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ABSTRACT

Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measure-
ments Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus
preventing their detection.
Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the
efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed
RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by
the star, and by the instrument, performing such a comparison using real data is extremely challenging.
Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals.
Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite
stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate
the simulated RVs, it is therefore possible to compare the efficiency of these different methods.
Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise
models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach.
Using the most efficient methodology, planets can be found down to K/N = Kpl/RVrms ×

√
Nobs = 5 with a threshold of K/N = 7.5

at the level of 80-90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than
this threshold. In addition, for the best teams, no false positives with K/N > 7.5 were detected, while a non-negligible fraction of
them appear for smaller K/N. A limit of K/N = 7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV
measurements with similar properties to those of the different RV fitting challenge systems.

Key words. techniques: radial velocities – planetary systems – stars: oscillations – stars: activity – methods: data analysis

1. Introduction

The radial-velocity (RV) technique is an indirect method that
measures with Doppler spectroscopy the stellar wobble induced
by a planet orbiting its host star. The technique is sensitive not
only to possible companions, but also to signals induced by the
host star. Now that the m s−1 precision level has been reached
by the best spectrographs, it is clear that solar-like stars intro-
? Based on observations collected at the La Silla Parana Observatory,

ESO (Chile), with the HARPS spectrograph at the 3.6-m telescope.
?? Society in Science – Branco Weiss Fellow (url: http://www.
society-in-science.org)

duce signals at a similar level. Those stellar signals, often re-
ferred to as stellar jitter, currently prevent the RV technique from
detecting and measuring the mass of Earth-twins orbiting solar-
type stars, i.e., Earth analogues orbiting in the habitable zone
of GK dwarfs, because such planets induce signals an order of
magnitude smaller. It is therefore extremely important to inves-
tigate new approaches to mitigate the impact of stellar signals if
we want the RV technique to be efficient at characterizing the
Earth-twins that will be found by TESS (Ricker et al. 2014) and
PLATO (Rauer et al. 2014).
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At the m s−1 precision level, RV measurements are affected
by stellar signals, that depend on the spectral type of the ob-
served star (Dumusque et al. 2011c; Isaacson & Fischer 2010;
Wright 2005). For GK dwarfs, those stellar signals can be de-
composed, to our current knowledge, in four different compo-
nents:

– solar-type oscillations (Dumusque et al. 2011c; Arentoft
et al. 2008; O’Toole et al. 2008; Kjeldsen et al. 2005),

– granulation phenomena (Dumusque et al. 2011c; Del Moro
et al. 2004; Del Moro 2004; Lindegren & Dravins 2003;
Dravins 1982),

– short-term activity signals on the stellar rotation period
timescale (Haywood et al. 2016; Borgniet et al. 2015;
Robertson et al. 2015, 2014; Dumusque et al. 2014a; Boisse
et al. 2012; Saar 2009; Meunier et al. 2010; Saar & Donahue
1997),

– and long-term activity signals on the magnetic cycle period
timescale (Lanza et al. 2016; Díaz et al. 2016; Meunier &
Lagrange 2013; Lovis et al. 2011; Dumusque et al. 2011a;
Makarov 2010).

For more details about these signals and their origins, readers are
referred to Section 2 in Dumusque (2016) and references therein.

Stellar signals creates RV variations that are larger than the
signal induced by small-mass exoplanets, such as Earth-twins.
There is several examples in the literature, where by analyzing
the same RV measurements different teams detected different
planetary configurations. This is the case of the famous planetary
system GJ581, for which the number of planet detected is rang-
ing between 3 and 6 (Hatzes 2016; Anglada-Escudé & Tuomi
2015; Robertson et al. 2014; Baluev 2013; Vogt et al. 2012; Gre-
gory 2011; Vogt et al. 2010; Mayor et al. 2009), of HD40307,
for which 4 to 6 planets have been announced (Díaz et al. 2016;
Tuomi et al. 2013), and GJ667C, for which 3 to 7 planets have
been detected (Feroz & Hobson 2014; Anglada-Escudé et al.
2012; Gregory 2012). All those systems are affected by stellar
signals, and therefore depending on the model used to analyze
the data, different teams arrives to different conclusions. This
shows that optimal models do not exist at the moment to analyze
RV measurements affected by stellar signals and this pushes the
community towards finding an optimal solution. The RV fitting
challenge is one of the efforts pursued today in this direction.
The development of the HARPS-N solar telescope (Dumusque
et al. 2015) is another one that should deliver the optimal data
set for characterizing and understanding stellar signals in detail.

