 AND Example. The total mutual information is 𝐼(𝑍; 𝑋1, 𝑋2) = 0.811278.

leads to 𝑝(𝑧 = 0) = 1. As a result of calculating the redundancy for this example one obtains

𝐼red(𝑍; 𝑋1, 𝑋2) = 𝐼min(𝑍; 𝑋1, 𝑋2) = 0.311278. Figure 6.7 illustrates the decomposition of

the total mutual information for this example.

I will denote redundant information that is only due to the mechanism, as it is the case

with the redundancy in the AND gate, mechanistic redundancy. Contrary to this I will call

redundant information that already appears in the inputs source redundancy. Redundancy in

the source must already manifest itself in the mutual information between the inputs. At

this point I do not give a rigorous definition for these terms, as it can be seen in the next

example, there are cases where it is not clear how to separate both. However, if there is

positive redundant information 𝐼red > 0 but vanishing mutual information between the

sources, all redundant information can be attributed to mechanistic redundancy.

6.4.3.4 Summing Dice

Consider an example where two dice are thrown (cubic dice, with numbered sides from 0

to 5), represented by the random variables 𝐷1, 𝐷2. The results are summed and the dice

𝐷1 and 𝐷2 are uniformly distributed and independent. There are several ways to sum

the results: simply add the two results — this would lead to results ranging from 0 to 10

where 5 is the most probable result and 0 or 10 the least probable result — or multiply the

result of the first die by 6 to get a uniform distribution of all numbers ranging from 0

to 35. Indeed, I will look at all intermediate summations here, defined by 𝑅 = 𝛼𝐷1 + 𝐷2

where 𝛼 ∈ {1, 2, 3, 4, 5, 6}. The hypothesis motivating this example was that for the direct

summation (𝛼 = 1) there is a positive amount of redundancy between 𝐷1 and 𝐷2 with

respect to 𝑅, because knowing the roll of one die gives ‘overlapping’ information (in the

same direction within the space of distributions) with the roll of the other die about the

final result. The redundancy should then decrease if 𝛼 is increased, up to the point where
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𝛼 = 6 and the sum of both dice rolls is isomorphic to the joint variable of the two dice rolls,

i.e. 6𝐷1 + 𝐷2 ≃ (𝐷1, 𝐷2). Indeed, this is reflected in the redundancy 𝐼red(𝑅; 𝐷1, 𝐷2). In
Figure 6.8 an additional parameter 𝜆 was added, that controls how correlated the two dice

are, in the same way as 𝜆 was introduced in the copy example in Section 6.4.3.1 to control

the correlation between the input variables. For 𝜆 = 1 they are independent and it can be

seen that the redundancy increases with decreasing 𝛼, on the other extreme 𝜆 = 0 the dice

are completely correlated. In this case the redundancy that is already existent in the source

(𝐼(𝐷1, 𝐷2) ≈ 2.58) shadows all redundancy otherwise induced through the mechanism and

hence there is no difference in the redundancy value for different values of 𝛼.

6.5 COMPARISONS

After the construction and presentation of the proposed measure of redundant information,

I will now continue by comparing it to the measures introduced earlier on (see Section 6.2)

starting with the measure of minimal information 𝐼min. The reader is reminded that the

construction above only covers the bivariate case and therefore the comparison also is

mainly focused on the bivariate case. An outlook towards a generalization of the ideas used

for the construction of the bivariate measure follows in Section 6.8.

6.5.1 Relation to Minimal Information

The development of the redundancy measure 𝐼red was motivated by the shortcomings of

𝐼min outlined earlier in the chapter. However, the construction still tries to capture the

same idea of redundancy and thus it is no surprise that there are some cases where 𝐼red

and 𝐼min coincide. In general there is a tendency of 𝐼min to overestimate redundancy and it

seems that 𝐼min is an upper bound for 𝐼red in most cases. There are a few exceptions, but
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FIGURE 6.8 Plot of the redundant information 𝐼red(𝑅; 𝐷1, 𝐷2) depending on the correlation 𝜆 between the two
dice 𝐷1 and 𝐷2. From top to bottom the summation coefficient is 𝛼 = 1, ..., 6. It can be seen that for independent
dice 𝜆 = 1 the amount of redundancy depends on themechanism that is used to sum the results, whereas on the
other extreme, all redundancy comes from the correlation of the sources.
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FIGURE 6.9 Comparison of 𝐼min and 𝐼red for randomly drawn distributions 𝑝(𝑥, 𝑦, 𝑧) with |𝒳| = |𝒴| = 3 fixed
sized sets, plotted for different sizes of 𝒵 . The change of |𝒵| also changes the dimension of the simplex where the
distributions 𝑃𝑍 are contained in. Note that as the dimension of 𝒵 goes up, 𝐼min gets larger in comparison to 𝐼red.
The distributionswere drawnusing a uniformdistribution on a random subsimplex ofΔ(𝑋, 𝑌, 𝑍). The subsimplex
was selected in each draw randomly with the probability of 𝑝(𝑥, 𝑦, 𝑧) = 0 being 0.5 for each triple (𝑥, 𝑦, 𝑧).
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they are due to numerical instabilities. The overestimation of redundancy by 𝐼min becomes

predominant if the dimension of 𝑍 is increased (see Figure 6.9). The explanation for this is

that, the higher the dimension of the space gets, the larger the error becomes which results

from not taking directionality into account.

6.5.2 Axioms Revisited

In Section 6.2.5 additional desired properties of redundancy measures were introduced.

Together all properties (or axioms) are

Weak Symmetry (S𝟎) 𝐼∩ is symmetric with respect to permutations the 𝐴𝑖’s.

Self-Redundancy (I) 𝐼∩(𝑍; 𝐴) = 𝐼(𝑍; 𝑋𝐴).

Monotonicity (M) 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) ≤ 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1)
with equality if 𝐴𝑘−1 ⊆ 𝐴𝑘.

Non-negativity (N) 𝐼∩ ≥ 0

Identity (Id𝟐) 𝐼∩ ((𝑋𝐴1
, 𝑋𝐴2

); 𝐴1, 𝐴2) = 𝐼(𝑋𝐴1
; 𝑋𝐴2

)

Strong Symmetry (S𝟏) 𝐼∩ is symmetric with respect to permutations of 𝑍 and

the 𝐴𝑖’s.

Left Monotonicity (LM) 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) ≤ 𝐼∩(𝑍, 𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘).

Left Chain Rule (LC) 𝐼∩(𝑍, 𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘) = 𝐼∩(𝑍; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘)
+ 𝐼∩(𝑍′; 𝐴1, ..., 𝐴𝑘−1, 𝐴𝑘 |𝑍).

Local Non-negativity (LN) Π∩
𝐕 ≥ 0

Some of these properties are implying each other. For example left monotonicity (LM)

follows from the left chain rule (LC) and identity (Id𝟐) from the left chain rule (LC) and

local non-negativity (LN). Furthermore there is the following theorem:

Theorem 6.1. (Bertschinger, Rauch, Olbrich and Jost) There is no measure of shared

information [redundant information] that satisfies (S𝟏), (M), (I) and (LN).

This is a quite interesting result as it shows that strong symmetry (S𝟏) is incompatible

with the features that the PI-decomposition using 𝐼min and 𝐼red offers. Strong symmetry is

also conflicting with the mechanistic perspective established above, i.e. redundancy that

is induced by the ignorance of the mechanism from which source information is coming,

which is clearly not symmetric under a permutation of 𝐴𝑖 with 𝑍. However, a strongly

symmetric measure could provide what is needed to quantify source redundant information,

i.e. information about 𝑍 that is redundantly available in all sources (and not by means of
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any mechanism). Consequently, this also means that the measure of redundant information

derived from synergistic mutual information as introduced by Griffith and Koch (2012)

cannot be used for a PI-decomposition as laid out by Williams and Beer (2010), because it

fulfils (S𝟏), (M) and (I) .

6.5.3 Measures of Shared Information

In Section 6.2.5 I postponed the definition of the two measures of shared information

introduced in (Bertschinger et al., 2012). I will now give the definitions of these meas-

ures. Both measure depend on a family of probability distributions on 𝑍, denoted by

{𝑃𝑥u�1
|....|𝑥u�u�

}𝑥u�1
,...,𝑥u�u�

and defined as

𝑃𝑥u�1
|....|𝑥u�u�

= arg min {𝐷KL ⎛⎜
⎝

∑
𝑖

𝜆𝑖𝑃𝑍|𝑥u�u�

∥∥∥∥
𝑃𝑍⎞⎟

⎠
∣∣∣∣
𝜆𝑖 > 0, ∑

𝑖
𝜆𝑖 = 1} . (6.62)

Geometrically speaking, for each event in the source variables 𝑋𝐴1
, ..., 𝑋𝐴u�

, 𝑃𝑥u�1
|....|𝑥u�u�

is the

closest distribution to 𝑃𝑍 in the convex closure of {𝑃𝑍|𝑥u�1
, ..., 𝑃𝑍|𝑥u�u�

} and the construction

is almost dual to the construction of the projections 𝑃𝑍|(𝑥1 ↘ 𝑋2) in the bivariate case. The

idea is to capture the least informative distribution about 𝑍 for every possible outcome of

the input variables. Now the two measure are defined as follows:

𝐼slg(𝑍; 𝐴1, ..., 𝐴𝑘) := ∑
𝑥u�1

,...,𝑥u�u�
,𝑧

𝑝(𝑧, 𝑥𝐴1
, ..., 𝑥𝐴u�

) log
𝑝𝑥u�1

|....|𝑥u�u�
(𝑧)

𝑝(𝑧) , (6.63)

𝐼skl(𝑍; 𝐴1, ..., 𝐴𝑘) := ∑
𝑥u�1

,...,𝑥u�u�

𝑝(𝑥𝐴1
, ..., 𝑥𝐴u�

)𝐷KL (𝑃𝑥u�1
|....|𝑥u�u�

∥ 𝑃𝑍) . (6.64)

However, both measures have shortcomings, 𝐼slg violates monotonicity and 𝐼skl can lead to

negative synergy in the PI-decomposition. Therefore, they cannot be used for a PI-decom-

position.

