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1 Introduction

Solving a conformal field theory amounts to finding its spectrum of anomalous dimensions

and the structure constants of its 3-point functions. At weak coupling, the former problem

is equivalent to perturbatively diagonalizing the dilatation operator. When the CFT admits

an AdS dual, the same problem at strong coupling requires finding the semiclassical energy

spectrum of strings in AdS-space. In the case of N = 4 SYM, dual to type IIB superstrings

on AdS5 × S5, the emergence of integrability in the planar limit of both theories has

gradually led to a very elegant analytical solution to both of these problems (see [1] for a

recent review). Assuming integrability at all loops, this eventually culminated in a series

of proposals for computing the full spectrum of anomalous dimensions at all values of the

coupling [2–6].

In sharp contrast with these developments for the spectrum of N = 4 SYM, compar-

atively little is known about the structure constants of its 3-point functions. A possible

explanation for this shortcoming might be the apparent lack of integrability methods be-

yond the planar sector. And yet it was recently shown in [7], building on [8–10], that

– 1 –



J
H
E
P
1
1
(
2
0
1
1
)
0
1
7

Xµ(·, 0)

X
µ

I (·, 0)

X
µ

II(·, 0)

0

τ

Figure 1. The splitting is the result of a manual change in the topology of the closed string

imposed at the instant τ = 0 when the profile in space-time self-intersects. The full time evolution

of the string is described by a worldsheet with the topology of a pair of pants.

the integrability of planar N = 4 SYM, which was so crucial in the exact study of the

spectrum, can also be used to tackle the problem of 3-point functions at weak coupling.

At strong coupling, on the other hand, a similar use of the classical integrability of super-

strings on AdS5 × S5, which is after all a local property on the worldsheet, has not yet

been exploited. Indeed, the semiclassical study of 3-point functions [11–17] has thus far

been restricted to cases where the path integral is dominated by some finite-gap solution

with cylindrical worldsheet. In particular, a comparison [18] of the results of [7] with string

theory in the Frolov-Tseytlin limit could only be considered in the case where two of the

three string states are “heavy”, i.e. semiclassical, while the third is “light”. Nevertheless,

an attractive proposal for computing 3-point functions at strong coupling using classical

methods was put forward in [19], which relies on finding classical Minkowskian solutions

splitting/joining in S5.

The aim of this paper is to exploit the classical integrability of the superstring σ-model

on AdS5 × S5 so as to construct classical string solutions with Lorentzian worldsheets of

more general topology than the cylinder. The simplest such worldsheet is the ‘pair of pants’

diagram, or three punctured sphere, describing the splitting or joining of strings. By fo-

cusing on the bosonic subspace R×S3, we implicitly construct the general splitting string

solution on this background. Specifically, we assume that we are given a solution on the

cylinder with the property that: at some given instant in time τ = 0, two of its points σ1 and

σ2 coincide in target space and their velocities agree; a simple example is the folded spinning

string [27]. The splitting of such a string comes from treating it as consisting of two individ-

ual strings and letting each of them evolve separately, see figure 1. The problem therefore

consists in solving a pair of Cauchy problems on the outgoing cylinders (the legs of the pair

of pants) with Cauchy data specified by a portion of the original solution at time τ = 0.

The classical splitting of strings has been extensively studied in the literature [20–23],

mostly in flat Minkowski space, but also on certain backgrounds with respect to which the

equations of motion are linear in the fields. In each case, therefore, the general solution of

the equations is given by a Fourier series which can be subjected to the relevant boundary

conditions and Cauchy data in order to solve the Cauchy problem. More recently, there

has been renewed interest in splitting strings in the context of the AdS/CFT correspon-

dence [24–26]. However, in this case the non-linearity of the equations of motion renders
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Fourier analysis unapplicable. But fortunately these non-linear equations are well known

to be integrable, in the sense that they define a Lax connection: a locally defined 1-form on

the worldsheet, meromorphic in some auxiliary complex parameter, and with the property

of being flat. This will allow us to solve the Cauchy problems on the outgoing cylinders in

terms of Birkhoff factorizations.

The outline of the paper is as follows. In section 2 we set up the general formalism for

discussing classical interacting strings, treating in parallel the case of flat space and R×S3.

In section 3 we set up and solve the Cauchy problem for splitting strings in flat space. This

serves as a warmup exercise since it will turn out that many features of the solution in flat

space carry over to those of the Cauchy problem in R × S3. Finally, section 4 deals with

splitting strings in R×S3. After setting up the Cauchy problem on the outgoing cylinders,

we show that the smoothness property of the solution is the same as in flat space, resulting

in a similar tessellation of the worldsheet into tile-shaped regions bounded by null rays.

We then show how integrability can be used to recursively construct the solution to the

Cauchy problem in each tile, given the solution in the previous tile.

2 Classical interacting strings

Our analysis of splitting strings on R × S3 will be closely related to the corresponding

analysis in flat space. In this section we therefore introduce both cases in parallel. Let W

denote the worldsheet of the string, equipped with a Lorentian metric γ. For the moment

we impose no restriction on the topology of W .

In flat space. Consider the embedding Xµ : W → R
p,1 of W into Minkowski space R

p,1.

In order to describe the classical motion of a string, this map should minimize the string

action
∫

W
dXµ ∧ ∗dXµ, where ∗ denotes the Hodge dual relative to the worldsheet metric

γ. The corresponding equations of motion for all the fields (Xµ, γ) read

Xµ : d ∗ dXµ = 0, (2.1a)

γ : Gαβ = 1
2γ

αβγρσGρσ, (2.1b)

where Gαβ = ∂αXµ∂βXµ is the pull-back of the flat target space metric to W .

On R × S
3. The embedding of a string with worldsheet W into the target space R× S3

with signature (−1,+1,+1,+1) is described by a pair of fields X0 : W → R and g : W →
SU(2). The action for all these fields can be written down succinctly as

S =

√
λ

4π

∫
[

1

2
tr(j ∧ ∗j) + dX0 ∧ ∗dX0

]

, (2.2)

where j = −g−1dg is the su(2)-valued current and ∗ denotes the Hodge dual relative to

the worldsheet metric γ. The resulting equations of motion for the respective fields are

g : d ∗ j = 0, dj − j ∧ j = 0, (2.3a)

X0 : d ∗ dX0 = 0, (2.3b)

γ : Gαβ = 1
2γ

αβγρσGρσ , (2.3c)

where the induced metric is Gαβ = 1
2 tr(jαjβ) + ∂αX0∂βX0.