In principle, the nature of RV stellar and planetary signals is
different. RV signal induced by a planet is periodic over time,
while stellar signals are in the best case semi-periodic. In addi-
tion, a planet induces a pure Doppler shift of the observed stellar
spectrum, while stellar signals change the shape of the spectral
lines. Therefore, it should be possible to find techniques to dif-
ferentiate between planetary and stellar signals.

Stellar oscillations are often averaged out in RV surveys by
fixing an exposure time to 15 minutes. To obtain the best RV
precision, it is also possible to observe the same star several
times per night, with measurements spread out during the night,
to sample better the signature of granulation and supergranula-
tion (Dumusque et al. 2011c). It has been shown that this sim-
ple approach reduces the observed daily RV rms of measure-
ments, however it does not fully average out this signal (Meu-
nier et al. 2015; Dumusque et al. 2011c), and more optimal tech-
niques need to be investigated. For short-term activity, which is
by far the most difficult stellar signal to deal with due to the non-
periodic, stochastic, long-term signals arising from the evolution

and decay of active regions, several correction techniques have
been investigated:

– fitting sine waves at the rotation period of the star and har-
monics (Boisse et al. 2011),

– using red-noise models to fit the data (e.g. Feroz & Hobson
2014; Gregory 2011; Tuomi et al. 2013),

– using the FF′ method if contemporaneous photometry exists
(Dumusque et al. 2015; Haywood et al. 2014; Aigrain et al.
2012),

– modeling activity-induced signals in RVs with Gaussian pro-
cess regression, whose covariance properties are shared ei-
ther with the star’s photometric variations (Haywood et al.
2014; Grunblatt et al. 2015) or a combination of several
spectroscopic indicators (Rajpaul et al. 2015), or determined
from the RVs themselves (Faria et al. 2016),

– using linear correlations between the different observables,
i.e., RV, bisector span (BIS SPAN) and full width at half
maximum (FWHM) of the cross correlation function (CCF,
Baranne et al. 1996; Pepe et al. 2002), photometry (Robert-
son et al. 2015, 2014; Boisse et al. 2009; Queloz et al. 2001),
and magnetic field strength (Hébrard et al. 2014),

– checking for season per season phase incoherence of signals
(Santos et al. 2014; Dumusque et al. 2014b, 2012),

– avoiding the impact of activity by using wavelength depen-
dence criteria for RV signal (e.g. in HD40307 and HD69830,
Tuomi et al. 2013; Anglada-Escudé & Butler 2012).

Finally, long-term activity seems to correlate well with the cal-
cium chromospheric activity index, which provides a promising
approach to mitigation of this source of stellar RV noise (Lanza
et al. 2016; Díaz et al. 2016; Meunier & Lagrange 2013; Du-
musque et al. 2012).

The goal of this paper is to test the efficiency of different
approaches to retrieve low eccentricity planetary signals despite
stellar signals. To do so, we present the results of a RV fitting
challenge, where several teams analyzed blindly the same set
of real and simulated RV measurements affected by planetary
and stellar signals. Each team used their own method to recover
planetary signals despite stellar signals. At the m s−1 precision
level reached by the best spectrographs, RV measurements are
affected by unresolved planets, but also stellar and instrumental
signals. Without knowing which part of the RV variations is due
to planets and which is due to the star or the instrument, it is
extremely difficult to test which method is the most efficient at
finding low-mass planets despite stellar signals. For such an ex-
ercise, it is crucial to use simulated RV measurements so that a
comparison can be performed between the results of the differ-
ent analysis and what was initially injected into the data. The set
of simulated and real RV measurements used for this RV fitting
challenge is described in detailed in Dumusque (2016). As said
in this paper, most of the planets injected in the data have very
low eccentricities, which is common is observed multi-planetary
systems. Those RVs correspond to typical quiet solar-like stars
targeted by high-precision RV surveys. Therefore, the conclu-
sions of this paper are relevant for most high-precision RV sur-
veys.

