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The 144Sm–α optical potential at astrophysically relevant energies derived from
144Sm(α,α)144Sm elastic scattering
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For the determination of the 144Sm–α optical potential we measured the angular distribution of
144Sm(α,α)144Sm scattering at the energy Elab = 20 MeV with high accuracy. Using the known
systematics of α–nucleus optical potentials we are able to derive the 144Sm–α optical potential at
the astrophysically relevant energy Ec.m. = 9.5 MeV with very limited uncertainties.

PACS numbers: 24.10.Ht, 25.55.-e, 25.55.Ci, 26.30.+k

I. INTRODUCTION

In a detailed study of nucleosynthesis in Type II supernovae Woosley and Howard proposed the so–called γ–process,
which is important for the production of the samarium isotopes 144Sm and 146Sm [1]. The existence of the γ–process
was confirmed later [2]. Because of the α decay of 146Sm (T1/2 = 1.03×108 y) today one can find correlations between

the 142Nd/144Nd ratio and the Sm/Nd ratio in some meteorites [3] as a consequence of the γ–process. The nuclear
reaction rates used in the network calculations of the γ–process are relatively uncertain. Especially, the reaction rate
for the production of 144Sm by the photodisintegration reaction 148Gd(γ,α)144Sm is uncertain by a factor of 10 [4].

The reaction rate for the reaction 148Gd(γ,α)144Sm was derived from the 144Sm(α,γ)148Gd reaction cross section
using a detailed–balance calculation (see e.g. [4,5]). Usually, reaction rates are given at the relatively high temperatures
of 2.5 ≤ T9 ≤ 3.0, or the capture cross section at Ec.m. = 9.5 MeV (corresponding to T9 = 2.8) is derived [1,4–7].

Two ingredients enter into the Hauser–Feshbach calculation of the 144Sm(α,γ)148Gd capture cross section: transition
probabilities and the nuclear level density. The transition probabilities were calculated using optical wave functions
in an equivalent square well (ESW) potential [1,4], a Woods–Saxon (WS) potential [6,7], and a folding potential [5,7].

Calculations with ESW potentials are very sensitive on a proper choice of the radius parameter R; two calculations
using R = 8.01 fm (Ref. [4], based on the ESW radius from Ref. [8]) and R = 8.75 fm (Ref. [1], based on Ref. [9]) differ
by a factor of 10 for the 144Sm(α,γ)148Gd cross section. The WS potential and the folding potential in Refs. [5–7]
were taken from global parametrizations of α optical potentials; these results for the 144Sm(α,γ)148Gd cross section
lie between the different ESW results. First experimental results on the 144Sm(α,γ)148Gd capture cross section at
somewhat higher energies lie at the lower end of the different calculations [10].

The aim of this work is to determine the optical potential at the relevant energy Ec.m. = 9.5 MeV. In general,
optical potentials can be derived from elastic scattering angular distributions. Recently, in a systematic study the
energy and mass dependence of α–nucleus potentials was determined [11]. In that work α scattering on 144Sm was
analyzed at higher energies. An extrapolation to astrophysically relevant energies is possible only with very limited
accuracy. At the energy Ec.m. = 9.5 MeV the 144Sm(α,α)144Sm scattering cross section is given by almost pure
Rutherford scattering because of the height of the Coulomb barrier of about 20 MeV. For a reliable determination
of the optical potential one has to increase the energy in the scattering experiment. However, because of the energy
dependence of the optical potential, the energy should be as close as possible to the astrophysically relevant energy
Ec.m. = 9.5 MeV. As a compromise we measured the 144Sm(α,α)144Sm angular distribution at Elab = 20 MeV. At
this energy the influence of the nuclear potential on the angular distribution is measurable, even though it is small.
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Especially the determination of the shape of the optical potential remains difficult even at this energy. For the real
part this problem vanishes because its shape is given by a folding procedure, but the shape of the imaginary part has
to be adjusted to the experimental angular distribution. For that reason the angular distribution has to be determined
with very high accuracy in the full angular range.

