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Abstract  

The cerebellum is a prominent brain structure that contains more than half of all neurons, in the brain, 

which are densely packed and make up 15% of the total brain mass (Andersen et al., 1992). It is well 

known for its contribution to the control of motor functions, but it also plays a pivotal role in non-motor 

behaviours. The cerebellum is also involved in numerous pathological conditions. This thesis contributes 

to the understanding of the pathophysiology of the cerebello-thalamo-cortical pathways. I concentrate on 

two cerebellar diseases, namely: absence epilepsy (Noebels, 2005) and downbeat nystagmus (DBN) 

(Strupp et al., 2007).  

In this thesis the missing link in explaining the alleviating mechanism of a potassium channel 

blocker on downbeat nystagmus was found. A simulated single biologically detailed floccular target 

neuron (FTN) model was stimulated by  input from cerebellar Purkinje cells (PCs). It was demonstrated 

that for both synchronised and unsynchronised input, irregular PC spike trains (which resembles the DBN 

condition) resulted in elevated FTN firing rates, in comparison with regular (4-AP treated) ones. This 

increase or decrease of the FTN firing rates during DBN, or after 4-AP treatment, respectively depended 

on short term depression (STD) at the PC - FTN synapses exclusively in the cases when the PC input 

was unsynchronised. In contrast, results of previous modelling studies (Glasauer et al, 2011; Glasauer 

and Rossert, 2008) were not in-line with the corresponding experimental findings (Alvina and 

Khodakhah, 2010) because they did not take into account the STD on the FTN-PC synapses.  

It was also demonstrated here that the cerebellar output contributes to the control of absence 

epilepsy that originates in the thalamocortical network. Moreover, the cerebellar input was most effective 

when it arrived at the peak of the GSWD burst, with the least effective input arriving during the inter-

ictal interval, showing clear phase-dependency. I have also shown that a three-fold increase in the 

inhibitory time constant, drives the asynchronous-irregular network into an ictal state. This increase 

reflects the GABAA block. A change to GABAB dominated inhibition results in GSWDs, in which the 

“wave” component is related to the slow GABAB-mediated K+ currents (Destexhe, 1998). 

Therefore, in this thesis two important contributions are made to the understanding of cerebellar 

pathological states: absence epilepsy and DBN, which might in turn be useful in the potential treatment 

of these conditions.  
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Motivation  

The nervous system is a complex structure which joins multiple interacting elements to perform 

various vital functions for the organism. To understand biological processes, to research how 

the normal neuronal activities are altered in different pathological states and how to alleviate 

these conditions, various scientific approaches are used. The methods that are utilised to study 

the nervous system include experimental, clinical, theoretical and simulation procedures. Each 

of these approaches has made a valuable contribution to the current neuroscience knowledge 

and understanding of brain functions, but also has its own downsides. For example, the results 

of experimental research are subjective to the limitations linked to the use of animal models, 

the complexity of experimental design and other factors, which makes the possibility to 

reproduce the results very low. To integrate the knowledge and to drive the conclusion from a 

number of research papers in order to answer the fundamental questions is a very complex task, 

because many research papers tackling the same problem use different preparations and 

experimental methods, which are not always plausible to compare.  

The object of experimental studies could be either a cellular culture, the brain slice or the 

brain as a whole in the in-vivo approaches, which is a big difference by itself. With the 

introduction of optogenetics more than a decade ago, the identification of particular neural 

populations and their connections and interactions become a new reality. 

In spite of the incredible similarity between humans and many other mammals, the results 

obtained from animal research cannot always be transferred to humans, and deviations may or 

may not be important. Also, ethical questions about animal use in research is still a contentious 

issue, which was the turning point personally to me while deciding to switch from experimental 

research to modelling. As for science in general, the best is the integrative approach, where the 

scientists from all the neuroscience areas are working in collaboration.  

The imaging and electrophysiological measurement of neuronal electrical activity 

become the gold standard of the experimental approaches in neuroscience, allowing a huge 

variability in techniques used both extra- and intracellularly, especially now, when with the 

development of optogenetic techniques, the neuronal activity can be controlled noninvasively 

by light stimulation in a freely moving, awake animal. With the growth of  electrophysiological 

data, the question of systematically processing and analysing these data gets more and more 

important. With this in mind, and to overcome ethical and experimental problems related to 

research on laboratory animals, computational methods are widely used. They can serve as 

explanatory or predictive tools. Depending on the problem, different modelling methods can 

be applied based on the level of detail. Also, computational methods become of significant help 
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with data that are difficult to obtain experimentally, such as studying the activity of many 

neurons simultaneously. That is also the reason why experimentalists and computational 

modellers usually work in collaborative groups, so that modellers can help with explaining 

connections, pathways and brain-behavior relationships.  

By and large, computational models vary in the complexity, level of abstraction and 

computational power they require (Sterratt et al., 2011). To this purpose, models of different 

abstraction levels were created: single-neuron models which are detailed multicompartmental 

and biologically realistic, such as cerebellar nucleus (CN) neuron model (Steuber et al., 2011) 

or network models, where the single neuron properties are simplified in order to be able to 

observe neuronal ensembles behaviour in large networks. Neurons can still have their intrinsic 

properties according to their type, such as in the adaptive exponential integrate-and-fire (AdEx) 

model (Brette and Gerstner 2005).  

In terms of the design of the experiments, the most productive outcomes might be 

collected when both experimental and computational researches are working in collaboration. 

Experimentalists usually define the general trend of research, and computational specialists 

seek for the mechanisms underlying these trends.  

The cerebellum is a remarkable brain structure which contains more than half of all brain 

neurons, which are densely packed in around 15% of the total brain mass (Andersen et al., 

1992), and four times more neurons than neocortex (Azevedo et al., 2009). The fact that the 

cerebellum increased its size in humans significantly faster as predicted by the change in 

neocortex size for the last million years (Clark et al, 2001) unequivocally shows how important 

this brain region is. The sole output of the cerebellar cortex is provided by the Purkinje cells 

(Thach, 1970). They are the main structural element of cerebellar cortex. They were named 

after Czech physiologist Johannes Purkinje in 1837. They are one of the largest neurons so that 

each Purkinje cell (PC) has around 200,000 inputs (Tyrrell and Willshaw 1992). The major part 

of PC synapses are formed with one of the smallest neurons – granule cells, whose axons grow 

upwards, thus forming parallel fibers. Apart from synapses with PCs they also synapse onto 

three other types of cerebellar neurons, which are stellate, basket and Golgi cells. Purkinje cell 

dendrites branch from one side of the soma in one plane, which is very unusual for neurons, 

which are normally grow without precise spatial orientation. They could form this special type 

of dendritic tree in order to increase the probability of the contact with parallel fibres while 

they grow, as parallel fibres are arranged in a transverse direction. Due to the strict spatial 

organisation of neurons in the Cerebellum, its morphology is very well studied. The first time 

the general principles of synaptic connections in the cerebellum were mentioned at the end of 
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XIX century in the studies of Spanish histologist Ramon Y Cajal. After that, there were many 

breakthroughs in cerebellar research.  

Nonetheless, until recently the simplistic description of the cerebellum as purely motor 

structure was quite popular (Leiner et al., 1989). With the development of magnetic resonance 

imaging (MRI) research, it was shown that the cerebellum preserves high activity during 

actions not related to motor activity in humans (Leiner et al., 1993). It was also shown that the 

lesion of some cerebellar regions lead to disruption of motor-unrelated functions, such as 

quality of sensor perception (Bastian, 2011). Other studies have shown that the cerebellum is 

important for short-term memory (Silveri et al., 1998), attention (Courchesne at al., 1994) 

emotions, planning and even in the development of pathological states (Glickstein, 2007).  

The research described in this project is focused on the contribution of the cerebellum to 

pathologies such as downbeat nystagmus and absence epilepsy. Experimental (Alvina and 

Khodakhah, 2010; Kros et al., 2015) and modelling studies (Glasauer and Rossert, 2008; 

Glasauer et al., 2011) attempted to research the nature of these channelopathies, but there is no 

clear agreement about the mechanisms that underlay these pathological conditions. Here an 

attempt is made to elucidate the mechanisms of these pathologies and possibly propose 

alleviating solutions.  

  



5 
 

Aims of the Thesis 

The aim of the thesis is to research the contribution of the cerebellum to pathologies, in 

particular to downbeat nystagmus and absence epilepsy, and attempt to describe the 

mechanisms underlying them, in order to be able to propose possible treatment.  

 

Downbeat nystagmus (DBN) is a common eye fixation disorder that is often caused by 

the pathological activity of neurons in the cerebellum (Hüfner et al., 2007). DBN is 

characterized by slow spontaneous upward eye drift and a compensatory fast phase directed 

downward. Patients suffering from DBN can be treated with 4-aminopyridine (4-AP), a non-

selective potassium K+ channel blocker (Kalla et al., 2004).  

The aim was to understand and propose the mechanism that underlies the therapeutic 

action of 4-AP in DBN based on the experimental data (Alvina and Khodakhah, 2010). 

 

Absence seizures are the most common form of generalised epilepsy in children (Berg et 

al., 1999). It is a non-seizure type of epilepsy which is characterised by a temporal loss of 

consciousness which lasts up to ten seconds with sudden onset. The hallmark of the absence 

epilepsy is generalised spike-and-wave discharges (GSWDs) seen on electroencephalogram 

(EEG) (Crunelli, V. and Leresche, N., 2002). These GSWDs are based on neuronal oscillations 

in thalamocortical networks, which can be caused by excessive inhibition in the thalamus or 

excessive cortical activity (Kros et al., 2015). Absence seizures can be triggered by a switch 

from the normal asynchronous neuronal activity in thalamocortical networks to synchronised 

oscillations and terminated by the reverse process, switching from synchronised oscillations to 

asynchronous activity. Our collaborators have reported the potential therapeutic effect of 

cerebellar nuclei stimulation on absence epilepsy (Kros et al., 2015). They showed that input 

from the cerebellar nucleus neurons can disrupt oscillatory activity in thalamocortical 

networks. It was found that optogenetic activation of neurons in the cerebellar nuclei (CN) can 

stop epileptic absence seizures and reset the oscillatory activity, for example in a closed-loop 

system (Kros et al., 2015). Moreover, they showed a phase-dependency of the stimulation time 

with respect to the oscillation phase in thalamocortical networks. However, the underlying 

mechanism of the termination of absence seizures by CN stimulation is not yet clear. 

 

The aim of the thesis was to reproduce these experimental results to be able to explain 

the potential mechanisms contributing to the absence seizure termination in response to the CN 

stimulation. To reach this aim there was a need to complete some intermediate tasks:  
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• Choose a suitable model with adequate abstraction level for the task 

• Replicate / calibrate chosen model 

• Change the model in order to produce generalised spike-and-wave discharges 

(GSWDs) (as the chosen model is designed to produce Up and Down states) 

• Make a parameter search to find out which particular parameter is responsible for 

the oscillatory mode  

• Simulate CN stimulation to thalamus to terminate GSWDs 

• Propose a mechanism of GSWDs termination as a response to the CN stimulation. 
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Contribution to knowledge  

As a result of the research documented in this thesis the cerebellar contribution to 

pathologies, in particular to downbeat nystagmus and absence epilepsy, were studied.  

 

1. It was shown with single CN neuron modelling that for both synchronized and 

unsynchronized Purkinje cell input, irregular (which resembles the DBN condition) input trains 

resulted in higher floccular target neuron (FTN) spike rates than regular (4-AP treated) ones. 

In the presence of unsynchronized Purkinje cell input, the acceleration of the FTN spike output 

during simulated DBN and the corresponding deceleration during simulated 4-AP treatment 

depended on Short-Term Depression (STD) at the FTN - Purkinje cell synapses. STD at the 

PC-FTN neuron was the component which was not taken into account by the previous 

modelling studies (Glasauer et al, 2011; Glasauer and Rossert, 2008). Acceleration of the FTN 

firing rate leads to nystagmus and motor deficit, while 4-AP treatment restored regular PC 

firing and alleviated nystagmus, which is completely in-line with experimental findings.  

 

2. It was shown that the network activity can exhibit oscillatory or asynchronous 

irregular (AI) dynamics, depending on the time constants of the inhibitory synaptic 

conductance. An increase in the inhibitory decay time constant reflects a change from GABAA 

dominated inhibition to more GABAB, which can result in GSWDs, given that the “wave” 

components of GSWDs are related to slow GABAB-mediated K+ currents (Destexhe, 1998). 

The results described in this thesis confirm that input from the CN can control oscillatory 

activity in thalamocortical networks. Furthermore, I demonstrated that the effectiveness of this 

input exhibits phase-dependence. In the simulations, CN input terminates epileptic absence 

seizures most effectively when it arrives at the peak of GSWDs, while seizure termination is 

least efficient for input between the GSWD bursts. This finding is potentially relevant for 

therapeutic applications of CN stimulation to terminate seizures.  
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Overview of the Thesis 

The thesis is organised as follows. In the second chapter, the background for the thesis is 

given. The elements that form the cerebellar circuit, such as cerebellar cortex, its afferents and 

efferents are described. The functions of the cerebellum are outlined, with its contributions to 

pathologies. The tottering mouse model is discussed as a commonly used model for DBN and 

absence epilepsy research. The two cerebellar pathologies, DBN and absence epilepsy 

described in terms of their aetiology and possible treatment solutions.  

The third chapter describe the methodologies used in this thesis. These include the 

description of the CN neuron model used to research DBN and 4-AP as an alleviation option. 

The choice of the model of absence epilepsy was not straightforward, so the brief descriptions 

of possible models of choice are given, with the reasoning behind. The absence epilepsy was 

modelled with the AdEx model, which was adjusted to be able to replicate thalamocortical 

oscillations. Single neuron and network models are discussed. The modelling software such as 

NEURON and Nest, PyNN API for Python model and NEO object model are described, as 

well as the software that was used for the output processing. For this, the data analysis tools 

were used, such as Matlab and R programming language.  

In chapter four, the background of the DBN research is given, which includes the two 

modelling paper outline: the system-level model (Glasauer and Rossert, 2008) and the 

integrate-and-fire (I&F) model of PCs. Their results are discussed and compared with the 

outcome of the experimental research (Alvina and Khodahah, 2010). The chapter include our 

findings of the crucial effect of the short term depression (STD) in the PC-FTN synapses 

together with regularity and synchrony. 

The fifth chapter contains the description of the model of Up and Down and 

asynchronous irregular states by A.Destexhe (Destexhe, 2009). The issues were faced during 

the attempts to replicate different configurations of the model are mentioned here. Additionally, 

there is a detailed description of the thalamocortical model, which was obtained after the 

modification of the second layer of the two-layer cortical model. The single neuron model 

which was written to confirm the intrinsic properties of the cell types constitute the 

thalamocortical model is outlined here. 

The sixth chapter contains the results of the absence epilepsy modelling. There is the 

reasoning behind the parameter choices and the specifications of the asynchronous interictal 

state. 

In the seventh chapter, the transition from an asynchronous state to an oscillatory ictal 

state was made, so that generalised spike-and-wave discharges (GSWDs) are prominent. The 
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description of the ictal state is made, with parameter changes declared. The issues which arose 

are also described in this chapter, such as model bistability, and how they were handled. After 

the model was calibrated in order to produce GSWDs, the external excitatory input from CN 

neuron was modelled. This CN input was shown to be able to terminate absence seizures and 

drive the model back to the asynchronous interictal state. The effect of the CN input showed 

phase-dependency, which is also discussed in the chapter.  

The final conclusions chapter  provides a summary of the results and possible future 

work that can be conducted to continue with this research. 



 

2 

 

Background 
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2.1 The cerebellum 

 

2.1.1 Introduction 

From the top level hierarchy, the brain can be divided into the brainstem, cerebrum and 

cerebellum. The latter is situated behind the brain stem and beneath the posterior portions of 

the cerebral hemispheres (Figure 2.1), and its name is Latin for ‘little brain’. The cerebellum is 

a unique brain structure as it contains more than half of the brain’s neurons, taking only 10% 

of its volume (Kandel et al., 2000). This has incited the interest among various scientists to 

study the cerebellum. Its structure consists of repeating units with the same microcircuit, which 

contributed to the fact that it is probably the best understood part of the brain. Also, its 

contribution to pathologies is increasingly understood.  

This chapter provides an overview of the physiology of the brain structures related to the 

thesis and to the models used. A brief description of the cerebellar structure and function will 

be given, with particular attention to the neurons of the Cerebellar Nuclei.  

The basic cerebellar circuit will be described, together with its role in the cerebello-

thalamo-cortical network. In the last part of the chapter the cerebellar contribution to 

pathologies will be outlined with particular focus on absence epilepsy and nystagmus, the two 

pathologies described in the thesis and to which mechanisms of alleviation are proposed.  

 

2.1.2 Structure of the cerebellum and its circuit 

The cerebellum is composed of the two hemispheres and centrally located vermis (“worm”) 

(Figure 2.1). The central branching framework inside the cerebellar hemispheres and the centre 

of the vermis is formed by white matter and is highlighted by the blue stain in Figure 2.2. The 

grey matter, which composes the cerebellar cortex, is shown in purple (hematoxylin) and red 

(eosin) on Figure 2.2. (Best and Taylor, 1965). This stained section makes it clear why the 

cerebellum is sometimes called the Arbor Vitae, a Latin phrase meaning “the tree of life”, and 

the separate subdivisions are called folia (from Latin for “leaf”) (Figure 2.2) 
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Figure 2.1 Picture of the human brain. Cerebellum marked in red. Source: Wikimedia 

Commons / Life Science Databases 

 

Figure 2.2 Picture of the central branching framework inside the cerebellar hemispheres 

with the white matter stained in blue and the grey matter in purple.  

Source: Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA. 1-800-

BRAIN BANK 
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2.1.2.1 The cerebellar cortex  

Unlike the cerebral cortex, the cerebellar cortex has a regular, almost crystalline structure. The 

only output neurons of the cerebellar cortex are the Purkinje cells with their characteristic large 

dendritic arborization and pear-shaped soma.  

Neurons in the cerebellar cortex are organised in three layers, each of which has a distinct 

function. The inter- and intra-layer connections will be discussed in this section (Figure 2.3).  

 

 
 

Figure 2.3 A diagram of the cerebellar circuitry which is formed from cortical and 

subcortical sections. At subcortical level, the afferent fibres activate deep CN cells (DCN-

C) and inferior olive (IO) cells (IO-C). The deep CN sends the output and inhibits the IO. 

There are different types of neurons in the cerebellar cortex such as granule cells (GrC), 

Golgi cells (GoC), Purkinje cells (PC), stellate and basket cells (SC, BC). The two most 

important inputs are represented by mossy fibers (mf) sprouting in various brain stem 

and spinal cord nuclei, and by climbing fibers (cf) originating from the IO. Signals 
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transmitted through the mossy fibers diverge to DCN and activate the granular layer 

(containing GrC and GoC). The ascending axon of the GrC bifurcates in the molecular 

layer (containing PC, SC, and BC) forms the parallel fibers (pf). The cerebellar circuitry 

is arranged as a feedforward excitatory circuit assisted by inhibitory loops: mfs excite 

GrCs, which activate other cortical elements. In the granular layer, inhibition is provided 

by GoC, in the molecular layer by SC and BC. After all, PC inhibit DCN. The IO, which 

is also activated by brain stem and spinal cord nuclei, controls PC activity though a single 

strong synapse. Thus, the whole system can be considered as a complex mechanism 

which controls the DCN output. Source: (D'Angelo and Casali 2012). 

 

The deepest layer – granular layer – is mostly composed of small but most numerous 

densely-packed excitatory granule cells receive the input to the cerebellar cortex, and much 

fewer large inhibitory Golgi interneurons. Both of these cell types form synapses within 

complexes known as cerebellar glomeruli, where both neuron types receive mossy-fibre input 

and where Golgi axons inhibit granule cells. Each granule cell grows T-shaped axons to the 

molecular layer to form a parallel fibre. Mossy fibres, which are one of the two principal 

afferents to the cerebellum also terminate in this layer. Their terminals supply excitatory 

(AMPA, NMDA) synapses to granule cell dendrites. The mossy fibre – granule cell pathway 

is highly divergent, connecting 1 mossy fibre to around 500 granule cells, whereas only around 

4 mossy fibres innervate each single granule cell.  

The Purkinje cell layer is situated in the middle and composed of the Purkinje cell 

bodies. Their dendrites grow upwards to the molecular layer, where they receive inputs from 

climbing and parallel fibres, as well as from inhibitory interneurons. Purkinje cells are GABA-

ergic neurons, thus they inhibit their efferent neurons in the deep cerebellar and vestibular 

nuclei. Their axons form the entire output of the cerebellar cortex.  

The dendrites of the Purkinje cells occupy the entire molecular later, which also contains 

inhibitory interneurons (stellate and basket cells). The molecular layer further contains the 

axons of the granule cells, which run parallel to the folia and perpendicular to the dendritic 

trees of the Purkinje cells, so that they are known as parallel fibres.  

The molecular layer lies on the top of the Cerebellum. As stated above, it is formed out 

of the inhibitory interneurons – the stellate and basket cells, the Purkinje cells dendrites, as well 

as the granule cell axons - parallel fibres, which are oriented perpendicular to the dendrites on 

which they are prone to form synapses. The dotted appearance of the parallel fibres on a cross-

section has given the name to this layer. 
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2.1.2.2 Cerebellar afferents and efferents 

Afferent and efferent axons compose the white matter of the cerebellar cortex. The afferent 

fibres (mossy fibres and climbing fibres) form excitatory synapses with neurons in both the 

cerebellar cortex and the deep cerebellar nuclei.  

The cerebellum is connected to the brain stem by three compact bundles of nerve fibres 

known as peduncles. The middle peduncle is purely afferent, no fibres leave the cerebellum 

via this peduncle. The middle peduncle is the largest of the three and transmits impulses from 

the pons to the cerebellum. Its axons terminate as mossy fibres carry sensory and motor 

information. Mossy fibres form excitatory synapses with the dendrites of granule cells which, 

on their turn, convergently connect to Purkinje cells. The middle peduncle also emits collaterals 

that terminate in the cerebellar nuclei (CN) (Voogd and Ruigrok, 2012). 

The inferior peduncle contains the fibres arising in the vestibular nuclei of the medulla 

and fibres of the direct dorsal spinocerebellar tract to the cerebellum. It carries proprioceptive 

sensory input (posture and balance). According to one of the hypothesis, the movement “error 

signal” originates in the inferior olivary nucleus, which receives input from both periphery and 

cerebral cortex, and enters the cerebellum as climbing fibre via the inferior peduncle. Each 

climbing fibre connects to multiple Purkinje cells (1:10), forming multiple synapses with each. 

Like the mossy fibres, climbing fibres also project to the neurons in the deep cerebellar nuclei. 

The inferior peduncle also provides the output of the cerebellum to the vestibular nuclei.  

The superior peduncle connects the cerebellum to the midbrain and transmits impulses 

to the red nucleus and thalamus, through which the impulses hit the motor area of the cerebral 

cortex. The superior peduncle also provides the input to the cerebellum from the ventral 

spinocerebellar tract. To summarise, most input to the cerebellum is coming through the middle 

and inferior peduncles, and most of the output from the cerebellum is coming through the 

superior peduncle. 

To summarise, in the cerebellar cortex, all of the incoming information is collected by 

the Purkinje cells which project to the three pairs of deep nuclei. The deep nuclei in turn send 

projections to other parts of the brain. In addition to the inhibitory Purkinje cell input, neurons 

in the deep cerebellar nuclei also receive excitatory input from climbing and mossy fibre 

collaterals. Therefore the inhibitory output of the Purkinje cells modulates the excitatory signal 

from mossy fibres to deep cerebellar nuclei. This loop is sometimes referred to as a primary 

cerebellar circuit.  
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2.1.2.3 Cerebellar nuclei 

The cerebellar nuclei are the main output of the cerebellum. As mentioned above, they also 

receive excitatory glutamatergic input from mossy and climbing fibre collaterals, which 

originate from spinal cord, vestibular nuclei, pontocerebellar nuclei etc. This excitatory input 

is modulated by inhibition from Purkinje cells via their recurrent collaterals.  

