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Abstract 

Trapping forces on dielectric spheres in single beam laser tweezers are computed. A focused beam 
description based on an exact solution of Maxwell’s equations is compared to the 5th order Gaussian 
beam approximation due to Barton and Alexander. Forces on water droplets suspended in air and on 
polystyrene spheres suspended in water, exerted by beams focused to varying degree, are calculated. It 
is demonstrated that the 5th order approximation is accurate for almost paraxial beams (numerical 
aperture NA <~ 0.25), as compared to the exact treatment. However, for strongly focused beams the 5th 
order approximation breaks down. Thus it is established that an accurate beam description is vital for 
modeling optical traps, since, in order to hold a particle effectively in a single beam trap, a strongly 
focused beam is required. 
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1 Introduction 

Starting with the experiments of Ashkin in 1970 [1] it became possible to use laser beams to trap a variety 
of particles, including living cells [2], organelles within cells [3] and even larger objects like the giant 
amoeba [4]. There are various types of such “laser tweezers” in use, including single and the multi beam 
ones. It is the aim of this work to present a theoretical model of single beam laser tweezers which uses a 
computational method developed by Barton et al. [5]. Since the models presented in [5] and Moine and 
Stout [6] are based on the electromagnetic (EM) field derived from the 5th order Gaussian beam 
approximation [7], the accuracy of the results obtained using these models is uncertain. Hence in order to 
test the accuracy of the results, we replace the to 5th order approximation by EM fields that are exact 
solutions to Maxwell’s equations [8]. Gouesbet et al. [9] have presented a localized interpretation to 
compute the coefficients in the generalized Lorenz-Mie theory. Mazolli et al. [10] presented another 
model, which is based on the Debye-type integral representation of the laser beam as a superposition of 
plane EM waves. The main difference between Mazolli et al. [10] and Barton et al. [5] as well as the 
model presented here is that Mazolli et al. [10] take truncations of the beam by the focusing lens into 
account. This is not the case in the model of Barton et al. [5] and the model presented here, nor are lens 
aberrations taken into account.  

 

2 Theory and results 

Lorenz [11] and Mie [12] formulated a theory with which the EM fields inside and outside a sphere can be 
calculated, when a plane incident wave is scattered by the sphere. Barton et al. [5] have used this theory, 
generalised to an arbitrary incident field, to compute radiation forces and torques exerted on a spherical 
particle. They calculated the Mie scattering coefficients by integrating over the radial part of the beam 
fields.  Ulanowski and Jones [13] have written a set of computer programs to model the trapping forces as 
derived by Barton et al. [5] for real relative refractive indices n, which is adequate for calculating the 
trapping forces for nonabsorbing particles. Here the programs are used with Barton’s 5th order beam 
approximation, and the “exact” solutions (Eqs. 1 and 2) to Maxwell’s equations presented by Dorizzi [8]. 



 

These vector solutions were obtained using the method given by Bohren and Huffman [14] of constructing 
vector functions M and N from a scalar function; here the order 01 from the family of scalar, non-paraxial 
beam solutions derived by Ulanowski and Ludlow [15]. Dorizzi [8] formed a superposition of the M and N 
functions which lead to the EM field of a beam propagating along the z axis of a Cartesian coordinate 
system (x, y, z): 

 

 
   

 

 

 

   
   

 

 

 
 

 

1

2

0 2 1 12 2 2 2
01 4

2 2

2
12

2

5

, , 4 5

5

kd

kRj kR
ixy

j kR

E z id e j kR Rj kR kRj kR
x y z kR z id i R R y

k z id j kR j kRkR

kRj kRR
y kR i z id

z id j kR



 
     
  

     
                    
 

    
               

E      (1)                

                           

 
  

 

   
   

 

 

 

 

 
 

 

1 12 2 2 2

2 2

0 2 1
01 4

0 2

2
12

2

4 5

, , 5

5

kd

Rj kR kRj kR
ikR z id R R x

k z id j kR j kR

iE e j kR z id kRj kR
x y z xy

j kRkR

kRj kRR
x ikR z id

z id j kR







    
                 
 

   
    

  
 

   
              

H .         (2) 

      