The increase of the real part of the optical potential at energies close to the Coulomb barrier is well-known [12]. Close
to the Coulomb barrier the number of open reaction channels changes strongly; this leads to a strong variation of the
imaginary potential, and the strength of the real potential is coupled to the imaginary part by a dispersion relation.
A further influence on the potential strength coming from antisymmetrization effects is indicated by microscopic
calculations which were performed for light nuclei. This “threshold anomaly” (mainly so-called in heavy-ion scattering
and fusion) was seen also in α scattering on many nuclei [11–16].

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The experiment was performed at the cyclotron laboratory at ATOMKI, Debrecen. We used the 78.8 cm diameter
scattering chamber which is described in detail in Ref. [17]. Here we will discuss only those properties which are
important for our experiment.

A. Targets and Scattering Chamber

The samarium targets were produced by the reductive evaporation method [18] at the target laboratory at ATOMKI
directly before the beamtime to avoid the oxidation of the metallic samarium. A thin carbon foil (thickness d ≈
20 µg/cm2) was used as backing.

During the experiment we used one enriched 144Sm and one natural Sm target, and one carbon backing without
samarium layer. The enrichment in 144Sm was (96.52±0.03)%. The thickness of the samarium targets was determined
by the energy loss of the α particles in the samarium layer. We compared the energy of α particles elastically scattered
on 12C in the carbon backing at ϑlab = 162o using the pure carbon target as reference and both samarium targets.
The stopping powers dE/dx of the α particles in samarium at the relevant energies E = 20 MeV (incident α) and E
= 5.2 MeV (backward scattered α) were taken from Ref. [19]. The resulting thicknesses are d = 142 µg/cm2 (144Sm)
and d = 218 µg/cm2 (natural Sm) with uncertainties of about 10%. The pure carbon target was used also for the
angular calibration (see Sect. II C).

Additionally, two apertures were mounted on the target holder to check the beam position and the size of the
beam spot directly at the position of the target. The smaller aperture had a width and height of 2 mm and 6 mm,
respectively. This aperture was placed at the target position instead of the Sm target before and after each variation
of the beam current. Because practically no current could be measured on this aperture the width of the beam spot
was definitely smaller than 2 mm during the whole experiment, which is very important for the precise determination
of the scattering angle. In contrast, the relatively poor determination of the height of the beam spot does not disturb
the claimed precision of the scattering angle (see Sect. II C). Furthermore, the position of the beam on the target was
continuously controlled by two monitor detectors. No evidence was found for a change of the position by determining
the ratio of the count rates in both detectors (see Sect. II B).

B. Detectors

For the measurement of the angular distribution we used 4 silicon surface-barrier detectors with an active area
A = 50 mm2 and thicknesses between d = 300 µm and d = 1500 µm. The detectors were mounted on an upper
and a lower turntable, which can be moved independently. On each turntable two detectors were mounted at an
angular distance of 10o. Directly in front of the detectors apertures were placed with the dimensions 1.25 mm x 5.0
mm (lower detectors) and 1.0 mm x 6.0 mm (upper detectors). Together with the distance from the center of the
scattering chamber d = 195.6 mm (lower detectors) and d = 196.7 mm (upper detectors) this results in solid angles
from ∆Ω = 1.63×10−4 to ∆Ω = 1.55×10−4. The ratios of the solid angles of the different detectors were determined
by overlap measurements with an accuracy much better than 1%.