In Sections 2 and 3, we describe the methods used by the dif-
ferent teams to recover planetary signals despite stellar signals;
Section 2 focuses on methods relying on a Bayesian framework,
while Section 3 on other methods. For those sections, the number
assigned to each team does not have any particular meaning. In
Section 4, we discuss the results of the different teams and com-
pare the efficiency of their method to recover low-mass planetary
signals despite stellar signals. We conclude in Section 5.
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Table 1. Techniques to deal with stellar signals used by the different teams, as well as planetary and stellar parameters reported. Prot corresponds
to the stellar rotation period, P, K T0, ecc and ω to the planetary period, semi-amplitude, transit time, eccentricity and argument of periastron,
respectively.

Team Techniques Prot P K T0 ecc ω
1 Torino Bayesian framework with Gaussian process to account for red noise Yes Yes Yes Yes Sometimes Sometimes
2 Oxford Bayesian framework with Gaussian process to account for red noise No Yes Yes Yes Yes Yes
3 M. Tuomi Bayesian framework with Moving Average to account for red noise Yes Yes Yes No No No
4 P. Gregory Bayesian framework with apodized Keplerians to account for red noise No Yes Yes Yes Yes Yes
5 Geneva Bayesian framework with white noise No Yes Yes No No No
6 A. Hatzes Pre-whitening Yes Yes Yes No No No
7 Brera Filtering in frequency space No Yes Yes Yes Yes Yes
8 IMCCE Compressed sensing and filtering in frequency space (preliminary results) Yes Yes Yes No No No

2. Methods to deal with stellar signals using a
Bayesian Framework

In total eight different teams have analyzed the RV fitting chal-
lenge data set, using different approaches. This section is dedi-
cated to the description of these different methods. The first five
teams used a Bayesian framework and model comparison to find
the most favorable solution for each system. Teams 1 through
4 used red-noise models to account for stellar signals, while
team 5 used a white noise model. Team 6, 7 and 8 used pre-
whitening,compressed sensing and/or filtering in the frequency
domain. Table 1 summarizes the different techniques used to deal
with stellar signals, and the different stellar and orbital parame-
ters reported by each team.

2.1. Team 1: Torino team - Bayesian framework with
Gaussian process regression to account for stellar
signals

The Torino team is composed of, in order of contribution, M.
Damasso, A. Sozzetti, R. D. Haywood, A.S. Bonomo, M. Pina-
monti, and P. Giacobbe. Their activities are in the framework
of the Global Architecture of Planetary Systems (GAPS) project
(e.g., Poretti et al. 2015). This team analyzed the 14 valid sys-
tems of the RV fitting challenge1. For each system, team 1 re-
ported the period, semi-amplitude, time of periastron passage
and sometimes eccentricity and argument of periastron of the de-
tected planets, as well as their best estimate of the stellar rotation
period. For most of the planetary system, team 1 analyzed only
the most significant signals with small p-values, as the team had
not enough time and computational power to explore more com-
plex solutions obtained by adding smaller significance signals.
For the same reason, as a first approach team 1 favored circular
over more complex eccentric orbits.

2.1.1. General framework

The Torino team used Gaussian processes (GP, Rasmussen 2006)
to model, in a non-parametric way, stellar activity effects in RV
data. GPs are a powerful tool for mitigating the contribution of
stellar activity in RV measurements, especially when contempo-
raneous stellar activity indicators are available (e.g. light curves,
spectroscopic activity indexes).

When simulating short-term activity signals for the RV fit-
ting challenge data set, Dumusque (2016) only considered slow
rotators, i.e., v sin i< 4 km s−1. In this case, plages are expected

1 as explained in Dumusque (2016), system 6 was not considered due
to a problem when generating the RV measurements.

to be responsible for the majority of the short-term activity RV
variation (see introduction, and for more details Haywood et al.
2016; Dumusque et al. 2014a; Meunier et al. 2010). The calcium
activity index log(R′HK), which is a measure of the emission in
the core of the Ca ii H&K spectral lines, was provided within the
RV fitting challenge data set, and appeared to be the best proxy
to trace out short-term activity contribution to the RVs.

