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Abstract

We discuss a simple procedure for obtaining new integrable spin chains from old by

replacing each single state of the original model by some collection of states. This works

whenever the Lax matrix of the chain has a certain form. The simplest example is the su(n)

XX model. We apply the techniques of the nested algebraic Bethe ansatz to solve such

systems, in the bosonic and supersymmetric cases.

1 Introduction

In [1], Maassarani and Mathieu introduced generalizations of the usual two-state XX spin chain,

motivatated in part by the desire to construct versions of the Hubbard model with su(n) symmetry

[2, 3, 4, 5]. Following [1] these su(n) XX models were further generalized in [6, 7] and it emerged

that the underlying idea is rather simple. For a certain class of R-matrices it is possible to

introduce “multiplicity”. This means, roughly speaking, replacing each state of a given spin chain

by a collection of states, all equivalent from the point of view of the spin chain interactions —

we will make this more precise in section 2. In [7], this procedure was applied specifically to the

R-matrix of Am in the fundamental representation, but it is not limited to it.

The main goal of the present work is to carry out a similar construction in the case of supersym-

metric R-matrices and spin chains. We first review, in section 2, the introduction of multiplicity
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into XXZ-like integrable systems, focusing on identifying the features needed to make the con-

struction work. Lax operators, monodromy, and transfer matrices are defined. In section 3 we

examine the algebraic Bethe ansatz for the new models.

In section 4 we turn to the supersymmetric case and add multiplicity to integrable models

associated with the su(m|n) superalgebras. The form of the algebraic Bethe ansatz for these

models is similar to those of the usual su(m|n) chain [8], but with modifications due to the

additional degrees of freedom. It will turn out that this alters the spectrum of the monodromy

matrix and leads to a degeneracy of eigenstates just as in the purely bosonic case.

2 Am−1-type Integrable Models With Multiplicity

As a warm-up, and to establish notation, we shall consider first bosonic models similar to those

in [7], before we turn to the supersymmetric case in section 4. Let {EI : I = 0, . . . , m− 1} be the

standard basis of V = Cm, {ΩI} the dual basis of V ∗, and EI
J = EI ⊗ ΩJ ∈ V ⊗ V ∗ ∼= End(V ).

Suppose Ro(u) ∈ End(V ⊗V ) is an R-matrix obeying the usual Yang-Baxter equation with spectral

parameter1

Ro
12(u− v)Ro

13(u− w)Ro
23(v − w) = Ro

23(v − w)Ro
13(u− w)Ro

12(u− v), (2.2)

which, moreover, is of the particular form

Ro(λ) =

m−1∑

I,J=0

(
RJ

I
I
J(λ)EJ

I ⊗ EI
J + (1− δIJ)R

I
I
J
J(λ)EI

I ⊗EJ
J
)
. (2.3)

That is, in each non-zero element of the R-matrix, the set of ‘in’ indices is the same as the set of

‘out’ indices. The usual trigonometic R-matrix of Am−1 [9] is of this type, and was the particular

case considered in [7]. From the point of view of statistical mechanics this property originates in

the ice rule obeyed by the Boltzmann weights.

Given any such R-matrix, the “multiplicity” models of [7] are defined by replacing each in-

dividual basis state by a collection of states. Thus, for every EI , introduce new basis states

{eaI : aI ∈ AI}, where AI is an index set of cardinality nI ∈ N. Let {ωaI : aI ∈ AI} be the dual

1We follow the standard notation of [10], so that for example R13(u) denotes the element of End(V )⊗3

m−1∑

I,J,K,L=0

R
I
J
K

L(u)EI
J ⊗ 1⊗ EK

L
. (2.1)
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basis, write eaI
bJ = eaI ⊗ ωbJ , and then define

R(λ) =

m−1∑

I,J=0

∑

aI∈AI

bJ∈AJ

(
RJ

I
I
J(λ) ebJ

aI ⊗ eaI
bJ + (1− δIJ)R

I
I
J
J(λ) eaI

aI ⊗ ebJ
bJ
)
. (2.4)