In the depth of the cerebellum, they are organized as three discrete masses of grey matter, 

the largest of which is the dentate nucleus. It receives input from the lateral hemisphere and 

from cerebellar afferents that carry information from the cerebral cortex (via the pontine 

nuclei). It projects to the contralateral red nucleus and the ventrolateral (VL) thalamic nucleus.  

There are two other cerebellar nuclei: the interposed and the fastigial. The latter is the 

most medial. Laterally to the fastigial nucleus, there lie two parts of the interposed nucleus, the 

globose and the emboliform. Their input is coming from the intermediate zone and from 

cerebellar afferents that convey spinal, proximal somatosensory, auditory, and visual 

information. They project to the contralateral red nucleus (the origin of the rubrospinal tract). 

The most medially located fastigial nucleus receives input from the vermis and from 

cerebellar afferents that carry vestibular, proximal somatosensory, auditory, and visual 

information. Then these neurons run to the vestibular nuclei and the reticular formation.  

A further group of nuclei – the vestibular nuclei – is located outside the cerebellum, in 

the medulla. In spite of that they do not strictly belong to the cerebellar nuclei, vestibular nuclei 

are considered to be functionally equivalent to cerebellar nuclei because their connectivity 

patterns are the same. The vestibular nuclei receive input from the flocculo-nodular lobe and 

the vestibular labyrinth. They project to various motor nuclei and give origin to the 

vestibulospinal tracts. (J.Knierim, Neuroscience Online). 

 

2.1.3 Cerebello-thalamo-cortical networks  

The cerebellum is recurrently connected to the cerebral cortex. The cerebral cortex projects to 

the cerebellum through relays in the pontine nuclei, whereas the cerebellum projects to 

neocortex through relays in the thalamus.  

Thalamic nuclei are strategically situated between motor areas of cerebral cortex and 

cerebellum. There are three main elements in the thalamocortical circuitry, which include 

excitatory thalamocortical relay neurons (TC) that project to the cerebral cortex 

(thalamocortical fibres), inhibitory interneurons situated inside relay nuclei and GABA-ergic 

neurons of the thalamic reticular nucleus (RE) which project to the thalamus proper.  
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Thalamocortical and corticothalamic pathways run through the reticular nucleus, which 

modulates the excitability of thalamus by its afferent fibres. The thalamus and cerebral cortex 

are bidirectionally connected by axons. Collateral branches of thalamocortical and 

corticothalamic fibres form the principal excitatory pathway to the neurons of the RE nucleus 

(Grillner, 2010).  

The density of corticothalamic terminals is very high and they form around 80 % of all 

synapses on TC neurons. The circuit includes three cortical populations (layer V and VI) of 

pyramidal cells (PY) and two order of thalamic nuclei. The first consists of the TC relay 

neurons with projections that allow the processing of peripheral sensory information and relay 

it to the cortex. The second is RE nucleus. PY axonal collaterals excite RE nucleus neurons, 

which provide a feed-forward inhibition to the TC neurons. Each TC neuron receives around 

5000 synaptic inputs, which arrive from retina, cortex and brainstem, but here the focus will 

be only on the inputs coming from cortex and RE neurons (Sherman and Guillery, 2006). 

Cortical input to TC nucleus is glutamatergic.  

Intranuclear collaterals of RE axons form inhibitory GABA-ergic connections with TC 

dendrites. Due to this disynaptic inhibition the hyperpolarization happens at disynaptic delay 

after excitation of RE neurons by collateral thalamocortical and corticothalamic inputs. 

Disynaptic inhibition is mainly mediated by GABAA receptors. Chemical synapses between 

RE neurons with reduced GABAA-mediated inhibition in thalamic neurons and cortical 

inhibition intact may synchronise RE activity (Destexhe, 1998) leading to the synchronised 

oscillations with TC relay neurons, displaying a prolonged bursting discharges shown at Figure 

2.4 B (Scherman, 2011) and Figure 2.5 B (Destexhe, 1998).  
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Figure 2.4 Example of tonic (A) and burst (B) firing. Source: (Sherman et al., 2011).  

 

Bursting in TC neurons initiates excitatory postsynaptic potentials (EPSPs) and low-

threshold Ca2+ spike-mediated bursts of action potentials (AP) in RE cells. The next burst in 

RE neurons leads to the large GABAA receptor-mediated inhibitory postsynaptic potentials 

(IPSPs) in TC neurons. Some TC neurons in response to this activity generate rebound low-

threshold Ca2+ spike-mediated bursts, which initiate the next oscillatory cycle. One such a cycle 

(RE – TC – RE) takes around 100 – 150 ms. Therefore, the network oscillates at 6 – 10 Hz 

(McCormick and Bal, 1997).  
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Figure 2.5 Transformation of spindle oscillations (an important feature of thalamic 

networks of 7 – 14 Hz generated waxing and waning rhythmic waves typical for a sleep) 

into slow oscillation with spike-and-wave local field potential (LFP) as a result of 

GABAA block in cortex with thalamic inhibition intact. A: Spindles with 50 % decreased 

GABAA conductances in IN-PY synapse. B: Oscillations after complete GABAA block 

in cortical neurons. All neurons discharge in phases separated by silence periods. GABAB 

currents were at their peak in TC and PY neurons during silence periods. LFPs displayed 

spike-and-wave discharges (Source: Destexhe, 1998).  

 

TC neurons in the ventro-lateral nuclei of the thalamus are mainly excited by cerebellar 

afferents (Sherman, 2016). TC neurons, in turn, excite RE neurons. Axons of RE nucleus 

provide inhibitory feedback to TC cells. This reciprocal excitatory loop is controlled by local 

GABA-ergic neurons.  

 

2.1.4 Functions of the cerebellum 

Knowing the organisation of the cerebellar microcircuit can shed light on its function. The 

functions of various brain areas were initially researched by making lesions and observing 

which areas of the brain became dysfunctional.  
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There are three distinct functional subdivisions of the cerebellum: vestibulocerebellum, 

spinocerebellum and neocerebellum. The first one is most important for nystagmus, therefore 

greater attention will be paid to it. 

 

Vestibulocerebellum 

The vestibulocerebellum (Figure 2.5, yellow) is formed by the flocculonodular lobe and 

its connections to the lateral vestibular nuclei. It is phylogenetically the oldest part of the 

cerebellum, therefore it is sometimes called archicerebellum. The vestibulocerebellum consists 

of the nodule and its lateral extension, the paired flocculi. The vestibulocerebellum receives 

input from the vestibular labyrinth and vestibular nuclei. The output of the cerebellum is 

organised in a way that the Purkinje cells leave the cerebellum to synapse onto vestibular 

nucleus and brain stem and bypass the deep cerebellar nuclei. The neurons that receive the 

terminals of PC are called floccular target neurons (FTN).  

The vestibulocerebellum is responsible for the control and regulation of eye movements, 

and the construction of a body motion estimate. The flocculonodular lobe is also responsible 

for the balance and muscle tone maintenance. Its damage will result in loss of balance and 

oculomotor control such as DBN. Monkeys with nodular lesions show downbeat nystagmus 

(see 2.2.2 Nystagmus) in darkness (Walker et al., 2008). The most common reason for the 

damage of flocculonodular lobe are tumours, such as medulloblastoma in childhood.  

 

Spinocerebellum (paleocerebellum or archicerebellum) 

The spinocerebellum (Figure 2.5, green and blue) is formed by the superior and inferior 

vermis except the nodule. It receives input afferents primarily from the spinal cord grey matter 

and vestibular nuclei, making it responsible for muscle movement control, and the sensation of 

limb position, pressure and touch. Also, as the spinocerebellum sends its efferents to the spinal 

cord, it makes it responsible for posture and balance control.  

The vermis is also involved in the control of rapid eye movements or saccades. Also, 

together with the lateral part of flocculonodular lobe, the spinocerebellum is responsible for 

smooth-pursuit eye movements. The vermis is also involved in motor learning, correcting 

errors during saccades.  
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Cerebrocerebellum 

The cerebrocerebellum (Figure 2.6, red) consists of the lateral cerebellar hemispheres, 

receiving input exclusively from cerebral cortex. It receives afferents via corticopontine fibres 

through the pontine nuclei from most of the neocortex, therefore it is sometimes called 

neocerebellum (Swenson, Review of Clinical and Functional Neuroscience, Chapter 8). The 

pontine nuclei project to the cerebellum through the middle cerebellar peduncles, where their 

axons terminate as mossy fibres, forming the largest input to the cerebellum. The 

neocerebellum sends efferents that reach the thalamus through the dentate nucleus, and hence 

to the cerebral cortex. The cerebrocerebellum performs cognitive functions (visuospatial 

perception, a language processing and modulation of emotions), general planning of motor 

activities and procedural motor learning, such as learning to ski or riding a bike. 

 
Figure 2.6 The input and output pathways of the three functional subdivisions of the 

cerebellum. They have specific input and output targets. The vestibullocerebellum is 

shown in yellow, the spinocerebellum in green and blue, the cerebrocerebellum is red. 
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(Adapted from Knierim J., Neuroscience online: 

https://nba.uth.tmc.edu/neuroscience/m/s3/chapter05.html).  

 

2.2 Cerebellar contribution to pathologies (experimental background) 

 

2.2.1 Tottering mice, an established model of absence epilepsy and nystagmus  

Tottering mice are model mice that have a genetic mutation in a subunit of a Ca2+ channel. The 

Ca2+ channels are a large family of membrane proteins that show selective permeability to Ca2+ 

ions. They can be activated in response to the membrane voltage (voltage-gated channels). 

Here the focus will be on the voltage-gated Cav channels which play various roles within 

neurons, such as gene expression and neurotransmission by mediating Ca2+ influx through CaV 

channels in response to neuronal membrane depolarization. 

There are six types of CaV channels which are called R, T, L, N, P and Q type. Depending 

on the type, they consist of either four or five subunits. The largest subunit is the α1 subunit, 

which consists of the voltage sensor, conduction pore, gating apparatus and sites of channel 

regulation by drugs, toxins and second messengers (Catterall et al., 2003). The Cav channels 

contribute to increased depolarization and neuronal excitability, which contributes to a greater 

predisposition to oscillatory disorders such as epilepsy and episodic ataxia type-2, which is 

associated with central ocular motor and vestibular dysfunction, mainly downbeat nystagmus 

(DBN) (Strupp et al., 2004). 

The mechanisms behind absence epilepsy, as well as mechanisms underlying downbeat 

nystagmus, remain elusive. Therefore, the animal models are crucial for investigation of the 

above-mentioned conditions. Both pathologies occur in the same mouse model, which carries 

a CACNA1A gene mutation in a pore-forming a subunit of the P/Q voltage-gated Cav2.1 

channel – the tottering mouse model (tg/tg). These channels are mainly expressed in the 

cerebellar Purkinje and granule cells, as well as in some other locations across the nervous 

system. The function of CaV2.1 is reduced in tg/tg, leading to a significant reduction of the 

CaV2.1 current density in Purkinje cells (Wakamori et al., 1998) and therefore to synaptic 

transmission deficits. The tg/tg mutation appears due to the change in a single nucleotide base, 

which cause epilepsy (Fletcher et al., 1996) and abnormal eye movements (Hoebeek et al., 

2005; Stahl et al., 2006). The tg/tg mutants exhibit ataxia, cortical spike-and-wave discharges 

(SWD) and absence seizures. They are widely used to study pathophysiology of 

vestibulocerebellar diseases, including DBN. In fact, ataxic mice exhibit DBN rarely, and with 
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no magnitude relation to head tilt as observed in humans. Only tilt- and gaze-independent 

component of human DBN is in common with the properties of ataxic mice nystagmus during 

yaw rotation. The mutant tg/tg exhibit upward deviation of the eyes at rest. This, along with 

hyperactivity of otolith may serve as surrogate for DBN in rodent model (Stahl et al., 2012).  

According to some sources, absence epilepsy (petit mal) has also been linked to 

mutations of the T-type calcium channel gene CACNA1H (Heron et al., 2004) as they produce 

firing that drives the thalamocortical network into slow oscillations during non-REM sleep 

(Llinás and Steriade, 2006). Such oscillations engage pyramidal, reticular and thalamic cells 

into SWD-like oscillatory events in mutant mice (Felix, 2002). Normally the activity of GABA-

ergic reticular thalamic neurons activates T-type Ca2+ currents, which is elevated in tottering 

mutants and might synchronise them into bursting mode. This can happen as a result of 

decreased excitatory synaptic transmission in thalamus. (Felix, 2002). Also, abnormal Ca2+ 

conductance in the tg/tg is not only linked to the mutation in T-type (Cav2.1) channels, but with 

the elevated expression of N-type (Cav2.2) and L-type (Cav1.2) Calcium channels (Campbell 

and Hess, 1999; Qian and Noebels, 2000; Zhou et al., 2003; Leenders et al., 2002; Matsushita 

et al., 2002). Such a compensatory mechanisms leads to neurological dysfunction, which was 

shown in experimental studies with application of Cav1.2 antagonists and agonists, which used 

to alleviate or induce stress-related attacks respectively (Campbell and Hess, 1999) in tg/tg.  

 

2.2.2 Nystagmus 

Nystagmus is an involuntary repetitive movement of the eye. When the whole body is rotated 

in space the physiological nystagmus occurs. It consists of a slow velocity component, which 

stabilize the eye on stationary objects, and a fast phase which resets the eyes to the middle of 

orbit.  

Pathological nystagmus is a common eye movement complication of cerebellar disease, 

which is characterised as a disorder of the mechanisms that underly the interactions of the 

cerebellar cortex and cerebellar nucleus (CN). In fact, it can be evoked by stimulation of the 

semi-circular canals or floccular-nodular lobe lesion. This happens when the head is in a fixed 

position. Patients with DBN usually complain of unsteadiness of gait and vertical oscillopsia 

(illusion of movement of visual word due to loss of stability of image on retina). Nystagmus 

can affect one or both eyes. It can be either induced physiologically, such as infantile nystagmus 

of new-borns, optokinetic and vestibular nystagmus, or be acquired.  

Physiologically-induced nystagmus happens during self-rotation as an effort to hold a 

steady image on retina. Either optokinetic or vestibular nystagmus can be induced by self-
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rotation. Optokinetic nystagmus occurs involuntarily when the person gazes into a large 

moving field and generate 2-3 Hz oscillations driven by cortical and subcortical pathways 

(Abadi, 2002).  

Acquired nystagmus could be caused by neural pathologies. Some of them are cerebellar 

pathologies (floccular in particular) and associated with the mutation in the P/Q-type voltage-

gated calcium (Ca2+) channels (Fletcher et al., 1996). These include downbeat nystagmus 

(DBN), the most frequent form of acquired nystagmus characterized by an upward gaze drift.  
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2.2.2.1 Aetiology 

DBN is a disorder of the mechanisms that keep the eyes still during fixation (vestibular system). 

The upward eye movements occur due to the inputs from the anterior canals of the vestibular 

labyrinth over the projections through the superior vestibular nuclei to motoneurons that supply 

elevator muscles (Figure 2.7). 

The vestibulo-ocular reflex should generate an eye movement equal and opposite to that 

of a head movement to keep the eye in the same position in space and stabilize the retinal 

image. 

 

Figure 2.7. Diagram represents the structures involved in the appearance of DBN. 

Source: (Leigh, 2003). 

 

The upward eye movements evoked by the inputs from the anterior semicircular canals 

of the vestibular labyrinth projecting through the superior vestibular nuclei to motoneurons that 

supply elevator muscles, in particular the superior rectus (CN III is oculomotor nucleus in 

Figure 2.6). The downward eye movements evoked by the inputs from the posterior semi-

circular canals projecting through the medial vestibular nuclei to motoneurons that supply 

depressor muscles, in particular the inferior rectus. The cerebellar flocculus inhibits anterior 

(but not posterior) canal projections in the vestibular nuclei. In case of impaired inhibition from 

the flocculus, the eyes will drift upward, causing downbeat nystagmus. It is postulated that 4-
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diaminopyrdine enhances Purkinje cell activity in the flocculus and restores inhibition of 

anterior canal pathways to normal levels (Glasauer et al., 2005; Kalla et al., 2004; Kalla et al., 

2007).  

In DBN the slow upward eye drift is composed of two components, a gaze-direction 

independent bias component and a gaze-dependent component. The upward drift of the eye 

might be a direct consequence of the asymmetric distribution of on-directions of the floccular 

(FL) – PCs: the great majority of these inhibitory cells increase their firing rate for downward 

visually evoked eye movements. Accordingly, damage to the FL would cause a decrease in 

overall firing rate, which is the cause of disinhibition of floccular target neurons (FTNs) in the 

vestibular nuclei, which leads to the upward drift of the eye (gaze-independent component of 

the nystagmus slow phase velocity). The gaze-dependent drift is a consequence of a decrease 

in efficacy of the neural integrator function, which critically depends on the FL drift with gaze-

independent component; 4-AP on the average improved neural integrator function, i.e., gaze-

evoked drift, regardless of aetiology (Leigh, 2003). 

It was previously believed, that the reason for DBN is a lack of inhibition (Leigh and 

Zee, 2006), therefore the treatment targets GABAergic PCs receptors. It is believed that DBN 

could be alleviated by an increase of the PC firing rate in vestibular cerebellum and as a 

consequence to decrease in firing rate in vestibular nuclei. Therefore the effect of the 

aminopyridines was researched in several studies. Thus, Kalla et al. (2004) found that 4-AP 

improved DBN, gain of VOR, smooth pursuit and gaze-holding. It works particularly well 

when DBN is caused by cerebellar atrophy, but show no effect in case of a structural lesion.  

The theory, where the underlying mechanism behind DBN is a lack of activity and 

excitability of PCs, has been disproved by electrophysiological experiments on the tg/tg mice 

cerebellum slices, showing that the therapeutic concentrations of K+ channel blockers do not 

increase the inhibitory drive of cerebellar Purkinje cells (Alvina and Khodakhah, 2010). On 

the contrary, the 4-AP restores the regularity of PC firing by prolonging the action potential 

(AP) and increasing the AP afterhyperpolarization.  

Prompted by these experimental results, Glasauer and colleagues performed a series of 

computer simulations to investigate the potential effect of changes in the regularity of Purkinje 

cell spiking on the activity of floccular target neurons (Glasauer et al., 2011). Using a simple 

conductance based model of an FTN, they found that changes in the regularity of the Purkinje 

cell input only affected the FTN spike rate when the Purkinje cell input to the FTN model was 

synchronized. Moreover, in the presence of synchronized Purkinje cell input, an increase in the 

regularity of the Purkinje cell spiking resulted in larger temporal gaps in the inhibitory input to 
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their FTN model and in an increased spike rate of the FTN. These results predict that the 

increased irregularity in the Purkinje cell activity in DBN should lead to a decreased activity 

of the FTNs, rather than the increased activity that is found in experiments, and they are 

therefore also unable to explain the therapeutic effect of 4-AP. 

The most biologically realistic and commonly used model of DBN is the tottering (tg/tg) 

mouse model (described in section 2.2.1). 

 

2.2.2.2 4-AP Potassium channel blocker 

It was shown that in tg/tg mice, whose Purkinje neurons display irregular firing due to impaired 

pacemaking activity because of the CaV2.1 mutation, ataxia and DBN attacks can be alleviated 

with the potassium channel (KV) blocker 4-aminopyridine (4-AP) (Weisz et al., 2005). 4-AP is 

a nonselective blocker of voltage-gated potassium channels, the main function of which is to 

modulate excitability by opening and closing a selective pore to potassium in response to 

voltage. The flow of potassium ions gets interrupted by 4-AP, which blocks the potassium 

channel and prolongs repolarization. These was shown to increase Purkinje-cell (PC) 

excitability and enhance PC activity which were associated with the restoration of the inhibition 

provided by the cerebellar cortex to FTN with the result on vertical eye movements during 

DBN in experimental (Strupp et al., 2008; Kalla, 2004) and modelling studies (Glasauer, 2008).  

However, in recent electrophysiological experiments it was shown that the therapeutic 
concentrations of 4-AP did not increase the spike rate of the Purkinje cells, but that they 

restored the regularity of their spiking, which is impaired in tg/tg mice (Alvina, Khodakhah, 

2010). The human patients report significant improvement upon 4-AP administration (Kalla et 

al., 2004). Moreover, the human participants with confirmed CACNA1A heterozygous point 

mutation showed no further attacks after 4-AP treatment. When 4-AP administration was 

discontinued for 1 week EA2 attacks reoccurred. Resumption of 4-AP treatment resulted in no 

more attacks (Strupp et al., 2004). Therefore, the effects of 4-AP need to be researched further. 

In this thesis, the possible mechanism of the 4AP action on tg/tg mutants is explained (Chapter 

4).  

Also, 4-AP is reported to be successfully used in rodent modelling of seizures in vitro as 

a stable model able to produce prolonged seizure-like events which are distinct from the inter-

ictal intervals (Heuzeroth et al., 2019). 4-AP epilepsy model is showing a seizure’s morphology 

and frequency stability for several hours together with low rate of spreading depolarizations. 

These advantageous features comes in contrast to other in-vitro models of epilepsy, such as 

high K+ and low Mg2+ models.  
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2.2.3 Absence epilepsy 

Absence epilepsy is a non-convulsive form of epilepsy, sometimes referred as petit mal. 

Absence seizures are characterized by sudden onset, interruption of activity and stare and 

sudden termination. The patient is unable to recall the events which occurred during the seizure. 

Childhood absence epilepsy can be manifested as early as at the age of 2 years old. Absence 

seizures are recognised on the EEG as bilateral GSWDs at 3 Hz in humans (Destexhe et al, 

1999). The mechanisms underlying GSWDs in absence seizures are obscure.  

The attack does not last more than 10 seconds but can reoccur multiple times a day (up 

to 200), which significantly affects the quality of patient’s life. About 20% of cases cannot be 

controlled by specific antiepileptic drugs.  

 

2.2.3.1 Aetiology  

The description of the absence epilepsy appeared in the medical literature as early as at the 

beginning of the 18th century (Tissot, 1783). However, its characteristic symptoms were 

already recognised by Poupart in 1705 (Temkin, 1971, Loiseau, 1992). Thalamus and cerebral 

cortex are commonly thought to be the brain structures involved in the GSWDs discharges. 

Over time, either thalamus or cerebral cortex were thought to have a leading role in the 

aetiology of absence epilepsy. From EEG studies the Steriade group experimentally 

demonstrated that cortical SWDs correspond to the bursting of reticular nucleus neurons after 

each cortical spike, which in turn drives the inhibitory postsynaptic currents in thalamocortical 

relay neurons (Steriade and Contreras, 1995). It was later experimentally shown that weak 

stimuli caused spindle oscillations, while strong input evoked synchronised GABAB-mediated 

slow oscillations on the ferret thalamus, which slices were extracellularly stimulated to mimic 

the cortical input (Blumenfeld and McCormick, 2000; Bal et al., 2000).  

It was suggested by pharmacological studies that GABAB receptors play a key role in 

GSWD generation which showed that agonists of GABAB receptors enhance seizures, while 

their antagonists alleviate them (Snead, 1992). In line with these findings, spindle oscillations 

have been transformed into slower 3 Hz oscillations in experimental conditions on the ferret 

thalamic slices (Huguenard and Prince, 1994), which was later replicated in the modelling 

study of the thalamic network (Destexhe and Sejnovski, 1995, Destexhe et al., 1996a). This 

study confirms the transformation of spindles into 3 Hz spike-and-wave oscillations by 

GABAA receptors block in the cortex, but not in the thalamus. Slow 3 Hz frequency oscillations 

normally observed in humans (Destexhe 2008) and in model studies with stronger stimuli 
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(about 5 shocks per action potential), where 7 Hz oscillations are observed in rodents and in 

model studies (Destexhe 1998) with weak stimuli (1 shock per stimuli). After the suppression 

of GABAA-mediated inhibition Thalamic reticular neurons display bursting activity and elicit 

GABAB-mediated currents in thalamocortical neurons. This leads to synchronised inhibitory 

postsynaptic currents (Destexhe et al., 1996).  