– 3 –
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2.1 Mandelstam diagrams

In the context of Riemannian worldsheets W , the conformal class of the Riemannian met-

ric g endows W with a complex structure, promoting it to a Riemann surface (W, [g]).

Moreover, as shown in [28], there is a 1 – 1 correspondence between string light-cone di-

agrams and Abelian differentials on W . Analogous statements to these can also be made

in the Lorentzian setting [29]. In particular, the conformal class of the Lorentzian metric

γ endows W with a causal structure and static gauge provides a Mandelstam diagram

representation of W .

Conformal gauge. The equations of motion (2.1) or (2.3) being invariant under con-

formal transformations of the worldsheet metric γ 7→ eφγ, only the conformal equivalence

class [γ] of γ is physically relevant. Yet there is a 1 – 1 correspondence between conformal

equivalence classes of Lorentzian metrics and causal structures on W , i.e. ordered pairs

(F+,F−) of transverse null foliations [29]. In other words, specifying the worldsheet met-

ric γ amounts to giving W a causal structure, thereby promoting it to a Lorentz surface

(W, [γ]). In terms of any local null coordinates σ̃± : U ⊂ W → R, defined by ∂± := ∂σ̃±

being tangent to the foliation F∓, the metric reads γ = γ+−dσ̃+dσ̃−.

Static gauge. We can write dX0 = µ+ + µ− where the pair (µ+, µ−) are transverse

measures to the foliations (F+,F−) respectively, which locally read µ± = (∂±X0)dσ̃±. In

other words µ± vanishes on tangent vectors to leaves of the foliation F± (in particular µ±

must vanish at singular points of the foliation F± where multiple leaves end). By working

in local coordinates it is easy to see that ∗µ± = ±µ±. But now dX0 is harmonic (that is,

closed and co-closed) by the equations of motion, which means that µ± are both closed

and hence locally read µ± = f±(σ̃±)dσ̃±. Now integrating gives

X0(p) =

∫ p

(µ+ + µ−)

for p ∈ W , and since X0 must be a well defined function we have
∫

C
µ+ = −

∫

C
µ−

for any C ∈ π1(W ). This last condition is the requirement for rectifiability of W into

a Mandelstam diagram [29], i.e. for there to be a representative of (W, [γ]) which is a

Mandelstam diagram. Indeed, the level curves of X0 are transverse to the leaves of both null

foliations F± and those through the singularities of F± provide an annuli decomposition

of W . The representative of the class [γ] is given by η := −4µ+ · µ− = −4 dσ+dσ− =

−dτ2 + dσ2, where

σ± :=

∫ p

µ± = 1
2(τ ± σ) (2.4)

define global null coordinates on (the universal cover of) W . In particular we have X0 = τ .

Note that η is degenerate at the singular points of the foliation F±.

Virasoro constraints. After going to conformal static gauge, the dynamical equation

for X0 is solved and the metric is now fixed to the flat metric γ = η. The equations of
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Figure 2. The string worldsheet W has the topology of a pair of pants, or three punctured sphere.

The initial string O splits into two outgoing strings labelled I and II.

motion then reduce to

In flat space

{

∂+∂−Xµ = 0, µ 6= 0,

T±± := ∂±Xµ∂±Xµ = 0
(2.5)

On R × S3

{

∂−j+ = 1
2 [j−, j+], ∂+j− = 1

2 [j+, j−],

T±± := 1
2tr j2

± + 1 = 0.
(2.6)

In either case, we find using the first set of equations that T±± = T±±(σ±) only depends on

σ±. Therefore, if it vanishes for all σ at some τ then it must vanish for all τ . It follows that

when solving the Cauchy problem for the equations (2.5) or (2.6), the Virasoro constraints

T±± = 0 will be automatically taken care of provided the Cauchy data satisfy them.

2.2 Pair of pants

Since our aim is to discuss splitting strings, from now on we shall focus on the case where

W has the topology of a pair of pants, see figure 2. There is a single singular point and

the level curve of X0 through it, which has the topology of a ‘figure of 8’, can be assumed

to be at τ = 0 without loss of generality. With this curve removed, the space W \ {τ = 0}
consists of three cylinders, which can be parameterized as follows

WO := {(σ, τ) | 0 < σ ≤ 2π, τ < 0}, (2.7a)

WI := {(σ, τ) | 0 < σ ≤ 2aπ, τ > 0}, (2.7b)

WII := {(σ, τ) | 2aπ < σ ≤ 2π, τ > 0}. (2.7c)

where a < 1 and the σ-interval is periodically identified in each case.

It is clear that any map from such a worldsheet W into spacetime describes a single

string which splits off into two separate strings at τ = 0. In particular, the map has the

following important self-intersection property:

In flat space

{

Xµ(0, 0) = Xµ(2aπ, 0),

∂τX
µ(0, 0) = ∂τX

µ(2aπ, 0)
(2.8)

On R × S3

{

g(0, 0) = g(2aπ, 0),

∂τg(0, 0) = ∂τg(2aπ, 0).
(2.9)
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3 Splitting strings in flat space

Before studying splitting strings on R × S3, we start by analyzing the splitting of strings

in flat space in detail since many features of the solution will remain true in the nonlinear

case and serve as a guideline there.

3.1 Cauchy problem

We would like to solve the Cauchy problem corresponding to the linear wave equation (2.5)

on the pair of pants W , for a given set of initial conditions on the incoming circle. However,

it is clear that these conditions cannot be completely arbitrary since they need to be such

that the self-intersection property (2.8) holds. We shall therefore assume that we are given

a solution to (2.5) on the incoming cylinder WO satisfying (2.8). To determine the complete

solution on the rest of W , it remains to find solutions X
µ
I , X

µ
II to

∂+∂−X
µ
I = 0, on WI (3.1.I)

∂+∂−X
µ
II = 0, on WII (3.1.II)

with initial conditions at τ = 0 specified by the given solution Xµ on WO as follows

X
µ
I (σ, 0)=Xµ(σ, 0),

∂τX
µ
I (σ, 0)=∂τXµ(σ, 0)

}

for 0 < σ ≤ 2aπ, (3.2.I)

X
µ
II(σ, 0)=Xµ(σ, 0),

∂τX
µ
II(σ, 0)=∂τXµ(σ, 0)

}

for 2aπ < σ ≤ 2π. (3.2.II)

Note that for each outgoing string, the singularity lies at the end points of the initial

interval. Since they live on WI and WII respectively, the solutions X
µ
I and X

µ
II defined for

τ ≥ 0 are required to have new periodicity conditions, different from those of Xµ, namely

X
µ
I (σ + 2aπ, τ) = X

µ
I (σ, τ), (3.3.I)

X
µ
II(σ + 2(1 − a)π, τ) = X

µ
II(σ, τ). (3.3.II)

Notice that (3.3) is consistent with (3.2) by virtue of the self-intersection property (2.8).