One way to see that this new R-matrix also obeys the Yang-Baxter equation is to note that Ro(λ)

may be written purely in terms of the combination EI ⊗ΩI (no sum on I), with the tensor factors

inserted in appropriate slots. The new R-matrix is obtained by performing the replacement

EI ⊗ ΩI −→
∑

aI∈AI

eaI ⊗ ωaI , (2.5)

so it suffices to observe that these objects obey the same rule under internal contraction: on the

one hand

EI

〈
ΩI , EJ

〉
⊗ ΩJ = δIJEI ⊗ ΩI , (2.6)

and on the other, since the index sets AI are disjoint,

∑

aI∈AI

eaI

〈

ωaI ,
∑

bJ∈AJ

ebJ

〉

⊗ ωbJ =
∑

aI∈AI

∑

bJ∈AJ

δaIbJeaI ⊗ ωbJ = δIJ
∑

aI∈AI

eaI ⊗ ωaI . (2.7)

We consider a spin chain of length p0, and take as our Lax operator (see e.g. [11] for a review)

Lαx(µ) = Rαx(µ− λ0
x), (2.8)

where x ∈ {1, 2, . . . , p0} denotes the space of the xth particle on the chain, while the index α

denotes the auxiliary space. The λ0
x appearing in the arguments of the R-matrices parametrize

the inhomogeneities at each position of the chain. From the Lax operator, we construct the

monodromy matrix

Tα(µ) = Lαp0(µ)Lα(p0−1)(µ) · · ·Lα1(µ). (2.9)

The transfer matrix is the partial trace of the monodromy matrix: τ(µ) = trα Tα(µ). Notice that

the real difference between the model with multiplicity and the usual model the lies here: the

monodromy matrix makes explicit reference to the indices aI , and the notational trick used above

to recast the new R-matrix in the same form as the original one cannot be used here to simply

reduce the new model to the old one.

3 Algebraic Bethe Ansatz

The algebraic Bethe ansatz for these models has the same structure as the one developed by

Maassarani for his Am models in [7]. In fact, the models of [7] are subsumed by the more general
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framework here, though we have not included the parameters Maassarani denotes as xαiβj
, which

in our notation would be xaIbJ . Adding these parameters is not difficult, but we will work with

them set equal to unity.

To proceed with the algebraic Bethe ansatz, choose a pseudo-vaccum:

|Ω0〉 = |â0 · · · â0〉, (3.1)

where â0 ∈ A0 and the capital Latin indices now split into I = (0, i). Let aI(λ) = RII
II(λ),

bIJ(λ) = RIJ
IJ (λ) and cIJ(λ) = RJI

IJ (λ) for I 6= J . The choice of pseudo-vacuum singles out of

various elements of the monodromy matrix. Let A(λ) = T â0
â0
(λ) and BaJ (λ) = T â0

bJ
(λ). It is not

hard to check that on the pseudo-vaccum we have

A(µ)|Ω0〉 =

p0∏

x=1

a0(µ− λ0
x)|Ω0〉,

T ai
ai
|Ω0〉 =

p0∏

x=1

bi0(µ− λ0
x)|Ω0〉. (3.2)

The only other operators that do not annihilate the state are

Ba0(λ)|Ω0〉 =

p0∏

x=1

a0(µ− λ0
x)|a0â0 · · · â0〉,

Bai(λ)|Ω0〉 =

p0∑

x=1

(
p0∏

z=x+1

a0(µ− λ0
x)

)

ci0(µ− λ0
x)

(
x−1∏

y=1

bi0(µ− λ0
y)

)

|â0 · · ·

x
︷︸︸︷
ai · · · â0〉.

(3.3)

The second of the above two relations is what we will use to construct the other eigenstates of the

transfer matrix. These states will be of the form

|Ψ1〉 =

m−1∑

i=1

∑

ck1∈Ak1
,...,ckp1

∈Akp1

F ck1ck2 ···ckp1Bck1
(λ1

1)Bck2
(λ1

2) · · ·Bckp1
(λ1

p1
)|Ω0〉, (3.4)

where F is to be determined. We break the analysis of the action of the transfer matrix up into

m−1 levels and at each level aside from the final one, the procedure remains essentially the same.