6.5.4 Left Monotonicity

That 𝐼red violates strong symmetry is conceptually justified as explained above (and in

greater detail in the next section). But 𝐼red also violates left monotonicity (LM). This is

problematic because left monotonicity appears to be a very desirable property: Extending

the output variable (e.g. 𝑍 becomes 𝑍, 𝑍′ where the marginal distribution on 𝑍 stays fixed)

should not decrease the amount of redundancy as the original output is changed in no

way. The example below shows a calculation where the extension of 𝑍 to 𝑍, 𝑍′ reduces
the redundancy between the input variables 𝑋1 and 𝑋2. At the moment I suspect that

there are geometric effects due to the increase of the dimension of the space Δ(𝑍), which

are not accounted for by the construction. However, I did not succeed in constructing a

measure that fullfils (S𝟎), (I), (M), (LN) and (LM). This means that the search for measures

of redundancy and synergy is still a very open field with room for improvements. In the
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𝑃𝑍|𝑥1=1, 𝑃𝑍|𝑥2=0 𝑃𝑍|𝑥1=0, 𝑃𝑍|𝑥2=1𝑃𝑍

FIGURE 6.10 Conditional distributions visualized in Δ(𝑍) on the unit interval.

meantime 𝐼red serves as a good candidate, especially if in the specific application the ouput

variable 𝑍 has a fixed dimension and even more so if the mechanism 𝑃𝑍|𝑥1,𝑥2
does not

change between comparisons using 𝐼red.

In the following example introduced by Bertschinger et al. (2012) the left monotonicity is

violated by 𝐼red. The joint probability distribution for this example is given in Table 6.1. It

is easy to calculate the corresponding redundancy values 𝐼red(𝑍; 𝑋1, 𝑋2),𝐼red(𝑍, 𝑍′; 𝑋1, 𝑋2).

𝑋1 𝑋2 𝑍 𝑍′ p

0 0 0 0 1/6

0 1 0 0 1/6

0 1 0 1 1/6

1 1 0 1 1/6

1 0 1 1 2/6

TABLE 6.1 Joint distribution of an examplewhere 𝐼red(𝑍; 𝑋1, 𝑋2) > 𝐼red(𝑍, 𝑍′; 𝑋1, 𝑋2), thus violating leftmono-
tonicity (LM).

In this example it is easily possible in an analytical way, the space of distributions over

𝑍 is one-dimensional (Δ(𝑍) is isomorphic to the unit interval), thus 𝑃𝑍, 𝑃𝑍|𝑥1
and 𝑃𝑍|𝑥2

can be represented as points on the unit interval for each 𝑥1 and 𝑥2 respectively. In this

specific case 𝑃𝑍 ≃ 2/3 𝑃𝑍|𝑥1=0 ≃ 1, 𝑃𝑍|𝑥1=1 ≃ 1/3, 𝑝(𝑍|𝑥2 = 0) ≃ 1/3 and 𝑃𝑍|𝑥2=1 ≃ 1,
if the distribution 𝑝(𝑧 = 0) = 1, 𝑝(𝑧 = 1) = 0 is mapped to 1 on the unit interval. A

visualization of the one dimensional case with only 𝑍 as output can be found in Figure 6.10.

From this it is clear that the mutual projections are actually just identity mappings (i.e.

𝑃𝑍|(𝑥1 ↘ 𝑋2) = 𝑃𝑍|𝑥1
, ...) and hence the marginal and conditional probabilities can simply be

calculated from Table 6.1,

𝐼red(𝑍; 𝑋1, 𝑋2) = 𝐼 𝜋
𝑍 (𝑋1 ↘ 𝑋2) = 𝐼 𝜋

𝑍 (𝑋2 ↘ 𝑋1) (6.65)

= 𝐼(𝑍; 𝑋1) = 𝐼(𝑍; 𝑋2) (6.66)

=
1
2 log2

3
2 +

1
6 log2

1
2 +

1
3 ≈ 0.4591. (6.67)

To calculate 𝐼red(𝑍, 𝑍′; 𝑋1, 𝑋2) it is easier to calculate the projections 𝑃𝑍,𝑍′|(𝑥1 ↘ 𝑋2) and

𝑃𝑍,𝑍′|(𝑥1 ↘ 𝑋2) numerically. This results in
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𝑃𝑍,𝑍′|𝑥1=0

𝑃𝑍|𝑥1=1𝑃𝑍,𝑍′|𝑥2=0

𝑃𝑍|𝑥2=1

𝑃𝑍,𝑍′|(𝑥1=0 ↘ 𝑋2)

𝑃𝑍,𝑍′|(𝑥1=1 ↘ 𝑋2) 𝑃𝑍,𝑍′|(𝑥2=0 ↘ 𝑋1)

𝑃𝑍,𝑍′|(𝑥2=1 ↘ 𝑋1)

𝑃𝑍

FIGURE 6.11 Illustration of the construction of projective information for binary input variables. The illustration
shows why leftmonotonicity does not hold for 𝐼red.

𝑃𝑍,𝑍′|(𝑥1=0 ↘ 𝑋2) = 𝑃𝑍,𝑍′|𝑥2=1, (6.68)

𝑃𝑍,𝑍′|(𝑥1=1 ↘ 𝑋2) =
2
3𝑃𝑍,𝑍′|𝑥2=0 +

1
3𝑃𝑍,𝑍′|𝑥2=1, (6.69)

𝑃𝑍,𝑍′|(𝑥2=0 ↘ 𝑋2) =
1
3𝑃𝑍,𝑍′|𝑥1=0 +

2
3𝑃𝑍,𝑍′|𝑥1=1, (6.70)

𝑃𝑍,𝑍′|(𝑥2=1 ↘ 𝑋2) = 𝑃𝑍,𝑍′|𝑥1=0, (6.71)

which are visualized in Figure 6.11. Thus the value for the redundant information is now

(the equality of both projective information terms is only a result of the explicit example,

not a general property)

𝐼red(𝑍, 𝑍′; 𝑋1, 𝑋2) = 𝐼𝜋
𝑍,𝑍′ (𝑋1 ↘ 𝑋2) = 𝐼𝜋

𝑍,𝑍′ (𝑋2 ↘ 𝑋1) (6.72)

=
1
6 log2

2
3 +

1
6 +

1
3 log2

4
3 ≈ 0.2075. (6.73)

And hence 𝐼red(𝑍; 𝑋1, 𝑋2) > 𝐼red(𝑍, 𝑍′; 𝑋1, 𝑋2) which shows that 𝐼red does not fulfill left

monotonicity.
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6.6 MECHANISTIC & SOURCE REDUNDANCY

In Section 6.4.3.4 it was shown that the measure 𝐼red also captures redundancy that is due to

the mechanism of the particular system that is being examined. This is also the reason why

the measure violates strong symmetry (S𝟏). A mechanism is not necessarily symmetric with

respect to the permutation of sources and output, however the redundancy with respect to

the output variables, that is already existent in the sources should be strongly symmetric as it

ignores the mechanism in terms of redundancy. A candidate measure for source redundancy

is the redundancy measure induced by the synergistic mutual information (Griffith and

Koch, 2012) as introduced in Section 6.2.4:

𝐼src(𝑍; 𝑋1, 𝑋2) = 𝐼(𝑍; 𝑋1) + 𝐼(𝑍; 𝑋2) + 𝑆(𝑍; 𝑋1, 𝑋2) − 𝐼(𝑍; 𝑋1, 𝑋2) (6.74)

= 𝐼(𝑍; 𝑋1) + 𝐼(𝑍; 𝑋2) − 𝐼∪(𝑍; 𝑋1, 𝑋2). (6.75)

To quantify the amount of redundant information that is induced by the mechanism it

does not suffice to simply subtract the source redundancy 𝐼src from the overall amount of

redundancy 𝐼red. For example in the case of the AND gate (see Section 6.4.3.3), assume that

the two inputs are identical copies of each other and thus completely correlated. In this

case there the mechanism still induces redundant information, but due to the correlation

of the sources this does not increase the overall amount of redundant information. The

already apparent redundant information in the inputs is ‘shadowed’ by the redundancy

in the mechanism. To measure the amount of redundancy induced by the mechanism I

propose the following measure

𝐼mec(𝑍; 𝑋1, 𝑋2) = 𝐼red(𝑍̂; 𝑋̂1, 𝑋̂2) (6.76)

where 𝑝(𝑧̂|𝑥̂1, 𝑥̂2) = 𝑝(𝑧|𝑥1, 𝑥2) and 𝑝(𝑥̂1, 𝑥̂2) = 𝑝(𝑥1)𝑝(𝑥2), thus separating the source and

removing any redundancy about 𝑍 available in the sources. This is an intervention at the

source introducing independent sources. There are a few desired properties these measures

should fulfil.