 

2.2.3.2 Neuromodulation 

Direct stimulation of cerebellar surface disrupts thalamocortical oscillations 

Neuromodulation is a relatively new therapy for various neurological diseases. The most 

established neuromodulation application is in the treatment of Parkinson’s disease. It also found 

its application in the epileptic patients.  

Both applications of neuromodulatory approach are already approved: extracranial and 

intracranial. Extracranial, vagus nerve stimulation, is conventional. Intracranial deep brain 

stimulation (DBS) is very promising.  

The most common region for intracranial stimulation is the anterior thalamic nucleus, 

which is already established. Unfortunately, the effect is limited and not durable (10 % of 

recipients were seizure-free for more than 2 years and 16% for over 6 months). Overall for all 

patients seizure frequency decreased by 40 % after continuous application (Fisher et al., 2010).  

Other regions have currently been researched in terms of the possibility of giving the 

higher percentage of complete seizures control and frequency reduction (Fschwind and Seeck, 

2016).   
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Direct stimulation of thalamic nuclei and CN stimulation 

Absence epilepsy is one of the various forms of the epileptic syndrome. The possible reason of 

absence epilepsy, the most common form of generalized epilepsy among children, is excessive 

cortical activity. By the means of electrocorticogram, it could be described as generalized 

spike-and-wave discharge (GSWD). Therefore excessive cortical activity leads to the potent 

bisynaptic inhibition through cortical axonal collaterals to the inhibitory reticular thalamic 

nucleus. This kind of excessive inhibition in thalamus may contribute to absence seizures, and 

also is commonly thought to be the cause of cortical oscillatory activity. Oscillatory cortical 

activity, on its turn, has the dual excitation-inhibition effect on thalamus. Thus, thalamocortical 

network oscillation occurs (Kros et al., 2015).  

Based on the possible explanation of the absence epilepsy occurrence explained above, 

our collaborators from Erasmus MC, Rotterdam hypothesized that the different firing patterns 

of CN neuron should affect the GSWD occurrence. They pharmacologically affected CN firing 

patterns by gamma-aminobutyric acid (GABA)A neuromodulators and also produced a closed-

loop detection system for the on-demand optogenetic stimulation to stimulate CN-neurons. 

Both experimental approaches had different dynamics but lead to the converging deoscillating 

effect – termination of absence seizures. Pharmacological manipulations had slow but long-

term effect, while optogenetic stimulation of CN neurons had fast but short-term effect. So the 

authors concluded that CN neuron firing can control the balance of excitation and inhibition in 

the thalamus and therefore modulate GSWDs occurrence. Moreover, a number of CN neurons 

were shown to be co-modulated with GSWDs. These neurons during the interictal periods had 

burst-like firing patterns with more irregular and frequent rates. Such a feature of GSWD-

modulated CN neurons was utilised to predict whether their oscillation will be phase-locked to 

GSWDs during seizures. Also, it was shown that the effectiveness of the stimuli displays phase 

dependence on the spike-and-wave cycle. Thus, the GSWDs termination success rate as a result 

of the optogenetic stimulation of CN neuron depends on the phase of the thalamocortical 

oscillations and was lowest when the stimulus was applied before the peak of the spike. (Kros 

et al., 2015).  

 

2.3 Chapter conclusions  

In this chapter, the cerebellum and it structures are described in terms of their functions and 

contribution to the nervous system global circuit with particular focus on the cerebello-

thalamo-cortical networks. Cerebellar nuclei neurons are described as the only cerebellar 

output providers. Cerebellum dysfunction may lead to certain pathologies, such as nystagmus 
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and absence epilepsy. In order to find the cures for these pathologies in laboratory conditions 

mutant rodents can be used. The commonly used animal model which is appropriate to imitate 

both absence epilepsy and nystagmus are the tottering mice mutants. The Purkinje neurons of 

the tottering mice show an irregular firing pattern due to the CaV2.1 mutation. It has been shown 

by various sources that non-selective voltage-gated potassium channel blocker 4-AP can 

alleviate this situation by restoring excitability of Purkinje cells. Nystagmus and absence 

epilepsy were described as pathologies originated from cerebellum dysfunction and their 

aetiology and possible treatment was discussed.



 

3 

 

Methodology  
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3. Methodology  

In this chapter the models used for the simulations of the two projects (downbeat nystagmus 

and absence epilepsy, respectively) will be discussed in detail: these models are the biophysical 

model of a neuron in the cerebellar nuclei (CN) and its depressing synapses, and the AdEx 

model for neurons in the neocortex and thalamus with their alpha-function synapses. Also, as 

the choice of the model for absence epilepsy simulations followed some research and model 

trials, some preliminary models will be also discussed in this chapter. Finally, the simulation 

packages used will be presented, along with the tools used for data processing.  

 

3.1 Downbeat nystagmus model 

To study the effect of the regularity of the spike times of a Purkinje cell (PC) on the activity of 

a neuron in the cerebellar nuclei (CN), a biologically detailed conductance-based multi-

compartmental model of a single CN neuron was used. This model had been implemented in 

GENESIS by Steuber and Jaeger, and its dendritic morphology was derived from a rat CN neuron 

recorded by the same authors (Steuber et al. 2011). Subsequently, this model had been 

translated into NEURON by Johannes Luthman and provided with inhibitory synapses exhibit 

short-term depression (STD) (Luthman et al. 2011). The version of the CN NEURON model I 

used for my simulations is the one uploaded by Ovsepian et al. (2013) on the public ModelDB 

repository (senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=150024).  

 

3.1.1 CN neuron model 

The single-neuron model consists of 517 compartments and include a large soma (diameter 22 

μm) and eight Hodgkin-Huxley-type ion channels: 1) fast and persistent sodium currents, 2-3) 

high and low-voltage-activated (HVA and LVA) calcium currents, 4) a tonic non-specific cation 

current that provides an inward current to allow spontaneous activity, 5) a purely calcium-gated 

potassium (SK) current, 6) a hyperpolarization-activated cyclic nucleotide gated (HCN) h-

current, and a mixture of 7-8) fast and slow delayed-rectifier (Kdr) currents (Steuber et al. 

2011). The intracellular concentration of free ionized calcium was modelled as a sub-membrane 

shell with calcium influx from the HVA current and an exponential decay with a time constant 

of 70 ms. To replicate in vivo conditions, the simulation temperature was set to 37 °C. The 

model neuron’s spontaneous firing activity in the absence of synaptic input was at 26 Hz.  

The CN neuron model (Steuber et al. 2011) was used to model a floccular target neuron (FTN). 

By the means of targeted intracellular recordings in brain slices, it was revealed that FTNs 

spontaneously fire at high rates with the mean firing rate of 47 Hz and exhibit dramatic 
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postinhibitory rebound firing after the offset of membrane hyperpolarisation. Such an intrinsic 

firing properties were exceptional among brainstem vestibular nucleus neurons but remarkably 

similar to neurons in the deep cerebellar nuclei (Sekirnjak et al, 2003). These justify the use of 

the CN neuron model (Steuber et al. 2011) as an FTN model. In tg/tg mice, greater irregularity 

of Purkinje cells was observed (Hoebeek et al, 2005), which leads to faster CN or FTN neurons 

firing (Luthman et al, 2015). 

The synapses of the model are located in both the soma and the dendrites. One synaptic 

mechanism is added to the soma and 400 are randomly attached to the dendritic compartments, 

providing GABA-ergic synapses originating from Purkinje cells. AMPA, fast and slow NMDA 

channels are the components of the excitatory inputs to the DCN neurons, where one excitatory 

synapse is on the soma, and 100 are randomly allocated along the dendritic compartments. 

Physiologically the number of synapses that reach the much larger soma is greater than 

the number of synapses that reach individual dendrites. This was modelled by providing input 

to the somatic synapses of the original DCN neuron model at a 50 times higher frequency than 

to the dendritic synapses. This results in soma receiving one-third of all excitatory and one-

ninth of all inhibitory synaptic inputs of the DCN neuron model.  
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3.1.2 CN synapse models  

The model CN neuron received two types of synaptic input: excitatory from 150 mossy fibres 

and inhibitory from 1 to 450 Purkinje cells (PCs). The most biologically plausible value for the 

convergence ratio (CR) of PCs to a single CN neuron is 90 (Person and Raman, 2011). 

Therefore, all my experiments were performed with three different CRs: 1, 90 and 450. Fifty 

of each type of synapses were put on the soma, the others onto randomly chosen dendritic 

compartments.  

There is an assumption that the reason for the synaptic depression is a change in 

neurotransmitter release probability (Rn), which is described by the formula (Shin et al. 2007) 

 

Rn = Rn-1 + (Rss – Rn-1)(1-exp(-!"!#
$

)),     (3.1) 

 

where Rn-1 is the release probability at the previous spike time (dimensionless);  

ISIn - the interspike interval between current and previous spike, ms; 

Rss - the release probability at steady state (dimensionless); 

t - the depression time constant in ms. 

The latter two parameters are updated at the time of each spike n (Shin et al., 2007):  

 

Rss(r) = 0.08 + 0.60e-2.84r + 0.32 e-0.02r     (3.2) 

 

t(r) = 2+2500e-0.274r + 100 e-0.022r,     (3.3) 

 

where r is the instantaneous firing rate in Hz, computed as the inverse of the last ISI. 

For values of tau significantly larger than 𝐼𝑆𝐼𝑛, the release probability of the current spike 

would be the same as the release probability of the previous spike. The value of tau(r) is adapted 

for every spike, not every millisecond. In such a conditions if the depression is ongoing, than 

there would be no recovery from it. Recovery from depression will be ongoing only in case 

when the term %!"!!
&

 is not close to 1.  

Equations (3.1) and (3.2) can be fitted to the data (and example and the accuracy of this 

can be seen in Figure 1 of Shin et al., 2007).   
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To assess how sensitive the results are to the time constant of recovery from depression, 

the model was tested for different factor values of tau(r), formula 3.4: 

 

t(r) = (2+2500e-0.274r + 100 e-0.022r)*factor     (3.4) 

 

The time course of recovery from depression tau(r) ranges widely, depending on the 

interspike intervals. tau(r) was computed for all values of r for different factors (Figure 3.1). 

Figure 3.1 Recovery from depression tau(r) encountered in the PC-FTN 

simulations for different tau(r) scaling factors. tau(r) ranges from 2 to 2,595 ms. 

When tau(r) is increased with the factor of 20, it can reach 51,900 ms.  

 

For the better understanding, the range of tau(r) values, they are shown in the Table 3.1.  

 

Factor 1 0.1 0.5 10 20 
Min r, Hz 0.01 
Max r, Hz 500 

Min tau(r), ms 2.002 0.200 1.001 20.017 40.033 
Max tau(r), ms 2595.137 259.5137 1297.569 25951.37 51902.75 

Min ISI, ms 2 
Max ISI, ms 100,000 

Table 3.1. The corresponding values of minimal and maximal tau(r). 

As seen from Table 3.1, the values of tau(r) are several orders larger than the ISIs.  
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To assess how similar the tau(r) is to the ISI intervals, it was plotted against ISI, Figure 

3.2.  

  A      B 

Figure 3.2 A: recovery from depression time constant depends on the ISIs. B: zoom 

in of A, showing physiological values of ISIs. For the factor 1, ISI of 20 ms would 

correspond to tau(r) of about 20ms, for the ISI of 100 ms the tau(ISI) reaches 200 

ms. With the increase of the tau(ISI) factor, it rises dramatically.  

 

The noise doesn’t affect tau(r), so it would be the same for both regular and irregular PC 

spike trains.   
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All synapses were modelled as changes in double-exponential postsynaptic conductance 

Eq. (3.3) with rise and decay time constants as described in Steuber et al. (2011).  

 

Gsyn(t) = A '()*
&)+"#$%&%&)+'()#

 (exp(- ,
&)+"#$%&

) -exp(- &
&)+'()#

)),  (3.5) 

 

where A is the normalization constant needed to scale Gsyn(t) in a way that it reaches a 

maximum value of gmax ; 

gmax is the maximum synaptic conductance (Luthman et al., 2011); 

The GABAergic inhibitory synaptic current  

 

Iinh(t) = GGABA(t)(V-EGABA),       (3.6) 

 

where triseGABA = 0.25 ms (from Dieter Jaeger's code cn6c_const_dj4.g); 

tdecayGABA = 5.1 ms (Telgkamp et al., 2004); 

EGABA  - reversal potential which was between -70 and -90 mV.  

The rise and decay time constants were chosen by (Steuber, 2011) to fit their experimental 

data. 

For the other nondepressing synapses, the synaptic current comprises AMPA, fast NMDA and 

slow NMDA components:  

 

Iexc(t) = (GAMPA(t) + ffNMDA(V)GfNMDA(t) + fsNMDA(V)GsNMDA(t))(V-Eexc),   (3.7) 

 

where Eexc = 0 is the excitatory reversal potential; 

fNMDA and sNMDA factors describe the voltage dependence of the fast and slow NMDA 

conductances : 

 

f(V) = ,
,-.*/*0	(%.+3)

,       (3.8) 

where P1 and P2 were set to 0.002 and 0.109 for fNMDA and to 0.25 and 0.057 for 

sNMDA component. The parameters of NMDA inputs were set to match the data of Anchisi et 

al. (2001).  

To estimate the plasticity effect of PC synapses on CN neurons I performed simulations 

with and without STD. The length of synaptic transmission delay gabaTransDelay was set to 

2 ms.  
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3.1.3 PC-CN network model  

In my simulations, the PC-CN circuit was not modelled explicitly, but instead, the CN neuron 

was provided with random synaptic input from synthetic PC spike trains. The spike trains were 

generated using a custom-made variant of NEURON’s NetStim object (GammaStim, 

implemented by Johannes Luthman) to provide input to the CN neuron model. This generator 

allowed the irregularity of PC spike trains to be set from 0 to 1.  

Since the DCN NEURON model was translated by J. Luthman from GENESIS, it was 

necessary to use some presynaptic mechanism to reproduce gamma-distributed input spike 

trains, because the NEURON built-in synaptic input generator, NetStim, generates Poisson-

distributed input spike trains. Therefore, the corresponding code was translated to NEURON 

and added as a new mechanism, GammaStim. As NetStim, GammaStim generates a train of 

presynaptic stimuli and serves as the source for a NetCon. With the arrival of the positive 

weighted event in the on = 0 state, the simulator changes to the on = 1 state and goes through 

its burst sequence before changing back to on = 0 state. During that time it ignores any positive 

weight events. If the simulator receives a negative weight even in the on state, it receives a 

negative weight event and change to the off state. In the off state, it will ignore negative weight 

events. A change to the on state immediately causes the first spike (neuron.yale.edu).  

Addition of noise randomises the first spike, so on average it occurs at                                  

start + noise*interval, where start t0 is the start of the first spike in ms, interval is the interval 

between spikes in ms, and noise is the amount of randomness. Noise can be assigned with a 

value fraction from 0 to 1, which means that the ISI consists of a fixed interval of duration t0 

= (1 – noise)*interval and a variable interval. After NetStim generates an event, it is guaranteed 

to remain silent for at least t0 ms. Only when t>t0 ms, the probability of generating another 

event become nonzero. 

The output events were changed to follow the gamma distribution of order from 1 to 6 

(parameter a in the formula 3.7). A gamma distribution of order 1 corresponds to the Poisson 

distribution originally modelled by NetStim. When the ISI distribution of a spike train is 

modelled with a gamma probability density function, the probability p of an ISI to be of length 

x ms can be computed as: 

 

p(x) = ,
5%Г())

𝑥()%,)𝑒7
,
-8      (3.9) 

 

where a is the order parameter and b is the scale parameter. Γ(a) is the gamma 
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function with order a and is calculated as: 

 

Г(a) = ∫ 𝑒%&𝑡)%,𝑑𝑡9
: ,       (3.10) 

 

Another change implemented by Johannes Luthman was the output length, which is now 

determined by duration in ms instead of the number of events. Also, a refractory period has 

been added.  

Suppose there is a Poisson input spike train with spike times {t1, t2, t3, t4, t5, t6, etc}, 

Then the interval distribution is a decaying exponential, which is equivalent to a first-order 

gamma distribution. If the selected spikes to generate a new spike train will be the spikes {t1, 

t3, t5, etc.}, then the interval distribution of this new spike train will be a second-order gamma 

distribution. By selecting {t1, t4, t7, etc.} the third-order gamma distribution will be generated. 

In this way, Gamma order determines the CV of ISI distribution.  

The degree of irregularity is measured using the coefficient of variation (CV), defined as 

the ratio of the standard deviation (SD) to the mean of the inter spike intervals (ISIs). A random 

Poisson process has a CV of one, i.e., the SD is equal to the mean, whereas an entirely regular 

spike train would have no variability and therefore a CV of zero. Control simulations were run 

to define the values of the irregularity (noise) parameter needed to obtain the experimental CVs 

measured by Alvina and Khodakhah (2010). Thus, a CV of 0.07 (typical of wild-type PCs) was 

obtained with an irregularity parameter of 0.138; whereas a CV of 0.18 (typical of PCs in the 

tg/tg mutant) was obtained with an irregularity index set to 0.354. The spike rates of inhibitory 

PC spike trains were set to 60 Hz, the excitatory spike trains represent input from mossy fibres 

were set to spike at 20 Hz. 

The outputs of the simulation are presented as means over 92 seconds, from 1 to 93 

seconds into the simulations. The first second was truncated in order to equilibrate simulations. 

In real neural systems the network will be running for essentially longer time. So, there is no 

need to reach an equilibrium stage. However, a computer simulation needs to start from some 

(arbitrary) but plausible initialization. So it needs some run time before a steady-state is 

achieved, which is the so-called the equilibration period. The set-up of simulation occurs in the 

first second of runtime. Initially the total runtime was 9 seconds, so one second could have a 

big impact on the whole result if it is just 9 seconds long. In the process of my work, it was 

necessary to increase the runtime to make the graphs smoother. And in this case one second out 

of 93 has no impact on the resulting data. It is good practise to make an equilibration. 
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3.2 Absence epilepsy model  

 

3.2.1 Choosing the network model 

At the beginning of the project, there was a final goal in mind, to be able to model the 

thalamocortical network and be able to research the mechanisms behind GSWD termination. I 

therefore first searched the literature for candidate circuit models. 

 

3.2.1.1 A single column thalamocortical network model (Traub et al., 2005) 

The first model of possible choice was a single-column thalamocortical network model (Traub 

et al., 2005). This is a biologically detailed network model with 3,560 multicompartment 

neurons (Figure 3.3), designed to show the network behaviour of neuronal ensembles. Apart 

from chemical synapses, gap junctions were modelled for fast synaptic responses.   
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Figure 3.3. The single-column thalamocortical network model of cortex and thalamus 

(Source: Traub et al., 2005) 

 

After some trials and discussion the choice was not in favour of Traub's model due to its 

unnecessary big (for the purpose) cortical column and excessive complexity.   
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3.2.1.2 Birdno model 

During the discussion with one of the collaborators I was advised to pay attention to the model 

designed by Grill's research group (Figure 3.4) (Birdno et al., 2011).  

 

Figure 3.4 Computational model designed to simulate the response of thalamic neurons 

to DBS.  

A. Thalamocortical (TC) neuron with terminating axons.  

B. 3D prism representation of 50 somas of ventral intermediate thalamus (VIM).  

C, D. VIM thalamus with DBS electrode, drawn under different angle. Source: (Birdno 

et al., 2011) 

 

The model required some changes regarding peculiar anatomical properties of human 

thalamus. The experimental results obtained by our collaborators were made on laboratory 

rodents, therefore I aimed to model rodent anatomical network. Rodents have no ventral 

intermediate (VIM) nucleus of thalamus, and our model aimed to represent rodent anatomy. 

Also, the main reason to continue with model search was that the article describing Birdno’s 
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model has invalid link to the source and the model was not published on the ModelDB 

(https://senselab.med.yale.edu/modeldb/searchFulltext.cshtml?g=birdno+et+al+2011) and it 

was impossible to find the source files, as for most of the models.  

 

3.2.1.3 Thalamocortical and thalamic reticular network (Destexhe et al., 1996) 

The next model of possible choice was Alain Destexhe’s single-compartmental-neuron network 

model aimed to simulate different types of oscillations between interconnected thalamocortical 

(TC) and thalamic reticular (RE) cells (Figure 3.5) (Destexhe et al., 1996). 

Figure 3.5 Diagram of interconnected thalamocortical (TC) and thalamic reticular 

(RE) cells. Open circles represent excitatory α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) mediated synaptic connections; dark grey circles – 

inhibitory GABA-ergic synapses. RE and TC represent inhibitory and excitatory neurons 

respectively. (Source: Destexhe, 2009).  

 

This model might be the model of choice due to the optimal level of complexity and 

ability to simulate oscillatory behaviour of neurons. Some changes were required. The first was 

to change the code in order not to use NEURON graphical interface for plotting and for storing 

the output to file. Those changes were successfully implemented. The second correction was 

to provide the synaptic input to the model. At this stage I temporarily stopped working on the 

model in order to continue after the computation neuroscience CNS 2016 conference. At CNS 

after conversation with the author of this model, Alain Destexhe, another model was selected 

upon his advice – a network of adaptive exponential integrate-and-fire (AdEx) neurons 

(Destexhe, 2009; Brette, Gerstner, 2005). This model is based on features of the exponential 

integrate-and-fire model (Fourcaud et al, 2003) and the 2-variable model of Izhikevich 

(Izhikevich, 2003).  
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3.2.2 Epilepsy model: single-neuron AdEx model  

The leaky integrate-and-fire (LIF) model is the oldest of the simplified models that show 

spiking behaviour and described with two coupled non-linear differential equations. To model 

the patch of the membrane with the spike generation and rest mechanism as a switch, the RC 

representation of the neurons is used (3.11):  

 

Cm 
;3
;&

= - 3%<(
=(

+ I,        (3.11) 

 

where Cm is the membrane  capacitance;  

Rm is the membrane resistance; 

I is the total injected current flowing into the cell.  

Time-constant representations could also be used:  

 

τm 
;3
;&

= -V +Em +RmI,       (3.12) 

 

where τm = Rm Cm.  

There are different modifications of the model developed by adding some components in 

order to make the model more biologically plausible at the level of channel dynamics.  

One of the various subtypes of integrate-and-fire models is the quadratic LIF neuron 

model, which models the ionic current close to the threshold better than the linear LIF model 

(Hansel and Mato, 2000; Latham et al., 2000). For the LIF model to be able to produce a wide 

range of realistic behaviours a recovery variable w was added to the quadratic LIF model by 

Izhikevich (Izhikevich, 2003; Izhikevich and Edelman, 2008):  

 
;3
;&

= k(V-Em)(V – Vthresh) – w + I      (3.13) 

;>
;&

 = a(b(V-Em) – w) 

 

where w is the recovery variable, meant to track the difference between all inward and 

outward voltage-gated currents;  

k, a, b, c, and d are the model parameters (Sterratt et al., 2011).  
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The adaptive exponential integrate-and-fire model (AdEx) model was first described by 

Brette-Gerstner (Brette, Gerstner, 2005) and derived from the two-variable LIF model by 

Izhikevich (Izhikevich, 2004) and exponential LIF model by Fourcad-Trocme (Fourcaud-

Trocme et al., 2003). Brette and Gerstner combined the integrate-and-fire (IF) model by 

Izhikevich (2004) with exponential nonlinearity, which describes the process of spike 

generation and the upswing of the action potential. The model is able to produce adaptation, 

bursts, delayed spike initiation, fast spiking, regular spiking etc, same as LIF, but its 

performance in the spike trains prediction in the model is 96% on average (coincidence factor 

was 0.96) with 2-ms precision, while LIF model with adaptation predicted only 88% of spikes 

(Brette, Gerstner, 2005). The model consists of differential equations system (linked):  

 

   Cm ;3
;?