Additionally, two detectors were mounted at the wall of the scattering chamber at a fixed angle of ϑ = 15o (left and
right side relative to the beam direction). The solid angles of these detectors are ∆Ω = 8.10× 10−6. These detectors
were used as monitor detectors during the whole experiment.
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The signals from all detectors were processed using charge-sensitive preamplifiers (PA), which were mounted directly
at the scattering chamber. The output signal was further amplified by a main amplifier (MA). The bipolar output
of the MA was used by a Timing Single Channel Analyzer (TSCA) to select signals with amplitudes between ≈ 1
V and 10 V, and the unipolar output of the MA was gated with the TSCA signal using a Linear Gate Stretcher
(LGS). The LGS output was fed into an CAMAC ADC, and the ADC data were stored in a corresponding CAMAC
Histogramming Memory module. The data acquisition was controlled by a standard PC with a CAMAC interface
using the program MCMAIN [20]. The dead time of the system was determined by test pulses, which were fed into
the test input of each PA. It turned out that the deadtime was negligible (< 0.2%) except the runs at very forward
angles.

The achieved energy resolution was better than 0.5% corresponding ∆E ≤ 100 keV at Eα ≈ 20 MeV.

C. Angular Calibration

Because of the strong angular dependence of the scattering cross section especially at forward angles the angular
calibration was done very carefully by two kinematic methods. The carbon backing contained some hydrogen contam-
ination. Therefore, we used the steep kinematics of 1H(α,α)1H scattering at forward angles (10o < ϑlab < 15o). We
measured the energies of the α particles scattered from 1H (note: two peaks with different α energies corresponding
to two center-of-mass scattering angles can be found at one laboratory scattering angle, labelled ± in Eq. 2.1) and
from 12C (ground state and 2+ state at 4.44 MeV), and we determined the ratio

q±(ϑ) =
Eα(12Cg.s.) − E±

α (1H)

Eα(12Cg.s.) − Eα(12C2+)
(2.1)

from the experimentally measured energies and from a calculation of the reaction kinematics. The angular offset is
given by the mean value of the differences in ϑ derived from all determined values of q±exp and q±calc. The following
results can be obtained from this procedure: ∆ϑoffset = −0.38o±0.02o (lower detectors) and ∆ϑoffset = +0.32o±0.02o

(upper detectors). (Note that these offsets cannot be a consequence of a beam spot which is not exactly centered on
the target; for the measured offset of about 0.35o the beam spot would have been outside the aperture with a width
of 2 mm, which can be placed at the position of the target, see Sect. II A.) The uncertainty of the adjustment of the
angle is given by the standard deviation of each single measurement: ∆ϑadjust < ±0.1o (all detectors).

In a second step we measured a kinematic coincidence between elastically scattered α particles and the corresponding
12C recoil nuclei. One detector was placed at ϑlab,α = 77o (lower detector, left side relative to the beam axis), and
the signals from elastically scattered α particles on 12C were selected by an additional TSCA. This TSCA output
was used as gate for the signals from another detector which was moved around the corresponding 12C recoil angle
ϑlab,recoil = 42o (upper detector, right side). The maximum recoil count rate was found almost exactly at the expected
angle (see Fig. 1).

D. Experimental Procedure, Uncertainties

With this setup we measured spectra from the 144Sm and the natural Sm target at angles from 15o to 172o in
steps of 1o (ϑ < 140o) and 2o (ϑ > 140o). Two typical spectra measured at forward (ϑ = 25o) and at backward
(ϑ = 130o) angles are shown in Fig. 2. The measuring times were between some seconds (forward angles) and several
hours (backward angles), and the corresponding beam currents were between 30 nA and 600 nA 4He2+ ions. The
beam was stopped in a Faraday cup roughly 2 m behind the scattering chamber, and the current was measured by a
current integrator.

For each run the scattering cross section was determined relative to the monitor count rate:

( dσ

dΩ

)

(ϑ) =
( dσ

dΩ

)

Mon
(ϑ = 15o) ·

N(ϑ)

NMon(ϑ = 15o)
·
∆ΩMon

∆Ω
(2.2)

and by assuming that the cross section at ϑlab = 15o is given by pure Rutherford scattering. An absolute determi-
nation of the scattering cross section from the accumulated charge and the target thickness agrees within the quoted
uncertainties with the relative determination using the monitor detectors.