Conjecture 6.1. 𝐼src ≤ 𝐼red, 𝐼mec ≤ 𝐼red and 𝐼src + 𝐼mec ≥ 𝐼red.

In the current formwith 𝐼src = 𝐼(𝑍; 𝑋1)+𝐼(𝑍; 𝑋2)−𝐼∪(𝑍; 𝑋1, 𝑋2) these are only conjectures.
Numerical experiments did not give conclusive results because the optimization procedure

used in the calculation of 𝐼src remained in a local minimum for all the tests I ran. Nonetheless,

any proposed measures should fulfil these inequalities: The first two inequalities state

that source and mechanistic redundancy cannot exceed the total amount of redundant

information, which reflects the idea that redundant information measured by either of

the two measures is also measured by 𝐼red. Assuming that there is no third source for

redundancy, after all, all there is are the sources and the mechanism, the third inequality

states that redundant information is either already existing in the sources or induced by the

mechanism, though possibly combined.
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A last remark on the distinction between source and mechanistic redundancy: The differ-

ence (𝐼src + 𝐼mec) − 𝐼red is the amount of information that is ‘shadowed’ by the mechanism.

This quantity is very interesting as it is linked to the problem of overdetermination in

causal information flow measures. Ay and Polani (2008) and Janzing et al. (2012) introduce

measures of causal information flow and both use a similar technique in the construction of

the measures as done for the mechanistic redundancy above. Both articles use interventions

by setting distributions of certain nodes in the causal Bayesian network to their marginals.

However, in the example of the AND gate, each measure would measure a causal influence

from both sources, but give no further information about the structure of the causal inform-

ation flow. Using redundancy measures would already allow to distinguish unique causes

from redundant causes, but being able to quantify the amount of ‘shadowed’ redundancy

might lead to a quantification of overdetermination that is not caused by a correlation of

the causes.

6.7 INFORMATION TRANSFER

In the following section I will show that 𝐼red shares all the properties that 𝐼min possesses

with respect to the decomposition of transfer entropy. In (Williams and Beer, 2011) the partial

information decomposition is used to introduce new measures of information transfer. The

measures are based on a decomposition of transfer entropy. Transfer entropy, introduced by

Schreiber (Schreiber, 2000), is defined for two random processes 𝑋𝑡 and 𝑌𝑡 as

𝑇𝑌→𝑋 = 𝐼(𝑋𝑡+1; 𝑌𝑡|𝑋𝑡). (6.77)

It measures the influence of the process 𝑌 at time 𝑡 on the state of the process 𝑋 in the next

time step. One can also take a longer history of 𝑌𝑡 and 𝑋𝑡 into account instead. The right

hand side, known as conditional mutual information, is

𝐼(𝑋𝑡+1; 𝑌𝑡|𝑋𝑡) = 𝐼(𝑋𝑡+1; 𝑌𝑡, 𝑋𝑡) − 𝐼(𝑋𝑡+1; 𝑋𝑡). (6.78)

As the conditional entropy is the difference of twomutual information terms, the PI-decom-

position can be used to decompose each mutual information term. Hence by the vanishing

of PI-atoms, the transfer entropy can be decomposed into two non-negative components.

The decomposition is illustrated in Figure 6.12. I will use a slightly different notation here,

instead of using an index set, as there are only two variables, the variable names are used

directly. Let 𝐕 = {𝑋𝑡, 𝑌𝑡} then it follows from (6.51) and (6.52) that

𝑇𝑌→𝑋 = Π′
𝐕(𝑋𝑡+1; {𝑌𝑡}) + Π′

𝐕(𝑋𝑡+1; {𝑋𝑡, 𝑌𝑡}). (6.79)

The first term denotes all information that uniquely comes from 𝑌𝑡, called State Independent

Transfer Entropy (SITE) by Williams and Beer (2011). The second term on the other hand

denotes information that comes from 𝑌𝑡 but depends on the state of 𝑋𝑡 and thus is called

State Dependent Transfer Entropy (SDTE) in (Williams and Beer, 2011). I will now apply both
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{𝑋𝑡}{𝑌𝑡}

{𝑋𝑡, 𝑌𝑡}

{𝑋𝑡} {𝑌𝑡}

𝐼(𝑋𝑡+1; 𝑌𝑡, 𝑋𝑡)

FIGURE 6.12 PI-diagram for the decomposition of transfer entropy into PI-atoms. The coloured areas denote the
transfer entropy.

𝑋𝑡

𝑋𝑡+1

𝑌𝑡

𝑌𝑡+1

𝑑

FIGURE 6.13 Bayesian network of the first example process. If 𝑥𝑡 = 0 then 𝑥𝑡+1 is a copy of 𝑦𝑡, if 𝑥𝑡 = 1 then the
bit of 𝑥𝑡+1 is a flipped copy 𝑦𝑡. The probability that the bit is flipped in the copy is denoted by 𝑑.

measures 𝐼min (with corresponding PI-atoms Π𝐕) and 𝐼red (with corresponding PI-atoms

Π′
𝐕) as the underlying redundancy measure for the decomposition and compare the results.

6.7.1 Coupled Markov Processes Examples

The following two examples are used to show the difference of the decomposition when

using 𝐼red instead of 𝐼min. The first one revisits an example from (Williams and Beer, 2011)

where 𝑋 and 𝑌 are two binary, coupled Markov random processes. The process 𝑌 is

uniformly i.i.d. and 𝑥𝑡+1 = 𝑦𝑡 if 𝑥𝑡 = 0, moreover

𝑝(𝑥𝑡+1 = 𝑦𝑡|𝑥𝑡 = 1) = 1 − 𝑑, (6.80)

𝑝(𝑥𝑡+1 = 1 − 𝑦𝑡|𝑥𝑡 = 1) = 𝑑. (6.81)

So 𝑑 ∈ [0, 1] controls whether there is any dependence on the previous state of 𝑋 . If 𝑑 van-

ishes 𝑋 is simply a copy of 𝑌 , see Figure 6.13 for a Bayesian network of the process. In this

case the redundancy between 𝑌𝑡 and 𝑋𝑡 with respect to 𝑋𝑡+1 also vanishes as 𝑋𝑡 contains no

information about 𝑋𝑡+1, but at the same time 𝐼(𝑋𝑡+1; 𝑋𝑡, 𝑌𝑡) = 𝐼(𝑋𝑡+1; 𝑌𝑡) so the synergy
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FIGURE 6.14 Decomposition of transfer entropy 𝑇𝑌→𝑋 for the first example process. The plot shows SITE (solid
black line using 𝐼red, dashed black line using 𝐼min) and SDTE (solid gray line using 𝐼red, dashed gray line using 𝐼min)
given 𝑑. It can be seen that both decompositions coincide for this process.

also vanished and thus the example shows only state-independent transfer entropy. Increas-

ing 𝑑 now reduces the overall mutual information 𝐼(𝑋𝑡+1; 𝑋𝑡, 𝑌𝑡) but the information that

𝑌𝑡 contains about 𝑋𝑡+1 is decreasing at a faster rate, while the redundancy stays constantly

zero with varying 𝑑. The state independent transfer entropy Π′
𝐕(𝑋𝑡+1; {𝑌𝑡}) in this example

is equal to 𝐼(𝑋𝑡+1; 𝑌𝑡) and thus decreases while the state dependent transfer entropy (syn-

ergy) Π′
𝐕(𝑋𝑡+1; {𝑋𝑡, 𝑌𝑡}), here the difference 𝐼(𝑋𝑡+1; 𝑋𝑡, 𝑌𝑡) − 𝐼(𝑋𝑡+1; 𝑌𝑡), increases with

increasing 𝑑 (compare with Figure 6.14). This also explains why the decompositions of

transfer entropy using either measure (𝐼red, 𝐼min) coincide, the redundancy is constantly

zero and the change of the PI-atom is only driven by the change of mutual information

terms.

The second example, constructed for this specific purpose, is more intricate. First of all

it shows the difference between the two measures, but it is also a good example of the

subtlety of redundancy in mechanisms. Consider the following combined process (𝑋𝑡, 𝑌𝑡)
and the process 𝑍𝑡 where 𝑍𝑡 for all 𝑡 are uniformly i.i.d. random variables, 𝑋𝑡+1 is a copy

of 𝑋𝑡 and

𝑝(𝑦𝑡+1|𝑦𝑡, 𝑧𝑡) = (1 − 𝑑)𝛿𝑦u�𝑦u�+1
+ 𝑑𝛿𝑧u�𝑦u�+1

. (6.82)

The process 𝑌 , copies with probability 𝑑 the value of 𝑍𝑡 and with probability (1 − 𝑑) the
value of 𝑌𝑡 to 𝑌𝑡+1. Now the transfer entropy 𝑇𝑍→(𝑋,𝑌) is measured, see Figure 6.15 for a

Bayesian network of the process.
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FIGURE 6.15 Bayesian network of the second example process. 𝑋𝑡 is a parallel and independent process, the
only information transfer between the processes is from 𝑍𝑡 to 𝑌𝑡+1.