The real strength of a GP regression approach is that it is
non-parametric and does not assume any physical model about
active regions or the physical processes at play. Here, the only
assumption made by Team 1 is that short-term activity varia-
tions in RV and log(R′HK) share the same covariance properties.
This assumption is reasonable as the short-term activity signal in
RV and log(R′HK) is induced by stellar rotation and active region
evolution.

Team 1 first trained a GP on the time series of the activity
index log(R′HK), and then injected the resultant covariance func-
tion into another GP that is part of a RV model. This GP absorbs
correlated noise due to the stellar activity through a global fit
(Keplerian signals + GP). This approach is inspired in particu-
lar by the works of Haywood et al. (2014) and Grunblatt et al.
(2015). For the Kepler-78 system discussed in this last paper,
the same global fit was able to recover a periodicity in the RV
consistent with the stellar rotation period found via photometry.

For the sake of a homogeneous analysis, all the systems were
processed generally using the same recipe, following a sequence
of few steps, as described in the appendix (see Section B.1). In
all cases, the team used only one covariance function and ana-
lyzed the full data sets, i.e., without rejecting outliers, without
binning the data to get a single point per night, and without di-
viding the analysis into sub-sets. The analysis did not use the
information provided by the bisector span (BIS SPAN, Queloz
et al. 2001) of the CCF.

Because an optimal way of correctly identifying the number
of planetary signals, and their orbital properties, based on the
available RV data is through the evaluation of the Bayesian sta-
tistical evidenceZ for each model, the Torino group carried out
this task by testing a limited number of models and calculating
Z, which is notoriously complicated to assess using only one
analytical procedure among those proposed in literature.

The details about the method used by team 1 to analyze the
data of the RV fitting challenge can be found in the appendix of
the paper (Section B.1). In the next subsection we illustrate the
method using as example system 2.

Article number, page 3 of 36



A&A proofs: manuscript no. RV_challenge_paper_II_v4

2.1.2. Example for system 2

In Fig. 1, we show the results obtained by team 1 for sys-
tem 2. The original RVs data show a very significant correla-
tion with log(R′HK) (Spearman’s rank correlation coefficient ρ =
0.88), thus they were first corrected using a linear regression
with log(R′HK). The GLS periodogram of the RV residuals shows
a peak at ∼ 2727 days, that corresponds to a peak value ob-
served in the GLS periodogram of the log(R′HK) time series at
exactly the same frequency, probably due to a long-term stel-
lar activity cycle. We removed this signal from the RV residu-
als and log(R′HK) time series by fitting a sinusoid with the same
periodicity. Team 1 correctly recovered the rotation period of
the star (Prot=25 days) through a GP analysis of the detrended
log(R′HK) time series. They recovered two out of the 5 planets in-
jected in system 2. The GLS periodogram of the corrected RVs
shows a series of significant frequencies with p-value<0.1%, the
most prominent ones corresponding to the orbital period of the
two recovered planets and to the first harmonic of the stellar ro-
tation period. Despite the dominant frequency related to the stel-
lar rotation appearing at the first harmonic Prot/2, the GP noise
model converged towards the stellar rotation period. There is
also a couple of peaks with p-value<0.1%, one of them clearly
corresponding to the ∼20 days period planet that Team 1 did not
report. To prevent announcing false positives, Team 1 assumed
this peak to be produced by differential rotation of the star, be-
cause of a period close to stellar rotation.

2.2. Team 2: Oxford team - Bayesian framework with GP
regression to account for stellar signals

Team 2 is composed of, in order of contribution, V. Rajpaul and
S. Aigrain. This team analyzed the first 5 systems of the RV
fitting challenge. For each system, team 2 reported the period,
semi-amplitude, time of periastron passage, eccentricity and ar-
gument of periastron of the detected planets. Team 2 did not re-
port stellar rotation periods.

2.2.1. General framework

Team 2 analyzed the data of the RV fitting challenge using, like
team 1, a GP regression to account for red noise induced by stel-
lar signals. However their approach is slightly different and is
described in details in Rajpaul et al. (2015). Rather than using
only the calcium activity index log(R′HK) as a proxy for activity
and first training the GP on the activity indicator and then using
the best estimate of the GP hyper-parameter to fit the RVs, team
2 modeled all time series (log(R′HK), FWHM, BIS SPAN, RV)
simultaneously. Team 2 treated each time series as a linear com-
bination of a single unobserved GP and its derivative, adding
a polynomial function to fit long-term trends. In addition, and
only for the RV data, team 2 added one or several Keplerians.
This approach is statistically more robust as it does not require
an iterative fitting process, however, it is more computationally
demanding.