 =−gL (V−EL)+gLΔ 𝑒(3%3?) @⁄ −>
"

   (3.14)

   
;>
;&

= ,
$>

 [a (V−EL)−w], 

where Cm  - the specific membrane capacitance;  

gL - resting (leak) conductance;  

EL -  the resting potential (which is also equal to the reset value after a spike); 

Δ - the steepness of the exponential approach to threshold; 

VT - the spike threshold; 

w - adaptation variable; 

S - the membrane area; 

τw – adaptation time constant; 

a – dynamics of adaptation; 

b – strength of adaptation, which is the amount that w is incremented by after each spike 

(Destexhe, 2009).  

The point neurons in this model display complex intrinsic properties, depending on their 

parameters as a response to 0.25 nA depolarising or - 0.25 nA hyperpolarising stimulus. To 

confirm the validity of the model I have started from replication of the individual neuron’s 

properties (Destexhe 2009, Figure 1) in Chapter 5. 

I have listed parameters of the single neuron given in the paper (Table 3.1) and applied 

them to the single-neuron model I developed, as there was no code for it available online.  
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Parameter description Parameter 

notation 

Value Unit 

Membrane time constant tau_m 20.0 ms 

Duration of refractory period tau_refrac 2.6 ms 

Resting membrane potential (Leak 

reversal potential) 

v_rest - 60 (thalamic neurons) 

 

mV 

- 70 (cortical neurons) * 

Reset value for membrane potential 

after a spike 

v_reset - 60 mV 

Spike initiation threshold v_thresh - 50 mV 

Slope factor delta_T 2.5 mV 

Adaptation time constant tau_w 600 ms 

Capacity of the membrane cm 0.200 nF 

Dynamics of adaptation a Depends on the neuron 

type ** 

nS *** 

(Nest) 

Strength of adaptation b Depends on the neuron 

type ** 

nA 

 

*The difference in the value of the resting membrane potential for the cortical neurons is not 

described in the article (Destexhe 2009). In the description to the Figure 1 (Destexhe 2009) it 

is written that the resting potential is -60 mV in all cases. Nevertheless, this difference (-60 mV 

and -70 mV) is clear from the Destexhe 2009, Figure 1. Also, the close replication is impossible 

if the resting potential of all cortical neurons is not set to -70 mV.  

For ** see Table 3.3 

For *** the explanation about units difference of dynamics of adaptation parameter a in 

between of Nest and NEURON see Table 5.2 in paragraph 5.2.4 Clarifying Adaptation Units. 

Table 3.3 Parameters, their description, notation, value and units used in Single Neuron 

Model.  
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Neuron 

type 

Units RS with 

strong 

adaptation 

RS with 

weak 

adaptation 

FS LTS TC RE RE** 

a nS * 

(Nest) 

1 1 1 20 40 30 80 

b nA 0.04 0.005 0 0 0 0.08 0.03 

* for the explanation about units difference of dynamics of adaptation parameter a between 

Nest and NEURON see Table 5.2 in paragraph 5.2.4 Clarifying Adaptation Units.  

Table 3.3 Dynamics and strength of adaptation values for different neuron types.  

 

3.2.3 Epilepsy model: synapse model (exponential, alpha-function) 

In a first phase, the thalamocortical model neurons were modelled as exponential integrate-

and-fire neurons with spike-triggered and sub-threshold adaptation currents and exponential 

synaptic conductances – EIF_cond_exp_isfa_ista. With this model configuration I aimed to 

achieve such behaviour pattern of thalamocortical model as spike-and-wave discharges, where 

“spike” is associated with the synchronous firing of all cortical neurons. Such a firing activates 

GABAB-mediated K+ currents, and hyperpolarization in pyramidal neurons. This stops the 

discharges and generates a positive slow "wave" (Steriade, 1974; A.Destexhe, 1999). 

Unfortunately, the model behaviour showed spikes only, with no waves. In order to enable the 

model to produce the “wave” component of GSWDs I needed to implement the mechanism 

responsible for the slow inhibition. In the model, only GABAA-mediated fast inhibition was 

incorporated, with only fast exponentially decaying inhibition possible. In order to be able to 

model the effect of GABAB, the synaptic mechanism in the model was changed for 

EIF_cond_alpha_isfa_ista, where the synaptic conductance change is described by a gamma 

function commonly known as “alpha function”, introduced by Rall (1967) (Formula 3.15). The 

alpha function is a good tool to implement synapses with a slow component such as GABABR-

mediated synapses, because an alpha-function with a time-constant of 15 ms reaches its peak 

conductance also after 15 ms. The total inhibition of the alpha synapse (its integral over time) 

scales with the square of tau.  
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g(t) =∑ (&%&()
$

𝑒𝑥𝑝	 -%(&%&()
$

.B
CD, ,       (3.15) 

 

where t is the current time; 

ti is the time of i-th spike in the presynaptic neuron; 

t – time constant of the synapse.  

 

The GSWDs associated with absence epilepsy can be of different frequency, dependent 

on the animal model, where they are observed. Thus, in cats they are of 3 Hz frequency (Gloor 

& Fariello, 1988) and 5-10 Hz in rodents. As here the attempts are made in order to replicate 

and explain the experimental results obtained in mice, the target frequency of GSWD would 

be around 7 Hz, and this could be achieved by the increase in the inhibitory time constant tau 

from its default value of 5 ms to 15 ms. 

 

3.2.4 Network model for absence epilepsy 

The network model is the general case of the single neuron model, extended for some number 

of neurons, with added terms for synaptic interactions. It is represented by the formula (3.16): 

 

Cm dVi /dt =−gL (Vi−EL)+gLΔi exp [(V−VTi) /Δi) −wi/S− ∑ 𝑔E ij (Vi−Ej)   (3.16) 

dwi /dt = (1/ τwi) [ai (Vi−EL)−wi], 

 

where Vi is the membrane potential of neuron i. All other parameters are listed in the 

equation below. Indexing shows variation of neuron type. 

The term ∑ 𝑔E ij (Vi−Ej) indicates synaptic inputs, where gji is the conductance of the 

synapse of type j onto neuron i and Ej is the reversal potential for synapses of type j.  

 

Excitatory and inhibitory peak conductance values were used as in the paper (Destexhe 

et al., 2009), 6 and 67 nS respectively.  

In Destexhe (2009) several network configurations are described. They are:  

• Cortical single-layer 

• Thalamic single-layer 

• Two-layer cortical: 2000 neurons in cortical layer A and 500 neurons in cortical layer 

B (see Figure 3.6) 

• Thalamocortical: 2000 neurons in cortical layer and 200 neurons in thalamic neurons 
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(see Figure 3.7). 

 

95% of the pyramidal (PY) cells were regular spiking (RS), and 5% were low-threshold 

spiking (LTS). Interneurons (IN) were of fast spiking (FS) type. The interlayer connection was 

only excitatory, with a connection probability of 1%.  

The main difference of thalamic layer B is the replacement of 500 cortical neurons with 

200 thalamic neurons and the absence of connections between excitatory cells.  

Figure 3.6 Schematically represented 2-layer cortical network model architecture of 2500 

neurons, 80% of which are excitatory and 20% are inhibitory. The model consists of 2 

layers. Each layer consists of interconnected cortical inhibitory interneurons (IN) and 

cortical excitatory neurons (PY). There are 10% of low-threshold spiking (LTS) neurons 

in layer B. (Source: Destexhe 2009).  

 

 
Figure 3.7 Schematically represented thalamocortical model of 2200 interconnected 

neurons, organised into 2 layers. Layer A: same as in 2-layer cortical model. Layer B: 

200 TC and RE cells, 1:1. TC neurons are not interconnected. (Source: Destexhe 2009).  

 

LTS cells are present in amount of 10% for 2-layer cortical model, but it is not mentioned 

in the article (Destexhe et al., 2009) about their presence in thalamocortical configuration. I 
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referred to the literature to find out about the presence / absence of LTS cells in thalamus. It 

was shown, that one of the response type of thalamic relay cells is bursting activity, when the 

neuron hyperpolarised. During this hyperpolarization neurons typically respond with LTS. 

Different neurodegenerative disorders are associated with LTS bursting activity in thalamus, 

including absence epilepsy (Jeanmond and Morel, 1996). Therefore, I decided to leave LTS 

cells in thalamocortical model as it is in two-layer cortex.  

 

3.3 Simulation software 

All simulations were performed with the NEURON simulation software (Hines and Carnevale, 

1997), PyNN (Davison et al., 2008) and NEST (Peyser et al., 2017). 

 

3.3.1 NEURON 

NEURON is a neural simulation tool designed to model single neurons as well as neuronal 

networks (Hines and Carnevale, 2001). It can be used either to deal with the complex 

biologically realistic models with detailed membrane properties or with the large-scale 

networks where the individual morphology is neglected to reduce the computational cost (like 

AdEx). Though, it is most computationally effective for the parts of single cell or small 

networks (Hines and Carnevale, 1997). The default integrator used by NEURON is the backward 

Euler method, which is suitable to provide the user with good qualitative results even with 

considerable time step. It is proved to be numerically stable. There is an option to change to 

the Crank-Nicolson integration method, which is the combination of both backward and 

forward Euler, where the numerical error is proportional to the square of the time step size.  

NEURON is written in two languages, the interpreted (hoc) and compiled (mod). The 

interpreter is written in hoc, a floating-point calculator (Keringhan and Pike 1984) with added 

object-oriented syntax. It can be used for example to execute simulations or update parameters. 

The compiled model description language (NMODL) is used in NEURON to customise and 

expand the library of biophysical mechanisms for particular models (Hines and Carnevale, 

2000).  
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3.3.1.1 P. Gleeson’s implementation (the reason for a change from NEURON to Nest) 

Padraig Gleeson raised the issue about the fact that when the alpha function is used instead of 

the exponential, it produces different results when run on NEURON 

(https://github.com/NeuralEnsemble/PyNN/issues/559). 

Apparently, NEURON is very sensitive to the time step when using the alpha function, 

which is not the case for Nest and Brian simulators.  

 
Figure 3.8 is taken from github NeuralEnsemble issue #559, reproduced by Appukuttan-

Shailesh (https://github.com/NeuralEnsemble/PyNN/issues/559). Time is plotted on the 

horizontal axis in s, and voltage is plotted on the vertical axis in mV. The figure shows 

NEURON time-step dependency. For each time-step the voltage traces are different, while 

they should be exactly the same.  

 

The issue #559 was closed as it duplicates another issue risen earlier, #266. Andrew 

Davison had some suggestions on the possible ways to solve this issue, like checking the .mod 

file where the AdExp mechanisms for NEURON is implemented. Thus, the issue #266 was 

opened on the 23 October 2013, and was still not solved on the 13-th of June 2019.  

To consider the current issues with the NEURON numeric integration time-step, the 

decision to use PyNN with NEST, rather than PyNN with NEURON was made.  
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3.3.2 PyNN 

PyNN is an open-source software package (http://neuralensemble.org/PyNN). It is a common 

application programming interface (API) for various simulators (NEURON, NEST, PCSIM, 

Brian and the Heidelberg VLSI neuromorphic hardware). It allows building neuronal network 

models, using the Python language once and running it on any of the above-mentioned 

simulators without modifications (Davison et al., 2009). PyNN provides a library of 

standardized synapse and neuron models, as well as connectivity algorithms. In order to be able 

to run the model written in PyNN on different simulators it is required to use standard cell 

models (single-compartment or point neuron models). The only simulator for multi-

compartmental models supported with PyNN is NEURON.  

For the thalamocortical network simulations the EIF_cond_exp_isfa_ista neuron model 

was used initially. This is the conductance-based exponential integrate-and-fire (IF) neuron 

with a spike triggered and sub-threshold adaptation currents (Brette and Gerstner, 2005). Later 

it was replaced with the alpha function model EIF_cond_alpha_isfa_ista. 

 

3.3.2.1 Neo object model  

The recording is done from many channels, which makes the datasets very large. Therefore, 

computation-efficient handling of data method is required. For this purposes, Neo package is 

utilised by PyNN as a data model to provide the common format for output data.  

When the simulation is finished, the get-data () method returns a NeoBlock object. This 

object serves as a top-level data container which contains Segments with data objects inside 

(Garcia et al., 2014).  
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Figure 3.9 Neo data type containers: data objects, container objects and grouping objects 

(Garcia et al., 2014).  

 

Container objects are implemented in Neo as hierarchical groups of data. Neo data 

objects contain numerical data and concomitant metadata (for example units). In a Block the 

Segments group together any data object types with a common recording time 

(http://neuralensemble.org/docs/PyNN/data_handling.html). The data objects were used here 

are described below. AnalogSignals (recorded membrane potential in this case) and SpikeTrains 

(array of spikes) are stored within Segments. These data objects can be further recorded (with 

record() method) and stored, processed and analysed same as any neurophysiological data.  

 

3.3.3 NEST 

NEST is a one of the most commonly used simulators of the Human Brain Project (R. A. 

Tikidji-Namburyan et al., 2017) and was designed to model large networks of point spiking 

neurons or neurons with small numbers of compartments (http://www.nest-initiative.org).  

Nest is written in C++ and it has a user interface PyNEST which allows to use Python as 

simulation language for network description, but not for individual neurons (Eppler et al., 

2009).  
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3.4 Data analysis tools 

In the project, data analysis is conceptually separated from data acquisition, as it is easier to 

write a robust lightweight analysis code if it is focused on analysis only. For this reason, 

MATLAB r2015a (The MathWorks) was used to analyse the output of the DCN model, and R 

(R Development Core Team, 2008) was used to analyse the thalamocortical model output..  

 

3.5 Chapter conclusions 

Since the thesis addresses cerebellar pathologies, we built detailed models to explore the 

mechanisms underlining downbeat nystagmus and absence epilepsy. Two different models 

were used to solve them, each with a suitable level of complexity and details: a single-neuron 

conductance-based multicompartmental model of a FTN neuron with incoming synapses from 

Purkinje cells, and a thalamocortical network model with AdEx point neurons, where 

intracellular morphology is neglected. Both models were implemented in NEURON, but the 

epilepsy model was later translated into PyNN (and run using NEST) to avoid some issues, 

including time step sensitivity. 



 

4 

 
Modelling Downbeat 

Nystagmus 

  



57 
 

This chapter starts with a brief introductory description of the two models which aimed to 

explain the alleviating effect of 4-aminopyridine (4-AP) on DBN. Afterwards, the role of 

cerebellar short-term synaptic plasticity in the pathology and medication of downbeat 

nystagmus is shown. Short-Term Depression is the lacking component of the previously 

considered models. The conducted research aimed to investigate the role of short-term synaptic 

plasticity (hundreds to thousands of milliseconds) in the pathology and medication of downbeat 

nystagmus. This was done using the morphologically-realistic conductance-based model of a 

cerebellar nucleus neuron as a floccular target neuron. The parameter choice for Purkinje cell 

input is explained here. The influence of irregularity/regularity, asynchrony/synchrony, STD 

and a potassium channel blocker 4-AP as a remedy for DBN in a mouse model of episodic 

ataxia (mutation of P/Q Ca2+ channels) will be discussed. 

 

4.1 Experiment 1: Modelling downbeat nystagmus  

Reviewing the literature about Potassium channel blocker 4-aminopyridine (4-AP), I have 

found one model study (Glasauer and Rossert, 2008) which was able to partially explain the 

beneficial effect of 4-AP on DBN found experimentally (Kalla et al., 2007). Based on two 

previous models, a multicompartmental model of a Purkinje cell (PC) (Miyasho et al., 2001) 

and a system-level model of ocular movements (Marti et al., 2005) they were able to show that 

4-AP improves a gaze-dependent component of DBN but the effect was less prominent than in 

experimental studies. These results are only partially in line with the experimental studies, 

where 4-AP significantly improved a gaze-dependent component of DBN but had less effect 

on the spontaneous drift.  

To achieve these results, Glasauer and Rossert (2008) modelled cerebellar degeneration 

as a decrease in Ca2+ P-type channels (CaP) conductance to 80%, which lead to a decrease in 

average firing rate in response to Poisson-distributed spike trains and delay in response onset, 

mimicking the mutation in a gene encoding a12.1 subunit. The effect of low concentrations of 

4-AP was modelled by lowering the conductance of low-threshold potassium channels – D-

type potassium channels (ID) to 60%, which had no effect on firing rate. The effect of low 

concentrations (1-10 µM) of 4-AP on guinea pig PCs shortened slowly depolarizing potential. 

This, in turn, reduced the latency of Ca2+ spikes in response to intracellular current pulse 

(Etzion and Grossman, 2001). Eventually, Glasauer and Rossert (2008) modelled the effect of 

DBN and 4-AP all together by reducing CaP and ID conductances at the same time (Figure 

4.1). Eventually, by superimposing the single Purkinje cell’s (PC’s) response of 2000 neurons 
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they constructed a population response, which served as an input to the system-level model 

(Marti et al., 2005) (Figure 4.2).  

 
Figure 4.1. Comparison of the simulated single neuron (multicompartmental model, left) 

and population response (right) constructed from single-neuron responses, which served 

as the input to the system-level model. Left: The lines show the average firing rate in 

response to Poisson-distributed spike trains with varying mean frequency. Grey areas are 

defining the 95% confidence intervals. Right: black dots - activation functions. Their 

intersections with the solid line give fixed points of the systems model for gaze-

independent component. The x-coordinate of the fixed points is proportional to the 

nystagmus slow phase velocity in gaze-straight ahead. The slope of the activation 

function determines the overall integrator time constant. Source: (Glasauer and Rossert 

2008).  

 

The authors were unable to explain completely the beneficial effect on 4-AP in DBN 

treatment. They speculate that 4-AP apart from its beneficial effect on single PCs might have 

some positive effects on the population level. They conclude that additional simulations are 

needed to explain the difference between experimental and modelling results.  

Later, inspired by new experimental results which showed that 4-AP has no effect on PC 

firing rate, but rather restore their regularity (Alvina and Khodakhah, 2010), they conducted 

another modelling study using a mathematical model of the ocular motor and cerebellar 

circuitry (Glasauer et al., 2011). The aim was to investigate the potential effect of changing the 

regularity of cerebellar PCs on their target neurons in the vestibular nuclei in a modelling study 

in health and during episodic ataxia type 2 (EA2). To reach this aim, the authors asked how 

synchronized regular firing effects a realistic number of PCs and as a consequence a potential 

target neuron in vestibular nuclei. Synchronization of spikes from several excitatory neurons 
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may lead to the spiking of the postsynaptic neuron due to summation of the excitatory 

postsynaptic potentials (EPSPs). However, this is clearly not the case for inhibitory input, since 

the summation of inhibitory postsynaptic potentials (IPSPs) normally does not evoke an action 

potential. 

 
Figure 4.2. Simulation of two DBN components: vertical saccades and gaze holding by 

the means of activation function (shown at the Figure 4.1, right as a block dots) 

corresponding to a healthy (upper row), DBN (middle row) and DBN together with 

applied 4-AP cases. Left column: target position is shown as a grey dashed line, and eye 

position – as a black line. Right column: phase eye velocity – black solid, target position 

– grey dashed lines. The gaze-independent nystagmus significantly decreases, while 

gaze-evoked component is almost unchanged. Source: (Glasauer and Rossert 2008).   
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Table 4.1 Summary of the data being used by (Glasauer et al., 2011). CV – the mean 

coefficient of variation, gpace – pacemaker cell conductance, ge0 – PC conductance, 𝞼e – 

noise standard deviation, F – the mean PC output frequency.  

  

200 integrate-and-fire PCs were modelled together with one additional pacemaker PC 

connected using inhibitory alpha synapses to synchronise other neurons, driven by constant 

excitatory input. They generated regular firing patterns as in wildtype mice (CV = 0.07) and 

irregular firing patterns as in tg/tg mice (CV = 0.18). The coefficient of variation (CV) of 

interspike interval (ISI) is the measurement of regularity. It calculates as ratio of the standard 

deviation to the mean inter-spike intervals (ISI) (CV = 𝞼/mean ISI). The case when the standard 

deviation is equal to the mean ISI describes the completely irregular process with CV = 1, while 

CV = 0 describes a completely regular process. CV values were taken from the experimental 

study (Alvina and Khodakhah, 2010) and summarised in Table 4.1. According to their initial 

assumption about the joint effect of regularity and synchrony, they simulated 4 inhibitory input 

configurations: irregular synchronised, regular synchronised, irregular unsynchronised and 

regular unsynchronised (Figure 4.3).  
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Figure 4.3. Simulated effects of regularity on synchronised and unsynchronised 

inhibition. B: Raster plot of 200 synchronised integrate-and-fire (I&F) PCs with regular 

(CV = 0.07 (B1)) and irregular ((B2 ) CV = 0.18) spike times. C: Raster plot of 200 

unsynchronised PCs, but the response of each neuron is randomly shifted to create 

unsynchronised responses with irregular (C1) and regular spike times. The CV values are 

the same as in B. D: Normalised synaptic input generated from synchronised and 

unsynchronised spike trains (as in B) with regular (black solid) and irregular (grey dashed 

lines) spike times. E: Membrane potential response of floccular target neuron (FTN) as a 

result of synchronised (E1) and unsynchronised (E2) synaptic inhibitions using the input 

shown in D with regular (solid black) and irregular (dashed grey lines) spike times. 

Source: (Glasauer et al., 2011).  

 

As a result, synchronised PCs with regular firing (Figure 4.3 B2) showed higher overall 

synchrony than with irregular firing (Figure 4.3 B1), which resulted in higher conductance 

(Figure 4.3 D1). When the synchrony was removed from generated spike trains (Figure 4.3 C1 

and C2), the effect on regularity was also annihilated (Figure 4.3 D2). Interestingly, the synaptic 

strength and thus the mean synaptic inhibition remained the same in all four cases, but 

synchronised regular inhibition led to high spiking activity, which resulted in less effective 
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inhibition on the output. Note, one spike is missing in regular synchronised configuration 

(Figure 4.3 E1, dashed grey line). Therefore, in the presence of synchronized Purkinje cell 

input, the regularity of the Purkinje cell spiking resulted in larger temporal gaps in the 

inhibitory input to their floccular target neuron (FTN) model and an increased spike rate of the 

FTN. These results predict that the increased irregularity in the Purkinje cell activity in DBN 

should lead to a decreased activity of the FTNs, rather than the increased activity that is found 

in experiments. Therefore, these results were unable to explain the therapeutic effect of 4-AP.  

 

Importantly, the model by Glasauer and colleagues does not take short-term depression 

(STD) at the synapses between Purkinje cells and FTNs into account. We hypothesized that 

this absence of STD could explain the apparent contradiction between the experimental (Alvina 

and Khodakhah, 2010) and computational (Glasauer et al., 2011) results. Our assumption was 

based on previous results obtained by our research group (Luthman et al., 2011), showing that 

FTN neuron firing rate acceleration with input irregularity depends on STD (Figure 4.4). In the 

absence of STD, the irregularity dependent increase in firing rate disappears. The STD effect 

on the FTN firing rate is largest when PC firing is completely irregular.  

 
Figure 4.4 Change of the model CN neuron as FTN model firing rate in response to 

different degree of irregularity in the presence (red curve) or absence (blue line) of 

synaptic depression at the PC – FTN synapse. Reproduced from (Luthman et al., 2011).  

 

To simulate the effect of irregular versus regular Purkinje cell input in the presence or 

absence of STD in the pathology and 4-AP treatment of DBN, I used a morphologically realistic 

conductance-based model of a cerebellar nucleus neuron (Steuber et al., 2011; Luthman et al., 
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2011) as an FTN model to simulate the effect of irregular versus regular Purkinje cell input 

(Figure 4.5).  

 
 

Figure 4.5 Diagram representing the structure of the morphologically realistic 

conductance-based model of a CN neuron as an FTN model. It is constructed of 450 PC 

which can fire with different degrees of synchronicity (0 - 450). PCs are connected by 

double-exponential synapses with CN neuron – the model of FTN, where the input 

irregularity converts to the output firing rate. The input provided at 60 Hz with regularity 

presented via CV of 0.34 and 0.66 for the regular wild-type and irregular tg/tg input 

respectively and in the presence and absence of STD at the Purkinje cell – FTN synapses. 