6.7.1.1 Comparison of Transfer Entropy of both Examples

It can be seen in Figure 6.16 that the two decompositions coincide for 𝑑 ≤ 0.5. For
𝑑 = 0 the two processes are completely independent which is reflected in the vanishing

overall transfer entropy in this case. On the other extreme using 𝑑 = 1, the decomposition

using 𝐼red gives complete state-independent transfer entropy while the decomposition

using 𝐼min sees total state-dependent transfer entropy. In this case the decompositions

disagree completely and I argue here that my new measure reflects the process much better.

With 𝑑 = 1 the process always copies 𝑍𝑡 to 𝑌𝑡+1, which is completely independent of

(𝑋𝑡, 𝑌𝑡). Specifically, 𝐼min mistakenly measures redundancy between 𝑋𝑡 and 𝑍𝑡 with regard

to (𝑋, 𝑌)𝑡+1. Following the definition of synergy and (6.52) this is then reflected in the

vanishing state-independent transfer entropy for all 𝑑 (larger redundancy means more

synergy and less unique information, given that the mutual information stays constant).

The fact that 𝐼min measures more redundancy has the same reason why 𝐼min measures

redundancy between independent 𝑋 and 𝑌 with respect to 𝑍 = (𝑋, 𝑌), namely it compares

changes in different directions in the space of distributions. The parallel and independent

process 𝑋𝑡 lets 𝐼min see a dependency between the two processes 𝑋𝑡 and 𝑍𝑡 that I argue

does not exist. Considering the transfer entropy 𝑇𝑍→𝑌 from 𝑍𝑡 to 𝑌𝑡 only, ignoring the

process 𝑋𝑡 completely, it can be seen in Figure 6.17 that the decomposition now coincides

with the decomposition of 𝑇𝑍→(𝑋,𝑌) using 𝐼red (solid lines in Figure 6.16).

Nonetheless, this does not yet explain the quite unusual non-differentiable shape of the

state-independent transfer entropy, which only is positive for 𝑑 > 0.5. This is surprising
because up to 𝑑 = 0.5 all transfer entropy is considered to be state-dependent, even though

with probability 𝑑 the state of 𝑌𝑡+1 takes on the state of 𝑍𝑡. As the process 𝑋𝑡 was only used

to demonstrate that using 𝐼min for the decomposition measures state dependencies in the

transfer-entropy that are not there, I will now leave 𝑋𝑡 aside and only consider the process

(𝑌𝑡, 𝑍𝑡) as described above.

To understand the shape of the graph of state-dependent transfer entropy of this process, it is

helpful to have a look at the mutual information 𝐼(𝑌𝑡+1; 𝑍𝑡) (dotted gray line in Figure 6.18)

and the redundancy 𝐼red(𝑌𝑡+1; 𝑌𝑡, 𝑍𝑡) (solid black line in Figure 6.18). From (6.52) it follows

that the state-independent transfer entropy (solid black line in Figure 6.16 and dashed black

line in Figure 6.17) is now the difference of these two terms (compare with Figure 6.12).
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FIGURE 6.16 Decomposition of transfer entropy 𝑇𝑍→(𝑋,𝑌) for the second example process. The plot shows SITE
(solid black line using 𝐼red, dashed black line using 𝐼min) and SDTE (solid gray line using 𝐼red, dashed gray line using
𝐼min).
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FIGURE 6.17 Decomposition of transfer entropy 𝑇𝑍→𝑌 for the second example process. The plot shows SITE
(dashed black line using 𝐼min), SDTE dashed gray line using 𝐼min).

The increase of mutual information 𝐼(𝑌𝑡+1; 𝑍𝑡) is obvious from the definition of the process.

For 𝑑 = 0 both processes are independent and for 𝑑 = 1 it follows that 𝑌𝑡+1 = 𝑍𝑡. It is also

clear that the redundant information with respect to 𝑌𝑡+1 needs to be zero at the extremal

points 𝑑 ∈ {0, 1}, because at these points the value of 𝑌𝑡+1 depends either on 𝑌𝑡 (𝑑 = 0) or
𝑍𝑡 (𝑑 = 1) and therefore either 𝐼(𝑌𝑡+1; 𝑍𝑡) = 0 or 𝐼(𝑌𝑡+1; 𝑌𝑡) = 0 both of which are upper

bounds for the redundancy.
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FIGURE 6.18 The plot shows 𝐼(𝑌𝑡+1; 𝑍𝑡) (dotted gray line) and 𝐼red(𝑌𝑡+1; 𝑌𝑡, 𝑍𝑡) (solid black line) for the second
example process.

On the other hand for 𝑑 = 0.5 the state of either process at time 𝑡 tells something about the

distribution of 𝑌𝑡+1 and because the space of distributions of 𝑌𝑡+1 is one-dimensional, this

must be information about a change in the same direction, so there is positive redundancy.

Observing one of the outcomes necessarily contributes to some extent to the prediction of

the outcome of 𝑌𝑡+1. Now it is possible to show this more rigourously, in particular

𝑝(𝑦𝑡+1|𝑦𝑡) =
𝑑
2𝛿𝑦u�+1(1−𝑦u�) + (1 −

𝑑
2) 𝛿𝑦u�+1𝑦u�

, (6.83)

𝑝(𝑦𝑡+1|𝑧𝑡) =
1 − 𝑑

2 𝛿𝑦u�+1(1−𝑧u�) +
1 + 𝑑

2 𝛿𝑦u�+1𝑧u�
. (6.84)

are the conditional distributions given the current state of either 𝑌𝑡 or 𝑍𝑡. To calculate

𝐼red(𝑌𝑡+1; 𝑌𝑡, 𝑍𝑡) projected information 𝐼𝜋
𝑌u�+1

(𝑍𝑡 ↘ 𝑌𝑡) needs to be calculated, as well as

𝐼𝜋
𝑌u�+1

(𝑌𝑡 ↘ 𝑍𝑡) because the redundancy is the minimum of both terms. As the space of

distributions Δ(𝑌𝑡+1) is one dimensional (it is simply the unit interval), a simple illustrat-

ive argument can be made to compute 𝑃𝑌u�+1|(𝑧u�=0 ↘ 𝑌u�), 𝑃𝑌u�+1|(𝑧u�=1 ↘ 𝑌u�), 𝑃𝑌u�+1|(𝑦u�=0 ↘ 𝑍u�) and

𝑃𝑌u�+1|(𝑦u�=1 ↘ 𝑍u�), which are the terms that are needed to calculate projected information.

From the illustration in Figure 6.19 it can be seen that for 𝑑 ≤ 0.5, 𝑃𝑌u�+1|(𝑧u�=0 ↘ 𝑌u�) =
𝑃𝑌u�+1|(𝑦u�=0 ↘ 𝑍u�) = 𝑃𝑌u�+1|𝑧u�=0 and 𝑃𝑌u�+1|(𝑧u�=1 ↘ 𝑌u�) = 𝑃𝑌u�+1|(𝑦u�=1 ↘ 𝑍u�) = 𝑃𝑌u�+1|𝑧u�=1. Inserted

into (6.14) it follows that 𝐼𝜋
𝑌u�+1

(𝑍𝑡 ↘ 𝑌𝑡) = 𝐼𝜋
𝑌u�+1

(𝑌𝑡 ↘ 𝑍𝑡) = 𝐼(𝑌𝑡+1; 𝑍𝑡) for 𝑑 ≤ 0.5. This
explains why there is no SITE for 𝑑 ≤ 0.5, as the SITE is the difference between the

redundancy 𝐼red(𝑌𝑡+1; 𝑌𝑡, 𝑍𝑡) and 𝐼(𝑌𝑡+1; 𝑍𝑡).

Conversely 𝐼𝜋
𝑌u�+1

(𝑍𝑡 ↘ 𝑌𝑡) = 𝐼𝜋
𝑌u�+1

(𝑌𝑡 ↘ 𝑍𝑡) = 𝐼(𝑌𝑡+1; 𝑌𝑡) for 𝑑 ≤ 0.5. As 𝐼(𝑌𝑡+1; 𝑍𝑡) and
𝐼(𝑌𝑡+1; 𝑌𝑡) are perfectly symmetric, which explains the form of the redundant informa-

tion as in (solid black line in Figure 6.18). Thus, even though 𝑍𝑡 and 𝑌𝑡 are completely
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𝑝(𝑦𝑡+1 = 0) = 1 𝑝(𝑦𝑡+1 = 1) = 1
𝑃𝑌u�+1

𝑃𝑌u�+1|𝑦u�=0 𝑃𝑌u�+1|𝑦u�=1

𝑃𝑌u�+1|𝑧u�=0 𝑃𝑌u�+1|𝑧u�=1

𝑃𝑌u�+1|(𝑧u�=0 ↘ 𝑌u�) = 𝑃𝑌u�+1|(𝑦u�=0 ↘ 𝑍u�)

𝑃𝑌u�+1|(𝑧u�=1 ↘ 𝑌u�) = 𝑃𝑌u�+1|(𝑦u�=1 ↘ 𝑍u�)

a) Δ(𝑌𝑡+1) for 𝑑 ≤ 0.5

𝑝(𝑦𝑡+1 = 0) = 1 𝑝(𝑦𝑡+1 = 1) = 1
𝑃𝑌u�+1

𝑃𝑌u�+1|𝑦u�=0 𝑃𝑌u�+1|𝑦u�=1

𝑃𝑌u�+1|𝑧u�=0 𝑃𝑌u�+1|𝑧u�=1

𝑃𝑌u�+1|(𝑧u�=0 ↘ 𝑌u�) = 𝑃𝑌u�+1|(𝑦u�=0 ↘ 𝑍u�)