In the measured angular range the cross section covers more than 4 orders of magnitude. The result of the
experiment, normalized to the Rutherford cross section, is shown in Fig. 3. The error bars in Fig. 3 contain statistical
uncertainties (< 1% for almost any angle) and systematic uncertainties coming from the accuracy of the angular
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adjustment of the detectors and from contributions of other samarium isotopes in the 144Sm target (chemical impurities
of the targets are negligible).

At forward angles the accuracy of the angular adjustment (< ±0.1o) leads to an uncertainty of about 1% in the
determination of the cross section, at backward angles this uncertainty in the cross section practically disappears. In
contrast, at forward angles the elastic scattering cross section of all samarium isotopes is very close to the Rutherford
cross section, however at backward angles the cross section measured with the natural samarium target is about 20%
to 30% smaller than the 144Sm scattering cross section. Because of the high enrichment (96.52%) of the 144Sm target
the resulting uncertainty remains smaller than 1% even at backward angles. Therefore, we renounced of a correction
of the 144Sm scattering cross section.

The resulting high accuracy of this experiment is better than 2% (including both statistical and systematic uncer-
tainties) even for the very backward angles where the cross section is more than 4 orders of magnitude smaller than
at the forward angles measured in this experiment.

III. OPTICAL MODEL ANALYSIS

The theoretical analysis of the scattering data was performed in the framework of the optical model (OM). The
complex optical potential is given by

U(r) = VC(r) + V (r) + iW (r) (3.1)

where VC(r) is the Coulomb potential, and V (r) resp. W (r) are the real and the imaginary part of the nuclear
potential, respectively.

The real part of the optical potential was calculated by a double–folding procedure:

Vf(r) =

∫ ∫

ρP(rP) ρT(rT) veff(E, ρ = ρP + ρT, s = |~r + ~rP − ~rT|) d3rP d3rT (3.2)

where ρP, ρT are the densities of projectile and target, respectively, and veff is the effective nucleon-nucleon interaction
taken in the well-established DDM3Y parametrization [21,22]. Details about the folding procedure can be found in
Refs. [16,11], the folding integral in Eq. 3.2 was calculated using the code DFOLD [23]. The strength of the folding
potential is adjusted by the usual strength parameter λ with λ ≈ 1.2 − 1.3.

The densities of the α particle and the 144Sm nucleus were derived from the experimentally known charge density
distributions [24], assuming identical proton and neutron distributions. For N ≈ Z nuclei up to 90Zr (Z = 40,
N = 50) this assumption works well, however, in the case of 208Pb (Z = 82, N = 126) a theoretically derived neutron
distribution and the experimental proton distribution had to be used to obtain a good description of the elastic
scattering angular distribution [11]. To take the possibility into account that the proton and neutron distributions
are not identical in the nucleus 144Sm (Z = 62, N = 82) a scaling parameter w for the width of the potential was
introduced, which is very close to unity. The resulting real part of the optical potential is given by:

V (r) = λ · Vf(r/w) (3.3)

For a comparison of different potentials we use the integral parameters volume integral per interacting nucleon pair
JR and the root-mean-square (rms) radius rrms,R, which are given by:

JR =
1

APAT

∫

V (r) d3r (3.4)

rrms,R =

[
∫

V (r) r2 d3r
∫

V (r) d3r

]1/2

(3.5)

for the real part of the potential V (r) and corresponding equations hold for W (r). The values for the folding potential
Vf at Elab = 20 MeV (with λ = w = 1) are JR = 260.41 MeVfm3 and rrms,R = 5.573 fm.

The Coulomb potential is taken in the usual form of a homogeneously charged sphere where the Coulomb radius
RC was chosen identically with the rms radius of the folding potential Vf : RC = rrms,R = 5.573 fm.