This EM field is linearly polarized along the y axis in the paraxial limit and also satisfies the Richards and 

Wolf [16] far-field boundary conditions. In the above expressions, k is the wave number, 
2
0 / 2d kw  is the 

Rayleigh range, where w0 is the beam waist radius, 0 and 0 are the free space permittivity and 

permeability, respectively,  is the absolute permittivity and R = [x
2
 + y

2
 + (z - id)

2
]
1/2

. The spherical Bessel 
functions in the above expressions are given in explicit form by Eqs. 3 and 4:  
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Barton et al. [7] used an expression for the beam power P, which was approximated to the 5th order 
Gaussian beam based on the irradiance normalized to unity at (x = y = z = 0). The corresponding 
expression for the “exact” treatment is 
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where p = kd.  In this work a lens diameter of 3 times the beam radius is assumed, resulting in a 98.9% 
power transmission. In the calculations the power transmission is taken to be 100%, producing only a 
small error. Under paraxial assumptions the focal length f of a focusing lens can be related to the beam 

parameters as / 2f w kd , where w is beam radius [15]. Therefore in our case the numerical aperture 

of the focusing lens can be directly related to the beam parameters by NA = 3/kw0. The square of the 
electric field amplitude at the focal point of the beam (x = y = z = 0) can be related to the normalized 
beam power Pnorm by rearranging Eq. 5 to give  
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In the “exact” treatment, the expressions given in Eqs 1, 2 and 6 are replacing the corresponding 
expressions of the 5th order Gaussian Beam approximation as given by Barton et al. [5] and so the 
trapping forces can be calculated using the same formulae. The acceleration exerted by a focused laser 

beam with kd  = 74.6, beam power P = 3.5 mW, beam waist radius w0 = 1 m and wavelength 

0 = 514.5 nm, on a spherical water droplet (refractive index n = 1.334 [5]) of diameter D = 4.96 m and 
mass mw = 6.39×10

-14
 kg suspended in air, is calculated using the 5th

 
order Gaussian beam 

approximation and the “exact” treatment. Fig. 1 compares the acceleration wzz mFa  calculated using 

both methods for sphere positions along the axis of propagation. However, the restoring acceleration is 
expressed in relation to the acceleration due to gravity g. The offset along the x and y axis is zero 
(x0 = y0 = 0).  

 

Fig. 1. Comparison of the restoring acceleration based on the 5th order Gaussian beam approximation 

(doted curve) and the “exact” treatment (solid  curve),  along   the   propagation  axis for  optical levitation 

of a water  droplet  in air, using a focused,  linearly polarised laser beam, D = 4.96 m, 1.334n , 

wavelength   = 0.5145 m, beam power P = 3.5 mW and beam waist radius w0 = 1 m, corresponding 

to lens numerical aperture NA  0.246 or kd = 74.6.  

It can be seen from Fig. 1 that near the axial position z0 = -50 m the water droplet is in an unstable 

equilibrium and near z0 = 50 m in a stable equilibrium, assuming that the force of gravity is directed 
towards negative z values. The average RMS error between the two models of all the calculated points in 
Fig. 1 is 1.4 %. Since these restoring acceleration values are for an almost paraxial Gaussian beam 
(kd = 74.6), they are very useful to benchmark the restoring acceleration values based on the “exact” 
treatment. In the case where the restoring acceleration is calculated along the x axis in the 5th order 



 

Gaussian beam approximation (along the direction of polarisation), it has to be compared with the 
restoring acceleration along the y axis in the “exact” treatment, since the y axis is the direction of 

polarisation for this case. Barton et al. [5] chose the stable equilibrium position z0 = 50 m above the focal 

point. The beam diameter is 2w0  16.5 m at this point, which is greater than the droplet diameter. In 
order to calculate the restoring accelerations along the x axis, y0 = 0. In the “exact” treatment, as the 
direction of polarisation is the y axis, the restoring acceleration along this axes is calculated with x0 = 0. 
Fig.2 compares the restoring acceleration for sphere positions along the direction of polarization [ax] and 
[ay] respectively, calculated using both methods. Fig. 3 compares the restoring acceleration for sphere 
positions along the axis perpendicular to the direction of polarisation [ay] and [ax] respectively, calculated 
using both models. 