𝑃𝑌u�+1|(𝑧u�=1 ↘ 𝑌u�) = 𝑃𝑌u�+1|(𝑦u�=1 ↘ 𝑍u�)

b) Δ(𝑌𝑡+1) for 𝑑 ≥ 0.5

FIGURE 6.19 Illustration of the conditional distributions of𝑌𝑡+1 for the second example process in the two cases
𝑑 ≤ 0.5 and 𝑑 ≥ 0.5. The line represents the one dimensional simplex, i.e. the space of probability distributions
over 𝑌𝑡+1 denoted by Δ(𝑌𝑡+1) where 𝑌𝑡+1 is a binary valued random variable. The black diamond represents the
marginal distribution of 𝑝(𝑦𝑡+1) and the shaded diamonds the conditionals given specific values of 𝑌𝑡 and 𝑍𝑡. It
can now be seen that the projections are always equal to the conditional distributions closer to the marginal of
𝑌𝑡+1. In particular, the projections are the same, no matter in which direction the projection is done (from 𝑌𝑡 to
𝑍𝑡 or vice versa).

independent, the mechanism, as discussed earlier in Section 6.6, creates redundancy with

respect to 𝑌𝑡+1.

6.7.2 Control Theory and Redundancy

Ashby (1956) proposed and Touchette and Lloyd (2000) confirmed that there is a natural

link between control theory and information theory. As shown by Touchette and Lloyd

(2004), for a process, with initial state 𝑋 and final state 𝑋′, and a controller 𝐶 which

are linked by the probability distribution 𝑝(𝑥′|𝑥, 𝑐), the conditional mutual information

𝐼(𝑋′; 𝐶|𝑋) (which is the transfer entropy from the controller to the system) is a measure of

controllability.Williams and Beer show in (Williams and Beer, 2011) that the decomposition

of transfer entropy using 𝐼min as a redundancy measure has a close relation to the notion

of open-loop controllability. I will now show, that this is still the case if 𝐼red is used to

decompose transfer entropy.

Perfect controllability, as defined in (Touchette and Lloyd, 2004), means that for all initial

states 𝑥 ∈ 𝒳 and final states 𝑥′ ∈ 𝒳 there exists a control state 𝑐 ∈ 𝒞 such that 𝑝(𝑥′|𝑥, 𝑐) = 1.
The following equivalence is then shown in (Williams and Beer, 2011)

Lemma 6.6. A system is perfectly controllable iff for any 𝑥′ there exists a distribution 𝑝(𝑐|𝑥)
such that 𝑝(𝑥′) = 1 for any distribution 𝑝(𝑥).

It follows also that if a system is perfectly controllable, there exists an 𝑥′ such that 𝑝(𝑥′|𝑥) = 1
for each 𝑥 ∈ 𝒳 , see (Williams and Beer, 2011) for a proof. Now, a system has perfect

open-loop controllability iff it has perfect controllability and 𝐼(𝑋; 𝐶) = 0. Moreover, in

(Williams and Beer, 2011) it is shown that the following theorem holds:
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Theorem 6.2. (Williams and Beer) A system is perfectly open-loop controllable iff it is

perfectly controllable with vanishing state-dependent transfer entropy (using 𝐼min) from 𝐶 to 𝑋′.

Furthermore, this theorem still holds in the case where the decomposition using 𝐼red is

used. To prove the theorem the following lemma is needed. It is shown in (Williams and

Beer, 2011) that the condition of the lemma is fulfilled for any perfect open-loop controller

and thus proves the direct part of the theorem (perfect open-loop controllability implies

perfect controllability with zero SDTE using 𝐼red as a redundancy measure):

Lemma 6.7. If

∀𝑥′ ∈ 𝒳∀𝑥 ∈ 𝒳∀𝑐 ∈ 𝒞 : 𝑝(𝑥′|𝑥, 𝑐) = 𝑝(𝑥′|𝑐) (6.85)

then the SDTE from 𝐶 to 𝑋′ is zero.

Proof. From the definition of the partial information decomposition it follows that

Π′(𝑋′; {𝐶, 𝑋}) = 𝐼(𝑋′; 𝑋, 𝐶) − 𝐼(𝑋′; 𝑋)

− 𝐼(𝑋′; 𝐶) + Π′(𝑋′; {𝐶}, {𝑋}). (6.86)

Using the definition of the redundancy measure it follows that

Π′(𝑋′; {𝐶, 𝑋}) ≤ 𝐼(𝑋′; 𝑋, 𝐶) − 𝐼(𝑋′; 𝑋)

− 𝐼(𝑋′; 𝐶) + 𝐼𝜋
𝑋′ (𝑋 ↘ 𝐶) . (6.87)

The synergy is non-negative and now the right hand side can be reformulated as in (6.58).

But with 𝑝(𝑥′|𝑥, 𝑐) = 𝑝(𝑥′|𝑐) ∀𝑥, 𝑥′ ∈ 𝒳, 𝑐 ∈ 𝒞 the positive Kullback-Leibler divergences

in (6.58) all vanish. Therefore Π′(𝑋′; {𝐶, 𝑋}) = 0. □

For the converse direction, perfect controllability and vanishing SDTE (from 𝐶 to 𝑋′)
imply perfect open-loop controllability, the following lemma needs to be proved:

Lemma 6.8. If a system is perfectly controllable with a distribution 𝑝(𝑐|𝑥) then 𝐼red(𝑋′; 𝑋, 𝐶) =
0.

Proof. From Lemma 6.6 it follows that 𝑝(𝑥′) = 1 for some 𝑥′ ∈ 𝒳 as well as 𝑝(𝑥′|𝑥) = 1
for all 𝑥 ∈ 𝒳 and therefore 𝐶cl(⟨𝑋⟩𝑍) in Δ(𝑋′) is just {𝑃𝑋′} which implies 𝐼𝜋

𝑋′ (𝐶 ↘ 𝑋) = 0.
Thus it follows that 𝐼red(𝑋′; 𝑋, 𝐶) = 0. □

Thus, for the converse direction, starting with perfect controllability and vanishing SDTE,

the following equality holds
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0 = Π′(𝑋′; {𝐶, 𝑋}) (6.88)

= 𝐼(𝑋′; 𝑋, 𝐶) − 𝐼(𝑋′; 𝑋) (6.89)

− 𝐼(𝑋′; 𝐶) + 𝐼red(𝑋′; 𝑋, 𝐶) (6.90)

= 𝐼(𝑋′; 𝑋, 𝐶) − 𝐼(𝑋′; 𝑋) − 𝐼(𝑋′; 𝐶) (6.91)

= ∑
𝑥,𝑐,𝑥′

𝑝(𝑥′, 𝑥, 𝑐) log
𝑝(𝑥′|𝑥, 𝑐)𝑝(𝑥′)
𝑝(𝑥′|𝑐)𝑝(𝑥′|𝑥)

, (6.92)

as 𝑝(𝑥′|𝑥) = 𝑝(𝑥′) because of perfect controllability,

= ∑
𝑥,𝑐,𝑥′

𝑝(𝑥′, 𝑥, 𝑐) log
𝑝(𝑥′|𝑥, 𝑐)
𝑝(𝑥′|𝑐)

= 𝐼(𝑋; 𝑋′|𝐶). (6.93)

The definition of perfect controllability in (Touchette and Lloyd, 2004) gives that for

each 𝑥 ∈ 𝒳 and 𝑥′ ∈ 𝒳 there exists a 𝑐 ∈ 𝒞 such that 𝑝(𝑥′|𝑥, 𝑐) = 1. From Eq. (6.93) it

follows now that for any 𝑥′ ∈ 𝒳 there exists a 𝑐 ∈ 𝒞 such that 𝑝(𝑥′|𝑐) = 1, as otherwise the

logarithm in all summands with 𝑝(𝑥, 𝑥′, 𝑐) > 0 would not vanish in Eq. (6.93). It is shown in

(Williams and Beer, 2011) that the proposition that there exists a 𝑐 ∈ 𝒞 such that 𝑝(𝑥′|𝑐) = 1
for any 𝑥′ ∈ 𝒳 is equivalent to open-loop controllability. Together with what was shown

above, this shows that Theorem 6.2 also holds if 𝐼red is the underlying redundancy measure

and the relation between open-loop controllability and decomposition of transfer entropy

is transferable to the newly constructed measure.

6.8 MULTIVARIATE EXTENSIONS

So far everything in this chapter, except Section 6.4, was about bivariate measures of

redundancy or bivariate applications of multivariate measures. The construction of 𝐼red is

inherently bivariate, so the question for a multivariate extension of the measure arises nat-

urally. A naive approach to a multivariate extension would be simply taking the minimum

of pairwise redundancies, i.e.

𝐼red(𝑍; 𝐴1, ..., 𝐴𝑘) := min
𝑖,𝑗

𝐼red(𝑍; 𝐴𝑖, 𝐴𝑗). (6.94)

And indeed, this construction fulfils the (S𝟎), (M), (I) axioms and even (LN) which allows

a non-negative decomposition of multivariate mutual information into partial information

atoms, as 𝐼min does. However, a similar problem as with the bivariate case of 𝐼min appears.