For the imaginary part of the potential different parametrizations were chosen: the usual Woods–Saxon (WS)
potential

WWS(r) = W0 · (1 + exp (r − R)/a)−p (3.6)
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where R is usually given by R = R0 · A
1/3
T , and a series of Fourier-Bessel (FB) functions

WFB(r) =
n

∑

k=1

ak sin (kπr/RFB)/(kπr/RFB) (3.7)

with the cutoff radius RFB.
A fitting procedure was used to minimize the deviation χ2 between the experimental and the calculated cross

section:

χ2 =

N
∑

i=1

(σexp,i(ϑ) − σcalc,i(ϑ)

∆σexp,i(ϑ)

)2

(3.8)

The calculations were performed using the code A0 [25].
The parameters of the imaginary part, the potential strength parameter λ and the width parameter w of the

real part, and the absolute value of the angular distribution were adjusted to the experimental data by the fitting
procedure. The ratio r of the calculated to the experimental absolute value of the angular distribution is very close
to 1 in all fits: r = 1.006± 0.002. Therefore, we renormalized the measured angular distribution by this ratio r. This
renormalization of 0.6% lies well within our experimental uncertainties.

Four parametrizations of the imaginary part of the potential were used to determine the influence of the type of
imaginary parametrization on the resulting volume integrals. They are labelled by 1, 2, 3 and 4 in Tabs. I and II.
Labels 1 and 2 correspond to WS potentials with p=1 and p=2, respectively. For the parametrizations 3 and 4 FB-
functions were used with 5 and 8 FB coefficients, respectively. The results are listed in Tabs. I and II, the calculated
angular distributions are shown in Figs. 3 and 4. In addition, also the angular distribution derived from a “standard”
WS potential is shown, which was used in previous calculations of the 144Sm(α,γ)148Gd capture cross section [6,7].
The fits 1–4 look very similar; the χ2/F varies from 1.74 to 1.82. However, the fits 3 and 4 using FB functions in the
imaginary part show a slightly oscillating imaginary potential; fit 4 even shows a small unphysical region where the
imaginary part becomes positive.

Of course, the χ2/F of fit 5 is inferior compared to fits 1–4 because the WS parameters taken from the study of
Ref. [6] were not adjusted to the experimental angular distribution.

IV. DISCUSSION

A. Ambiguities of the optical potential

We extracted a definite optical potential from the experimental elastic scattering data on 144Sm(α,α)144Sm at
Elab = 20 MeV. First of all, very accurately measured scattering data are necessary for this determination, and
furthermore a definite solution has to be selected from several potentials which describe the data almost identically.
These problems result from discrete ambiguities (the so–called “family problem”) and from continuous ambiguities.

The problem of continuous ambiguities is reduced to a great extent by the use of folding potentials because the
shape of the folding potential is better fixed compared to standard potentials of WS type. The width parameter of
the folding potential, which was introduced in Sect. III should remain very close to unity; otherwise the parameters
extracted from this calculation are not very reliable.

The “family problem” is illustrated in Fig. 5. Because of the reasons mentioned above we used the simplest
parametrization of the imaginary potential, the standard WS type with p = 1 as employed in fit 1. If one now varies
continuously the depth of the real part of the optical potential (i. e. the strength parameter λ) and adjusts as well the
width parameter w and the parameters of the imaginary part to the experimental data, then one obtains a continuous
variation of w and JR, but oscillations in χ2/F correlated with oscillations in JI . Each (local) minimum in χ2/F –
shown as data points in Fig. 5 – corresponds to one family of the optical potential. Obviously, the deepest minima
in χ2/F can be obtained for the families 4, 5, and 6 (see Fig. 5). This restriction on the number of the family is
confirmed by the behaviour of the width parameter w, which should be very close to 1. Fit. 1 in Sec. III (see Figs. 3,
4) can be found here as family 4.