 

To run the simulation in NEURON, the CV values should be transformed to a degree of 

regularity or “noise”. By default in the current model, Gamma order, which is the order 

parameter in (Formula 3.10), was set to 3 and all simulations were performed with this setting. 

Gamma order could be varied from 1 to 6, with 1 for pure Poisson process generated by 

NetStim.mod.  

The transformation from CV to noise was performed with the help of Figure 4.6, green 

line. This gave us the satisfactory results, as the noise calculated from the CV values taken 

from (Alvina et al., 2010) (0.07 and 0.18) is 0.138 and 0.354, which is in the reasonable range 

(0 – 1). 
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Figure 4.6. Dependence of Purkinje spike trains CV from noise levels for 3 different 

Gamma orders. There is inverse relationship between Gamma order and CV (The smaller 

the Gamma order the higher CV). 

 

The relationship between CV and noise, which is the irregularity setting (both terms are used 

interchangeably) was determined empirically, using Figure 4.6 above. I am not aware of a way 

of doing this analytically.  

The data from (Alvina et al., 2010), especially for tg/tg mice was still too regular. 

According to my assumption, it should represent less regularity to be able to cause such severe 

repercussions, such as episodic ataxia type 2 (EA2) and nystagmus as its symptom. Therefore, 

I referred to other experimental data, taken from our collaborator Dr Freek E. Hoebeek, 

Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands, and his 

research group. The inter-spike-interval coefficient of variation (CV) values from wild-type 

and tottering (tg/tg) mice was taken from Luthman et al. (2011) and were 0.34 and 0.66 

respectively. This data was different from (Alvina et al., 2010), especially for tg/tg mice: CV = 

0.66 vs 0.18 previously. But the new tg/tg CV value became out of range (greater than 1) after 

transformation to noise. In order to transform the new CV value to noise, the Gamma order 

was changed in Gammastim.mod file. In Figure 4.4 the CV(noise) dependency represented for 

different Gamma order values. It could be easily concluded, that Gamma order of 1 (the 
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minimal value) is the best option for the transformation of CV values to noise. The respective 

ISI distributions of input spike trains are shown on Figure 4.7.  

 
Figure 4.7 ISI distribution of input spike trains from wild-type mice with irregularity 

settings of 0.425 (on the left) and tg/tg mice (on the right) with irregularity settings of 

0.825. The average ISI is around 16ms for wild-type and approximately 10 ms for tg/tg, 

making the wild-type input frequency to be 62 Hz and the tg/tg - 100 Hz. 

 

The respective values for noise can be found in Table 4.2. More demonstrative 

presentation of output firing rate is in the Figure 4.8. Table 4.1 and Figure 4.8 demonstrate the 

difference in output from FTN firing rate between wild-type and tg/tg mice with the presence 

of STD and without it. Modulation of the signal occurs in FTN neuron, where the signal is 

transformed from an input irregularity to an output firing rate. The difference in firing rate for 

different levels of synchronicity (1 /90/ 450), which will be called here convergence ratio (CR), 

was estimated with both noise levels, which is applicable to both wild-type and tg/tg mice. 

At the CR of 1 (four bars on the left, figure 4.8), when the FTN neuron receives an input 

from a single PC or completely synchronised PCs, irregular Purkinje cell input led to an 

increase in the FTN spike rate of 16% compared to regular input in the presence of STD and 

to a 13.95% increase in the absence of STD. Thus, for CR = 1, the FTN output increases in 

STD-independent way. At a CR = 90 (four bars in the middle), which is the most realistic 

among represented (De Zeeuw, et al., 1994; De Zeeuw et al., 1995; Palkovits et al., 1977), the 

FR acceleration is significant only for the case where STD is switched on. The difference 

between regular and irregular distribution of spike times occurrence is 17.83%. In the case 

where FTN neuron receives an input from 450 PCs, representing completely desynchronised 
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PC input, the FTN neuron output is recorded also in STD-dependent way. The difference 

between tg/tg irregular and wild-type more regular responses is 15%. Therefore, for higher 

convergence ratios of 90 and 450, an input irregularity based FTN spike rate increase only 

occurred in the presence of STD.  

 

CR 90 
CV(input) 0.34 0.66 

Noise(input) 0.425 0.83 
STD + - + - 

CV(output) 0.34 0.34 0.37 0.39 
Noise(output) 0.425 0.425 0.46 0.49 

Firing Rate (Hz) 38.7 36.2 47.1 36.6 
 

CR 450 
CV(input) 0.34 0.66 

Noise(input) 0.425 0.83 
STD + - + - 

CV(output) 0.32 0.31 0.34 0.34 
Noise(output) 0.4 0.39 0.43 0.43 

Firing Rate (Hz) 38.4 35.8 45.2 34.8 
 

CR 1 
CV(input) 0.34 0.66 

Noise(input) 0.425 0.83 
STD + - + - 

CV(output) 0.85 0.88 0.99 1.03 
Noise(output) 1.063 1.1 1.24 1.29 

Firing Rate (Hz) 64.6 62.9 76.86 73.1 

Table 4.2 Output firing rate in Hz (as mean ± stdev) from wild type and tg/tg mice's FTN 

neurons, which were completely synchronised or unsynchronised with or without the 

presence of STD.  
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Figure 4.8 FTN neuron model firing rate response to spike trains from tg/tg and wild-

type PC in the presence and absence of STD at the Purkinje cell – FTN synapses for a 

different number of PC converging onto FTN model.  

 

Based on the above, I proposed a mechanisms of STD contribution to the translation 

process of input irregularity into output spike rate. For this I reconstructed individual PC 

synaptic conductance traces onto FTN (Figure 4.9 A,B) as well as a population conductance 

trace (Figure 4.9 C,D) (sum of all 450 PC – FTN synaptic conductance traces). Then in the 

model I recorded voltage traces from FTN neuron and found that in the presence of STD, the 

short inter-spike intervals in the irregular input lead to increased depression of the synaptic 

conductance (red), a decreased total inhibitory conductance injected into the FTN model, and 

an increased output spike rate (note the presence of 6 versus 4 spikes with and without STD in 

panel E). Our results are in line with experimental research results (Alvina and Khodakhah, 

2010).   
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4.2 The robustness of the results  

 

The robustness of the results against scaling tau up or down was estimated. The change 

s in the recovery time constant were made by using formula 3.4, applying different scaling 

factors to see whether or not the mapping of input irregularity on output firing rate is affected. 

The model was not sensitive to the changes is tau(r) values for tottering (0.425 noise) 

irregularity settings. For the wild-type (0.825 noise) irregularity settings it showed remarkable 

stability for the factors increasing tau(r), but there is some variation in the firing rate for the 

factors 0.1 and 0.5, slightly decreasing the output firing rate. More sensitivity is observed at 

the completely irregular cases (noise 1) for small tau(r) values.  

 

Figure 4.9 The CN neuron firing rate in response to different degrees of irregularity in 

the PC input spike trains with. Different values of tau(r) are evaluated.  

 

For small tau values the recovery from depression is fast, and the depression does not 

build up. The depression builds up for large tau values, where recovery is not so effective – 

that is why the CN neuron firing rates are higher in this case. For small tau values the CN firing 

rates are lower as the depression disappears faster between spikes and the inhibitory synapses 

stay stronger. The model appeared to be very stable, because for all tau(r) it still shows robust 

results. Therefore, the results are not very sensitive to the parameters of recovery from 

depression.  
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4.3 The mechanism of the translation of input irregularity into the output firing rate 

 
 

Figure 4.10 The mechanism of the translation of input irregularity into the output spike 

rate by STD. Response of the FTN model to irregular (tg/tg, left) and regular (wt, right) 

Purkinje cell input at 60 Hz and a convergence ratio of 90. The presence (absence) of 

STD is indicated in red (blue). A and B show the conductance trace of a single Purkinje 

cell synapse, C and D show the sum of conductance traces of all Purkinje cell synapses 

onto the FTN model, E and F are voltage traces recorded in the FTN soma. In the presence 

of STD, the short inter-spike intervals in the irregular input lead to an increased 

depression of the synaptic conductance (red), a decreased total inhibitory conductance 

injected into the FTN model, and an increased output spike rate (note the presence of 6 

versus 4 spikes with and without STD in panel E). 
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4.4 Chapter conclusions 

Our results provide a potential explanation for the pathology and 4-AP treatment of 

pathological nystagmus. DBN happens as a consequence of the mutation in the CACNA1a 

gene, which results in CaV2.1 P/Q channel channelopathy. This alters intrinsic firing properties 

of GABAergic PCs, making it irregular. For both synchronized and unsynchronized Purkinje 

cell input, irregular (DBN) input trains result in higher FTN spike rates than regular (4-AP) 

ones. In the presence of unsynchronized Purkinje cell input, the acceleration of the FTN spike 

output during simulated DBN and the corresponding deceleration during simulated 4-AP 

treatment depended on STD at the Purkinje cell synapses. Acceleration of the FTN firing rate 

lead to nystagmus and motor deficit, while 4-AP treatment restored PCs regularity and 

alleviated nystagmus. 



 

5 

 

Replication of the 

Thalamocortical 

Models 
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Chapter 5 is focused on the results of the various model replications on the way to a  

thalamocortical network model, suitable to display complex ictal behaviour. In this chapter, I 

show the results of the replication of the single neuron model, single-layer model, two-layer 

cortical and thalamocortical model. Along with the replication results I explain the 

discrepancies in the model description in the paper (Destexhe, 2009) and the model code and 

plots, which were identified and fixed. Also, some historical misunderstandings in parameters 

are also clarified.  

 

5.1 Experiment 2: Single neuron model replication 

I aimed at finding a thalamocortical model, which can display epileptic behaviour. As a starting 

point, I replicated the behaviour of different single cortical and thalamic neurons, out of which 

the thalamocortical model was built. If the single neuron model is built accurately following 

the description in the paper (Destexhe 2009), one would notice that regular spiking (RS) and 

fast spiking (FS) cortical neurons reset to the resting potential value like thalamic neurons, 

which is not the case for Figure 1 (Destexhe, 2009). This crucial difference in behaviour of the 

cortical and thalamic neurons is not described in the above-mentioned paper, but is clearly 

shown on the Figure 1 of the paper. After a change in the resting potential of cortical neurons 

to -70 mV (from -60 mV) and setting the reset value to -60 mV, it became possible to replicate 

the behaviour of the individual neurons qualitatively, but not quantitatively, due to differences 

in the simulation software and its versions. It is clearly seen, that for the thalamic neurons, in 

response to a depolarising stimulus, the resting potential is equal to the reset value, while it is 

not the case for cortical neurons (Figure 5.1).   
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Figure 5.1. Original (left panel in black) and replication (right panel in red) of Figure 1, 

Destexhe 2009: intrinsic properties of the single neurons, utilized in the model. From (a) 

through (c) and the upper panel of (d) to (f) the single neuron activity is shown as a 

response to a depolarizing stimulus of 0.25 nA; lower panel of (d) – (f) – a single neuron 

response to a hyperpolarising stimulus of -0.25 nA.  

(a) Regular spiking cortical neuron with strong adaptation: a = 1 nS, b = 0.04 nA; (b) 

Regular spiking neuron with weak adaptation: a = 1 nS, b = 0.005 nA; (c) Fast spiking 

cortical neuron without adaptation show tonic firing a = 1 nS, b = 0 nA; (d) Low threshold 

spiking neuron: a = 20 nS, b = 0 nA; (e) Thalamocortical relay neuron: a = 40 nS, b = 0 

nA; (f) Thalamic reticular neuron: a = 30 nS, b = 0.08 nA.  

 

The b parameter of the AdEx model denotes the strength of spike-triggered adaptation 

and regulates it. The resultant adaptation is strong for b = 0.04 nA and weak for 0.005 nA 

(Figure1, a (a = 1 nS, b = 0.04 nA), b (a = 1 nS, b = 0.005 nA); Figure 2 RS weak) (Table 2). 

This behaviour is similar to RS cortical neurons (Connors and Gutnick 1990). For b = 0 there 

is no visible adaptation for a step-current response (Figure 1, c (Destexhe, 2009): a = 1 nS, b = 

0 nA and Figure 5.1 c and 5.2 FS), the intrinsic behaviour is similar to FS neurons of cortex 

(Connors and Gutnick 1990), and is utilised to model cortical inhibitory neurons. This state can 

be described as an absence of spike-triggered adaptation and an adaptation sensitivity to the 

sub-threshold voltage (Naud et al., 2008).  
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The dynamics of adaptation parameter a was kept at the same level at the value of 1 nS 

for all cortical neurons. According to Izhikevich (2004), the further increase in dynamics of 

adaptation results in bursting activity (Figure 5.1 d, e, f and Figure 5.2 LTS, TC and RE 

depolarised). The moderate value of a, even with the strength of adaptation of zero, displays 

spike-frequency adaptation, as in low-threshold spiking (LTS) neuron (de la Peña and Geijo-

Barrientos 1996) (Figure 5.1, d; Figure 5.2, LTS depolarised).  

As a response to hyperpolarising step current, both LTS and TC neurons show a strong 

rebound burst and moderate adaptation.  

All thalamic single neuron behaviour is shown as a response to a hyperpolarising (the 

bottom panel) and depolarising (middle panel) step-current input. The further increase of 

parameter a leads to a stronger bursting, which is characteristic for the TC neurons. 

Unfortunately with the given parameter set and with no change to the step current amplitude, 

the TC dynamics could not be replicated (Figure 5.1 e (a = 40 nS and b = 0 nA); Figure 5.2 e 

TC depolarized). Moreover, it looks like the parameter values of the LTS and TC neurons are 

interchanged: Figure 5.1 e on the right and Figure 5.2 e looks like a replication of the Figure 

5.1 d on the left (original), and Figure 5.1 d on the right, Figure 5.2 d looks like the replication 

of the Figure 5.1 e on the left (original). The possible explanation might be due to the typo in 

the paper (Destexhe, 2009). Further increase in dynamics of adaptation also leads to bursting 

behaviour as a response for both depolarising and hyperpolarising stimuli (Figure 5.1f (a = 30 

nS and b = 0.08 nA); Figure 5.2 f RE hyperpolarised). This behaviour type is indicative for the 

thalamic reticular (RE) neurons (Destexhe and Sejnowski 2003). 

Specifying the parameters for the RE single neuron, Alain Destexhe made a typo, where 

he mixed up the units and values for dynamics and strength of adaptation. The further 

replications and results are made with the corrections to the parameters (Destexhe, 2009). The 

values used for single neuron plot are: a = 30 nS, b = 0.08 nA. Another possibility for these 

values might be the opposite scenario, where a = 80 nS, b = 0.03 nA. The trial of both 

adaptation parameters has shown that higher dynamics of adaptation value displays more prone 

to bursting behaviour and better replicates Figure 1 (Destexhe, 2009). When the spike occurs, 

the adaptation variable increments by the value of strength of adaptation b. The layout of the 

adaptation variable plot (Figure 5.2) is organized to match the Figure 5.1.  
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Figure 5.2. Adaptation variable w for neurons with different intrinsic properties as 

modelled in the AdEx model, plotted against time. RS neuron fired 3 spikes with strong 

adaptation, and 10 spikes with weak adaptation. FS neuron fired 13 spikes, but they are 

hardly distinguishable due to the zero strength of adaptation. LTS neuron fired 20 weak 

adaptable spikes. TC neuron fired 13 spikes. RE neuron fired only 3 spikes. In response 

to hyperpolarising step current, all thalamic neurons and LTS neurons show rebound 

bursting. 

 



76 
 

Visualization of adaptation variable could serve as a confirmation of a single neuron 

behaviour. I consider the single-neuron replication to be successful in qualitative replication of 

single neurons behaviour (Destexhe, 2009, Figure 1).  

 

5.2 Experiment 3: Replication of Destexhe 2009 

5.2.1 Replication of one-layer cortical model of 500 neurons 

The single-layer cortical model available online contains 500 neurons. It is called demo_cx_lts 

and is translated from NEURON to PyNN by Andrew Davison. This model configuration 

consists of 500 cortical neurons in total, 100 of which are inhibitory FS interneurons (20%), 

while the rest (80%) are excitatory pyramidal neurons. 5% of PY neurons were LTS spiking, 

and all the rest are RS.  

The 500 neurons cortical model displays up-and-down behaviour, with diminished down 

states (Figure 5.3). Where not all neurons plotted the up-and-down states are not so clear, and 

the behaviour looks like asynchronous.  

a)       b) 

Figure 5.3. Asynchronous irregular activity of 

small cortical network of 500 neurons. a) Original Figure 7, Destexhe 2009. LTS neurons 

shown in red, 10% of neurons plotted. b) NEURON replication of the original Figure 7, 

100% of neurons plotted. 

 

The mean firing rate was the same for both NEURON and Nest outputs, but the maximal 

firing rate is higher for the NEURON output possibly due to the differences in integration. 
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5.2.2 Replication of two-layer cortical model of 2500 neurons 

There are two versions of the model available online. Both two-layer cortical configurations 

can be downloaded from Open Source Brain web site 

(http://www.opensourcebrain.org/projects/31). One is demo_cxcx01b_N=2500 LTS.oc, which 

is originally written in NEURON simulator in hoc and mod languages. Later, the model was 

written from scratch by Lyle Muller (researcher from A. Destexhe’s lab) in PyNN, based on 

the model description in the article (Destexhe, 2009). 

The PyNN configuration of the model, demo_cx_up-down configuration consists of 2 

layers of cortical pyramidal cells and interneurons, making 4 populations. First layer consists 

of 1600 pyramidal (PY) neurons and 400 interneurons (IN), and second layer – 400 PY and 

100 IN. Cortical neurons in the model display three types of intrinsic behaviour: RS, FS and 

LTS. The connections are created randomly, with no self-connections, with weights of the 

synaptic conductances for excitatory and inhibitory projections preserved. The network is 

excited by an excitatory Poisson stimulus of 50 Hz, lasting for 50 ms. The model was updated 

to work with PyNN 0.8 in 2016 by Andrew Davison. 

Parameters of the two-layer cortical model appeared to be different from the ones 

described in the paper. The inter-layer connection probability was affected, as its value was 

0.7%, in the Table 1 of the paper, and 2% in the text of the paper. The probabilities of 

connections are specified in Table 5.1.  

Also, in the table, the maximal and actual numbers of synapses per neuron are given. 

As I am particularly interested in the thalamocortical network, I needed to translate the 

two-layer cortical model to a thalamocortical model. As a starting point I have replicated the 

two-layer cortical model (Figure 5.4).  

Figure 5.4 The original and the replication of the two-layer cortical model of 2500 

neurons. The external input lasts 50 ms.  
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Also there was a bug in NEURON *.mod file IF_BG4.mod (NEURON Model Description 

Language, which is used to add new biophysical mechanisms to NEURON). In IF_BG4.mod the 

AdEx parameters and equations are given and spike times are stored as a vector as a result of 

Euler method application. The refractory period is implemented as variable reset inside the 

NMODL function fire(), which is decremented by the integration time step dt each time fire() 

is called, i.e. each time the BREAKPOINT block is executed. NEURON executes the 

BREAKPOINT block twice for every time step, so that reset is reduced twice as fast as intended. 

This means that when REFRACTORY = 5.0 ms, the effective refractory period is actually 2.5 

ms (A. Davison, Porting a model from NEURON to PyNN: a case study, 2017). Since the 

BREAKPOINT mechanism is not implemented in PyNN, the correction of the error was done 

by changing the refractory period parameter REFRACTORY from 5.0 to be 2.5 [ms] for PyNN. 

This correction is done across all configurations of two-layer models.  
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5.2.3 Replication of thalamocortical model 

To be able to work with the thalamocortical network model, I had to modify the 2-layer cortex 

model in order to get a model as depicted in Figure 5.5. The changes were made in layer B, 

because layer A was identical in both models, and also identical to the single-layer cortex model 

described in the article (Destexhe, 2009). There were 2 types of connections: inter-layer 

(vertical) and intra-layer (horizontal). The probability for all inter-layer connections was 2% 

and they were excitatory only. For all types of neurons in the network the connections to the 

neurons of a same type were allowed, apart from TC neurons. Self-connections, that is 

connections of the neuron to itself, were not allowed. All RE-TC connections had 8% 

probability of connection, all remaining intra-layer connections had a probability of 2% (Figure 

5.5).  

 

 

Figure 5.5 Thalamocortical network connectivity diagram. The inter-layer connections 

of excitatory type are shown in black, the intra-layer connections are shown in blue, with 

the red outline for excitatory connections, and with the green outline for inhibitory 

connections.  

 

The thalamocortical model was implemented in both NEURON and PyNN. In NEURON, 

the model was implemented as one array of limited size, so probabilities of connections should 

be very carefully adjusted in order not to exceed the given size. It was impossible to increase 

the inter-layer probabilities of connections from the initial 0.7% to 2% in NEURON and preserve 
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the mean number of synapses per neuron (Table 1, Destexhe, 2009) at the same time (this is 

important because it was modelled as an array of a fixed size). Therefore, the decision was 

made for further use of the version of the model in PyNN as more up-to date and allowing more 

variability. Also, the replications of the figures from Destexhe 2009 were closer to the original 

in PyNN (Figure 5.6).  

The input to the model was simulated as one external Poisson AMPA-mediated 

population, which was connected to 10% of the whole neuron population and lasted for 50 ms. 

The input frequency was 200 Hz. The synaptic weight was strengthened 10 times, compared 

to a normal AMPA conductance, and was 6 nS.  
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Figure 5.6 Thalamocortical network model replication: the gradual transition from the 

up-and-down to AI state with decreasing adaptation strength. Top panel: original figure 

from (Destexhe 2009); bottom panel: PyNN replication. 10% of the whole network 

activity is shown on the both left and right panels. 10% of the second layer excitatory 

neurons are LTS neurons. (a), (b), (c) and (d) correspond on the both panels. (a) self-

sustained up-and-down activity with strong adaptation b = 0.04 nA, 11 up states in 

original and 12 up states in replication; (b) moderate adaptation with b = 0.02 nA, up 

states are longer, 11 up states in original, and 12 up states in replication; (c) diminished 

adaptation with b = 0.01 nA original, and b = 0.015 nA replication; 6 up states original, 

9 up states replication; (c*) b = 0.01 nA, continuous asynchronous-irregular up state; (d) 

negligible adaptation with b = 0.005 nA, asynchronous-irregular state.  
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 CV ISI CC 

Original 2.45 0.004 

Replicated 3.8036 0.93 

Table 5.1 The comparison of CC and CV values of the figure 13 (Destexhe 2009) and its 

replication.  

 

The assigned parameters correspond to the ones in the paper (Destexhe 2009). The 

qualitative behaviour of the replicated thalamocortical network also correspond to the paper 

for all values of the strength of adaptation, apart from diminished adaptation with b = 0.01 nA. 

In the original figure, the thalamocortical network with diminished adaptation is still showing 

the up-and-down states. It is a transitional state in between of the moderate and negligible 

adaptation. The up states are getting wider and prevail over down states. With further decrease 

of the adaptation strength, the down states will disappear completely (Figure 5.6, d). In the 

replicated figure, this transition from up-and-down to asynchronous irregular (AI) state 

happens sooner, with higher values of parameter b (Figure 5.6, c*). The close replication of the 

last up-and-down state, before the network will transit to AI state, is replicated with strength of 

adaptation of 0.015 nA.  

A quantitative measure of the AI state is given in the paper (Destexhe 2009), to compare 

original plot with replication, the coefficient of variation of inter spike interval (CV ISI) and 

cross-correlation (CC) was calculated also for the latter one. The results of statistical 

comparison is given in the Table 5.1.  