Consider the three mutually independent random variables 𝑋1, 𝑋2, 𝑋3. Now, with the

minimum construction, the redundancy 𝐼red(𝑋1, 𝑋2, 𝑋3; {1, 2}, {2, 3}, {3, 1}) would be

min{𝐼(𝑋1, 𝑋2; 𝑋2, 𝑋3), 𝐼(𝑋2, 𝑋3; 𝑋3, 𝑋1), 𝐼(𝑋3, 𝑋1; 𝑋1, 𝑋2)} (6.95)

which in turn is
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min{𝐻(𝑋1), 𝐻(𝑋2), 𝐻(𝑋3)}. (6.96)

It can be seen that the identity axiom (Id𝟐), even though it gives an upper bound for

redundancy (by means of the monotonicity axiom (M)) still is not enough to ensure that a

multivariate redundancy measure fully captures the concept of redundancy. Namely that it

would be desirable to have

𝐼red(𝑋1, 𝑋2, 𝑋3; {1, 2}, {2, 3}, {3, 1}) = 0 (6.97)

here.

To achieve this I will extend the concept of projected information. For this each conditional

distribution in Δ(𝑍)will be projected onto the intersection of projections of convex closures.

In agreement with the notation used for the bivariate measure, for any 𝑄 ∈ Δ(𝑍) and any

subset 𝐵 ⊆ Δ(𝑍), 𝑃𝑍|(𝑄 ↘ 𝐵) denotes the projection of 𝑄 onto the convex closure of 𝐵 in

Δ(𝑍) (this is consistent with the notation 𝑃𝑍|(𝑥 ↘ 𝑌) where 𝑌 denotes the set of distributions

{𝑃𝑍|𝑦 ∈ Δ(𝑍) |𝑦 ∈ 𝒴} and 𝑥 is used to represent the distribution 𝑃𝑍|𝑥 ∈ Δ(𝑍)). In the same

way the projected information can now be defined for any subset 𝐵 ⊆ Δ(𝑍) as

𝐼 𝜋
𝑍 (𝑋 ↘ 𝐵) := ∑

𝑧,𝑥
𝑝(𝑧, 𝑥) log

𝑝𝑍|(𝑥 ↘ 𝐵)(𝑧)
𝑝(𝑧) . (6.98)

The projection of the convex closure of 𝐵1 ⊆ Δ(𝑍) onto the convex closure of 𝐵2 ⊂ Δ(𝑍)
will now be defined as

𝐵1 ↘ 𝐵2 := 𝐶cl
⎛⎜
⎝

⋃
𝑄∈𝐶cl(𝐵1)

{𝑃𝑍|(𝑄 ↘ 𝐵2)}⎞⎟
⎠

. (6.99)

The proposed definition of multivariate redundancy is now as follows

𝐼red(𝑍; 𝐴1, ...𝐴𝑘) := min
1≤𝑖≠𝑗≤𝑘

𝐼 𝜋
𝑍

⎛⎜
⎝

𝑋𝐴u�
↘ ⎛⎜

⎝

𝑘
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

)⎞⎟
⎠

⎞⎟
⎠

. (6.100)

I will show that this is equivalent to the following definition

𝐼red(𝑍; 𝐴1, ...𝐴𝑘) = min
1≤𝑖≠𝑗≤𝑘

𝐼 𝜋
𝑍

⎛⎜⎜
⎝

𝑋𝐴u�
↘ ⎛⎜⎜

⎝

𝑘
⋂

𝑙=1,𝑙≠𝑗
(𝑋𝐴u�

↘ 𝑋𝐴u�
)⎞⎟⎟
⎠

⎞⎟⎟
⎠

(6.101)

and for 𝑘 ≥ 3 it is even possible to leave one more term out of the intersection:

𝐼red(𝑍; 𝐴1, ...𝐴𝑘) = min
1≤𝑖≠𝑗≤𝑘

𝐼 𝜋
𝑍

⎛⎜⎜
⎝

𝑋𝐴u�
↘ ⎛⎜⎜

⎝

𝑘
⋂

𝑙=1,𝑙≠𝑗,𝑙≠𝑖
(𝑋𝐴u�

↘ 𝑋𝐴u�
)⎞⎟⎟
⎠

⎞⎟⎟
⎠

. (6.102)

The first equivalence is true because 𝑋𝐴u�
↘ 𝑋𝐴u�

= 𝐶cl(𝑋𝐴u�
) and

𝑘
⋂

𝑙=1,𝑙≠𝑗
(𝑋𝐴u�

↘ 𝑋𝐴u�
) ⊆ 𝐶cl(𝑋𝐴u�

). (6.103)
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To show the second equivalence, let

𝐵 =
𝑘

⋂
𝑙=1,𝑙≠𝑗,𝑙≠𝑖

(𝑋𝐴u�
↘ 𝑋𝐴u�

). (6.104)

By the same argument as for the first equivalence 𝐵 ⊆ 𝐶cl(𝑋𝐴u�
). Now

𝑃𝑍|(𝑥u�u� ↘ 𝐵) ∈ 𝐶cl(𝐵) ⊆ 𝐶cl(𝑋𝐴u�
), (6.105)

and by definition

𝑋𝐴u�
↘ 𝑋𝐴u�

:= 𝐶cl
⎛⎜⎜
⎝

⋃
𝑄∈𝐶cl(𝑋u�u�)

{𝑃𝑍|(𝑄 ↘ 𝑋u�u�)
}⎞⎟⎟
⎠

. (6.106)

As 𝑃𝑍|𝑥u�u�
∈ 𝐶cl(𝑋𝐴u�

) it follows that also 𝑃𝑍|(𝑥u�u� ↘ 𝐵) ∈ 𝑋𝐴u�
↘ 𝑋𝐴u�

.

Hence,

𝐼 𝜋
𝑍 (𝑋𝐴u�

↘ 𝐵) = 𝐼 𝜋
𝑍 (𝑋𝐴u�

↘ 𝐵 ∩ (𝑋𝐴u�
↘ 𝑋𝐴u�

)) (6.107)

and the equivalence of the redundancy definitions follows.

As in the bivariate case self redundancy is simply defined as 𝐼red(𝑍; 𝐴) = 𝐼 𝜋
𝑍 (𝑋𝐴 ↘ 𝑋𝐴).

Furthermore, the bivariate version of the multivariate measure coincides with the earlier

introduced bivariate redundancy measure. For 𝑘 = 2

𝐼red(𝑍; 𝐴1, 𝐴2) = min{𝐼 𝜋
𝑍 (𝑋𝐴1

↘ 𝑋𝐴1
↘ 𝑋𝐴2

) , 𝐼 𝜋
𝑍 (𝑋𝐴2

↘ 𝑋𝐴2
↘ 𝑋𝐴1

)} (6.108)

= min{𝐼 𝜋
𝑍 (𝑋𝐴1

↘ 𝑋𝐴2
) , 𝐼 𝜋

𝑍 (𝑋𝐴2
↘ 𝑋𝐴1

)} (6.109)

as 𝑋𝐴1
↘ 𝑋𝐴2

contains all possible projections of distributions in 𝐶cl(𝑋𝐴1
) onto 𝐶cl(𝑋𝐴2

)
(correspondingly for 𝑋𝐴2

↘ 𝑋𝐴1
). The definition is obviously weakly symmetric (S𝟎) and

the inequality of the monotonicity (M) can be easily shown by observing that

𝑘
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) ⊆
𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) (6.110)

for all 𝑗 ∈ {1, ..., 𝑘 − 1}, i.e. there are only terms less than or equal to existing projected

information terms in the minimization. To show equality if 𝐴𝑘−1 ⊆ 𝐴𝑘 I will show that all

the terms over which the minimization is performed for 𝐼red(𝑍; 𝐴1, ..., 𝐴𝑘) are greater than
or equal to a term over which the minimization is performed for 𝐼red(𝑍; 𝐴1, ..., 𝐴𝑘−1). The
first case to look at, is the case where 𝑗 = 𝑘 (and thus 𝑖 ≠ 𝑘 by definition). Here

𝐶cl(𝑋𝐴u�−1
) ⊆ 𝐶cl(𝑋𝐴u�

) (6.111)

⇒ 𝑋𝐴u�
↘ 𝑋𝐴u�−1

⊆ 𝑋𝐴u�
↘ 𝑋𝐴u�

for all 𝑙 ∈ {1, ..., 𝑘 − 1} (6.112)

⇒
𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�−1

) ⊆
𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) =
𝑘

⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) (6.113)

⇒ 𝐼 𝜋
𝑍

⎛⎜
⎝

𝑋𝐴u�
↘ ⎛⎜

⎝

𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�−1

)⎞⎟
⎠

⎞⎟
⎠

≤ 𝐼 𝜋
𝑍

⎛⎜
⎝

𝑋𝐴u�
↘ ⎛⎜

⎝

𝑘
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

)⎞⎟
⎠

⎞⎟
⎠

. (6.114)



Redundant Information

153

The next case is 𝑗 ≠ 𝑘 and 𝑖 ≠ 𝑘 : If it is possible to show that

𝑋𝐴u�−1
↘ 𝑋𝐴u�

⊆ 𝑋𝐴u�
↘ 𝑋𝐴u�

(6.115)

then

𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) =
𝑘

⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

) (6.116)

and the equality of all terms where 𝑗 ≠ 𝑘 and 𝑖 ≠ 𝑘 would follow. Now, notice that

𝑋𝐴u�−1
↘ 𝑋𝐴u�

⊆ 𝑋𝐴u�
↘ 𝑋𝐴u�

immediately follows from the definition of the projection oper-

ator (↘) as 𝐶cl(𝑋𝐴u�−1
) ⊆ 𝐶cl(𝑋𝐴u�

) in this case. The case 𝑗 ≠ 𝑘 and 𝑖 = 𝑘 follows from

Lemma 6.3 on page 123. Using the representation 𝑋𝐴u�
= (𝑋𝐴u�−1

, 𝑊) for some random

variable 𝑊 . Lemma 6.3 gives

𝐼 𝜋
𝑍

⎛⎜
⎝

𝑋𝐴u�−1
↘ ⎛⎜

⎝

𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

)⎞⎟
⎠

⎞⎟
⎠

≤ 𝐼 𝜋
𝑍

⎛⎜
⎝

(𝑋𝐴u�−1
, 𝑊) ↘ ⎛⎜

⎝

𝑘−1
⋂
𝑙=1

(𝑋𝐴u�
↘ 𝑋𝐴u�

)⎞⎟
⎠

⎞⎟
⎠

(6.117)

for all 𝑗 ≠ 𝑘 and gives the desired result which can be plugged into the definition of the

multivariate measure.