A more detailed analysis of the resulting real potentials shows that all potentials have the same depth at the
radius r = 10.61 fm: V (r = 10.61 fm) = −0.54 MeV. This result is shown in Fig. 6. (An exception was found for
family 1, but for the region of this family χ2/F does not show a certain minimum, see Fig. 5.) A similar result was
already found by Badawy et al. [26] by analyzing excitation functions of α scattering measured close to ϑ = 180o
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at energies 10 MeV ≤ Elab ≤ 20 MeV: These authors stated that “at energies near the Coulomb barrier the α–
particle scattering data are fitted by any Woods–Saxon potential whose depth at r = R0 is 0.2 MeV”. For 144Sm
they derived R0 = 11.04 ± 0.02 fm. However, in contradiction to that statement we point out that one has to
choose one of the discrete values of the real volume integrals JR determined by the minima in χ2/F (families 1–11).
Choosing e.g. a strength parameter λ = 1.35 (which is exactly between families 4 and 5) and adjusting w so that
V (r = 10.61 fm) = −0.54 MeV (w = 1.018) results in a significantly worse description of the experimental data
(χ2/F = 1.92 compared to χ2/F = 1.82 for families 4 and 5). Of course, this discrimination is only possible if very
accurately measured scattering data are available!

The “family problem” usually can be solved at higher energies. The 144Sm(α,α)144Sm scattering data at Elab =
120 MeV [27] can be described well by a calculation using a folding potential with JR = 286.8 MeVfm3 [11], and
a similar volume integral was found in Ref. [27] using WS potentials. Together with the systematic behaviour of
folding potentials for nuclei with A ≥ 90 [11] which can be described by the interplay of the energy dependence of the
NN interaction veff and the effect of the so–called “threshold anomaly” [12,16] one expects volume integrals of about
JR ≈ 330− 340 MeVfm3 at the low energies analyzed in this work (see Fig. 7, upper part and Sect. IVB). ¿From this
point of view we can decide that family 4 corresponds to the volume integral JR(Elab = 120 MeV) = 286.8 MeVfm3.

There is a further confirmation for family 4. The ground state wave function of 148Gdg.s. = 144Sm ⊗ α can be
calculated [11]. The number of nodes N and the angular momentum L of the α particle outside the 144Sm core are
related to the oscillator quantum number Q by

Q = 2N + L =
4

∑

i=1

(2ni + li) =
4

∑

i=1

qi. (4.1)

Using Q = 18 (corresponding to qi = 5 oscillator quanta for each neutron in the 2f7/2 shell and qi = 4 oscillator
quanta for each proton in the 2d5/2 shell, see e.g. [28]) one has to adjust the folding potential strength to reproduce

the binding energy of the 148Gd ground state. One obtains λ = 1.159 and JR = 311.2 MeVfm3 at E = +3.2 MeV (the
nucleus 148Gd decays by α emission) which fits into the known systematic behaviour of α-nucleus volume integrals
[11].

For all these reasons we chose the calculations corresponding to family 4 with JR ≈ 349 MeVfm3 and JI ≈
52.5 MeVfm3 (see Sect. III) obtained with the standard WS parametrization of the imaginary part (fit 1 in Tabs. I
and II).

B. Extrapolation to Ec.m. = 9.5 MeV

For the calculation of the 144Sm(α,γ)148Gd reaction cross section at the astrophysically relevant energy Ec.m. =
9.5 MeV one has to determine the optical potential at that energy. The following methods were applied to extract
the real and imaginary part of the potential.

In a first step the folding potential in the real part was calculated at the energy Ec.m. = 9.5 MeV (this is necessary
because of the energy dependence of the interaction veff , see Eq. 3.2). Second, the width parameter w was taken from
fit 1: w = 1.022. Third, because of the rise of the volume integrals JR at low energies which is about ∆JR/∆E ≈
1 − 2 MeVfm3/MeV [11] we adjusted the parameter λ to obtain a volume integral of JR(Ec.m. = 9.5 MeV) =
334 ± 6 MeVfm3: λ = 1.1965 ± 0.0216. The uncertainties of JR and λ were estimated from the uncertainties of
∆JR/∆E and JR(Elab = 20 MeV).