 

Figure 5.7 The input to the network: one external population is connected to 10% of the 

thalamocortical network with 10 times accelerated maximal AMPA conductance 

(synaptic weight, which initially was 6e-3 uS). The external neurons firing rate is 200 

Hz, and the stimulation lasts for 50 ms. 
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Since the synaptic connection probabilities in the thalamus, particularly in synapses from 

RE to TC neurons, are substantially higher (8%) than other horizontal intra-layer network 

connections (2 %), stronger firing of TC neurons is observed for all strengths of adaptation.  

 

5.2.4 Clarifying adaptation units 

Replicating (Destexhe 2009) article I have noticed that the parameter units in the paper are 

different from the ones in the downloadable codes. Also, the default units in NEURON and 

PyNN are different. At some point I have noticed, that the units of the dynamics of adaptation 

a parameter are of different order (nS vs µS) from conductance units, which are both 

measured in Siemens. Moreover, in the downloadable code many parameters are normalised, 

and their values are multiplied by 1000 both in the parameter section and deeper in the code 

body, which is hidden from first-time user. As I found that the paper had multiple typos, the 

clarification of units for both NEURON and PyNN was necessary.  

I specify the units of b in nA and for a in nS because it is the units used by the Nest 

simulator, in which my results were produced (Peyser and Alexander et al., 2017). 

Some figures were created from the data generated in the NEURON simulator (Hines  and 

Carnevale, 2014), whose default values are in µS. Alain Destexhe used NEURON simulator 

while working of the paper (Destexhe, 2009), therefore, in the paper the units for dynamics of 

adaptation are µS. In the available Python code, the units are multiplied by 1000 to be converted 

to nS, as PyNN uses nS for a, and µS for conductance g. Some confusion arose due to the 

difference in units, multiple typos in the paper (Destexhe, 2009) and 1000 factors for the a 

parameter used in the code explained in Table 5.2. 

 

Parameter PyNN Nest Nest 

translation 

NEURON 

 

NEURON 

translation 

a nS nS - µS x0.001 

g uS µS x1000 µS - 

Table 5.2. Units and variables for the adaptation.  

 

In the source code, PyNN converts the units to the original unit of the simulator (Table 

5.2). Thus, the dynamics of adaptation a in nS will be further converted internally by PyNN to 
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µS, if the simulator is NEURON. If the simulator is Nest, the units of conductance will be 

converted from the µS to nS by PyNN, but the units of a will remain the same.  

 

Table 5.3. Original probabilities of connections by (Destexhe, 2009). * In the text of the 

paper, the probabilities of connections are specified as 1%. I use the value of 2% in all 

simulations, considering that 1% is a typo on the article (Destexhe, 2009).  
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5.3 Chapter conclusions 

The adjustments and calibration of the chosen model (Destexhe, 2009) were performed. In 

particular: 

• The two-layer cortical model was initially implemented in NEURON simulator. As 

it shows unexpected behaviour which I could not explain (as in Figure 3.6), it was 

translated to Python and run in PyNN with Nest simulator. 

• The original 2-layer cortical configuration was changed in a way that the second 

cortical layer was transformed to thalamic, so that the model became 

thalamocortical.  

• While doing this, all the intermediate configurations of the model were replicated, 

such as the one-layer model of 500 cortical neurons and two-layer cortical model.  

• In order to confirm that the thalamocortical model exhibited intrinsic neuronal 

behaviour the single-layer model was created and the single-neuron behaviour was 

confirmed to be appropriate to the claimed neuron types.  

 

Therefore, after the abovementioned modifications, the thalamocortical model is now 

suitable for the next step of the experiment – the implementation of the interictal activity and 

then bursting to model epileptic spike-and-wave discharges. 



 

6 

 

Dynamics of the 

Interictal 

Asynchronous State 
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In this and the following chapters, I modified the thalamocortical model (Destexhe 2009) so as 

to reproduce electrophysiological data from the Rotterdam group on the response of thalamic 

neurons to optogenetic stimulation of the deep cerebellar nuclei. First, I tried to reproduce the 

asynchronous irregular (AI) interictal state. The interictal state considered here is a step towards 

modelling of epileptiform behaviour, which is characterised by generalised spike-and-wave 

discharges (GSWDs) as a model of absence epilepsy. Changes applied to the thalamocortical 

model will be discussed chronologically: the modification of the neuron model following 

Naud’s adaptive exponential integrate-and-fire model, the design of the background input, the 

investigation of the interictal dynamics and the variety of responses such as increased, 

decreased and biphasic activity, achieved by application of different types of input from the 

CN.  

 

6.1 Naud’s single neuron model parameters 

Initially the parameter fitting was performed for the single neuron model, to track the intrinsic 

behaviour contributing to epileptiform activity (Chapter 5). The extensive literature search was 

performed, and the desired pattern of single neuron activity was found in (Naud, 2008), 

described as regular bursting (Figure 6.1, left).  

 

 

Figure 6.1. Single neuron regular bursting firing pattern. Left panel: (Naud 2008) 

original, Figure 4d. Right panel: PyNN Nest Replication. The voltage traces are shown 

with scale bars that correspond to 100 ms and 20 mV.  

 



88 
 

Not all the parameters were adapted from (Naud, 2008), as I aimed to keep them as close 

as possible to the Destexhe single-neuron model for consistency. The list of parameters from 

(Naud, 2008) and replication of its regular bursting behaviour is provided in Table 6.1. 

 

Parameter (Naud, 2008) Replication 

C total capacitance 200 pF 0.200 nF = 200 pF 

gL total leak conductance 12 nS 10 nS * 

EL effective rest potential -70 mV -60 mV 

VT effective threshold potential -50 mV -50 mV 

∆T threshold slope factor 2 mV 2 mV 

a dynamics of adaptation 2 nS 2 nS 

τw time constant 300 ms 300 ms 

b strength of adaptation 60 pA 0.1 nA = 100 pA 

Vr reset potential -58 mV -60 mV 

I step current 500 pA 250 pA 

* gL is a calculated value, as in single neuron model the τm used instead: τm = C/gL 

 

Table 6.1. The comparison of (Naud, 2008) and best-selected parameters to replicate 

the regular bursting firing pattern of Figure 6.1.  

 

The parameters found to be crucial for regular bursting firing pattern replications were 

the time constant τw (which was decreased by a factor of two from its original single neuron 

model level) and the dynamics and strength of adaptation a and b respectively. This parameter 

list was found to successfully replicate the regular bursting single neuron behaviour and was 

applied to the thalamocortical network (to all neurons of the network, with a cell-specific 

modification of parameters a and b).  
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6.2 Synaptic model 

I replaced the decaying-exponential synapse model by an alpha-function (see formula 3.11 in 

Chapter 3). This was crucial for the reproduction of spike-and-wave discharges and will be 

discussed in the next chapter. 

 

6.3 Background input 

In the thalamocortical model, 2-10 % of the network had been stimulated with a strong (200-

400 Hz) 50 ms pulse to initiate self-sustained activity. This procedure did not work for the ictal 

model, as the above-mentioned type of input was too short to lead to self-sustained activity. 

After some trials, the optimal configuration for background input was found. Random 1 Hz 

AMPAR-mediated input was provided constantly for all the time of the simulation to 400 

excitatory cortical neurons, via 20 synapses onto each of the neurons receiving this input.  

 

6.4 Interictal state dynamics investigation 

To investigate the interictal state dynamics, the raster plot and the peri-stimulus histogram 

(PSTH) were constructed for all neuronal sub-populations in the model (Figure 6.2).  

There were 5 populations: cortical excitatory neurons (PY neurons) receiving the 

background input of 1 Hz, cortical excitatory (PY neurons) who did not receive the background 

input, cortical inhibitory neurons (IN), thalamic excitatory neurons (TC) and thalamic 

inhibitory neurons (RE). The firing rates of the above-mentioned populations were compared 

with the literature sources. Thus, the firing rate (FR) of a subpopulation of  pyramidal neurons 

(so-called chattering cells) is 20-70 Hz (Gray and McCormick, 1996), for the Interneurons – 

9-17 Hz (Hyun-Jae Pi et al., 2013), 100 – 200 Hz for the TC neurons (Kim et al., 2001) and 

10-30 Hz for the RE neurons (Glenn and Steriade, 1982). The firing rates of the neurons in the 

present model were much higher (Figure 6.2, right panel). This may be a result of relatively 

small network size (Destexhe, 2009).  

The attempt to lower the firing rates by increasing the inhibitory-excitatory synapses in 

cortex in between of IN and PY was made (Figure 6.3). As a result, the FR of cortical PY 

neurons receiving the background 1 Hz input could be decreased from 200 Hz to 35 Hz, and 

the FR of PY neurons not connected to the Poisson generator was lowered from 150 Hz to 30 

Hz. The FR of IN was lowered from 80 Hz to 30 Hz, of TC and RE neurons decreased from 

250 Hz to 115 Hz and 90 Hz respectively. 
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Raster plot    PSTH 

Time (ms)   Time (ms) 
Figure 6.2 Comparison of raster plots (left panel) and PSTHs (right panel) of different 

(colour-coded) populations contributing to the thalamocortical network model. RE 

neurons population in black, TC – in red, IN – in blue, PY – in green. The bottom green 

population is separated based on the fact that the background 1Hz input was provided 

only to the first 400 neurons. The x axes of all plots measure the time in milliseconds 

(ms). The y axes of the raster plots show the id number of neurons, while the y axes of 

the PSTH show the firing rate in Hz.  

 

It may be that in this model of the asynchronous state, the strength of inhibition had been 

to weak. Initially the Alpha-function was applied to the ictal state, where TAU_I was 15 ms. 

TAU_I was decreased to 5 ms for the interictal state, meaning TAU_I was lowered 3 times. A 

corresponding adjustment should have been done to the G_MAX as well, as the area under an 

alpha-function scales with the square of TAU_I. When TAU_I decreased 3-fold (from interictal 

to ictal), the G_MAX should relatively increase by a factor of 9. The 9-fold increase to 

GABA_G_MAX is already lead to a significant drop in FR (Figure 6.3).  
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Figure 6.3 Decrease in the firing rate of different modelled sub-populations in response 

to IN – PY synapse strengthening. The strengthening of the inhibitory synapse is the 

factor by which  GABA_G_MAX has been multiplied, which is displayed on x axes.  

 

All other simulations were made with the model where IN-PY synapses were not 

strengthened. When applied to the network model, Naud’s parameters and a background input 

are showing interictal asynchronous irregular behaviour (Figure 6.2, left panel). 

 

6.5 Modelling experimental response types  

In in vivo experiments several response types of the thalamic neurons to CN stimulation were 

observed (Kros et al., 2015). To be more specific, with 50 ms optogenetic stimulation of DCN 

neurons, 61% of thalamic neurons (total n = 165) increased their firing rate, 10.3.% responded 

in a biphasic manner (initial excitation, followed by inhibition of firing rate), 9.1 % 

demonstrated a decrease in their firing rate and 11.5% had a delayed sustained response. To 

further validate the model, I tried to replicate the above-mentioned response types.  

To achieve all four response types of thalamo-cortical neurons, different input patterns 

have been applied to all TC neurons. It is known that the CN projections which synapse onto 

the TC neurons are glutamatergic (Houck and Person, 2015). In the model the excitation is 
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modelled as an AMPAR conductance. Also, to achieve the variety of responses, the assumption 

was made that there is a possibility of CN input being mixed with additional polysynaptic input 

possibly gated via CN-afferents to TC (for instance disynaptic GABAergic input via thalamic 

interneurons or reticular cells).  

The replication of all response types but the delayed pattern were successful (Figure 6.4).  

Theoretically, the closest option to replicate the delayed response (Figure 6.4 D) would 

be excitatory input with jitter, as it prolongs the response. This response prolongation, however, 

was not sufficient to reproduce the experimental data. Another possibility would be to apply a 

strong excitatory pulse to a silent network (as in Chapter 5), so that the network is driven to 

self-sustained asynchronous irregular activity. In the experimental recording, however, there 

was spontaneous activity preceding the stimulus. 

A possible explanation of the difficulties in replicating the delayed response type may be 

an absence of the mechanisms which shapes the delayed response in the model. For instance, 

the thalamus has a cholinergic innervation but acetylcholine receptors were not implemented 

in this model.  

Taking into account the results of the interictal state dynamics investigation (Paragraph 

6.3), various patterns of response were modelled with IN – PY synapse strengthened nine times 

(Figure 6.6).  

To summarise, the model could successfully reproduce as many as 80.4% of the TC 

responses seen in experimental conditions. Delayed response was not possible to replicate 

because the mechanisms that make this type of response possible are not implemented in the 

model.  
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A  Experiment    Model  

B 

C 

D 

Figure 6.4 Peri-stimulus time histograms (top panels) and raster plots (bottom panels) 

show variety of TC responses depending on the type of CN stimulation. The input lasts 

for 50 ms in all cases and was marked with blue line for the experimental results. The 

left panel shows the experimental results (Kros et al., 2015), and the right panel shows 
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the replicated modelling results, where the start and termination of the input are marked 

with a blue lines. A: increased TC response as a result of excitatory AMPAR-mediated 

CN input; B: decreased TC response as a results of inhibitory GABAA-mediated CN 

input; C: Biphasic TC response as a result of biphasic CN input lasting for 50 ms, where 

first 25 ms of input duration were excitatory, and another 25 ms were inhibitory; D: 

Delayed TC response. Jitter was modelled as a random delay from -5 to 5 ms. Note 

different time-axes for experimental and modelling responses.  
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A     B  

 
    C 

Figure 6.5. Three response types to the different configurations of CN stimulus, when the 

IN – PY synapse strengthened 9 times. A: an excitatory response type as a result of 50 

ms excitatory CN stimulus; B: an inhibitory response type as a result of 50 ms inhibitory 

CN input; C: a biphasic response type as a result of dual excitatory and inhibitory input, 

where each part of stimulus lasts for 25 ms, making the total duration of stimulus 50 ms.  
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6.6 Chapter conclusions 

A detailed analysis of the thalamocortical interictal model and parameter validation of this 

asynchronously irregular spiking model allowed its successful calibration and fine-tuning. One 

of the crucial points in model development appeared to be the maintenance of self-sustained 

activity during the model run time. Trials of strong but short stimuli have not resulted in self-

sustained activity. Empirically the 1 Hz of continuous AMPA-mediated stimulus was selected 

as the best option to preserve network activity. To further bring the model closer to the in-vivo 

neuronal networks behaviour the possible amendments were made. Specifically, the simulated 

neuronal populations firing rates were matched with the values described in literature for the 

thalamocortical relay neurons. The higher firing rate of simulated neurons could be explained 

by the relatively small size of the network, it was successfully lowered by strengthening of the 

IN-PY synapses.  

After model validation, the different TC neuronal responses observed in the experimental 

research after the CN stimulus were attempted to replicate. The interictal state dynamics were 

investigated. Thus, 80.4% of the TC responses seen in the experimental settings were replicated 

successfully. The next step of the experiment would be to establish the bursting network and to 

apply deoscillating CN stimulus to it. 



 

 

7 

 

The Ictal State: Generalised 

Spike-and-Wave Discharges 

and their Termination by 

Optogenetic Stimulation
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The steps towards the ictal state of the model will be discussed in this chapter. They were: 

model of synapses with alpha-function, adjustment of the inhibitory synaptic conductance, 

removing model bistability by adjusting the adaptation time-constant τw and dynamics of 

adaptation a. 

When the ictal oscillatory state of the model was achieved, the cerebellar nucleus (CN) 

input to TC neurons was designed to be able to stop seizures and switch neuronal activity from 

ictal to the asynchronous irregular interictal state (Chapter 6). As I am aiming here to explain 

the experimental results, all the effort was made to replicate the experimental conditions as 

closely as possible. The failure rate of the CN input was tested against the phase of the ictal 

burst at which it was applied (Paragraph 7.2).  

 

7.1 Generalised spike-and-wave discharges (GSWDs) as indication of the ictal state 

While I was modifying the 2-layer thalamocortical model which displays up-and-down states 

to the model able to produce GSWDs, I have been trying to implement the ability of the model 

to show spike-and wave oscillations. GSWDs are the benchmark of absence epilepsy, and they 

are measured by means of electrocorticogram (ECoG) at primary motor M1 and sensory S1 

cortices. To estimate if the model displays GSWDs or not, the total synaptic current was 

calculated from the model output as a proxy for local filed potentials. If the total synaptic 

current showed an oscillatory spike-and-wave pattern, then it was concluded, that the model 

displays the epileptiform behaviour. After the definition of ictal behaviour was clarified, the 

parameter search was performed.  

 

7.1.1 Outline of the main changes and parameters important for the ictal state  

7.1.1.1 Alpha function 

After some unsuccessful application of Naud’s (Naud, 2008) regular bursting 

neuronparameters to the network model, an extensive literature search was performed in order 

to answer the question how to make the thalamocortical model burst. In the thalamocortical 

model neurons were modelled as exponential integrate-and-fire neurons with spike-triggered 

and sub-threshold adaptation currents – EIF_cond_exp_isfa_ista.  

The desired behaviour pattern of thalamocortical model is spike-and-wave discharges, 

where “spike” is associated with the synchronous firing of all cortical neurons. Such a firing 

activates GABAB-mediated K+ currents, and hyperpolarization in pyramidal neurons. This 

stops the discharges and generates a positive slow "wave" (Steriade, 1974; Destexhe, 1999). 
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Therefore, I am aiming to alternate thalamocortical activity, where all cortical and thalamic 

neurons are simultaneously active / silent.  

To enable the model to produce the “wave” component of GSWDs I needed to implement 

the mechanism responsible for the slow inhibition, as in the model only GABAA-mediated fast 

inhibition was incorporated. Initially the model was described by the EIF_cond_exp_isfa_ista, 

exponential integrate-and-fire model, where only fast exponentially decaying inhibition was 

possible. In order to be able to model the effect of GABAB, the synaptic mechanism in the 

model was changed for EIF_cond_alpha_isfa_ista, where the synaptic conductance is 

described by an alpha function. The alpha function would be a good tool to implement 

GABABR-mediated synapses, because an alpha-function with a time-constant of 15 ms reaches 

its peak conductance also after 15 ms. The total inhibition of the alpha synapse (its integral 

over time) scales with the square of tau.  

The GSWDs associated with absence epilepsy can be of different frequency, dependent 

on the animal model, where they are observed. Thus, in cats they are of 3 Hz frequency (Gloor 

& Fariello, 1988) and 5-10 Hz in rodents. As here attempts are made to replicate and explain 

the experimental results obtained in mice, the target frequency of GSWD would be around 7 

Hz. 

 

7.1.1.2 Inhibitory synaptic conductance 

A sufficient modification to switch the network from the interictal to the ictal state was an 

increase by a factor of three of the time-constant of the inhibitory synaptic conductance (τi). 

The original value of the time-constant of the inhibitory synaptic conductance in the 

thalamocortical model and in the current model of the interictal state, was 5 ms. Its two fold 

increase to 10 ms did not lead to the ictal state. Values of 15 ms and greater switched the 

network to epileptiform activity. Also, the magnitude of the inhibitory synaptic conductance 

defined the frequency of epileptic bursts. Thus, with τi = 153 ms only 4 bursts appear over the 

5 s period, while a 2-fold decrease of it led to 8 bursts. A further decrease of the τi value to 25 

ms led to 22 bursts, and decrease in τi to 15 ms led to 35 bursts over the period of 5 s, which is 

approximately 7 Hz frequency. I aimed particularly at such a frequency of 7 Hz because the 

experimental recordings from rodents made by our collaborators appeared to be at this 

frequency (Kros et al., 2015).  
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7.1.1.3 Model bistability and the adaptation time constant τw 

While testing the ictal state of the model and adjusting its parameters, the model sometimes 

spontaneously switched to the asynchronous irregular state. Further simulations were set up to 

investigate the nature of this issue.  

In the thalamocortical network model, the adaptation time constant τw was 600 ms. This 

was changed down to 300 ms during parameter search due to Naud’s parameters, being the 

most successful in achieving the ictal state in single neuron model. With this lower value, the 

model still used to switch spontaneously from ictal to interictal state (Figure 7.1).  

Figure 7.1 Spontaneous phase shift from ictal to asynchronous irregular state in the 

thalamocortical network of 2200 neurons, where every second neuron was recorded. The 

model incorporated all above-mentioned changes.  

 

No CN input was provided, only constant 1Hz background input to 400 excitatory 

pyramidal neurons. Due to empiric tests it was established that model displays bistability only 

with relatively high levels of adaptation time constant. To avoid spontaneous phase transition 

the τw parameter was again decreased twice to 150 ms, and the ictal state was permanent until 

the end of the simulation and no bistability observed. Both the cortical and thalamic adaptation 

time constants were responsible for the model bistability, as it was not enough to set one of 

them to the lower value.  

The experiment was repeated with 5 different seeds for 3 values of τw : 600 ms, 300 ms 

and 150 ms (Table 7.1). The model run time was 5 s.  
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Here a strong correlation between τw and the phase transition pattern can be seen. 

Formally, τw is the time required for the system response. For τw = 600 ms, where the response 

time is high, a phase transition always happens. The moderate τw = 300 ms looks like the border 

value, where a spontaneous phase transition may happen or not, and with τw = 150 ms the 

transition from ictal state to the asynchronous irregular one was never observed. The value of 

τw = 144 ms was deduced as optimal in (Brette, Gerstner, 2005). Therefore from now an on, to 

be sure that the phase transition not occur spontaneously (but simulated on purpose where 

needed), I will be using the value τw = 150 ms for the adaptation time constant. As expected, 

the phase change happens in general sooner for the high τw= 600 ms.  

The idea of lowering the τw in order to bring the model into the oscillatory state is in line 

with the Brette-Gerstner model in the Brian simulator, where τw = 144 ms for regular spiking, 

and lowered to τw = 20 ms for the bursting mode. All the other parameters (a[nS], b[nA], Vr 

[mV] ) remained the same (Brette, Gerstner, 2005).  

The most important finding is that the spontaneous phase transition was never observed 

for the low value of τw = 150 ms, and this value guarantees the stability of the ictal state. 

Therefore this value is used for all further simulation to ensure the absence of spontaneous 

phase change.  
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τw = 600 ms 

Seed Observation Time of phase transition, ms 

983651 Phase change 780 

112233 Phase change 495 

702493 Phase change 560 

425607 Phase change 640 

214853 Phase change 600 

τw = 300 ms 

Seed Observation Time of phase transition, ms 

983651 No phase change n/a 

112233 Phase change 3190  

702493 No phase change n/a 

425607 Phase change 3180  

214853 Phase change 3800  

τw = 150 ms 

Seed Observation Time of phase transition, ms 

983651 No phase change n/a 

112233 No phase change n/a 

702493 No phase change n/a 

425607 No phase change n/a 

214853 No phase change n/a 

Table 7.1 Comparison of the three values of adaptation time constant τw, 5 trials (with 

five seeds) for each. The pattern of spike times is displayed in the “observation” column. 

The exact time of the spontaneous phase transition is given in the third column if 

applicable. 
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7.1.1.4 A note on the role of adaptation parameter a in the ictal state 

The adaptation parameter a (refer to formula) quantifies a conductance that mediates 

subthreshold adaptation (Ladenbauer et al., 2012; Izhikevich 2003).  

As described in Chapter 5, there are two original configurations of Destexe’s model, 500 

neurons cortical network and 2200 neurons thalamocortical network models. Each 

configuration has some code in NEURON and PyNN. As in Alain Destexhe’s article (Destexhe, 

2009) the dynamics of adaptation a is given in µS, which is the units of the NEURON simulator, 

there are the same values in the NEURON codes. When the PyNN version for 500 neurons 

cortical network was created, the a values remained the same in the parameter section. To 

convert the units from µS to nS (which PyNN accepts), a factor of 1000 was added in the code 

where the parameters are assigned to the neurons of all types (where the network is created, 

not in the parameter section of the program), whereas for the thalamocortical model the unit 

conversion was done in the parameter section. This fact brought some confusion, same as the 

fact that in PyNN a [nS] has a different units from g [uS] – conductance. In the Brian AdEx 

model (Brette, Gerstner, 2005) the only way to switch to bursting is to decrease τw. 