3.2 Absolute elsewhere of the singularity

D’Alembert’s solution to the linear wave equation is expressed as a sum of functions in σ+

and σ−. In particular, the solution given on the initial cylinder assumes this general form,

Xµ(σ, τ) = X
µ
+(σ+) + X

µ
−(σ−). (3.4a)

Since X
µ
I , X

µ
II are solutions of the same equation (3.1), they are also given by d’Alembert’s

general form on their respective cylinders

X
µ
I (σ, τ) = X

µ
I+(σ+) + X

µ
I−(σ−), X

µ
II(σ, τ) = X

µ
II+(σ+) + X

µ
II−(σ−). (3.4b)

– 6 –
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2aπ
0

0

I IIII

σ

τ

Figure 3. When τ < 0 the worldsheet has the topology of a cylinder, the picture being periodically

identified in the σ-direction. For τ > 0 the change in topology is indicated by the blue cuts

emanating from the singularity at 0 ≡ 2aπ: the right and left sides of the cut through 0 are to

be identified with the left and right sides of the cut through 2aπ respectively. In the shaded area,

bounded by null rays (in red), the initial solution remains valid.

In terms of (3.4) the initial conditions (3.2) read, in their respective domains in σ,

X
µ
I+(σ) + X

µ
I−(σ) = X

µ
+(σ) + X

µ
−(σ), ∂σX

µ
I+(σ) − ∂σX

µ
I−(σ) = ∂σX

µ
+(σ) − ∂σX

µ
−(σ),

X
µ
II+(σ) + X

µ
II−(σ) = X

µ
+(σ) + X

µ
−(σ), ∂σX

µ
II+(σ) − ∂σX

µ
II−(σ) = ∂σX

µ
+(σ) − ∂σX

µ
−(σ).

But then, differentiating the left set of equations with respect to σ and combining them

with the right set we obtain

∂σX
µ
I±(σ) = ∂σX

µ
±(σ), for 0 < σ ≤ 2aπ

∂σX
µ
II±(σ) = ∂σX

µ
±(σ), for 2aπ < σ ≤ 2π.

Integrating in σ and using part of the initial conditions again, we find

X
µ
I±(σ) = X

µ
±(σ) ± v

µ
I , for 0 < σ ≤ 2aπ (3.5.I)

X
µ
II±(σ) = X

µ
±(σ) ± v

µ
II, for 2aπ < σ ≤ 2π, (3.5.II)

where v
µ
I and v

µ
II are constants. Plugging this into (3.4b) we obtain

X
µ
I (σ, τ) = Xµ(σ, τ), for τ < σ ≤ 2aπ − τ, (3.6.I)

X
µ
II(σ, τ) = Xµ(σ, τ), for 2aπ + τ < σ ≤ 2π − τ. (3.6.II)

Note that the domains of validity here are determined by the requirement that σ± satisfies

the same bounds as σ does in (3.5). Hence, these domains are bounded by null rays

emanating from the singularity, as shown in figure 3. That is, the original solution remains

valid at points on the outgoing cylinders I and II which are space-like separated from the

singularity.

3.3 Absolute future of the singularity

To determine the solutions I and II beyond the limited region of figure 3, we impose their

respective periodicity conditions (3.3). Taking the derivatives of these conditions with

respect to σ± and using the general form of the solutions (3.4b) leads to

∂σX
µ
I±(σ + aπ) = ∂σX

µ
I±(σ), ∂σX

µ
II±(σ + (1 − a)π) = ∂σX

µ
II±(σ).

– 7 –
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+xI+xI

+xII+xII +2xI

I IIII

τ

0

Figure 4. The solution in the ‘null tiles’ labelled I and II, delimited by null rays through the

singularity, is obtained by extending the original solution Xµ. The solutions X
µ

I and X
µ

II on

subsequent tiles are given by constant translates of the solution in the regions I and II.

After integrating we find

X
µ
I±(σ + aπ) = X

µ
I±(σ) + x

µ
I±, X

µ
II±(σ + (1 − a)π) = X

µ
II±(σ) + x

µ
II±.

In other words, the functions X
µ
I± and X

µ
II± are not periodic but shift by constants under

the translations σ 7→ σ + aπ and σ 7→ σ + (1 − a)π respectively. This leads to

{

X
µ
I (σ+ + aπ, σ−) = X

µ
I (σ+, σ−) + x

µ
I ,

X
µ
I (σ+, σ− + aπ) = X

µ
I (σ+, σ−) + x

µ
I ,

(3.7.I)

{

X
µ
II(σ

+ + (1 − a)π, σ−) = X
µ
II(σ

+, σ−) + x
µ
II,

X
µ
II(σ

+, σ− + (1 − a)π) = X
µ
II(σ

+, σ−) + x
µ
II.

(3.7.II)

That the same x
µ
I (resp. x

µ
II) appears for shifts in both σ+ and σ− of X

µ
I (resp. X

µ
II) follows

from taking the difference of both equations and using the periodicity conditions (3.3) which

can be written as X
µ
I (σ+ + aπ, σ−) = X

µ
I (σ+, σ− + aπ) and similarly for X

µ
II.

The formulae (3.7) now allow us to extend each solution X
µ
I , X

µ
II beyond their restricted

domains (3.6) depicted in figure 4. Together, equations (3.6) and (3.7) therefore define the

functions X
µ
I and X

µ
II completely on the whole outgoing cylinders WI and WII. Combined

with the original solution Xµ on the incoming cylinder, this gives a complete description of

the corresponding splitting string. Let us emphasize that since the construction assumed

d’Alembert’s form (3.4b) for both functions X
µ
I and X

µ
II, they automatically satisfy the

equations of motion (3.1), in a distributional sense, despite not being differentiable on the

forward null rays through the singularity.