The volume integral of the imaginary part can be parametrized according to Brown and Rho (BR) [29]:

JI(Ec.m.) =

{

0 for Ec.m. ≤ E0

J0 ·
(Ec.m.

−E0)
2

(Ec.m.

−E0)2+∆2 for Ec.m. > E0
(4.2)

with the excitation energy E0 of the first excited state, and the saturation parameter J0 and the rise parameter ∆,
which are adjusted to the experimentally derived values.

¿From the 144Sm scattering data at Elab = 20 MeV and Elab = 120 MeV [27] one obtains J0 = 79.98 MeVfm3 and
∆ = 12.84 MeV. The excitation energy of the first excited 2+ state in 144Sm is E0 = 1.660 MeV. This leads to a
volume integral at Ec.m. = 9.5 MeV of JI(Ec.m. = 9.5 MeV) = 21.7 MeVfm3. Because of the weak mass dependence
of the imaginary part for heavy nuclei with a magic neutron or proton number (see Fig. 7, lower part) and because
the BR parametrization is not very well defined by 2 data points (and 2 parameters to be adjusted!) we also used the
well–defined BR parametrization for 90Zr taken from Ref. [11]: J0 = 84.3 MeVfm3 and ∆ = 11.8 MeV. This leads
to JI(Ec.m. = 9.5 MeV) = 25.5 ± 0.3 MeVfm3 using either E0 = 1.66 MeV adjusted to 144Sm or E0 = 1.78 MeV

6



adjusted to 90Zr. Combining the values derived from the BR parametrizations of 144Sm and 90Zr, we adopt a volume
integral of JI(Ec.m. = 9.5 MeV) = 22.5+3.0

−1.5 MeVfm3.
The shape of the imaginary potential is not as certain as its volume integral. Several parametrizations lead to

almost identical fits at Elab = 20 MeV. For our extrapolation we used the geometry of the potential derived in fit 1
(see Tabs. I and II), because the shape of the imaginary potential should not change dramatically from Elab = 20 MeV
to Ec.m. = 9.5 MeV, and we adjusted the depth W0 = 4.55+0.61

−0.30 MeV to obtain a potential with the correct imaginary
volume integral.

C. 144Sm(α,γ)148Gd and the 146Sm/144Sm production ratio

Reaction rates for the reaction 144Sm(α,γ)148Gd at T9 = 2.5 and T9 = 3.0 are listed in Tab. III. To determine the
influence of the optical potential on the 144Sm(α,γ)148Gd cross section the calculations of Refs. [5,7] were repeated
only changing the optical potentials. Compared to a previous calculation using a folding potential with parameters
derived from a global systematics [5,7] the reaction rate is reduced by a factor of about 1.5. The optical potential
is well–defined by the scattering data. With the optical potential determined in this work the calculated and the
preliminary experimental 144Sm(α,γ)148Gd capture cross section agree reasonably well.

The reaction rate does not depend strongly on the chosen family because the scattering data are reproduced quite
well from calculations using potentials of families 3, 4, and 5. The capture cross section decreases (increases) by
about 11% (10%) using family 3 (5) instead of family 4. A similar increase of about 8% compared to family 4 is
obtained when one uses a potential between families 4 and 5 as mentioned in Sect. IVA because of the somewhat
larger imaginary part of the potential.

The influence of the reaction rate on the 146Sm/144Sm production ratio was analyzed in Ref. [4]. Our reduced
reaction rate lies between cases C and D of Tab. I in Ref. [4] corresponding to a production ratio of about 0.3 which
is well between the experimentally derived limits of 0.1 to 0.7 [3].