At the outset, team 2 wanted to marginalize fully over all
the hyper-parameters and parameters of their model, using an
MCMC sampler. However, because this increased computational
times by orders of magnitude, team 2 found it was not able to
produce reasonable results within the time allocated for the RV
fitting challenge. Team 2 therefore found the maximum a poste-
riori (MAP) values for all model hyper-parameters and param-
eters. Then, with the GP covariance hyper-parameters fixed at
their MAP values (type-II maximum likelihood approximation),

Fig. 4. Periodograms of the raw RVs (red) and of the residual RVs (blue)
after removing the best GP plus 2-planet model to account for stellar
signals and the 3.77 and 10.64-day planets present in the time series.
The horizontal lines show from top to bottom the 0.1, 1 and 10% p-
values used as a first guess to estimate signal significance. The non-
white residuals suggest an imperfect model.

team 2 used a nested sampling algorithm to explore the param-
eter space of interest, i.e., the planet parameters. Note that team
2 used uniform priors for all parameters, except for eccentricity
for which a log-uniform prior was used. As a result of the nested
sampler, team 2 obtained posterior distributions for all parame-
ters, as well as model evidences (logZ). Team 2 compared mod-
els with up to N = 5 planets and added planets until the evidence
for a model with an additional planet was smaller than the model
without this extra complexity, i.e., logZ | (N + 1) < logZ | (N).

Team 2 notes that given the type-II maximum likelihood ap-
proximation, computed evidence values are perhaps not reliable.
Team 2 also note that the code used to pre-process the data be-
fore GP regression included a polynomial-subtraction compo-
nent that removed long-term trends from the time series. In retro-
spect, this ended up removing all planetary signals with periods
longer than a couple of months – a simple though costly error.

2.2.2. Example for system 2

In Figs. 2 and 3, we show the best-fit obtained by team 2 on
system 2 of the RV fitting challenge. In Fig. 4 we compare the
periodogram of the raw RVs with the residual RVs after remov-
ing the same best-fit. We see that the GP fitted simultaneously to
the RV, log(R′HK) and BIS SPAN allows to strongly mitigate the
variations induced by stellar signals. For more examples on the
technique used by team 2, readers are referred to Rajpaul et al.
(2015).

2.3. Team 3: M. Tuomi and G. Anglada-Escudé - Bayesian
framework with first order Moving Average to account for
stellar signals

Team 3 is composed of, in order of contribution, M. Tuomi, G.
Anglada-Escudé and H. R. A. Jones. This team analyzed the 14
systems of the RV fitting challenge. For each system, team 3
reported the period and semi-amplitude of the detected planets,
as well as their best estimate of the stellar rotation period.
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Fig. 1. Top left panel: GLS periodogram of the challenge RV dataset number 2 analysed by the team 1, and the corresponding window function. The
original RVs data were first corrected through a linear regression with log(R′HK)and then through a sinusoidal fit to remove a 2727-day periodicity
likely related to a long-term stellar activity cycle. Vertical lines indicate i) the orbital frequencies of the planetary candidates identified by the team
(solid green lines), which turned out to be real; ii) the missed planets (dotted red lines); iii) the simulated stellar rotation period and its first two
harmonics (dashed magenta lines). Top right panel: GLS periodogram of the RV residuals after the best-fit global model including the two planets
detected was removed from the detrended dataset. A bootstrap analysis performed on these RV residuals shows no evidence of significant signals
left. Bottom left panel: RVs detrended with the best-fit global model superposed (solid red line) and the mean contribution due to the stellar activity
predicted by the GP (blue solid line). The shaded area spans the 3σ region centered around the best-fit noise model. Bottom right panel: RV curves
folded at the periods of the two candidate Keplerian solutions found by the team, with the superposed red continuous line representing the best-fit
orbital model. Data in each plot refers to a single planet, and are obtained from the original RVs by subtracting the offset, the GP stellar activity
noise model, and the Keplerian of the other planet.