One immediate advantage of this construction is that the qualitative description of the

motion of the outgoing strings in space time is very transparent. In particular, the form of

the solution clearly shows that the singular point, where the splitting occurs, propagates

at the speed of light along the worldsheet of each outgoing string I and II. Along these

null rays the space time profile of strings I and II exhibits cusps, but moreover, the profile

away from these cusps is given by some rigid translate of a portion of the initial string.

– 8 –
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4 Splitting strings on R × S
3

4.1 Cauchy problem

As in the flat space case, to solve the Cauchy problem on the pair of pants W we shall

assume that a solution g(σ, τ) of the equations (2.6) on the incoming cylinder WO is given,

which satisfies the self-intersection property (2.9) at τ = 0. This solution will specify

Cauchy data for separate Cauchy problems on each outgoing cylinder WI and WII. How-

ever, since both problems are essentially equivalent we shall focus on one of the outgoing

strings, say I.

The equations of motion for the embedding field gI : WI → SU(2) can be written as

∂2
τgI − ∂2

σgI = ∂+∂−gI = 1
2

(

∂+gI(g
−1
I ∂−gI) + ∂−gI(g

−1
I ∂+gI)

)

=: f(gI, ∂σgI, ∂τgI). (4.1a)

Since the string is closed, we impose periodic boundary conditions, i.e. gI(0, τ) = gI(2aπ, τ).

Equivalently we require gI(σ, τ) to be 2aπ-periodic in σ. The initial conditions read

gI(σ, 0) = g(σ, 0), ∂τgI(σ, 0) = ∂τg(σ, 0), (4.1b)

where g(σ, τ) is the given initial string solution. By assumption it satisfies the self-

intersection property (2.9) so that (4.1b) are consistent with the 2aπ-periodicity of gI.

Moreover, we assume the incoming string solution to be smooth so that (4.1b) are both

smooth except at the self-intersection point σ = 0 ≡ 2aπ of the initial string, where they

are only continuous. Such points of reduced regularity are referred to as ‘singularities’ and

the relation between singularities of a solution and singularities of the corresponding initial

data goes under the name of ‘propagation of singularities’.

To solve the Cauchy problem (4.1) we will proceed in three steps. First, we make use

of the theory of propagation of singularities to identify the global smoothness properties

of the outgoing string. It turns out that despite the nonlinearity of the equations, the

singularity of the initial data propagates along null trajectories, exactly as in the flat space

case where the equations were linear. We then argue that the initial solution can be trivially

extended to all points which are spacelike separated from the singularity. Finally, using

this information we construct the remainder of the solution in the forward light-cone of the

singularity by exploiting the integrability of the equations and using the dressing method.

4.2 Propagation of the singularity

The propagation of singularities in nonlinear Klein-Gordon type equations of the general

form ∂2
τu−∂2

σu = f(x, u, ∂σu, ∂τu) was first studied in [30, 31] and further developed in [32].

It turns out that despite the presence of nonlinear terms on the right hand side, the result

is exactly the same as in the linear case where f ≡ 0. In other words, if the initial data

is Cn at (σ, 0) then the solution will be Cn with respect to ∂− along the right null ray

(σ + τ, τ) and Cn with respect to ∂+ along the left null ray (σ − τ, τ). In particular, the

solution will be smooth at a point (σ, τ) if its backward null rays intersect τ = 0 only at

non-singular points of the initial data. Note that the pair of null rays through any point

are nothing but the characteristic lines of the second order hyperbolic differential operator

– 9 –
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S+ S− S+ S−p

(a) (b)

Figure 5. (a) The self-intersection point of the initial string corresponds to a singularity in the

initial conditions of each outgoing string, which propagates along both left and right null rays S−

and S+. The solution is therefore smooth everywhere except on these forward null rays. The

component jI∓ has a jump discontinuity across S± whereas jI± is continuous. (b) The shaded

region, representing points which are causally disconnected from the singularity, is unaffected by

the splitting. The solution there is simply given by the original solution extended beyond τ = 0 as

if the splitting never occurred.

∂2
τ − ∂2

σ . This conclusion remains true more generally for coupled Klein Gordon equations

such as (4.1a) in which the nonlinear coupling terms depend only on lower order derivatives

gI, ∂σgI, ∂τgI.

The propagation of singularities in the light-cone components of the current jI =

−g−1
I dgI itself will be more relevant later so we discuss it directly. The equations of motion

read

∂−jI+ = 1
2 [jI−, jI+], ∂+jI− = 1

2 [jI+, jI−], (4.2a)

and the corresponding initial conditions derived from (4.1b) are

jI±(σ, 0) = −g(σ, 0)−1(∂τg(σ, 0) ± ∂σg(σ, 0)). (4.2b)

These functions are smooth away from the self-intersection point σ = 0 ≡ 2aπ, but exhibit

a jump discontinuity there since g(σ, 0) is only continuous at that point.

The general semilinear hyperbolic first order system with piecewise-smooth initial data

having jump discontinuities only at a discrete set of points was studied in [33]. The sys-

tem (4.2) is of this type but has only two characteristic directions at any point, namely

the left and right null rays. It follows (see [33] for details) that there can be no ‘anoma-

lous’ singularities – these are singularities which are not present in the linearized system

– appearing at the intersection of two singularity bearing characteristics. Let us denote

S− and S+ the forward left and right null rays emanating from the singularity (aπ, 0), see

figure 5 (a). Then a solution of (4.2) in the distributional sense must in fact be smooth in

WI \ (S+ ∪ S−).

We can be more precise about the value of the jump discontinuities across S±. By

taking the integral of the first equation in (4.2a) over a vanishingly small interval in the

σ− direction which intersects S+, we find that the discontinuity of jI+ across this charac-

teristic vanishes. That is, jI+ is continuous in the σ− direction. On the other hand, its

discontinuity ∆−jI+ across the left null ray S− satisfies ∂−(∆−jI+) = 1
2 [jI−,∆−jI+]. A

similar reasoning applied to the second equation in (4.2a) shows that jI− is continuous in

– 10 –
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the σ+ direction and its jump discontinuity ∆+jI− across the right null ray S+ satisfies

∂+(∆+jI−) = 1
2 [jI+,∆+jI−]. The upshot is that the jump discontinuities of jI+ and jI− in

the initial condition at τ = 0 propagate along the left null ray S− and right null ray S+,

respectively.