First, work out the action of T a0
a0
(µ) on |Ψ1〉, where a0 6= â0. These elements of the monodromy

matrix annihilate |Ω0〉, but it turns out that they preserve states of the form |ai1 · · · aip1 〉 when

p1 = p0. This is an effect of the multiplicity that does not occur in the usual models. Explicitly
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we have

T a0
a0
(µ)|ai1 · · · aip0 〉 =

m−1∑

k,j=1

∑

bj1∈Aj1
,...,bjp0

∈Ajp0

ck2∈Ak2
,...,ckp0

∈Acp0

R
a0 bjp0
ckp0

aip0
(µ− λ0

p0
) · · ·R

ci2bj1
a0ai1

(µ− λ0
1)|bj1 · · · bjp0 〉

=

p0∏

x=1

b0i(µ− λ0
x)|ai1 · · ·aip0 〉.

As a result, the action of T a0
a0

on |Ψ1〉 is

T a0
a0
(µ)|Ψ1〉 = δp0p1

p1∏

x=1

b0i(µ− λ0
x)|Ψ1〉. (3.5)

The action of remaining components of monodromy matrix can be dealt with using the RTT -

equations,

Rαβ(λ− µ)Tα(λ)Tβ(µ) = Tβ(µ)Tα(λ)Rαβ(λ− µ), (3.6)

which, with the matrix indices displayed explicitly, read

∑

M1,M2

∑

eM1
∈AM1

eM2
∈AM2

R
aI1aI2
eM1

eM2
(λ− µ)T

eM1

bJ1
(λ)T

eM2

bJ2
(µ) =

∑

M1,M2

∑

eM1
∈AM1

eM2
∈AM2

T
aI2
eM2

(µ)T
aI1
eM1

(λ)R
eM1

eM2

bJ1bJ2
(λ− µ).

(3.7)

By specifying the various free indices, we may write down the particular relations which interest

us:

A(µ)Bai(λ) =
a0(λ− µ)

bi0(λ− µ)
Bai(λ)A(µ)−

ci0(λ− µ)

bi0(λ− µ)
Bai(µ)A(λ) (3.8)

T bj
ai
(µ)Bck(λ) =

m−1∑

r,s=1

∑

er∈Ar

ft∈At

R erft
ai ck

(µ− λ)

bj0(µ− λ)
Bft(λ)T

bj
er
(µ)−

c0j(µ− λ)

bj0(µ− λ)
Bai(µ)T

bj
ck
(λ). (3.9)

Ignoring contributions from the second term on the right-hand-side of either equation, we proceed

by computing first

A(µ)|Ψ1〉 =

p0∏

x=1

a0(µ− λ0
x)

p1∏

y=1

a0(λ
1
y − µ)

b0(λ1
y − µ)

|Ψ1〉, (3.10)

where we are forced to make the simplification bk0 = b0 in order for |Ψ1〉 to be an eigenstate of

A(µ). Now compute the action of T ai
ai

on |Ψ1〉

T ai
ai
(µ)|Ψ1〉 =

p0∏

x=1

b0(µ− λ0
x)

p1∏

y=1

1

b0(µ− λ1
y)

m−1∑

r1,...,rp1=1

t1,...,tp1=1

∑

er1∈Ar1
,...,erp1

∈Arp1

ft1∈At1
,...,ftp1

∈Atp1

× Bft1
(λ1

1) · · ·Bftp1
(λ1

p1
)|Ω0〉 (T

1)
ai,ft1 ···ftp1
ai,ck1 ···ckp1

(µ)F ck1 ···ckp1 , (3.11)
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where the level 1 monodromy matrix is defined as

T 1
α1
(µ) = Lα1p1(µ− λ1

p1
) · · ·Lα11(µ− λ1

1), (3.12)

and α1 refers to the level 1 auxiliary space whose components only run over the indices in the

sets {Ai}
m−1
i=1 . Clearly, we have now come around to an analogous problem one level up. The

undetermined coefficients F appearing in |Ψ1〉 are in fact, states of a level 1 spin chain acted on by

the level 1 monodromy matrix. We wish to choose these to be eigenstates of the diagonal blocks

of the level 1 monodromy matrix:

(T 1)aiai(µ)F = (Λ1)aiai(µ)F, (3.13)

where (Λ1)aiai(µ) is the level 1 eigenvalue. Given this, the expression for the action of T ai
ai
|Ψ1〉

simplifies to

T ai
ai
(µ)|Ψ1〉 =

p0∏

x=1

b0(µ− λ0
x)

p1∏

y=1

1

b0(µ− λ1
y)
(Λ1)aiai(µ)|Ψ1〉. (3.14)

So we have deduced the eigenvalue up to the next level in the analysis. It is

Λ(µ) = δp0p1(n0 − 1)

p0∏

x=1

b0(µ− λ0
x) +

p0∏

x=1

a0(µ− λ0
x)

p1∏

y=1

a0(λ
1
y − µ)

b0(λ1
y − µ)

+

p0∏

x=1

b0(µ− λ0
x)

p1∏

y=1

1

b0(µ− λ1
y)
Λ1(µ),

where Λ1 =
∑

i

∑

ai∈Ai
(Λ1)aiai. The factor of n0−1 appearing in the first term arises from the part

of the trace that sums over all the states in A0 except for â0. The higher levels have the same

structure, so the higher level eigenvalues are

Λk(µ) = δpkpk+1
(nk − 1)

pk∏

x=1

bk(µ− λk
x) +

pk∏

x=1

ak(µ− λk
x)

pk+1∏

y=1

ak(λ
k+1
y − µ)

bk(λk+1
y − µ)

+

pk∏

x=1

bk(µ− λk
x)

pk+1∏

y=1

1

bk(µ− λk+1
y )

Λk+1(µ). (3.15)

Here k runs over 0, . . . , m− 2. We have also defined bk(µ) = bki(µ) for all i = 1, . . . , m− 1. Also

note that throughout we have left implicit the dependencies on the inhomogeneities
{
λk
1, . . . , λ

k
pk

}

that appear at each level k = 0, . . . , m− 2. The final eigenvalue Λm−1 appears when k = m − 2.

Examining the RTT -equations for this final level:

(Tm−2)ba(µ)(B
m−2)c(λ) =

∑

e∈Am−1

f∈Am−1

R ef
ac (µ− λ)

bm−1(µ− λ)
(Bm−2)f(λ)(T

m−2)be(µ)

−
cm−1(µ− λ)

bm−1(µ− λ)
(Bm−2)a(µ)(T

m−2)bc(λ),

6



where all the indices above take values in Am−1. The level m − 2 creation operator is given by

(Bm−2)c = (Tm−2)âm−2

c , where âm−2 ∈ Am−2 is the chosen level m− 2 pseudo-vacuum state. It is

not hard to see that for e, f, a, c ∈ Am−1 we have

R ef
ac (λ) = am−1(λ)δ

f
aδ

e
c = am−1(λ)P

ef
ac , (3.16)

where P is the permutation operator. So the equation simplifies to

(Tm−2)ba(µ)(B
m−2)c(λ) =

∑

e∈Am−1

f∈Am−1

am−1(µ− λ)

bm−1(µ− λ)
(Bm−2)f (λ)(T

m−2)be(µ)P
ef
ac

−
cm−1(µ− λ)

bm−1(µ− λ)
(Bm−2)a(µ)(T

m−2)bc(λ). (3.17)

We can deduce that the level m− 1 monodromy matrix is built out of permutation operators:

(Tm−1)α(µ) = Pαpm−1
· · ·Pα1

pm−1∏

x=1

a(µ− λm−1
x ). (3.18)

The product of permutation operators yields the unit-shift operator for a chain of length pm−1.

The eigenvalues of this operator are roots of unity, and thus, the eigenvalues of the level m − 1

transfer matrix are of the form of a root of unity times the product
∏pm−1

x=1 a(µ− λm−1
x ).