Hence, it is in theory possible to extend the bivariate measure to a multivariate measure.

However, this has some drawbacks. The projection of a convex closure onto another convex

closure is not easily analytically expressed, even in this specific case, i.e. it is not a convex

polytope anymore, though it is still a convex set. Thus, projecting onto the intersection

of several of these projected sets makes the optimization problem much more complex

to solve. Furthermore, I was not able to show local non-negativity (LN) for the partial

information decomposition using the multivariate definition of 𝐼red.

6.9 DISCUSSION

The motivation for this chapter was to overcome the shortcomings of current measures of

redundancy and synergy, which are quantities of strong interest in relation to self-organiz-

ation and information theory. I introduced a new measure for bivariate redundant inform-

ation. Redundant information between two random variables is information that is shared

between two variables with respect to a third variable. The measure is conceptually motiv-

ated by measuring similarities in the ‘direction of change’ in the outcome distribution,

depending on which input is observed. I proved that the construction adheres to properties

of redundancy as stated in the literature, and can be used for a non-negative decomposition

of mutual information. The measure is closely related to the concept of minimal information

as introduced in (Williams and Beer, 2010).

I demonstrated in several examples that 𝐼red follows several intuitions about redundancy.

Furthermore, it is possible to decompose transfer entropy as considered in (Williams and Beer,

2011); in particular I showed that using minimal information instead of redundant information
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to decompose transfer entropy can lead to the detection of seemingly state-dependent transfer

entropywhich contradicts intuition. I was also able to prove that the results about open-loop

controllability from (Williams and Beer, 2011) are also applicable to the decomposition

using 𝐼red. Thus the measure is able to serve as a replacement for the bivariate version of

minimal information.

A particular insight of the new definition is the emphasis on mechanisms in the concept of

redundant information, which has been rather neglected in the literature so far. I linked

bivariate redundant information in the case of a copying mechanism to the mutual inform-

ation between the input variables. Thus, I identified redundant information that already

appears in the inputs with source redundancy, contrary to redundant information that is

only due to the mechanism, as demonstrated in the AND-gate or the readout process with

the decomposition of transfer entropy. I refer to the latter kind of redundancy as mechan-

istic redundancy. This is in contrast to the redundancy measure proposed in (Griffith and

Koch, 2012) which does not capture such mechanistic redundancy. I proposed initial steps

towards the separation of mechanistic and source redundant information, which includes

the problem of ‘shadowed’ redundancy with possible applications for the measure of causal

information flows.

A practical limitation that currently exists is the restriction to a bivariate measure. In general,

however, there are applications where it is interesting to be able to compute redundant

information between more than two variables (Williams and Beer, 2010 and Flecker et al.,

2011). However, the geometric structure for this problem gets significantly more complex,

so that my proposed multivariate extension is not much more than a theoretical exercise

at the moment. Together with the violation of left monotonicity (LM) by 𝐼red and 𝐼min

this highlights that the case of redundant information is not closed yet. There are still

opportunities to find improvements in this area, yet this chapter presents a tool for the

investigation of bivariate redundancy in a multitude of scenarios.

In the introduction to this chapter, I explained that I started to study the embodiment

of agents in the perception-action loop using redundancy, but quickly became aware of

the limitations of currently available measures. Although my work resulted in a novel

approach to measure redundancy, its application to the embodiment of agents within

the perception-action loop did not lead to profoundly new insights. The problem one is

facing here, is that the world state usually encodes also the state of the agent and thus it is

only possible to differentiate between internal cognitive information processing and ‘other’

information processing, which is performed by either the environment or the embodiment

(one could call this embodied open-loop control and captures the same notion as the

term morphological computation does). Nonetheless, I am certain that there are a lot of

relevant applications of redundancy and synergy measures to the field of self-organization.

For example, the redundancy lattice might be used to devise optimal information sharing

networks in multi-agent systems or help to quantify the robustness of complex systems.
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Initial findings (Lizier et al., 2013 and Flecker et al., 2011) lead me to believe that the study

of self-organizing systems from a redundancy/synergy perspective only has started.
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7
CONCLUSION

» A conclusion is the place where you got tired of thinking. «

MARTIN H. FISCHER, Washingtonian

In this thesis, I set out to develop an information-theoretic framework for the investigation

of the self-organization of agent collectives with a particular focus on morphogenetic

processes, that is, the spatial self-organization of a collective towards shapes. Here, I first

want to summarize what was done and discuss the results in a broader setting than I did in

the individual chapters. Moreover, an overview of what is left to be done is given.

7.1 SUMMARY

Chapter 3 introduced different concepts of self-organization from which I chose observer

based self-organization to work with. The choice was based on a literature review of

available quantitative definitions of self-organization. The outlook that the measure could

be easily adopted to the continuous domain as well as its grounding in information-theoretic

concepts were crucial factors in this choice. Then, I continued with a comparison of

several estimation methods for multi-information which is used for the quantification of

observer self-organization. In this comparison, methods based on the binning of continuous

data performed very poorly, while kernel based estimators and the KSG method gave

better results. However, only the KSG estimator was able to give reliable results in high

dimension settings (𝑑 ≥ 20), where the kernel based estimator report information between

uncorrelated data.

In Chapter 4, I introduce a model of particle dynamics, similar to the one used in (Doursat,

2008b), where each particle in the collective can be of a type and particles interact with each

other depending on their types. These dynamics are shown to result in the particle collective

forming in various shapes, depending on the parameters of the particle interactions. Using

alignment procedures and observations about invariant properties of the dynamics, I show

that multi-information of the particle locations can be estimated from a comparatively small

amount of samples. This, in turn, gives a way to quantify the observer self-organization

expressed by the particle collective. I used this, to study the effects of the number of particles,

number of types and cut-off radii on the observable self-organization. In these experiments

it was possible to see that the amount self-organization of the collective depends on the

number of types (for a particle collective of a fixed number of particles) and the cut-off

radius that limits interactions between particles. A large ratio of types to particles, usually

means that interactions are very inhomogeneous leading to a low amount of correlation

between the particles. On the other extreme, the organization is also comparatively low if

there is only a single type. For collective with particles of a single type the organization

also depends strongly on the size of the collective, as for several sizes differently shaped

equilibrium configurations lead to a lower correlation among the individual particles. It

was also possible to observe a dependence between the amount of self-organization and
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the cut-off radius. For a small cut-off radius the self-organization decreased, however for a

small ratio of types to particles this effect was not as strong as for collectives with a large

ratio of types to particles.

In Chapter 5, I presented the relevant information formalism developed by Polani et al.

(2006) and extended it to the multi-agent setting. I showed how shape formation can be

formulated in terms of a reward function in the relevant information and MDP setting.

Using the information-theoretic formulation of control theoretic principles (Touchette

and Lloyd, 2004,2000), I was able to derive a relation between self-organization of agent

collectives and the information processed in each agent exists. In the second part of Chapter 5

I looked into the coordination of agent actuators and sensors and the implications of shared

control for the relevant information formalism and presented initial findings for small

collectives of two agents.

Chapter 6 switched the focus towards measures of redundant information. I showed from

examples that earlier approaches did not capture some intuitive requirements about redund-

ancy, which lead to the formulation of an identity axiom for measures of bivariate redundant

information. I then pursued by developing a bivariate measure of redundant information,

that fulfils the axioms first stated by Williams (2011), as well as the additional identity axiom.

The measure is based on the notion of information projections and I was able to show that

it complies with the partial information decomposition by Williams and Beer (2010). Fur-

thermore, I proved that the decomposition of transfer entropy, using the here introduced

measure, results in the same properties regarding controllability as the measure of minimal

information by Williams and Beer (2010). The last part of Chapter 6 is concerned with

the construction of a multivariate measure of redundant information based on information

projections. I proposed a construction of a measure, that fulfils the axioms, which however

suffers from the lack of an easy way to compute actual numerical results. There is no proof

available yet, that would show that it leads to a positive partial information decomposition.