4.3 Absolute elsewhere of the singularity

Having identified the smoothness properties of the current jI on each outgoing cylinder,

we now proceed to actually construct these solutions. In the spirit of section 3, we will

solve the equations successively in each ‘null-tile’, delimited by the null lines S±, where the

solution is known to be smooth. The first tile in contact with the Cauchy surface requires

little effort.

Indeed, in any hyperbolic system, the solution of the Cauchy problem at any point p

only depends on that part of the Cauchy data which lies within the domain of dependence

of p, defined as the interior of the backward characteristic cone with apex p. Now consider

the region on the outgoing cylinder WI consisting of all points, the domain of dependence

of which does not contain the singularity. This region is delimited by the forward null rays

S± through the singularity and the Cauchy surface τ = 0, see figure 5 (b). It is then clear

that the original solution remains valid within this region, since the relevant Cauchy data

is the same as if the splitting had never occurred.

4.4 Integrability

Extending the solution into the region of influence of the singularity is considerably harder

since it requires explicitly solving the Cauchy problem. Fortunately, the equations (4.2a)

of the prinicpal chiral model are well known to be integrable in the sense that they can

locally be rewritten in the form of a zero curvature equation. This will enable us to make

use of powerful factorization methods to construct their solutions.

Lax connection. Introduce the following one complex-parameter family of sl2(C)-valued

1-forms on the worldsheet WI, depending on the single parameter x ∈ CP 1,

JI(x) :=
jI+

1 − x
dσ+ +

jI−

1 + x
dσ−, (4.3)

where recall that jI = jI+dσ+ + jI−dσ−. It has the remarkable property of being flat, i.e.

dJI(x) − JI(x) ∧ JI(x) = 0, (4.4)

if and only if the equations of motion (4.2a) hold. In other words, flat sl2(C)-connections

JI(x) on WI with simple poles at x = ±1 and a zero at x = ∞ are in 1 – 1 correspondence

with solutions jI : WI → sl2(C) of the principal chiral model equations. Specifically, the

Lax connection is constructed from jI as in (4.3) and the current is recovered from JI(x) by

jI = JI(0). (4.5)
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Extended solution. Since the sl2(C)-connection JI(x) is flat, it can be trivialized over

any simply connected domain of U ⊂ WI, namely we can write

JI(x) =
(

dΨI(x)
)

ΨI(x)−1, (4.6)

where ΨI is uniquely determined if we require ΨI(x, σ0, τ0) = 1 at some point (σ0, τ0) ∈ U .

It follows from (4.6) that (d − tr JI(x)) det ΨI(x) = 0 and therefore det ΨI(x) is constant

since tr JI(x) = 0. The initial condition then implies that ΨI(x) takes values in SL2(C).

Ultimately we are interested in the group element gI ∈ SU2 rather than the current jI.

Comparing the definition of jI = −g−1
I dgI with that of ΨI(x) in (4.6) and using (4.5), we

see that the group element can be recovered succinctly from ΨI(x) as

gI = ΨI(0)
−1. (4.7)

For this reason ΨI(x) is sometimes called the extended solution.

Gauge transformations. The zero-curvature equation (4.4) has a large gauge redun-

dancy since given any g̃(x, σ, τ), the gauge transformed Lax connection

JI(x) 7→ g̃JI(x)g̃−1 + (dg̃)g̃−1 (4.8)

also satisfies the zero-curvature equation. For generic choices of g̃, however, it will no longer

admit the same pole structure as (4.3) and therefore can no longer be interpreted as a Lax

connection of the principal chiral model. Yet, when g̃ is carefully chosen to preserve the

pole structure of the Lax connection, (4.8) provides a powerful map between solutions.

Reality conditions. To obtain su2-valued currents jI and SU2-valued solutions gI, one

must impose reality conditions on the extended solution ΨI(x). Sufficient conditions are

ΨI(x)† = ΨI(x̄)−1, (4.9)

which imply g
†
I = g−1

I . Furthermore, the ensuing reality condition JI(x)† = −JI(x̄) on the

Lax connection which follows from (4.6) then implies j
†
I = −jI. It will be convenient to

think of real extended solutions (4.9) as fixed points of the complex antilinear involution

τ̂ (ΨI)(x) := τ
(

ΨI(x̄)
)

, (4.10)

where τ(A) := (A†)−1 for any A ∈ SL2(C), so that SU2 ⊂ SL2(C) is the fixed point set

of τ .

4.5 Absolute future of the singularity

When deriving exact solutions for the outgoing strings in the flat space case we made full

use of the fact that d’Alembert’s general solution to the linear wave equation is expressed

as a linear superposition of two independent functions of σ+ and σ−. A nonlinear analogue

of this statement in integrable models can be obtained using the so called dressing method

(see [34] for a review in the context of the principal chiral model). The rough idea is that
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there exists a pair of gauge transformations (4.8) with parameters g̃I±(x, σ+, σ−) which

bring the Lax connection into canonical forms depending solely on σ±, respectively:

g̃I±JI(x)g̃−1
I± + (dg̃I±)g̃−1

I± =
j0
I±(σ±)

1 ∓ x
dσ± =: JI±(x).

But moreover, given two such ‘right and left moving’ Lax connections JI±(x) we can recover

the original Lax connection (4.3). Specifically, we have a pair of maps

JI(x, σ+, σ−)
undress

/
(

JI+(x, σ+), JI−(x, σ−)
)

dress
o

referred to as the undressing and dressing transformations. This is effectively the non-

linear counterpart of the (linear) correspondence X
µ
I (σ+, σ−) ⇋ (Xµ

I+(σ+),Xµ
I−(σ−)) in

flat space.

In fact, the analogy with the flat space case goes even further. Suppose we ‘normalize’

the solution X
µ
I (σ+, σ−) by requesting that X

µ
I (0, 0) = 0. This amounts to performing

a constant translation on the solution, which is a symmetry of the equations, and the

‘unnormalized’ solution is recovered by adding back the original value of x
µ
0 := X

µ
I (0, 0).

Then the functions X
µ
I± may be defined simply as X

µ
I+(σ+) := X

µ
I (σ+, 0) and X

µ
I−(σ−) :

= X
µ
I (0, σ−). Note that they inherit the ‘normalization’ of X

µ
I since X

µ
I±(0) = 0. The full

solution may be obtained from its values on the left and right null rays through the special

point (0, 0) ∈ WI,

X
µ
I (σ+, σ−) = X

µ
I+(σ+) + X

µ
I−(σ−).