The Bethe equations for this chain are derived by requiring that the residues around the various

λ-parameters vanish. Thus for k = 0, . . . , m− 2 we have

Λk+1(λk+1
z ) =

pk∏

x=1

ak(λ
k+1
z − λk

x)

bk(λk+1
z − λk

x)

pk+1∏

y=1

y 6=z

ak(λ
k+1
y − λk+1

z )bk(λ
k+1
z − λk+1

y )

bk(λk+1
y − λk+1

z )
,

where we have assumed that bk(µ) → 0 when µ ∼ 0. Substituting in the expression for Λk+1(λk+1
z )

and rearranging yields

pk+2∏

y=1

ak+1(λ
k+2
y − λk+1

z )

bk+1(λk+2
y − λk+1

z )

pk+1∏

y=1

y 6=z

ak+1(λ
k+1
z − λk+1

y )bk(λ
k+1
y − λk+1

z )

ak(λk+1
y − λk+1

z )bk(λk+1
z − λk+1

y )

pk∏

x=1

bk(λ
k+1
z − λk

x)

ak(λk+1
z − λk

x)
=

1

ak+1(0)
.

(3.19)

4 Am−1|n−1 Models

We now turn to our main topic of interest, namely the introduction of multiplicity to supersym-

metric chains. Suppose henceforth that V is a Z2-graded vector space and that our basis is chosen
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such that each basis vector EI has a definite grade |I| ∈ {0, 1}. Because vectors of grade 0 (respec-

tively 1) are taken to obey bose (fermi) exchange statistics, the tensor product becomes braided

(see for example [12, 13, 14]) in a mild fashion:

(1⊗ EI)(EJ ⊗ 1) = (−1)|I||J |EJ ⊗ EI . (4.1)

This braiding means that there is some subtlety when taking tensor products of elements of

End(V ), essentially because the isomorphism between End(V ) ⊗ End(V ) and End(V ⊗ V ) is no

longer quite trivial. Let us regard EI
J = EI ⊗ ΩJ ∈ End(V ) as acting on V ∗ from the right.2

EI
J : ΩM −→ ΩMEI

J = δIMΩJ . (4.2)

We then define ⊗s by the demand that, acting from the right on V ∗ ⊗ V ∗, EI
K ⊗s EJ

L send

ΩM ⊗ ΩN −→ δMI δNJ ΩK ⊗ ΩL. (4.3)

Noting that EI
K is of grade |I|+ |K| mod 2, we have

(ΩM ⊗ ΩN )(EI
K ⊗ EJ

L) = (−1)|N |(|I|+|K|)(ΩMEI
K ⊗ ΩNEJ

L) (4.4)

= (−1)|J |(|I|+|K|)δMI δNJ ΩK ⊗ ΩL. (4.5)

and therefore

EI
K ⊗s EJ

L := (−1)|J |(|I|+|K|)EI
K ⊗EJ

L. (4.6)

The definition extends naturally to more copies of End(V ), by including signs as needed to ensure

that the action from the right on V ∗ ⊗ · · · ⊗ V ∗ is correct. ⊗s is often called the “graded”

or “supersymmetric” tensor product, although with the present conventions this is somewhat

misleading because the grading is already built into ⊗, as in (4.1).

Given these preliminaries, it is possible to proceed much as in the bosonic case, being careful to

allow for the extra signs in (4.6). Consider an R-matrix obeying the graded Yang-Baxter equation3

Ro
12(u− v)Ro

13(u− w)Ro
23(v − w) = Ro

23(v − w)Ro
13(u− w)Ro

12(u− v), (4.7)

which is of the particular form

Ro(λ) =
m+n−1∑

I,J=0

(
rIJ(λ)EI

I ⊗s EJ
J + (−1)|I||J |(1− δIJ)tIJ(λ)EI

J ⊗s EJ
I
)
. (4.8)