In the later work (Touboul and Brette, 2008), it is claimed that the model can oscillate 

near the resting potential or produce a damped oscillation, and that “self-sustained oscillations 

are not possible in this model, nor in Izhikevich model, as is shown in Touboul (2008)”. In 

order to trigger damped oscillations, in Brian code (Touboul and Brette, 2008), the parameter 

a was changed gradually from 4 nS for phasic spiking to 8000 nS for oscillatory and again 4 

nS for bursting tonic and bursting phasic modes.  

As mentioned in section 7.1.1.2, the only parameter needed to switch the model from AI 

state to ictal (once the network parameters are established) is the inhibitory time constant, and 

neither a nor τw play a role into this process. No tuning of a was required to drive the ictal state. 

 

7.2 GSWDs  

The model tuning was considered to be complete when the it was not showing spontaneous 

phase transitions (bi-stability) and when the benchmark of epileptic behaviour, GSWDs (Figure 

7.2) were obtained. This happened after all the changes listed in the above paragraphs, 

including the change to the background input (see Paragraph 6.2).  
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Figure 7.2. LFP approximation of 449 cortical neurons firing with 7 Hz frequency. 

Negative deflections are due to the synchronous firing of all cortical neurons, and the 

“waves” reflect the silent period during hyperpolarisation.  

 

In the experimental research, GSWDs are measured as local field potential (LFP) 

(Destexhe et al., 2001) or electrocorticogram (EcoG) on the primary sensory cortex S1 and 

primary motor cortex M1 (Kros et al., 2015). LFP is generated by electric currents of the 

neurons, but synaptic currents are considered to be the main contributor to it (Destexhe et al., 

2001). Therefore, the total synaptic current served as LPF approximation and was calculated 

as a product of voltage and conductance of a subset (n = 449) of cortical neurons (Figure 7.3).  

To investigate the ictal state, the recordings was made from every 10-th neuron in the 

network, as this is indicative for the behaviour of the complete network of 2200 neurons.  

 

 

Figure 7.3 Raster plot (left panel) and LFP (right panel, black) of the ictal network of 

2200 neurons. The average firing rate is 7 Hz.   
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7.3 CN input to terminate seizures 

The simulated CN input was designed after the CN input found in experimental research (Kros 

et al., 2015). The CN input consisted of 20 equal populations targeting all (100) TC neurons. 

The spike times of the abovementioned populations were defined in an external text file, which 

were read by the PyNN SpikeSourceArray function. The text file was created, targeting the 

particular start time of the input, and provided input for 50 ms, where a spike occurred every 

second millisecond. The input strength (weight) was defined as maximal corresponding 

conductance (AMPA, GABA or both for mixed input) x scale. The scale is the factor, which 

defined how hard it is to get the phase-transition response, the so-called failure rate.  

There were three input configurations:  

1) synchronised exclusively excitatory AMPAR-mediated (Figure 7.7, Figure 7.8 A); 

2) jitter, where spike times were delivered with some random delay, arriving some time 

later than the time defined in the array of a text file. Three jitter values were tested, they were 

10, 50 and 0 ms, where the last one corresponds to synchronised excitatory stimulus (Figure 

7.7); 

3) mixed input, which aimed to replicate the input from other prethalamic nuclei, such as 

Zona Incerta (ZI). The input consisted of 1:1 excitatory and inhibitory inputs to TC neurons 

(Figure 7.7). 

The most successful input configuration in seizure termination appeared to be excitatory 

input from CN (Figure 7.4). The effect of excitatory CN input on the different neuronal 

populations is shown in Figure 7.5.  

  



106 
 

Figure 7.4 Activity phase change in response to CN input to thalamocortical neurons. A: 

raster plot of 2200 neurons in the network. Spike times of every second neuron are 

plotted. The ictal bursting activity terminates immediately in response to the CN stimulus 

applied at 2475 ms. As a result, the network switches to the normal asynchronous state. 

B: total synaptic current as an approximation of local field potential, indicating 

oscillatory activity at 7 Hz. Before the CN stimulus application, the local field potential 

displays generalised spike-and-wave discharges (GSWDs). This type of activity 

immediately terminates after CN stimulation.  
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   Raster plot     PSTH 

Time (ms)     Time (ms) 
Figure 7.5 Raster plots (left panel) and PSTHs (right panel) of different (colour-coded) 

neuronal populations in the thalamocortical network model (RE thalamic reticular, TC 

thalamocortical, IN cortical inhibitory interneurons, PY cortical pyramidal cells). The 

oscillatory activity during the ictal state is terminated by excitatory AMPAR-mediated 

CN input to all TC cells (for 50 ms at 2500 ms), which results in earlier spiking in the 

TC cells and desynchronization of the network. 

Stimulation lasted for 50 ms with the scale 20. RE neurons population in black, TC – in 

red, IN – in blue, PY – in green. The bottom green population is separated based on the 

fact that the 1 Hz background input comes to the first 400 neurons. The x axis of all plots 

are measuring the time in milliseconds (ms). The y axis of the raster plots show the id 

number of neurons, while the y axes of the PSTH show the firing rate in Hz.  

 

It was hypothesised that there could be a difference in the success / failure rate of the CN 

stimulation, depending on its application time in relation to the phase (at the burst or in between 

of the bursts). Moreover, such evidence was described in the earlier experimental study (Kros 

et al., 2015). The peak of the negative deflection on the LFP was accounted for the beginning 
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of the “wave period” (0°) and the next peak was accounted for its end (360°). The period was 

also calculated, which was defined as the time between the two adjacent LFP peaks. This “wave 

period” was shared into sectors so that the time points in between of two negative LFP 

deflections were considered to be 90°, 180° and 270°, and the CN stimulus was applied at those 

times. The obtained results were aimed to be compared with experimental results (Kros et al., 

2015). The beginning of the “wave period” in experimental study was not at the peak of the 

ECoG (simulated LFP), but at the peak of PSTH. Therefore, to make the comparison possible 

the failure rate (Figure 7.9) was plotted for various time points depending on the peak of the 

peri-stimulus histogram (PSTH). To compare the obtained results with (Kros et al., 2015) the 

difference between LFP and PHTS peaks were calculated (Figure 7.6). The two adjacent peaks 

were randomly selected for this purpose. In Figure 7.6 the peaks of the PSTH for cortical 

neurons were considered to be at 2475 ms and at 2618 ms, accounting for the full cycle, and 

the period appeared to be 143 ms. While both modelled LFP and PSTH was plotted and 

compared, the difference in the peak of the burst of LFP and of PSTH appeared to be 8 ms, 

which accounts for about 20° shift (Figure 7.6). Therefore, one 

 should expect at least 20° difference between modelling and experimental results.  

 

Figure 7.6 Delay in between of the local field potential measured at the superficial cortex and 

the PSTH recorded from the whole cortex. The delay between PSTH and LFP is 8 ms (about 

20°).   
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As one can see from Figure 7.9, the experimental and modelling results appeared to be 

shifted for about 30°, which corresponds to the shift of 11.9 ms for the Primary Motor Cortex 

and twice as much for the Primary Sensory Cortex. 20° difference out of total 30° failure rates 

discrepancy in modelling and experimental studies are due to the difference in 0° selection 

(LFP and PSTH). Another 3.9 ms difference might be due to the model approximations. 

The irregular input to TC neurons was modelled as jitter (Figure 7.7). Apparently, the 

excitatory CN stimulus with no jitter was the most successful. Introducing jitter has hardly any 

effect. It reached the peak of efficiency at 0° and 360°, at the peak of the PSTH bursts. The 

highest stimulation threshold to terminate epileptiform activity was at 270° (Figure 7.7).  

 

Figure 7.7 The comparison of the stimulation threshold (proportional to failure rate) of 

inputs with jitter 10 (red line), 50 (black line) and no jitter (blue line), meaning pure 

excitatory input for different phases from 0° to 360°. The failure rate of seizure 

termination is the lowest when TC stimulus was applied on the peak of the bursts (the 

spike discharges). Jitter 10 was shifted to the right of x axes for 5 ms, and jitter 50 was 

shifted to the right of x axes for 25 ms, so that the centre of the stimulus window coincides 

with the synchronised input.  

 

When the CN excitatory stimulus was compared with mixed 1:1 excitatory and inhibitory 

stimulus, which represents the indirect pathways from CN to TC neurons, it showed to be less 

effective in epileptic seizures termination (Figure 7.8). Excitatory direct CN stimulus with no 
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jitter appeared to be more successful in comparison to the mixed stimulus (Figure 7.8 A), same 

with jitter 10 and 50 ms.  

 A     B 

 

   C 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.8 Excitatory CN stimulus with various degrees of jitter applied at the peak of 

the burst of cortical PSTH and after it. The stimulation threshold was measured and 

plotted for each time point. A: excitatory and mixed stimulus for jitter 0; B: excitatory 

and mixed stimulus for jitter 10; C: excitatory and mixed stimulus for jitter 50. Excitatory 

TC stimulus from CN proofed to be more effective then mixed stimulus.  

 

Therefore, I consider that a purely excitatory CN stimulus is more effective in order to 

terminate seizures than a mixed excitatory/inhibitory stimulus (Figure 7.8 B,C).  
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7.4 Phase dependence of the CN input in simulations and experiments 

After defining the most successful CN stimulus to stop epileptiform activity the comparison of 

success rates of stimulation with the published experimental results was performed (Figure 

7.9). Kros and collaborators (Kros et al., 2015) showed the impact of optical CN stimulation 

on cortical activity by calculating a success rate of the excitatory stimulus. The modelling 

output was compared with experimental results for both Primary Motor and Primary Sensory 

cortices. To make comparison possible, the experimental success rate was converted into failure 

rate (approximate) based on the figure provided in the paper (Kros et al., 2015; Figure 5C).  

The AMPAR-mediated CN stimulus found to be the most effective when applied on the 

peak of the epileptic burst. It was least effective at 270 – 300 degrees for the modelling study. 

For the experimental results, the most ineffective time to apply CN stimulus was 300 – 330 

degrees for Primary Motor Cortex and 330 – 360 degrees for the Primary Sensory Cortex. 

Figure 7.9. Comparison of experimental and modelled AMPA-mediated CN input in 

seizure termination. CN input proved to be most effective when applied on the peak of 

the burst for experimental study (lowest failure rate).   
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To conclude, the ictal state was defined as the state with generalised spike-and-wave 

discharges. These GSWDs were successfully terminated with the excitatory CN input to TC 

neurons. The success of the termination was phase-dependent, and depends on stimulus 

application time relative to the peak of the burst. The most successful termination occurred 

when AMPA-mediated CN stimulus was applied at the peak of the burst. This result was 

compared to the experimental study (Kros et al., 2015; Figure 5), which showed very similar, 

but slightly temporarily shifted results (11.9 ms shift for Primary Motor Cortex). This temporal 

shift can be explained by the differences of the experimental set-up (8 ms) and by the 

limitations of the model. 

 

7.5 Phase dependence of spontaneous GSWDs termination as a model of evoked one 

A possible approach to study the mechanism underlying the GSWDs termination by CN input 

is to use a simplified model of this process. One possibility would be to use the spontaneous 

GSWD termination as a model of evoked termination. For this purpose, the network activity 

directly preceding spontaneous GSWD terminations was studied. For tau_w = 300 ms, where 

bistability happens with some probability, the simulation was run a number of times with 

different seeds. 20 experiments where the GSWDs were terminated spontaneously were 

considered for further analysis.  

Figure 7.10. ISI histogram of one simulation with a spontaneous GSWDs 

termination. There are 21 GSWDs before its termination occur. After this point, all 

blue circles, which are the peaks of GSWDs, are meaningless.   
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The spike time histogram of each run was plotted, and the peaks of each GSWDs were 

identified (Figure 7.10, blue circles). The precise time of GSWDs termination was defined as 

the last spike with the inter-burst-interval of the same duration (normal) as all the previous 

intervals, where the following interval is of abnormal duration (significantly longer or shorter 

than the mean of previous intervals).  

 

Figure 7.11. First abnormal period as a function of the mean period of normal 

bursting defining the phase angle of GSWDs, where identity (y = x) line is assumed 

to have a phase of 360 degrees and the x-axes zero degrees.  

 

The phase angle of GSWDs termination can be determined by the slope of the 

(imaginary) line connecting each data point (Figure 7.11) to the origin, where the identity (x = 

y) line has a phase of 360 degrees (and the x-axis zero degrees). The peaks of GSWDs were 

stored and the phase of the spontaneous GSWDs termination was calculated. If the data points 

were arranged on a line through the origin, the phases of spontaneous GSWDs termination 

would be similar. However, this is not the case here. Therefore, a bar plot was created to further 

investigate the phase angles of spontaneous GSWDs terminations (Figure 7.12). The pink bars 

indicate the number of spontaneous GSWDs terminations which occur at a certain phase. In 

other words, pink bars show a success rate. The blue line is the failure rate from Figure 7.9, 

showing the required increase in the synaptic weight in order to evoke GSWD termination. The 

mean phase angle over the all seeds for the spontaneous GSWDs termination is 226.94 degrees 
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(the most common (successful) time for GSWDs termination. The maximum failure rate for 

the evoked SGWDs termination is at 270 degrees. Therefore, the two phase angles at peak 

value almost coincide in time, but they demonstrate opposite scenarios, which makes 

spontaneous GSWDs termination not a suitable model to study the mechanism of GSWD 

termination by CN input.  

 

Figure 7.12. Comparison of spontaneous GSWDs terminations and evoked (by 

AMPA-mediated CN input) GSWD terminations. Same as for Figure 7.9, the CN 

input is most effective when applied on the peak of the burst, and least effective at 

270 degrees, which is the opposite to the spontaneous GSWDs termination.  
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   t, ms    t, ms 

Figure 7.13. PSTHs (on the left) and raster plots (on the right) for each individual 

population. The spontaneous GSWDs termination occurs after 1000 ms.  

  

In order to explain the mechanism behind the spontaneous GSWDs termination I 

attempted to plot the PSTHs and raster plots for each individual population (Figure 7.13). The 

idea was to have a close look at the different neuronal populations to see if the GSWDs 

termination occurs in all populations at the same time or if one neuronal population is leads 

and triggers other populations, which might give a clue to the mechanism of this process. 

Unfortunately, there is no evidence of any neuronal population terminating GSWDs earlier. 

Further computational studies and experiments should be designed to understand the 

mechanism underlying both evoked and spontaneous GSWDs terminations.   
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7.6 Chapter conclusions  

Absence seizures can be detected by generalised spike-and-wave discharges (GSWDs) in the 

electroencephalogram. These GSWDs are based on neuronal oscillations in thalamocortical 

networks, which can be caused by excessive inhibition in the thalamus or excessive cortical 

activity.  

I simulate a thalamocortical network model with adaptive exponential integrate-and-fire 

neurons, displaying complex intrinsic properties such as low-threshold spiking, regular 

spiking, fast spiking and adaptation. The conductance change in the post-synaptic neurons is 

modelled by alpha synapses. I have driven the network activity to exhibit asynchronous 

irregular (AI) dynamics, depending on the time constants of the inhibitory synaptic 

conductance, which are 5 ms (AI) and 15 ms (oscillatory) respectively. An increase in the 

inhibitory decay time constant reflects a change from GABAA dominated inhibition to more 

GABAB, which can result in GSWDs, given that the “wave” components of GSWDs are related 

to slow GABAB - mediated K+ currents. 

I provide CN input to all thalamocortical neurons to analyse the mechanism of reverting 

from abnormal oscillatory activity to the normal AI state. The results confirm that input from 

the CN can control oscillatory activity in thalamocortical networks. Furthermore, they show 

that the effectiveness of this input exhibits phase-dependence. In our simulations, CN input 

terminates epileptic absence seizures most effectively when it arrives at the peak of GSWDs, 

while the least efficiency for seizure termination is observed in between the GSWD bursts. 

This finding is potentially relevant for therapeutic applications of CN stimulation in closed-

loop systems to terminate seizures. 

The idea of using the spontaneous GSWDs terminations as a model for evoked ones was 

considered and researched. Unfortunately, the spontaneous GSWDs termination occur at a 

phase opposite to the CN-stimulated GSWD termination. Therefore, spontaneous GSWD 

terminations cannot serve as a model of CN-stimulated GSWDs termination. Further 

experiments should be designed in order to explain the mechanism underlying the CN-

stimulated GSWDs termination.   
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Validation of 
modelling 

results using 
experimental 

data  
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Chapter 8 is focused on an analysis of the experimental data from Rotterdam, The Netherlands, 

and some simulations with experimental data as input that were performed to confirm the 

results of the modelling study. On top of this, the opposite scenario to absence seizure 

termination was considered. The attempt to trigger seizures in an interictal network with CN 

input is discussed.  

 

The initial aim of utilising the experimental data was to answer the following questions: 

1. How strong and synchronised should the CN input be to terminate the absence 

seizures? 

2. Could seizures be triggered by CN input? 

 

The raw experimental recordings were originally presented in the form of *.abf file. The 

program of choice to open these files was AxoGraph. The files contained the spike times in 

response to the optogenetic stimuli, where the stimuli were time-stamped. There were 39 data 

files overall (Appendix ii).  

When the activity after the stimulus is increased the response type is identified as 

“excitatory”, when the activity is decreased as “inhibitory” response. The “delayed” and 

“biphasic” responses are also possible, by will not be considered here for simplicity.  

For easy comparison of the modelling to the experimental results, the length of the 

simulation and the stimuli start times were adjusted. The experimental data were cut 2500 ms 

at both sides of the stimuli, so that the onset of the optogenetic stimulus was around 2500 ms.  

To address the first aim, to evaluate the response to the optogenetic stimuli and test the 

current model by comparing its predictions to the real data, the excitatory (increased) response 

type was used because it was shown to be the most effective in terminating seizures in the 

model study. Therefore, the excitatory response from the real data served as CN input to the 

thalamocortical model and was applied to the TC neurons.  

To address the second aim, the raw recordings were used as input to the interictal model. 

As the purpose was to evaluate how strong and synchronized CN neuron input should be to 

trigger seizures in the thalamocortical network, the recordings should be in the “bursting 

mode”, which is the case for the recordings before the optogenetic activation (as optogenetic 

activation switches the bursting to asynchronous irregular state). Various factors (scales) 

applied to the synaptic conductance were tested.   
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8.1. Experiment 1: modified pre-recorded input to all TC neurons in the ictal network 

The factor multiplying the weight of the input from CN to TC is called “scale” in analogy 

to the modelling study. The minimal possible scale which evokes the phase transition is used. 

To prove that the scale in use is actually the minimal one, two plots will be shown for each 

input type: the input with the scale which is high enough to switch off the ictal state, and the 

one with the scale which is just below the effective one. The CN input is verified to be 

excitatory.  

Figure 8.1. Top panel: Evaluation of the required synaptic weight between the CN 

and TC neurons. Blue and red lines marking the beginning and the end of the 

optogenetic stimulation.  

Please note, that the CN stimulus at the time of the optogenetic activation can not 

be seen as prominent one at the neurons #2000 – 2100 on the left figure.  

The phase shift happens exactly where CN stimulus leads to prominent TC activity 

(wide densely black lines around 700 ms on the left). Bottom panel: input spike 

trains from the file 3.1_ms.csv. Optogenetic stimulation occurs at 2408.35 ms.  
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In the Figure 8.1, the top panel on the left shows the model response to the stimulus with 

a scale of 11. The output is in the ictal state, and no effect of the input is observed. On the right 

of the top panel in Figure 8.1, the scale is set to 12, and the phase shift occurs before the 

optogenetic stimulus arrives (also, it is a response to the elevation of CN activity, which can be 

seen as dense black lines in TC neurons). The input profile can be seen in Figure 8.1, bottom 

panel, where a prominent activity around 700 ms is shown. To further evaluate this effect, 

Figure 8.2 was created.  

Figure 8.2. Top: the complete recorded real data input file (from *.abf). Bottom: 

zoom in on the bottom plot. Optogenetic activation is marked with blue vertical 

lines as part of the input provided to TC neurons.  
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It was concluded from Experiment 1, that any significant fluctuation in the input, even 

though it is much smaller than the response to optogenetic activation, can possibly cause the 

phase transition before the activation occurs. For this reason, the raw data was analysed further 

in order to find a suitable input which features a strongly increased CN response with a flat 

baseline activity with minimum fluctuations, so that the phase transition occurs as a response 

to the optogenetic activation rather than random input fluctuations (Figure 8.3)  

 

 

Figure 8.3. Top left: no termination of the ictal activity as a response to the 

optogenetic stimulation. Please note the strength of CN input at the time of 

optogenetic activation (dense black line at around 2500 ms). Right: with the 

increase in scale / stronger input the phase transition happened exactly at the time 

of the optogenetic stimulation. Bottom panel: input spike trains. Optogenetic 

stimulation happens at 2532.9ms.  

 

In the previous modelling studies, a constant 1 Hz input was provided to the model 

throughout the simulation in order to support continuous activity. In these simulations, 
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the CN input was a strong input applied during 50 ms on top of the background input. 

The real (experimental) data is not so uniform, because stronger spontaneous activity 

may occur, which is significantly higher than the baseline activity level. Such real data 

fluctuations are strong enough to evoke the phase transition. If the aim is to investigate 

the effect of optogenetic activation, the data before the optogenetic activation should as  

uniform as possible, without strong spontaneous activity. With the limited number of 

recordings available it was challenging to find a suitable data file of certain length to 

match with the modelling settings for easy comparison. However, as shown in Figure 

8.3, an excitatory CN stimulus evoked by the optogenetic activation can terminate the 

simulated absence seizures, which confirms the results of the modelling study. Therefore, 

further experiments was set up to evaluate if the success of seizure termination depended 

on the number of the TC neurons receiving CN input.  

 

8.2 Experiment 2: varying the number of TC neurons receiving CN input 
 

Number of TC input recipients Scale 
100  7 
50  5 
75  7 
25  6.5 – 7 * 

* Depends on which set of 25 TC neurons is selected. 
 

Table 8.1. Comparison of the scale values required to terminate the ictal state in 

the thalamocortical network receiving input to a different number of TC neurons 

(input file 3.5). 

 

The results shown in Table 8.1 are counter-intuitive, because the more neurons receive 

the input, the easier it should be to elicit an effect. In this case, it was easier to terminate 

the ictal state by stimulating only half (50) of the TC neurons.  

 

To address the second question set at the beginning of this chapter (could seizures be triggered 

by providing CN input?), an experiment using the interictal network was performed.  
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8.3 Experiment 3: could seizures be triggered by CN input? 
 
The experimental recordings of the spike times before the optogenetic stimulation were applied 

to the network model for 5 s. Different CN-TC synaptic weights (scale) were tested.  

A      B 

C      D 

Figure 8.4. Interictal network behavior in response to ictal CN input. The weights 

of synaptic connections are progressively increased in order to investigate if it is 

possible to trigger absence seizures with the CN input of some strength. A: scale 

50, B: scale 100, C: scale 200, D: scale 500.  
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From Experiment 3 it is clear that ictal CN input, even very strong one, does not trigger absence 

seizures. Instead, an entrainment of the network activity to the CN spike trains occurred for all 

values of synaptic weights tested.  

 

8.4 Chapter Conclusions  

 

• The thalamocortical network is very sensitive to any CN activity fluctuations and 

resultant TC neuron activity. 

• The susceptibility of the network to the CN activity depends on the synaptic 

conductance scale.  

• Pre-recorded excitatory CN input can terminate absence seizures, which confirms the 

modelling results.  

• When evaluating the number of CN – TC connections required to terminate absence 

seizures, preliminary conclusion would be that the network does not require a stronger 

CN - TC synaptic weight (a higher scale) to terminate seizures when a smaller number 

of TC neurons receive CN input (see Table 8.1). For all number of TC neurons receiving 

CN input apart from 50, the scale required to switch the ictal activity off (scale 7) is 

roughly the same. There is a drop in the 50 neurons, which might be due to an artefact 

and might be improved with the number of trials (seeds). This requires further 

investigation.  