In particular, the ‘unnormalized’ solution is obtained by adding the constant x
µ
0 .

The analogous construction in the R × S3 case goes as follows. Consider the flat Lax

connections JI±(x) define above but with j0
I+(σ+) := jI+(σ+, 0) and j0

I−(σ−) := jI−(0, σ−).

We introduce their local trivializations ΨI±(x, σ±) as in (4.6) but normalized such that

ΨI±(x, 0) = 1. Then it turns out that the trivialization ΨI(x) of the original solution JI(x)

normalized by ΨI(x, 0, 0) = 1 can be obtained by applying a dressing transformation

(

ΨI+(x, σ+),ΨI−(x, σ−)
) dress

// ΨI(x, σ+, σ−).

As in the flat space case, the ‘unnormalized’ extended solution with ΨI(x, 0, 0) = Ψ0 is

obtained by multiplying ΨI(x, σ+, σ−) on the right by the constant matrix Ψ0, which is a

symmetry of the equations (4.6).

The purpose of the next subsection is to make these statements precise. We shall use

them in the following subsection to obtain a complete description of the outgoing string I.

4.5.1 Dressing and undressing

Given initial conditions j0
I+(σ+) and j0

I−(σ−) on the pair of characteristics S± through

(0, 0) we shall reconstruct the full solution jI±(σ+, σ−).

We start by defining the following pair of flat connections

JI+(x) =
j0
I+(σ+)

1 − x
dσ+, JI−(x) =

j0
I−(σ−)

1 + x
dσ−. (4.11a)
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The corresponding extended solutions normalized at the point (σ+, σ−) = (0, 0) are denoted

respectively as ΨI±(x, σ±), namely

(

dΨI±(x)
)

ΨI±(x)−1 = JI±(x), ΨI±(x, 0) = 1. (4.11b)

Birkhoff factorization. Consider two small circles C± around x = ±1 on the Riemann

sphere CP 1 and let I± be their interiors and E± their respective exteriors. We also intro-

duce C := C+ ∪ C−, I := I+ ∪ I− and E := E+ ∩ E−. The pair of functions ΨI±(x) can be

viewed as defining a single function C → SL2(C) and the set of all such smooth maps forms

a group LCSL2(C) under pointwise matrix multiplication. Consider the Birkhoff factoriza-

tion problem which consists in writing ΨI±(x) as a product of maps in LCSL2(C) which

extend holomorphically to maps I → SL2(C) and E → SL2(C), respectively. Specifically,

ΨI±(x) = g̃I(x)−1ΨI(x), for x ∈ C± (4.12)

where g̃I(x) is holomorphic in I and ΨI(x) is holomorphic in E with ΨI(∞) = 1.

The Birkhoff factorization theorem [35] states that there exists an open dense subset of

the identity component of LS1SL2(C), called the “big cell”, in which the factorization into

loops holomorphic inside and outside the unit circle S1 = {x ∈ C | |x| = 1} is possible. In

particular, the Birkhoff factorization always exists locally, and this statement remains true

also for LCSL2(C). Since ΨI±(x, 0) = 1 trivially factorizes into a pair of identity matrices,

the existence of a solution to (4.12) is therefore guaranteed for small enough σ±. We shall

come back to the question of existence after discussing reality conditions.

If it exists, however, it is easy to see that the factorization (4.12) is unique. For suppose

ΨI±(x) = g̃′I(x)−1ΦI(x) gives another factorization then ΦI(x)ΨI(x)−1 = g̃′I(x)g̃I(x)−1,

where the left and right hand sides are holomorphic in E and I, respectively. However,

since they are equal on C, together they define a matrix of holomorphic functions over

CP 1 which is therefore constant. But the normalization condition at ∞ ∈ E implies

ΦI(∞)ΨI(∞)−1 = 1 so that this constant is the identity matrix and hence g̃′I(x) = g̃I(x)

and ΦI(x) = ΨI(x).

The Birkhoff factorization (4.12) therefore provides a (local) map ΨI±(x) 7→ ΨI(x).

Before exploiting this map, let us show that it is invertible. Since the coefficients of the

system (4.11) are holomorphic in E±, so are its solutions ΨI±(x). Furthermore, ΨI±(∞)

is a constant matrix which must be the identity by the initial conditions. Therefore given

ΨI(x) one can recover ΨI±(x) using the ‘reverse’ Birkhoff factorization problem

ΨI(x) = g̃I±(x)ΨI±(x), for x ∈ C± (4.13)

where g̃I±(x) and ΨI±(x) are holomorphic in I± and E±, respectively, and with ΨI±(∞) =

1. This is just a rewriting of (4.12), where we now consider the matrix ΨI(x) as given and

ΨI±(x) as unknowns. In particular, g̃I±(x) is the restriction of g̃I(x) to I±.

Gauge transformation. Making use of the second factor in (4.12) we define the follow-

ing flat connection 1-form,

JI(x) :=
(

dΨI(x)
)

ΨI(x)−1. (4.14)
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Comparing this with (4.11b) using the factorization (4.13) we find

JI(x) = g̃I±(x)JI±(x)g̃I±(x)−1 +
(

dg̃I±(x)
)

g̃I±(x)−1. (4.15)

This shows that (4.14) is related by a gauge transformation to each of the Lax connec-

tions (4.11a), in the sense of (4.8) with parameter g̃ = g̃I±(x). As discussed in section 4.4,

in order for this gauge transformation to be of any use we must show that it preserves the

analytic structure of the Lax connection.

It follows from its definition (4.14) that JI(x) is holomorphic in E and vanishes at

x = ∞. Its behaviour in I can be deduced from the alternative expressions (4.15). Indeed,

the second term in this equation is holomorphic in I± whereas the first has a simple pole

at x = ±1 with residue proportional to dσ±. By Mittag-Leffler’s theorem this information

uniquely specifies JI(x) so we can write

JI(x) =
jI+

1 − x
dσ+ +

jI−

1 + x
dσ−,

for some functions jI±(σ+, σ−). Since JI(x) is flat by definition (4.14), it follows that jI±

satisfy the equations of the principal chiral model.

Cauchy data. It remains to show that the initial data of jI± along the characteristics

S± through (0, 0) coincides with j0
I+(σ+) and j0

I−(σ−). To show this, consider (4.14) in

light-cone coordinates,

(

∂+ΨI(x)
)

ΨI(x)−1 =
jI+

1 − x
,

(

∂−ΨI(x)
)

ΨI(x)−1 =
jI−

1 + x
.