2This will allow our conventions to match those of [8]; we could instead consider the action from the left on V

but the resulting definition (4.6) would be rather different.
3The advantage of using ⊗s appears here: this is an equation in End(V ⊗V ⊗V ) ∼= End(V )⊗sEnd(V )⊗sEnd(V ),

and in component form the multiplication is straightforward matrix multiplication. The extra signs are wrapped

up in the definition of e.g. R12 = R⊗s 1.
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One class of examples are the su(m|n) R-matrices of [13, 14], whose Boltzmann weights are

rII(λ) = aI(λ) =
q2(1−|I|) − q2|I|e2λ

q2 − e2λ
(4.9)

rIJ(λ) = b(λ) =
q(1− e2λ)

q2 − e2λ
, I 6= J (4.10)

tIJ(λ) = c(λ) =
(q2 − 1)e2λ

q2 − e2λ
, I > J (4.11)

tIJ(λ) = d(λ) =
(q2 − 1)

q2 − e2λ
, I < J. (4.12)

The algebraic Bethe ansatz for models built from this R-matrix (including integrable impurities

involving dual representations) was performed in [8].

Now we introduce multiplicity to the models. Once more, introduce the index sets {AI}
m+n−1
I=0 ,

and the vector and dual vector bases {eaI}
m+n−1
aI∈AI,I=0, {ω

aI}m+n−1
aI∈AI,I=0. These have precisely the same

properties as before, and again the modified R-matrix

R(λ) =

m−1∑

I,J=0

∑

aI∈AI

bJ∈AJ

(
rIJ(λ) eaI

aI ⊗s ebJ
bJ + (−)|I||J |(1− δIJ)tIJ(λ) ebJ

aI ⊗s eaI
bJ
)
. (4.13)

satisfies the Yang-Baxter equation. We choose the Lax operators

Lαx(µ) = Rαx(µ− λ0
x) (4.14)

and the monodromy matrix for an inhomogeneous chain of length p0 is then

Tα(µ) = Lαp0(µ)Lα(p0−1)(µ) · · ·Lα1(µ). (4.15)

The transfer matrix is obtained by taking the supertrace in the auxiliary space α:

τ(µ) = strαTα(µ) =
∑

I

∑

aI∈AI

(−)|I|T aI
aI
(µ). (4.16)

It follows from the Yang-Baxter equation that T (µ) satisfies the RTT relations

R12(λ− µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ− µ), (4.17)

With all indices displayed explicitly, these read (some care is needed with the sign in T2(µ)T1(λ) =

(1⊗s T (µ))(T (λ)⊗s 1) on the right-hand side here)

(−1)|L|(|J |+|M |)RI
J
K

L(λ− µ)T eJ
cM (λ)T fL

dN (µ) = (−1)|J |(|I|+|P |)T bJ
hQ
(µ)T aI

gP (λ)R
P
M

Q
N(λ− µ).

(4.18)
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The algebraic Bethe ansatz for the supersymmetric XXZ models is very similar to that of the

ordinary XXZ models, the main difference being a matter of including the signs in the equation

above. This means that the algebraic Bethe ansatz for Am|n models will be similar to that of the

previous purely bosonic models. Just as before we choose a pseudo-vaccuum:

|Ω0〉 = |â0 · · · â0〉, (4.19)

where â0 ∈ A0 and the capital Latin indices now split into I = (0, i). The elements of the

monodromy matrix that this singles out areA(λ) = T â0
â0
(λ) andBbJ (λ) = T â0

bJ
(λ). We are interested

in the action of the following operators on the pseudo-vacuum

A(µ)|Ω0〉 =

p0∏

x=1

a0(µ− λ0
x)|Ω0〉,

T ai
ai
|Ω0〉 =

p0∏

x=1

b(µ− λ0
x)|Ω0〉,

Bai(λ)|Ω0〉 =

p0∑

x=1

(−)|i||0|

(
p0∏

z=x+1

a0(µ− λ0
z)

)

c(µ− λ0
x)

(
x−1∏

y=1

b(µ− λ0
y)

)

|â0 · · ·

x
︷︸︸︷
ai · · · â0〉.