• Further work should be done to evaluate the relationship between the phase and the 

required strength of the recorded CN input. 

• Recorded CN input cannot trigger absence seizures, but can entrain the network instead.   
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9 

 
Discussion 
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 The cerebellum plays an important role in organising the functions of other brain structures. 

Its nuclei integrate the inhibitory inputs from Purkinje cells and excitatory inputs from mossy 

and climbing fiber collaterals and provide the main outlet to the rest of the brain, in particular 

to the thalamus, which serves as a bottleneck for information flow to the cortex, where it relays 

sensory inputs. However, the mechanisms of information processing in the cerebellum and its 

contribution to a number of pathologies remain to be elucidated. In this thesis, I have used 

computational modelling to investigate the contribution of the cerebellum to pathologies, in 

particular to downbeat nystagmus and absence epilepsy, and attempted to describe the 

mechanisms underlying them, in order to be able to propose possible treatment. 

To understand the mechanism underlying downbeat nystagmus, a biologically detailed 

conductance-based model of a floccular target neuron (FTN) was used. The FTN neuron 

response to spike trains from tottering (tg/tg) and wild-type PCs was investigated in detail. 

Previously (Luthman et al, 2011) described a contribution of STD to the translation of input 

irregularity into output spike rate. I replicated these results of the effect of STD, which was 

demonstrated using individual conductance traces of one of the 450 GABAA synapses. In 

principle, this would also have been possible with a simpler model such as a leaky integrate 

and fire or an AdEx model with 450 separate synapses. However, the detailed model was 

chosen to investigate the contribution of other intrinsic neuronal mechanisms, such as specific 

ion channels or calcium dynamics. The intrinsic properties of the FTN neuron are not 

significant for the current study, but they can be examined in the future. The population 

response was also reconstructed from individual synaptic conductance to understand why 

irregular spike trains injected less inhibitory conductance into the CN neuron than regular trains 

and why this decrease depended on STD. Tottering spike trains had a larger proportion of short 

ISIs, which led to a stronger STD of the inhibitory synaptic conductance. In this way, STD 

selectively cut off higher frequency components of the input spike trains, effectively acting as 

a low-pass filter. Wild-type spike trains had a smaller proportion of short ISIs and therefore 

were less affected by the low-pass filtering effect of STD, which resulted in less reduced PC-

FTN synaptic conductance and smaller depression. The reduced GABAA conductance in 

response to irregular spike trains in the presence of STD led to a higher CN firing rate than the 

regular trains with and without STD. As a consequence, the accelerated CN neuron firing rate 

in response to the increased irregularity of the tottering spike trains can be explained by the 

STD-dependent decrease of GABAA conductance at high PC-FTN convergence ratios. 

However, the accelerated CN neuron firing rate in response to tottering PC input did not depend 

on STD for convergence ratio of 1. The irregularity-based acceleration of firing rate for one-
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to-one PC-FTN connections might be explained by the involvement of other mechanisms such 

as the existence of longer periods without PC inhibition (Luthman et al., 2011).  

STD is a form of synaptic plasticity caused by the depletion of neurotransmitters in the 

presynaptic neurons. The changes caused by STD decay to baseline in order of milliseconds. 

Due to STD neurons can adjust the strength of their responses depending on the input 

frequencies (Abbott et al., 1997), giving the postsynaptic neuron an increased sensitivity to 

lower-frequency input strengthening the synaptic weight. Higher-frequency input rapidly 

deactivates the synapse. Dynamical synapses such as PC-FTN synapses display low-pass 

filtering properties. In the FTN neuron model STD is assumed to be caused by the decreased 

probability of presynaptic transmitter release (Shin et al, 2007), which makes the conductance 

evoked by a synaptic input dependent on the prior input firing rate.  

It was recently shown, that synapses can adjust their energy expenditure and optimize the 

energy-information rate balance. This can be achieved by changing the dynamics of STD. 

Stronger depression and slower recovery will preserve metabolic energy and decrease the 

release probability. In this way the parameters of STD define the information-energy flow in 

neurons. Thus, increasing the STD level will decrease both the information rate and the energy 

consumption of the synapse at the release site. It was shown by Salmasi et al (2019) that when 

the release of neurotransmitters is asynchronous and associated with the noise in release, the 

effect of STD would be greater than from the synchronous release associated with the signal 

component of release. The signal to noise ratio of the release site can be enhanced by STD. 

Moreover, Salmasi and collaborators demonstrated that in the cases when synchronous spike-

evoked release is depressed less or recovers faster than the asynchronous release, STD can 

enhance the information transmission. In the cases where the dynamics of synchronous and 

asynchronous releases are the same, STD decreases the information rate of the release site and 

preserves the energy. STD is one of the mechanisms that contributes to temporal selectivity. 

Thus, STD is shown to be an important mechanism in the effect of 4-AP on treating DBN. 

The regularisation of Purkinje cell input with 4-AP is expected to have a beneficial effect on 

nystagmus occurrence by stabilizing gaze holding. To study this hypothesis at a systems level 

it might be possible to use the eye-movement model by (Glasauer et al, 2008) to construct a 

population response by utilising the output from the cellular model as an input to the system-

level model. This will help to predict the respective eye movements during DBN and after 4-

AP treatment, as described in (Glasauer et al, 2008). Also, since it was shown that STD is the 

link between irregularity and firing rate, which leads to nystagmus, it would be logical to 
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suggest that blocking STD might prevent nystagmus. This needs to be confirmed by further 

experiments.  

As for the model limitations, the mutation that is characteristic for tg/tg leads to plenty 

of physiological and morphological alterations compared to wild-type, which is not accounted 

for in this model. The same CN model was used for both tg/tg and wild-type cases, without 

changing synaptic characteristics for tg/tg. There are other factors which can also affect CN 

firing rate, such as the use of anaesthesia, which also was not accounted for.  

 

To understand the mechanism of the termination of absence seizures by CN stimulation, 

a network model based on single-compartment spiking neurons - Adaptive Exponential 

Integrate-and-fire models - was chosen after a long set of trials and errors described in Chapter 

3. I simulate a thalamocortical network model with adaptive exponential integrate-and-fire 

neurons, because with appropriate parameter values it can reproduce up to 96% of spike-times 

of a regular - spiking Hodgkin-Huxley-type model (Brette and Gerstner, 2005). Also, this 

model can reproduce most of the known electrophysiological features, while focusing on the 

interactions between large network populations, which is the perfect compromise between the 

computational cost and level of details. The model displays complex intrinsic properties such 

as low-threshold spiking, regular spiking, fast spiking and adaptation. The conductance change 

in the post-synaptic neurons is modelled by alpha synapses. This model cannot reproduce the 

effect of pharmacological manipulations such as specific ion channel blocking, but this was 

anyway out of the project scope. Of course, the use of an isolated network brings bias to the 

results, as the effect of other elements of the real network are not accounted for. For example, 

the TC neurons were stimulated externally by the CN input, and this input is excitatory only. 

In a real life scenario there are many types of stimulation possibilities. I have tried to address 

some of them by investigating the effect of jitter and other input types, such as inhibitory and 

biphasic, but there are much more possibilities. The CN input can be also formed from a mixed 

excitatory-inhibitory stimuli of various proportions. Another model limitation is caused by the 

brain background activity. The ongoing activity in the model is sustained by 1 Hz constant 

input, which is obviously not the case for real brain background activity. Also, the exact 

proportion of TC neurons receiving CN input might be dynamic depending on the 

circumstances.  

I have found that depending on the time constants of the inhibitory synaptic conductance, 

the model can show different dynamics and be in various states, such as asynchronous-irregular 

for 5 ms and oscillatory for 15 ms. An increase in the inhibitory decay time constant reflects a 
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change from GABAA dominated inhibition to more GABAB, which can result in GSWDs, 

given that the “wave” components of GSWDs are related to slow GABAB - mediated K+ 

currents. Also, depending on tau_w, the model can show bistability, displaying either bursting 

or asynchronous irregular state or spontaneous GSWDs termination.  

I provide CN input to all thalamocortical neurons to analyse the mechanism of reverting 

from abnormal oscillatory activity to the normal AI state. The obtained results clearly show 

that the input from the CN can indeed control oscillatory activity in thalamocortical networks. 

Moreover, it has been shown that it is more effective to provide the CN input at the peak of the 

GSWD, and it is least effective in resetting oscillatory activity while provided in the middle of 

the bursts, displaying phase-dependence. This finding potentially may increase the efficacy of 

therapeutic applications of CN stimulation and optimise it in closed-loop systems for 

terminating the seizures. 

If the model findings could be extrapolated to other types of epilepsy, where more serious 

treatment options would be considered, then possible clinical application of this model could 

be deep brain stimulation. The most common region for its application is the anterior thalamic 

nucleus stimulation. Intracranial deep brain stimulation is a very promising relatively new 

method of alleviation of the various neurologic diseases symptoms. Among them, the most 

established is Parkinson’s disease treatment. For epileptic patients, Cooper et al pioneered in 

the cerebellar (cortex) stimulation in 1974 (Cooper et al., 1974). 

As shown in this thesis, CN stimulation has a powerful deoscillating effect on the ictal 

thalamocortical network, so it is likely that CN stimulation will also have an alleviating effect 

in more severe kinds of intractable epilepsy. There are studies where DBS is applied to deep 

CN (Vedam-Mai et al.,2016), which might be a preferred region of stimulation to treat epilepsy. 

Vedam-Mai et al (2016) applied deep CN stimulation to ataxic mice (ataxia, along with the 

cortical spike-and-wave discharges, is the symptom exhibited by tg/tg mutants, who are the 

model for absence seizures) and observed marginal improvement in their stride. Further 

investigations are required to establish to what extent these findings for ataxia and absence 

epilepsy can be utilised to treat other types of seizures because absence epilepsy will unlikely 

be considered for such an intervention as deep brain stimulation due to its benign nature (Kros 

et al, 2015). Also, further investigations are required to confirm these initial observations and 

establish the frequency and duration of the stimulus application.  
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Conclusions 
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10.1 Summary of the results: findings and limitations 

I was investigating the mechanisms underlying cerebellar contribution to two pathologies: 

nystagmus and absence epilepsy.  

As a result of detailed single neuron modelling, I have proposed the mechanism of STD 

contribution to the synaptic conductance on the PC – FTN firing rate, which explains previous 

modelling results inconsistency (Glasauet et al 2011, Glasauer and Rossert, 2008) with 

experimental data (Alvina and Khodakhah, 2010). In particular, I have shown that irregular 

pathological PC input trains seen during DBN lead to increased depression of the synaptic 

conductance, a decreased total inhibitory conductance injected into FTN neuron, higher FTN 

firing rate (6 versus 4 spikes with and without STD respectively), disregarding the 

synchronicity level. Accelerated FTN firing rate results in nystagmus symptoms. When the PC 

input was regularised with 4-AP, FTN firing was decelerated and no nystagmus symptoms 

should be observed. These explanation is in line with the experimental findings (Alvina and 

Khodakhah, 2010).  

As a result of a AdEx network ensembles modelling, I can conclude that the network can 

switch its dynamics depending on the inhibitory synaptic conductance. Thus, when the 

inhibitory time constant of 5 ms, the network exhibits AI behaviour. When it is set to 15 ms, 

the network shows GSWDs dynamics, which is characteristics of absence epilepsy. Such a 

dramatic change in the network dynamics can be explained on the basis of GABA-mediated 

inhibition. Thereby, elevation of the inhibitory time constant corresponds to the shift from 

GABAA-dominated inhibition to slow GABAB-mediated K+ currents (wave of GSWDs, 

Destexhe, 1998). My simulation results substantiate that CN can control oscillatory activity in 

thalamocortical networks. Moreover, the potency of CN input displays phase-dependence. 

According to my simulations, the absence seizure termination is the most effective when CN 

input arrived at the peak of GSWDs, while the effectiveness is low between the GSWD bursts. 

These findings could be applied in therapy of absence epilepsy, using deep brain stimulation, 

in particular, in CN stimulation to terminate seizures. 
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10.2 Open questions and future directions  

The role of the cerebellum in motor diseases is well established. It is well known that cerebellar 

lesions cause motor deficits and discoordination of movements. Recently the scientific 

community became interested in non-motor diseases caused by cerebellar dysfunction (Reeber 

et al., 2013). As some of the cerebellar functions are cognition and emotions, which implied by 

its architecture and connectivity, impairment in cerebellum would lead to disruption of these 

functions. It would be interesting to widen the range of pathologies caused by cerebellar 

disfunction from the motor to non-motor. One of the most interesting non-motor pathologies is 

an autism spectrum disorder (Fatemi et al., 2012), which might even be associated with 

epilepsy (Levisohn, 2007).  

Two models that detailed in this Thesis describe cerebellum: biologically detailed single 

neuron model of downbeat nystagmus (FTN model of downbeat nystagmus) and thalamus 

interconnected with the cortex (AdEx thalamocortical model of absence epilepsy). The possible 

extension of this work would be the incorporation of the cerebellar nucleus into the existing 

thalamocortical AdEx network model to study cerebellar-thalamocortical loops, which might 

be involved in different pathological conditions, such as essential tremor (Tröster et al., 2002), 

primary generalized dystonia (DeLong and Wichmann, 2012), progressive supranuclear palsy 

(Brusa et al., 2014) and others.  

There are two possible ways to address the limitations of the current version of the 

thalamocortical network model. The easier one would be to research in greater details the 

biphasic response type of the thalamocortical part of the network to CN stimuli. Biphasic 

(excitatory and inhibitory) response type might serve as a model of mixed input from CN 

neurons and other structures, such as zona incerta for instance (Figure 10.1). Another way 

follows.  
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Figure 10.1. Schematic representation of thalamocortical network and subthalamus (zona 

incerta).  

 

In experimental in vivo research (Kros et al., 2015), it was shown that thalamic neurons 

respond to CN stimulation in various ways. The majority of them (61%) responded with 

increased firing, which was successfully reproduced with the help of thalamocortical model 

modified from (Destexhe, 2009). 9.5 % of neurons responded with the increased firing rate, 

and 11.5 % of neurons displayed a delayed response, which were successfully reproduced in 

this Thesis. However, 10.3% of responses was not possible to model with the set of parameters 

described above in the thesis. A possible explanation to this might be that thalamic neurons 

respond in biphasic way not to the CN stimulus but to the stimulation from basal forebrain 

(Beierlein, 2014), which is not modelled in the Thesis. Thalamic circuit activities that formed 

of thalamocortical and reticular thalamic neurons are shown to be regulated by a number of 

afferent systems. One of them are cholinergic efferent projections from basal forebrain, which 

target the RE nucleus, which inhibits TC neurons. TC neurons are showed to be expressing 

muscarinic acetylcholine (ACh) receptors which block Potassium currents upon their activation 

(Bista et al., 2012) and a resting membrane potential depolarization due to activation of 

nicotinic ACh receptors. This depolarization happens due to the T-type Ca2+-channel 

inactivation (McCormick & Bal, 199) and promotes a switch from bursting to tonic firing 
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(Beierlein, 2014). RE neurons also have both nicotinic and muscarinic ACh receptors, however, 

the effect of their activation on the membrane potential appears to be opposite. In particular, 

after the fast nicotinic AChR‐mediated depolarization, the long‐lasting muscarinic AChR‐

mediated hyperpolarization follows (Hu et al. 1989b), which is a biphasic response. Therefore, 

the input from basal forebrain leads to the RE neuronal inhibition, which on its turn, leads to 

the disinhibition of TC neurons and to switch into tonic firing mode from bursting. Therefore, 

the current AdEx model could be able to reproduce the biphasic input if the external stimulation 

would slowly inhibit the RE nucleus, simulating the input from the basal forebrain. The 

parameters of the external input should be adjusted in such a way that the input is simulated 

both muscarinic and nicotinic ACh afferents from basal forebrain.  
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P293 Phase dependence of the termination of absence seizures by cerebellar input to 

thalamocortical networks 

Julia Goncharenko1, Lieke Kros2, Reinoud Maex1, Neil Davey1, Christoph Metzner3, 

Chris de Zeeuw2, Freek Hoebeek2, Volker Steuber1 

1University of Hertfordshire, Biocomputation Research Group, Hatfield, United 

Kingdom; 2Erasmus MC, Department of Neuroscience, Rotterdam, Netherlands; 3Technische 

Universität Berlin, Department of Software Engineering and Theoretical Computer Science, 

Berlin, Germany 

Correspondence: Julia Goncharenko (i.goncharenko@herts.ac.uk) 

BMC Neuroscience 2019, 20(Suppl 1): P293 

 

Absence seizures are the most common form of epilepsy in children. They start and finish 

abruptly, last for 10–20 seconds and can be detected by generalised spike-and-wave discharges 

(GSWDs) in the electroencephalogram. These GSWDs are based on neuronal oscillations in 

thalamocortical networks, which can be caused by excessive inhibition in the thalamus or 

excessive cortical activity. Absence seizures can be triggered by switching of the normal 

asynchronous neuronal activity in thalamocortical networks to synchronised oscillations, and 

terminated by the reverse process, switching from synchronised oscillations to asynchronous 

activity. 

 

Experimental studies have shown that thalamic stimulation can disrupt oscillatory activity in 

thalamocortical networks. More recently, it was also found that optogenetic activation of 

neurons in the cerebellar nuclei (CN) can stop epileptic absence seizures and reset the 

oscillatory activity, for example in a closed loop system [1]. However, the underlying 

mechanism of the termination of absence seizures by CN stimulation is not yet clear. 

 

To investigate the mechanism of the termination of absence seizures by thalamic input from 

the CN we used computer simulations. We simulate a thalamocortical network model with 

adaptive exponential integrate-and-fire neurons, displaying complex intrinsic properties such 

as low-threshold spiking, regular spiking, fast spiking and adaptation [2]. The network activity 

can exhibit oscillatory or asynchronous irregular (AI) dynamics, depending on the time 
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constants of the inhibitory synaptic conductance, which are 5 ms (AI) and 15 ms (oscillatory), 

respectively. An increase in the inhibitory decay time constant reflects a change from GABAA 

dominated inhibition to more GABAB, which can result in GSWDs, given that the “wave” 

components of GSWDs are related to slow GABAB -mediated K+ currents [3]. 

 

We provide CN input to all thalamocortical neurons to analyse the mechanism of reverting 

from abnormal oscillatory activity to the normal AI state. Our results confirm that input from 

the CN can control oscillatory activity in thalamocortical networks. Furthermore, they show 

that the effectiveness of this input exhibits phase-dependence. In our simulations, CN input 

terminates epileptic absence seizures most effectively when it arrives at the peak of GSWDs, 

while seizure termination is least efficient for input between the GSWD bursts. This finding is 

potentially relevant for therapeutic applications of CN stimulation to terminate seizures. 

However, the simulations in silico did not take several biological factors such as indirect 

pathways from the CN to the thalamus into account that may explain differences with animal 

models of epilepsy [1]. 
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Epilepsy is one of the most prevalent neurological diseases in humans, affecting people of all 

ages. One of the most common forms of epilepsy in children is absence epilepsy [1]. 

Characteristic symptoms of absence epilepsy are sudden seizures that are accompanied by 

periods of behavioral arrest and impaired consciousness [1]. As in other forms of epilepsy, 

these seizures are electrophysiologically described by neuronal oscillations in thalamo-cortical 

networks and appear as generalized spike-and wave discharges (GSWDs) in the 

electroencephalogram (EEG) [2]. Oscillatory activity in cerebral cortex and thalamus can be 

caused by excessive inhibition in thalamus or by excessive cortical activity [2]. It has been 

suggested that the initiation of absence seizures can be triggered by events that switch neuronal 

activity in thalamo-cortical networks from normal asynchronous activity to synchronised 

oscillations [2]. 

 

Previous experimental studies have shown that oscillatory activity in thalamo-cortical networks 

and the accompanying GSWDs can be disrupted by stimulation of the thalamus [3]. Recently, 

it has been found that optogenetic activation of neurons in the cerebellar nuclei (CN) is a 

powerful tool to stop epileptic absence seizures using a closed-loop system in two unrelated 

mouse models [4]. Due to their anatomical bottleneck location, CN neurons can control the 

balance of excitation and inhibition in thalamus, resetting the oscillatory activity in thalamo-

cortical loops. However, the mechanism underlying the disruption of thalamo-cortical 

oscillations and absence seizures by stimulation of the CN remains unknown. 

 

Here we use computer simulations to investigate the mechanisms underlying the termination 

of absence seizures by optogenetic stimulation of CN neurons. We simulate a thalamo-cortical 

network model of adaptive exponential integrate-and-fire neurons, displaying complex 
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intrinsic properties such as low-threshold spiking, regular spiking, fast spiking and adaptation 

[5]. The network activity can exhibit oscillatory or asynchronous irregular (AI) dynamics, 

depending on the level of adaptation in cortical cells [5]. We use electrophysiologically 

recorded spike trains that result from optogenetic activation of CN neurons in mouse models 

of absence epilepsy as input to the network model to analyse the mechanism of reverting 

abnormal oscillatory activity to the normal AI state. Our results illustrate how input from the 

CN can control oscillatory activity in thalamo-cortical networks and therefore provide a 

mechanism to terminate epileptic absence seizures. 
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Downbeat nystagmus (DBN) is a common eye fixation disorder that is linked to cerebellar 

pathology. DBN patients are treated with 4-aminopyridine (4-AP), a K channel blocker, but the 

underlying mechanism is unclear. DBN is associated with an increased activity of floccular 

target neurons (FTNs) in the vestibular nuclei. It was previously believed that the reason for 

the increased activity of FTNs in DBN is a pathological decrease in the spike rate of their 

inhibitory Purkinje cell inputs, and that the effect of 4-AP in treating DBN could be mediated 

by an increased Purkinje cell activity, which would restore the inhibition of FTNs and bring 

their activity back to normal [1]. This assumption, however, has been questioned by in vitro 

recordings of Purkinje cells from tottering (tg/tg) mice, a mouse model of DBN. It was shown 

that therapeutic concentrations of 4-AP did not increase the spike rate of the Purkinje cells, but 

that they restored the regularity of their spiking, which is impaired in tg/tg mice [2]. 

 

Prompted by these experiments, Glasauer and colleagues performed computer simulations to 

investigate the effect of the regularity of Purkinje cell spiking on the activity of FTNs [3]. Using 

a conductance based FTN model, they found that changes in the regularity of the Purkinje cell 

input only affected the FTN spike rate when the input was synchronized. In this case, increasing 

the regularity of the Purkinje cell spiking resulted in larger gaps in the inhibitory input to the 

FTN and an increased FTN spike rate. These results predict that the increased irregularity in 

the Purkinje cell activity in DBN should lead to a decreased activity of the FTNs, rather than 

the increased activity that is found in experiments, and they are therefore unable to explain the 

therapeutic effect of 4-AP. 

 

However, the model by Glasauer and colleagues does not take short-term depression (STD) at 

the Purkinje cell—FTN synapses into account. We hypothesized that this absence of STD could 

explain the apparent contradiction between the experimental [2] and computational [3] results. 

To study the role of STD in the pathology and 4-AP treatment of DBN, we used a 
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morphologically realistic conductance based model of a cerebellar nucleus (CN) neuron [4, 5] 

as an FTN model to simulate the effect of irregular versus regular Purkinje cell input. The 

coefficients of variation of the irregular and regular Purkinje cell spike trains during DBN and 

after 4-AP treatment, respectively, were taken from recordings from wild-type and tg/tg mice 

[6], which served as a model system for DBN. We presented the FTN model with synchronized 

and unsynchronized input and found that, for both conditions, irregular (DBN) input trains 

resulted in higher FTN spike rates than regular (4-AP) ones. In the presence of unsynchronized 

Purkinje cell input, the acceleration of the FTN spike output during simulated DBN and the 

deceleration during simulated 4-AP treatment depended on STD at the Purkinje cell synapses. 

Our results provide a potential explanation for the pathology and 4-AP treatment of 

pathological nystagmus. 
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ii. Experimental data analysis: 1/ISI(t) plotted for all 39 data files.  

 