Setting σ− = 0 in the first equation, we see that ΨI(x, σ+, 0) is holomorphic in E+ since the

coefficient of the equation are. But then the solution of the factorization problem (4.13)

when σ− = 0 is simply given by ΨI+(x, σ+) = ΨI(x, σ+, 0) and g̃I+(x, σ+, 0) = 1. Likewise,

setting σ+ = 0 in the second equation, we find that ΨI(x, 0, σ−) is holomorphic in E− which

in turn implies ΨI−(x, σ−) = ΨI(x, 0, σ−). In particular, this yields the desired result

j0
I+(σ+) = jI+(σ+, 0), j0

I−(σ−) = jI−(σ−, 0).

Reality conditions. Since the circles C± are centered around x = ±1 they are invariant

under conjugation x 7→ x̄. The involution τ̂ therefore sends LCSL2(C) to itself and its fixed

point subset defines the twisted loop group

Lτ̂
CSL2(C) := {Ψ ∈ LCSL2(C) | τ̂ (Ψ) = Ψ}.

It is straightforward to show that the Birkhoff factorization (4.12) restricts to this subgroup.

Indeed, suppose (ΨI+,ΨI−) ∈ Lτ̂
CSL2(C), then applying τ̂ to (4.12) yields the factorization

ΨI±(x) = τ
(

g̃I(x̄)
)−1

τ
(

ΨI(x̄)
)

, for x ∈ C±,

where τ
(

g̃I(x̄)
)

and τ
(

ΨI(x̄)
)

are holomorphic in I and E, respectively, with τ
(

ΨI(∞)
)

= 1.

Therefore, by the uniqueness of the Birkhoff factorization (4.12) it follows that g̃I and ΨI

are also in Lτ̂
CSL2(C), as claimed.
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Existence. We are finally in a position to address the question of existence of the factor-

ization (4.12). The reason for postponing this issue until now is that although the Birkhoff

factorization in LS1SL2(C) is only possible on a dense open subset, it turns out [36, 37] that

for the fixed point subgroup Lτ̂
S1SL2(C) with respect to a complex anti-linear involution τ̂

of the type (4.10), the Birkhoff factorization always exists. In other words, Lτ̂
S1SL2(C) is

connected and the “big cell” in this case is the whole of Lτ̂
S1SL2(C) so that the Birkhoff

decomposition is global.

This can be used to prove the desired factorization (4.12) as follows. First of all,

consider linear fractional transformations f±, with real coefficients, mapping S1 to C± and

the unit disk {x ∈ C | |x| < 1} to I±. This allows us to reduce the Birkhoff facotrization of

Lτ̂
C±SL2(C) to that of Lτ̂

S1SL2(C). In other words, we can decompose any Ψ± ∈ Lτ̂
C±SL2(C)

as a product ΦI
±ΦE

± where ΦI
± ∈ Lτ̂

C±SL2(C) and ΦE
± ∈ Lτ̂

C±SL2(C) extend holomorphically

to I± and E± respectively, with ΦE
±(∞) = 1.

Let (Φ+,Φ−) ∈ LCSL2(C) denote the loop over C = C+ ∪ C− defined by the pair

of loops Φ± ∈ LC±SL2(C) over C±. Then the element (ΨI+,ΨI−) ∈ LCSL2(C) can be

factorized as

(ΨI+,ΨI−) = (ΨI+,1)(1,ΨI−) = (ΦI
+,1)(ΦE

+,1)(1,ΨI−)

= (ΦI
+,1)

(

1,ΨI−(ΦE
+)−1

)

(ΦE
+,ΦE

+) = (ΦI
+,1)

(

1,ΦI
−ΦE

−

)

(ΦE
+,ΦE

+),

=
(

ΦI
+(ΦE

−)−1,ΦI
−

)

(ΦE
−ΦE

+,ΦE
−ΦE

+),

where in the first line we have introduced the factorization ΨI+ = ΦI
+ΦE

+ in Lτ̂
C+SL2(C),

and in the second line the factorization ΨI−(ΦE
+)−1 = ΦI

−ΦE
− in Lτ̂

C−SL2(C). The last

line then gives the desired factorization (4.12) since g̃I+ := ΦI
+(ΦE

−)−1, g̃I− := ΦI
− and

ΨI := ΦE
−ΦE

+ are holomorphic in I+, I− and E, respectively, with ΨI(∞) = 1.

4.5.2 Dressing the outgoing strings

Putting together the results of this section we obtain a recursive algorithm for constructing

the outgoing string solution I, one null-tile at a time. Since the tiles are naturally ordered

we label them by integers, the 0th tile being the (half) tile introduced in section 4.3 and

the ith tile (i ≥ 1) is defined by its lowest point being at (see figure 6(a))

pi := (σ+
i , σ−

i ) =

{

(k aπ, (k − 1)aπ) for i = 2k,

(k aπ, k aπ) for i = 2k + 1.

The outgoing string can now be constructed recursively as follows.

Initial step. From section 4.3 we know that the solution on the 0th tile is simply given

by extending the original solution of the incoming string, see figure 5(b).

Inductive step. Now given the solution on the (i − 1)st tile, the solution on the ith tile

can be obtained as follows, see figure 6(b)-(c). Its Cauchy data consists of the values of

jI± along the two null rays S± connecting it to the (i − 1)st tile. Yet by section 4.2 we

know that the components jI± are continuous across the singular null rays S±, respectively.
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0th

1st1st

2nd

p1 =(0, 0)

p2

p3

S+S−

pi

pi+1 ith

(i+1)st(i+1)st

S+S−

pi

pi+1

(i+1)st(i+1)st

dress

(a) (b) (c)

Figure 6. (a) We enumerate the different tiles in the tessellation created by the null rays S±

emanating from the singularity. In particular, the 0th tile contains the Cauchy surface. (b) The

shaded region represents the part of the solution already determined. For illustration purposes, we

have cut the cylinder in such a way that the ith tile appears whole. (c) The inductive step consists

in solving the Cauchy problem on the ith tile, taking for Cauchy data along S± the value of j
(i−1)
I±

on the boundary of the (i − 1)st tile.