(4.20)

The other eigenstates of the transfer matrix will be linear combinations of the states

|Ψ1〉 =

m−1∑

i=1

∑

ck1∈Ak1
,...,ckp1

∈Akp1

F ck1ck2 ···ckp1Bck1
(λ1

1)Bck2
(λ1

2) · · ·Bckp1
(λ1

p1
)|Ω0〉, (4.21)

where F will turn out to be a chain at the next level of nesting. Recall from before that the

multiplicity leads to contributions that do not appear in the standard models. Namely,

T a0
a0
(µ)|Ψ1〉 = δp0p1

p1∏

x=1

b(µ− λ0
x)|Ψ1〉. (4.22)

We may read off the relations that we need from the RTT equations

A(µ)Bai(λ) =
a0(λ− µ)

b(λ− µ)
Bai(λ)A(µ)− (−)|0|

c(λ− µ)

b(λ− µ)
Bai(µ)A(λ) (4.23)

T bj
ai
(µ)Bck(λ) =

m−1∑

r,s=1

∑

er∈Ar

ft∈At

(−)|t|(|r|+|j|)+|0|(|i|+|j|)
R erft

ai ck
(µ− λ)

b(µ − λ)
Bft(λ)T

bj
er
(µ)

− (−)|0||i|+|j|(|0|+|i|)d(µ− λ)

b(µ− λ)
Bai(µ)T

bj
ck
(λ). (4.24)

Observe that theR-matrix appearing in the second equation is the one that describes theAm−1+|0||n−|0|

model. Since each additional level (until the final one) is identical in structure to the initial level,
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we deduce that the general eigenvalue at each level is

Λk(µ) = (−)|k|δpkpk+1
(nk − 1)

pk∏

x=1

b(µ− λk
x) + (−)|k|

pk∏

x=1

ak(µ− λk
x)

pk+1∏

y=1

ak(λ
k+1
y − µ)

b(λk+1
y − µ)

+

pk∏

x=1

b(µ− λk
x)

pk+1∏

y=1

1

b(µ− λk+1
y )

Λk+1(µ), (4.25)

for k = 0, . . . , m+ n− 2. The level k + 1 transfer matrix is defined as

τ (k+1)(µ)
ft1 ···ftpk
cs1 ···cspk

=

m+n−1∑

i,r1,...,rpk−1=k+1

∑

ai∈Ai

er1∈Ar1
,...,erpk−1

∈Arpk−1

(−)
∑pk−1

x=1
|0||r|x+

∑pk
x=1

(|sx||rx|+|i||sx|)

(−)|0||i|(pk−1)R
ai ftpk
erpk−1

cspk
(µ− λk

pk
)R

erpk−1
ftpk−1

erpk−2
cspk−1

(µ− λk
pk−1) · · ·R

er1ft1
ai cs1

(µ− λk
1).

(4.26)

We can derive this transfer matrix from a suitably defined level k + 1 monodromy matrix

T k+1
αk+1

(µ) = Lαk+1pk+1
(µ− λk+1

pk+1
) · · ·Lαk+11(µ− λk+1

1 ). (4.27)

The products in the level k+1 auxiliary space whose components only run over the indices in the

sets {Ai}
m+n−1
i=k+1 and the new supertrace are defined to account for the signs appearing in (4.26).

The F coefficients at level k are chosen to diagonalize the level k + 1 transfer matrix

τk+1(µ)F k = Λk+1(µ)F k, (4.28)

where Λk+1(µ) is the level k + 1 eigenvalue.

At the final level the RTT -equations are the same as those appearing in the bosonic case

(Tm−2)ba(µ)(B
m−2)c(λ) =

∑

e∈Am−1

f∈Am−1

R ef
ac (µ− λ)

bm−1(µ− λ)
(Bm−2)f(λ)(T

m−2)be(µ)

−
cm−1(µ− λ)

bm−1(µ− λ)
(Bm−2)a(µ)(T

m−2)bc(λ).

The indices take values in Am−1 and the level m− 2 creation operator is (Bm−2)c = (Tm−2)âm−2

c ,

where âm−2 ∈ Am−2 is the chosen level m − 2 pseudo-vacuum state. Just as in the bosonic case,

the level m− 1 monodromy matrix will turn out to be proportional to a product of permutation

operators yielding the unit shift operator. Thus Λm−1(µ) will be a root of unity.