 

 

 

 

Fig. 2.  Comparison of the restoring acceleration based on the 5th order Gaussian beam 

approximation (doted curve) and the “exact” treatment (solid curve), along the polarisation axis 

versus displacement  along the  polarisation axis for optical levitation of  a  water  droplet  in  air, 

using  a  focused order 01  mode  linearly polarised  laser beam at a droplet propagation axis 

position of z0 = 50 m above the focal point (x0 =  y0 = 0, z0 = 50 m, 1.334n , D = 4.96 m, 

0 = 0.5145 m, w0 = 1 m, kd = 74.6 and P = 3.5 mW). 

 



  

 

Fig. 3. Comparison of the restoring  acceleration  based  on  the 5th order Gaussian beam 

approximation (doted curve) and  the “exact” treatment (solid curve),  along the  axis perpendicular 

to the direction of polarisation versus displacement along the axis perpendicular to the direction of 

polarisation axis for  optical  levitation of a water droplet in air, using  a  focused order 01  mode  

linearly  polarised   laser  beam (x0 = y0 = 0 m, z0 = 50 m, 1.334n , D = 4.96 m, wavelength 

0 = 0.5145 m, w0 = 1 m, kd  = 74.6 and P = 3.5 mW). 

By comparing Figs. 2 and 3 it can be seen, as expected, that the restoring acceleration along the 
polarisation axis of the beam is greater than the restoring acceleration along the axis perpendicular to the 
direction of polarisation. This is due to the fact that the Fresnel reflectance and transmittance coefficients 
are different for an incident EM wave polarised parallel and perpendicular to the incident plane. If the EM 
field is polarised parallel to the incident plane, more radiation is transmitted. Since optical trapping is 
dependent on the amount of refracted radiation, the trapping forces are larger for particle displacements 
parallel to the direction of polarisation of the EM field. It can also be seen from Figs. 2 and 3 that in 

addition to a stable equilibrium at x0 = y0 = 0 an unstable equilibrium is present at x0 = y0  15. The 
average RMS errors between the two models of the 16 data points calculated in Fig. 2 and Fig.3 are 
3.5 % and 3.1 %, respectively.  It is thus concluded that there is good agreement between the Barton 
treatment and the “exact” treatment, which can be expected for an almost paraxial Gaussian beam. 
However in a standard laser tweezers set up, the numerical aperture of the focusing lens is typically 
NA > 1. Fig. 4 compares the restoring acceleration [az/g] exerted on a spherical water droplet of diameter 

2m along the axis of propagation for an order 01 beam of wavelength ( = 0.5145 m) focused by 

NA  1 lens, which corresponds to a value of kd = 4. The beam spot size in this case is w0 = 0.231 m 
and the beam power is P = 3.5 mW. The offset along the x and y axis is zero (x0 = y0 = 0). As Barton et al. 
[5] have not presented these results, the results for the 5th order Gaussian beam approximation are 
calculated using the code of Ulanowski and Jones [13].  



 

 

 

Fig. 4. Comparison of the restoring acceleration based on the 5th order approximation (doted 

curve) and the “exact” treatment (solid curve), along the propagation axis for optical levitation of a 

water droplet in air, using a focused, linearly polarised laser beam, D = 2 m, 1.334n , 

0 = 0.5145 m, w0 = 0.231 m, and P = 3.5 mW, kd = 4. 

It can be seen from Fig. 4 that the results calculated using the 5th order Gaussian beam approximation 
(doted curve), are highly inaccurate in the range z0 = [-1.25…0.75]. This is a clear indication that the 5th 
order Gaussian beam approximation breaks down for strongly focused beams. Figs. 5 and 6 show a 
comparison of normalized (at the origin) irradiance profiles for the “exact” treatment versus the 5th order 

Gaussian beam approximation for kd  = 4, at the beam waist and at z = 0.75 m respectively. The 
breakdown of the 5th order Gaussian beam approximation for kd = 4 can be clearly seen from the 

difference in the irradiance profiles of the two beams at z = 0.75 m. Since the sphere has a diameter of 

2 m it is apparent that even though the irradiance profiles are almost identical at the beam waist, the 

contributions from the differences at z = 0.75 m will have an effect on the trapping forces at z0 = 0. 