7.2 DISCUSSION

7.2.1 Self-Organization

Observer based self-organization is a promising concept and its ability to measure spatial

self-organization was demonstrated in this thesis. It captures the idea, that for a system to

self-organize information needs to spread through the system which results in a correlation

of remote parts of the system. As discussed in Section 3.5 and already noticed by Polani

(2008), it is ‘orthogonal’ to the measure of statistical complexity (Crutchfield and Young,

1989) by measuring structure in a spatial dimension (specified by observers) instead of the

temporal dimension.

To measure O-organization in the continuous domain, the estimation of multi-informa-

tion was needed. The estimation of multi-information and mutual information for high
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dimensional systems seems to be a rather unexplored field. Though the KSG estimator

performed well in these cases (much better than all other estimators), there seems a lack of

a good understanding how the bias grows with dimension and no good selection method

for 𝑘 as a parameter.

7.2.2 Particle & Agent Collectives

The simulations with particle systems show that for a systemwith local interactions a certain

homogeneity of interactions, here present due to a limited number of different types, leads

to a higher level of self-organization. In particular, the relation between organization,

interactions being local and their homogeneity is relevant. It seems that hierarchies, as for

example induced by the clusters of particles, overcome the limits that local interactions

pose on organization. Hierarchies of clusters have another important property and that

is a certain robustness to perturbations, which has not been studied here. Ladyman et al.

(2013) list robustness and the emergence of hierarchical organization among the properties

associated with complex systems. They argue, that robustness is necessary for a complex

system. To me it is not entirely clear whether this necessity stems from the structure of

most physical models or from a purely information-theoretic or computational mechanics

perspective. The results I presented here hint that the structure of interactions plays a more

important role for this necessity than the measure of organization.

Particles are passive, the dynamics are determined by the physics alone and there is no

local decision making mechanism. If the particles are active agents, I was able to show in

Chapter 5 that the amount of self-organization, driven by the agents’ actions, is limited by

the information processing of the collective. This is relevant, as it is another building block

for the general idea of an information book-keeping principle in living organisms (Polani,

2009). Furthermore, it shows that organization is limited by the cognitive capabilities of the

collective and the amount the environment and embodiment of the agents works in favour

of organization (or disfavour, for example by inducing noise into the system). For example

in cell sorting, where the adhesion properties, i.e the embodiment of cells, are enough to

drive the whole sorting process (Graner and Glazier, 1992), organization seems to stem only

from open-loop control (the cells as embodied agents perform no information processing).

This concept is also known under the name of morphological computation, a term coined by

(Pfeifer and Bongard, 2007). On the other hand, in the process of gastrulation, when the

ventral furrow forms (Wolpert et al., 2002), cells need to process positional information

(Dubuis et al., 2011) and react by changing local properties. While the exact mechanisms

of this are still unclear (Hocevar and Ziherl, 2011), and there are several mechanisms that

can drive such a formation, like keystone deformation or change of adhesion properties

(Davies, 2005), such mechanism require a minimal amount of cognition in the sense of

information processing within the perception-action loop.

I applied the framework of multi-agent relevant information developed in Chapter 5

to a small scenario with two agents. The two agent scenario was designed without the
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intent to be biologically plausible or any relation to morphogenesis of living organisms,

but serves as a minimal working example of the framework. Furthermore, it shows that

intrinsic coordination can overcome limitations for suboptimal agents, where the limitations

stem from the mere anticipation of other agents behaviour. To judge, whether intrinsic

coordination is more efficient, a further cost needs to be considered. Namely the cost of

maintaining an information channel between agents, which in some cases might even be

metabolically more expensive than increasing the information processing of each agent.

Nonetheless, the framework itself is not limited to such a toy scenario as presented here,

even though the underlying algorithms currently limit an easy scaling of the scenario.

7.2.3 Local & Redundant Information

In larger collectives it is not only interesting to quantify self-organization, but also to under-

stand the local interaction dynamics between agents, as for example the intrinsic coordina-

tion discussed in the last section. In Chapter 4 I used coarse graining of multi-information

in an attempt to find type based difference in the self-organization of particle systems. It was

possible to distinguish two different phases using this approach, however this assessment

did not lead to an insight to local information processing. If the collective consists of active

agents instead of passive particles the multi-agent perception-action loop from Chapter 5

can be used to study information processing of the individual agents. For such a purpose

the here developed measure of redundancy is fitting.

While the construction of the novel measure of redundant information addressed a problem

in the way redundant information was calculated before, there are still some unanswered

questions. As of now, there is no measure of redundancy, that fulfils the redundancy

axioms by Williams (2011) as well as the left monotonicity axiom (Bertschinger et al., 2012).

Comparisons of redundant information values where the target variable 𝑍 is of the same

dimension are nonetheless possible.

The introduced measure allows to separate information coming from different sources,

which together with the decomposition of transfer entropy allows a better understanding of

information transfer and storage (Lizier et al., 2013). Furthermore, quantification of redund-

ant information can give information about local ‘backup’ channels in agent collectives.

However redundant information is not just about redundant channels, also mechanisms that

do not distinguish from where signals come exhibit redundant information (an example

that was shown in Chapter 6 was the AND gate, as well as the operation of addition). On

the other hand the quantification of synergy allows to detect mechanisms that ‘combine’

information, which by some has been considered to be the basis to cognition (Griffith and

Koch, 2012).
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7.3 FUTUREWORK

7.3.1 Scaling of Simulations

If these simulations can be transferred to a more biological correct model, it might be

possible to get some results on how physical or chemical laws determine how spatial

self-organizing systems necessarily have to be structured and how their dynamics have to

look like, purely based on information-theoretic constraints. This requires to have at least

a possibility to simulate and analyse larger collectives. Due to computational limitations,

the number of particles in the simulations that were carried out could not be increased

to a very large number, even using parallelized algorithms on a cluster. It would be very

interesting to see how a particle system would scale (leaving the number of types fixed). In

such a case, in the equilibrium the size of the whole particle configuration will exceed the

cut-off radius by several orders of magnitude.

For the relevant information formalism I carried out some initial tests not reported here,

where I successfully implemented relevant information in the continuous domain and

believe that using continuous world and kernel based version of the relevant information

formalism are the best approach to implement it for larger multi-agent collectives. Though

continuous system are usually more complex to deal with computationally, the availability

of good estimation methods make them sometimes easier to deploy.

7.3.2 Extensions of Redundant Information

If the geometric implications of an extension of the underlying space 𝒵 are better under-

stood, it might be possible to construct a version of the here developed redundancy measure

that accounts for the dimension of 𝒵 , so that left monotonicity is fulfilled or at least the

deviation from it can be accounted for.

Further extensions of the measure include a continuous version, which at the moment

poses a similar problem as the multivariate extension with respect to computability. While

information projections onto polytopes are easy to compute, this is not the case for arbitrary

convex sets.

Moreover, separating the notions of source and mechanistic redundancy, which I hypo-

thesize, need further work. The concepts were only introduced here and are not yet fully

explored, I proposed a measure of both quantities and conjectured several relations between

the measures. I expect that more work in this direction will lead to a better understanding

of the foundations of information theory and its application to information processing in

agent collectives.

7.3.3 Links between Measures of Self-Organization

I am not aware of a direct link between multi-information of observers of a system and

the time dependent version of statistical complexity, however I speculate that it is possible
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to relate both quantities. A first hint for this is given by the discussion about the parallel

that both measures are maximal in ordered system, where the order is in the temporal or

spatial (with respect to observers) dimension. However, the parallel ends here and I am not

aware of for example a generalization that could produce both measures as special cases.

7.3.4 Self-Organization and Biological Transitions

Shalizi (2001) defined emergence as the existence of a derived process that has higher pre-

dictive efficiency and he showed how thermodynamics emerge from statistical mechanics.

In a similar way, biological organization, in terms of compartmentalization and hierarchies

might emerge from physics as a necessity for self-organizing systems.

The transition from passive particles to active agents seems similar to the transition from

physics to biology, the ‘origin of life’. How and why this transition happened is still a

completely unsettled question and I would guess that there is no purely information-the-

oretic explanation for it, but rather a physical one. On a more abstract level however, my

hypothesis is, that the perception-action loop emerges from the world dynamics (in the

sense of emergence by Shalizi (2001)).

There is another important transition in biology, the emergence of signalling pathways,

the most prominent example being the nervous system and brains. Hormones and neuro-

transmitters are other examples. While it is quite hard to argue with evolution at the origin

of life, it is much easier at a later stage, when self-replication and evolution is happening

in a more well defined way. For example, in the framework of Chapter 5 evolution can

account for the coordination of agents in so far, as the genetic code which encodes their

policies can anticipate the actions of other agents given their sensor readings. However, in

some cases, as the results suggest, it might give a better performance if the actions of the

agents of a collective are actually coordinated (not just by merely anticipating the action

of another agent). This results in an evolutionary argument why information signalling

might have developed.

I believe that these stages, from simple interactions to compartmentalization and hierarchies,

then to minimal cognition and in turn coordination and the development of directed ways

of information transfer are key to understand the origins of life and the development of

individual organisms. Furthermore I am convinced that information-theoretic methods

provide a relevant toolbox to study these questions in a quantitative way. The inform-

ation-theoretic perspective on morphogenesis and agent collectives put forward in this

thesis together with the methods developed here, hopefully provide another building block

in the general understanding of living organisms as information processing systems.
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