For k = 0, . . . , n+m− 2 the Bethe equations are
pk+2∏

y=1

ak+1(λ
k+2
y − λk+1

z )

b(λk+2
y − λk+1

z )

pk+1∏

y=1

y 6=z

ak+1(λ
k+1
z − λk+1

y )b(λk+1
y − λk+1

z )

ak(λk+1
y − λk+1

z )b(λk+1
z − λk+1

y )

pk∏

x=1

b(λk+1
z − λk

x)

ak(λk+1
z − λk

x)
= 1,

(4.29)
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where we have used the explicit formulae for the functions aI(µ) and b(µ) to cancel off some

signs and simplify the expression a little. Notice that these are essentially the same as the Bethe

equations for the bosonic case with aI(0) = 1.

The spin chain Hamiltonian for these models is the logarithmic derivative of the transfer matrix

with respect to the spectral parameter λ. The calculation is simpler when one assumes that all

the level-0 inhomogeneities vanish since the Hamiltonian is then calculable as the derivative of the

R-matrix. Using the explicit R-matrix given by the coefficient functions (4.9) – (4.12), we have

H = P
dR(λ)

dλ

∣
∣
∣
λ→0

= −2

(
1 + q2

1− q2

)
∑

I

|I|=1

∑

aI ,bI∈AI

eaI
bI ⊗s ebI

aI +

(
2q

1− q2

)
∑

I 6=J

∑

aI∈AI

bJ∈AJ

(−)|I||J |eaI
bJ ⊗s ebJ

aI

+

(
2q2

1− q2

)
∑

I<J

∑

aI∈AI

bJ∈AJ

eaI
aI ⊗s ebJ

bJ +

(
2

1− q2

)
∑

I>J

∑

aI∈AI

bJ∈AJ

eaI
aI ⊗s ebJ

bJ (4.30)

where P is the graded permutation operator

P =

m+n−1∑

I, J=1

∑

aI∈AI

bJ∈AJ

(−)|I||J |eaI
bJ ⊗s ebJ

aI . (4.31)

The results of the algebraic Bethe ansatz allow us to compute the energy spectrum corresponding

to this Hamiltonian. If we make the drastic simplification that p0 > pk for all k > 0, then we can

arrive at a closed form expression. By taking the logarithmic derivative of Λ0(λ) we find that if

the level-1 states are bosonic |k = 1| = 0, then

E =

p1∑

y=1

sinh γ

sinh
(
λ1
y + γ

)
sinh λ1

y

, (4.32)

where we have let q = e−γ. The answer differs a bit if the level-1 states are fermionic |k = 1| = 1:

E = p0 − p1 − p0
cosh γ

sinh γ
+

p1∑

y=1

cosh λ1
y

sinh λ1
y

. (4.33)

5 Conclusions

In this paper we extended the multiplicity Am models of [7] to the supersymmetric case. We

used the nested algebraic Bethe ansatz to find the eigenvalues of the transfer matrix and the

corresponding Bethe equations. Using these results, we computed the Hamiltonian and its energy

levels for the specific multiplicity model associated with the supersymmetric XXZ model.
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While the multiplicity of the model can be hidden notationally in the description of the model’s

R-matrix, the addition of multiplicity is reflected in the form of the nested ABA equations. The

final level of the nesting becomes more non-trivial, as in (3.18), and there are also additional terms

proportional to δpkpk+1
at every other level. The multiplicity also contributes to the energies in

the corresponding spin chain when p0 = p1 or (some of) the level-0 inhomogeneities are non-zero.

Since the XX model is a building block for more complicated theories, notably the Hubbard

model, it would be interesting to investigate theories constructed by coupling together supersym-

metric multiplicity models. Generalizing the Hubbard model while maintaining integrability has

proven difficult [15, 16, 17, 18, 19, 20]. We hope that the work presented here will shed some light

on this problem.
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