                           

                                                   

Fig. 5. Normalised   irradiance   profile  at  the  

beam waist for  kd = 4: “exact” treatment (solid 

curve) versus 5th order Gaussian 

approximation  (doted curve). 

Fig. 6. Normalised   irradiance   profile  at  

z = 0.75 m for kd  = 4: “exact” treatment (solid 

curve) versus 5th order Gaussian beam 

approximation (doted curve). 



  

Furthermore, it can be seen from Fig. 4 that the restoring acceleration [az/g] is always greater than 1. 
Thus it can be concluded that no trapping occurs in this laser tweezers set up. The average RMS error 
between the two models of the 65 calculated data points in Fig. 4 is 44 %. The largest RMS error is for a 

sphere location at z0 = 0.75 m, where the RMS error is 549.7%. This result is not surprising, since 
Barton [7] claims that for an s value of 0.3, which corresponds to kd = 5.56 the maximum error between 
the 5th order approximation and an exact solution to Maxwell’s equation is 22.2 % and for s = 0.4, which 
corresponds to kd = 3.13 it is 36.6 %. The reason for the discrepancy between the values given by Barton 
[7] and our values is, that the errors were calculated for 216 spatial positions, which not all correspond to 
the positions chosen by us. 

In order to trap biological material it has proven useful [17] to use polystyrene spheres as “handles”, since 
they can be more refractile than the biological substance, thus supplying extra trapping forces. 
Furthermore the shape and the uniform size facilitates the calibration of the laser tweezers. For this 

reason, the restoring acceleration induced onto a polystyrene (n = 1.6) sphere of diameter 2 m 
suspended in water is calculated for kd = 7.08, a beam power P = 3.5 mW, beam waist radius 

w0 = 0.231 m and wavelength of 0 = 514.5 nm. Polystyrene has a density   = 1.05×10
3
 kgm

-3
, giving 

sphere mass mp = 4.4×10
-15

 kg.  Fig. 7 compares the restoring acceleration for sphere positions along the 
axis of propagation [az/g] calculated using the “exact” treatment and the 5th order Gaussian beam 
approximation model [13]. The offset along the x and y axis is zero (x0 = y0 = 0). 

Fig. 7. Comparison of the restoring acceleration based on the 5th order Gaussian beam approximation 

(doted curve) and the “exact” treatment (solid curve), along the propagation axis for optical trapping of a 

polystyrene sphere in water, using a focused, linearly polarised laser beam, D = 2 m, 0 = 0.5145 m, 

w0 = 0.231 m, P = 3.5 mW, kd = 7.08.  

The average RMS error between the two models of the 65 data points is 48%. The largest RMS error is 
for a sphere location at z0 = 1, where the RMS error is 1248  %. From Fig. 7 it is seen that in the case of 
trapping a polystyrene sphere suspended in water, the difference between the two models is not as big as 
in the case of water droplet suspended in air. By comparing Fig. 7 with Fig. 4 it is apparent, that a 
polystyrene sphere suspended in water is subjected to a smaller restoring acceleration, than a water 
droplet suspended in air. It can be seen from Fig. 7 that the polystyrene sphere in water is subjected to 

maximum acceleration az/g  71 at sphere location x0 = y0 = 0 and z0 = -2.5 m. According to Fig. 4, the 

water droplet in air is subjected to a maximum acceleration az/g  98 at sphere location x0 = y0 = 0 and 

z0 = -2.25 m. Thus the polystyrene sphere in water is accelerated 1.4 times less than the water droplet in 
air. One of the reasons for the lower acceleration value is that the beam is less strongly focused. The 
other reason can be understood qualitatively from geometrical optics. The relative refractive index for the 

air water interface is 1.334n  and the relative refractive index of the polystyrene water interface 



 

is n 1.2 . Hence the relative refractive index for the polystyrene water interface is lower than the relative 

refractive index for the air water interface. It follows that a polystyrene sphere in water reflects less 
radiation than a water droplet in air and so the magnitude of the forward directed force is lower. At the 
same time, the magnitude of the forward directed force relative to the backward directed force can 
become lower for a polystyrene sphere in water than for a water droplet in air, allowing stable trapping.  