Therefore the Cauchy data for the ith tile is completely specified by the solution on the

(i − 1)st tile as

j0
I+(σ+) = j

(i−1)
I+ (σ+, σ−

i ), j0
I−(σ−) = j

(i−1)
I− (σ+

i , σ−). (4.16)

The solution of the corresponding Cauchy problem is now obtained by applying the dressing

transformation of section 4.5.1 with the point (0, 0) there replaced by (σ+
i , σ−

i ).

The first step requires solving the system (4.11) with j0
I±(σ±) given by (4.16). However,

it is easy to see that the solution can be expressed in terms of the extended solution on

the previous (i − 1)st tile, since this satisfies the same equations but with a different

normalization. Specifically, we have

Ψ
(i)
I+(x, σ+) = Ψ

(i−1)
I (x, σ+, σ−

i )Ψ
(i−1)
I (x, σ+

i , σ−
i )−1,

Ψ
(i)
I−(x, σ−) = Ψ

(i−1)
I (x, σ+

i , σ−)Ψ
(i−1)
I (x, σ+

i , σ−
i )−1.

(4.17a)

Next we perform the Birkhoff factorization (4.12) of Ψ
(i)
I±(x, σ±), namely

Ψ
(i)
I±(x, σ±) = g̃

(i)
I (x, σ+, σ−)−1Ψ

(i)
I n(x, σ+, σ−), for x ∈ C±.

The second factor on the right defines the ‘normalized’ extended solution on the ith tile,

see figure 7. Finally, the ‘unnormalized’ extended solution is now given by

Ψ
(i)
I (x, σ+, σ−) = Ψ

(i)
I n(x, σ+, σ−)Ψ

(i−1)
I (x, σ+

i , σ−
i ). (4.17b)

Equations (4.17) provide the desired recursive formula expressing the extended solution on

the ith tile in terms of that on the (i− 1)st tile through the use of a Birkhoff factorization.

5 Conclusions and outlook

The classical integrability of the superstring σ-model on AdS5×S5 has so far played a vital

role in the classification of its finite-gap solutions [38, 39] as well as their reconstruction [40,
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1

Ψ
(i)
I+(x)

Ψ
(i)
I−(x)

Ψ
(i)
I n

(x)

Figure 7. The normalized extended solution Ψ
(i)
I n(x, σ+, σ−) at the point (σ+, σ−) in the ith tile

is obtained from the Birkhoff factorization of the pair Ψ
(i)
I±(x, σ±) defined at the boundary points

(σ+, σ−
i ) and (σ+

i , σ−), respectively.

41] in the subsector R × S3. In this article we made a first step beyond solutions with

cylindrical worldsheet by reducing the problem of constructing the general splitting solution

in R×S3 to a series of Birkhoff factorization problems. Although the worldsheets of these

new solutions have the topology of a pair of pants, the integrability of the σ-model also

played an essential role in their construction. This is no surprise since after all the Lax

connection is a local object on the worldsheet.

Specifically, given any string solution with cylindrical worldsheet on R × S3, which

satisfies the self-intersection property at some instant in time, we constructed the pair

of outgoing strings resulting from the split. This was achieved by reducing the problem

to factorization in a loop group, as is usual in classical integrable systems. It would

be important to investigate further the possibility of solving these Birkhoff factorization

problems more explicitly, for instance in terms of Riemann θ-functions.

An example of initial string could be a finite-gap string, the moduli of which are

encoded in a finite-genus algebraic curve. In fact, since the outgoing strings are uniquely

determined by their Cauchy data which in turn is given by the incoming string, the entire

splitting solution is uniquely characterized by the same algebraic curve as the initial string.

The difference between these two solutions will show up in the behaviour of the angle

variables, encoded in the algebro-geometric language as a divisor on the curve [44], at

the moment of the splitting. It would be interesting, though, to have a more algebraic

characterization of the self-intersection property at the level of the curve and the divisor.

This brings up the curious observation that for a given initial string there can be more

than one possible evolution, depending on whether or not we choose the string to split

at τ = 0. This existence of multiple different solutions for the same set of Cauchy data

at τ < 0 is merely a consequence of the fact that the topology of the worldsheet is not

determined by the dynamics but rather fixed by hand from the outset. Another way to

phrase this is to note that since the metric is not dynamical, it must be fixed prior to solving

the equations. Its conformal class then reflects the underlying topology of the worldsheet.

For instance, on the cylinder the metric can be made globally flat, whereas on the pair of

pants it must be degenerate at the singular point.

Throughout our construction we have assumed the initial string to be smooth at τ = 0.

Since the pair of outgoing strings are not smooth along the null rays through the splitting

– 18 –
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point, it is therefore not immediate how to describe their potential further splitting. This

would first require a slight generalization of the construction to include initial solutions

with a discrete set of singularities propagating along null lines. It would also be interesting

to study the joining of two classical strings in a similar fashion, as well as classical solu-

tions exhibiting more general worldsheet topology. This is a novel possibility on curved

backgrounds such as R×S3 since the products of a split can eventually meet again and join.

We emphasize that splitting strings are solutions of an initial value problem for a

system of hyperbolic (Lorentzian) differential equations. Such solutions, which describe a

complicated splitting process in S3 ⊂ S5, should therefore be relevant for the semiclassical

computation of 3-point functions in the Minkowskian approach of [19]. By comparison, the

problem of constructing minimal surfaces in Euclidean AdS ending at certain points on the

boundary is a very different one. It can a priori be phrased as a boundary value problem

for a system of elliptic (Euclidean) differential equations. However, the classical minimal

surface dominating a 3-point correlation function at strong coupling should also contain

extra information, on each leg, about the type of operator inserted at the boundary.

Another promising approach for computing strong coupling 3-point functions directly

within the Euclidean formalism is the vertex operator approach [42]. The main obstacle in

this direction is the construction of vertex operators corresponding to finite-gap solutions.

The insertion of three such operators in the path integral should produce the correct

boundary conditions for the minimal surface mentioned above. Because finite-gap solutions

have Lorentzian worldsheets while minimal surfaces have Euclidean signature, one would

naively expect the vertex operator to create a Euclidean continuation of the finite-gap

solution. Such a relation is currently only understood for 2-point functions [43].

Finally, our construction should have a natural generalization to AdS5 × S5 super-

strings or more generally to Z4-graded supercoset σ-models [45]. Indeed, the loop group

factorization discussed here is the global counterpart of the loop algebra decomposition

discussed in [46].
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