V. CONCLUSION

The elastic scattering cross section 144Sm(α,α)144Sm was measured at Elab = 20 MeV with very high accuracy.
A definite optical potential could be derived from the experimental data and by taking into account the systematics
of α–nucleus optical potentials of Ref. [11]. Again using this systematics, an extrapolation of the optical potential
from Elab = 20 MeV to the astrophysically relevant energy Ec.m. = 9.5 MeV was possible with very limited un-
certainties. The 144Sm(α,γ)148Gd cross section is reduced by a factor of about 1.5 compared to a previous folding
potential calculation, it still lies between the two ESW calculations differing by a factor of 10. The uncertainty of the
144Sm(α,γ)148Gd cross section coming from continuous and discrete ambiguities of the optical potential is reduced
by a great amount. The use of systematic folding potentials is highly recommended for the analysis of low–energy
α scattering and α capture reactions because of the reduced number of free parameters compared to previous calcu-
lations using WS potentials, resp. because of the reduced uncertainties in the radius parameter compared to ESW
calculations.
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TABLE I. Potential parameters of the imaginary part of the optical potential derived from the angular distribution of
144Sm(α,α)144Sm at Elab = 20 MeV.

fit W0 (MeV) R0 (fm) a (fm) p

1 10.64 1.6758 0.1680 1
2 10.70 1.7132 0.2265 2

fit RFB (fm) a1 a2 a3 a4 a5 a6 a7 a8

3 15.0 -11.65 -16.66 6.09 21.31 10.79 - - -
4 15.0 -9.50 -6.50 19.42 14.84 -23.51 -35.83 -14.88 -1.06

5 a V0 = 185 MeV, W0 = 25 MeV, R0,R = R0,I = 1.4 fm, aR = aI = 0.52 fm

aRef. [6]

TABLE II. Integral potential parameters J and rrms of the real and imaginary part of the optical potential derived from
the angular distribution of 144Sm(α,α)144Sm at Elab = 20 MeV.

fit λ w JR rrms,R JI rrms,I χ2/F
No. (MeVfm3) (fm) (MeVfm3) (fm)

1 1.2568 1.0220 349.34 5.6961 52.57 6.8311 1.823
2 1.2580 1.0216 349.29 5.6940 52.41 6.8142 1.823
3 1.3425 0.9976 347.04 5.5600 57.49 6.0756 1.807
4 1.2771 1.0067 339.31 5.6110 51.30 6.8868 1.738

5 a Woods–Saxon 557.59 6.0026 75.35 6.0026 41.0

aRef. [6]

TABLE III. Reaction rates of 144Sm(α,γ)148Gd at temperatures of T9 = 2.5 and T9 = 3.0.

potential potential (α,γ) NA· < σv > (cm3 s−1 mole−1)
from Ref. from Ref. T9 = 2.5 T9 = 3.0

ESW, R = 8.01 fm [8] [4] 3.72 × 10−16 2.58 × 10−13

ESW, R = 8.75 fm [9] [1] 3.75 × 10−15 2.35 × 10−12

WS [6] [6,7] 1.95 × 10−15 1.22 × 10−12

Folding, λ = 1.159 [5,7] [5,7] 1.27 × 10−15 7.56 × 10−13

Folding this work this work 7.91 × 10−16 5.63 × 10−13
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FIG. 1. Relative yield of 12C recoil nuclei in coincidence with elastically scattered α particles. The shaded area shows the
angle and the uncertainty which is expected from the calibration using the steep kinematics of 1H(α,α)1H. The dotted line is
a Gaussian fit to the experimental data points to guide the eye.
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FIG. 3. Elastic scattering cross section of 144Sm(α,α)144Sm normalized to the Rutherford cross section. The line is the
result of an OM calculation using folding potentials and corresponds to fit 1 of Tabs. 1 and 2 (see Sect. III). The inserts show
magnifications of the forward and backward angular range.
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V (r = 10.61 fm) = −0.54 MeV, and the imaginary part of the potential was again adjusted to the experimental data. The
deepest minima in χ2/F are obtained for the families 4, 5, and 6.
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