In order to calculate the restoring acceleration along the polarization axis and perpendicular to the 

polarization axis, the vertical position of the polystyrene sphere is z0 = 1.25 m, as at this point the 
restoring acceleration along the axis of propagation [az/g] has according to Fig. 7 a minimum. Fig. 8 
shows the restoring acceleration along the axis of polarization and Fig. 9 represents the restoring 
acceleration perpendicular to the polarization axis.   

 

Fig. 8.  Comparison  of  the restoring acceleration based on the 5th order Gaussian beam 

approximation (doted curve) and  the “exact” treatment (solid curve),  along the polarisation axis 

versus displacement  along the  polarisation axis for optical trapping of  a polystyrene sphere  in  

water,  using  a  focused order 01  mode  linearly polarised laser beam (x0 = y0 = 0, z0 = 1.25 m, 

1.2n  , D = 2 m, 0 = 0.5145 m, w0 = 0.231 m, kd = 7.08 and P = 3.5 mW). 



  

Fig. 9.  Comparison  of  the trapping efficiency based on the 5th order Gaussian beam approximation 

(doted curve) and  the “exact” treatment (solid curve),  along the axis perpendicular to the polarisation 

axis versus displacement  along the axis perpendicular to the polarisation axis for optical trapping of  a 

polystyrene sphere in water, using a focused order 01 mode linearly polarised laser beam (x0 = y0 = 0, 

z0 = 1.25 m, 1.2n  , D = 2 m, 0 = 0.5145 m, w0 = 0.231 m, kd = 7.08 and P = 3.5 mW). 

The average RMS errors between the two models of the 17 data points in Figs. 8 and 9 are 13% and 19% 
respectively. According to Figs. 8 and 9 the restoring acceleration along the polarisation axis of the beam 
is, as expected, greater than the restoring acceleration along the axis perpendicular to the direction of 
polarisation. Hence, even though the polarization dependence of the Fresnel coefficients is given for 
plane EM waves, it can be concluded that it is also applicable for the EM fields of a strongly focused 
Gaussian beams. 

3 Discussion 

An electromagnetic field, which represents an arbitrarily focused Gaussian laser beam has been 
presented. This field is linearly polarized along the y axis in the paraxial limit and also satisfies the 
Richards and Wolf [16] far-field boundary conditions. Optical trapping forces have been calculated using 
the method presented by Barton et al. [5], which is valid for arbitrary EM fields. Figs. 1, 2 and 3 shows 
that the trapping forces calculated using the 5th order approximation are accurate for a nearly paraxial 
Gaussian beam (NA = 0.246), when compared to the exact treatment. The average RMS errors between 
the two models of the calculated data points in these cases are 1.4%, 3.53% and 3.13 % respectively. 
However, for strongly focused beams, kd = 4, the 5th order approximation becomes unreliable: we 
observe in Fig. 4 a breakdown of the approximation when trapping a water droplet in air near the focal 
point (z0 = [-1.25…0.75]). From Figs 7, 8 and 9 it can be seen that when trapping a polystyrene sphere in 
water the 5th order approximation does not break down completely, but the average RMS errors between 
the two models of the calculated data points are 48%, 13% and 19% respectively. When comparing these 
results to the ones obtained by Moine and Stout [6] it can be concluded that they are of the same order of 

magnitude. However the calculations presented by [6] are for kd = 4.93 and for n 1.09,  where here 

kd = 7.08 and n 1.2.  As their value of kd is larger than the one used in Fig. 4 and their value of the 

relative refractive index is lower than the one used in the figure presented here, it is not surprising that 



 

Moine and Stout [6] did not observe a break down of the 5th order approximation or the small oscillations 
near z = 0. It has thus been established that it is important to have a focused laser beam description that 
is accurate under non-paraxial conditions, since in order to trap a particle effectively the laser beam 
needs to be strongly focused. Furthermore it has been shown that the polarization dependence of the 
Fresnel coefficients also applies for strongly focused Gaussian beams, despite the fact that they are 
derived for plane EM waves. 
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