2.3.1. General framework

Team 3 also analyzed the data of the RV fitting challenge using a
correlated noise model to account for stellar activity. However, in
their case, team 3 used a first order moving average component
with exponential smoothing. Team 1 used a GP and trained it
on the log(R′HK) data to obtain the best hyper-parameters that are
then used to fit the RVs. This implies therefore an iterative fitting
process, which can be dangerous. Team 2 overcomed this prob-
lem by fitting simultaneously all the time series with a GP. How-
ever a strong assumption is made during the process: the covari-
ance of short-term activity should be the same in the RVs than in
the activity observables (log(R′HK), BIS SPAN and FWHM). Us-
ing a first order moving average, team 3 avoided this assumption,
which could imply significantly different results if this assump-
tion turns out not to be valid. In addition, team 3 also considered

in their RV model linear correlations with the different activity
observables, therefore fitting everything at once implying a ro-
bust statistical approach.

The details about the method used by team 3 to analyze the
data of the RV fitting challenge can be found in the appendix of
the paper (Section B.2). In the next subsection we illustrate the
method using as example system 2.

2.3.2. Example for system 2

Here we present the results of the analysis of system 2 per-
formed by team 3.

Analysis of the activity indicators of system 2

Article number, page 5 of 36
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Fig. 2. GP model MAP fit to system 2 for which team 2 could recover accurately two of the four injected planetary signals. As in other datasets,
the crude pre-processing pipeline used by team 2 wrongly removed signals longer than a couple of months, therefore removing the signal of the
75-day planet present in the data. All plotted time series were fitted simultaneously, using a single set of GP hyperparameters. The green dots
indicate the raw time series; the solid lines are model posterior means, and the shaded regions denote ±σ posterior uncertainty. The blue dots
indicate model residuals. A zoom on the fourth epoch of observation can be seen in Fig. 3.

The team first analyzed the activity indicators by calculat-
ing the likelihood-ratio periodograms (see Fig. 5). This anal-
ysis indicates a strong signal at a period of 12.5 days in the
BIS SPAN time series. The time-series for both FWHM and
log(R′HK) activity indices show a very strong signal at 24.9
days, twice the period found in the BIS SPAN value, sug-
gesting that this is the rotation period. The fact that BIS
SPAN shows a signal at half the rotation is the expected pe-
riod for a spots showing only one half of the rotation (Du-
musque et al. 2014a). Signals in the activity indices were also
searched when adding a first order moving average compo-
nent to the model but they didn’t change the periods found
much in this case. Fig. 5 shows that these signals (12.4 and
24.9 days) are detected well below the usual 1% (even 0.1%)
p-value thresholds (shown as horizontal lines).

Analysis of the RVs of system 2

Team 3 analyzed the RVs with a statistical model including a
linear trend overtime, linear correlations with the three ac-
tivity indicators given, and correlated noise according to a
first order moving average model. The likelihood-ratio peri-
odogram and signal searches without including correlation

terms would lead to a very different answer from the correct
one. A model without including correlations would show a
rather strong signal at the same period as the BIS SPAN and
subsequent inclusion of Keplerians requires fitting several si-
nusoids (all spuriously generated by rotation and activity)
before finally spotting the first real planet candidate. The dif-
ference between the raw RVs and the RVs corrected from ac-
tivity signal using linear correlations is highlighted in Fig. 6.
A model including the linear correlation terms directly spots
three unambiguous Keplerian signals. Fig. 7 shows the like-
lihood periodograms with and without correlation terms for
the first signal search, and the subsequent likelihood peri-
odograms obtained when adjusting the signals under inves-
tigation together with all the model free parameters. Like-
lihood periodograms are used to obtain a quick look at the
solution landscape when one new planet is added, but the ac-
tual search and verification is then done using tempered de-
layed rejection and adaptive Metropolis (DRAM) samplings
(Haario et al. 2001; Haario 2006) of the posterior density.
This DRAM samplings allow to explore all the new periods
while allowing re-adjusting all the previously included Ke-
plerian signals. The posterior contours resemble the likeli-
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Fig. 3. Same legend as Fig. 2, just zoomed in on the fourth epoch of observation
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Fig. 5. Likelihood periodogram searches of the strongest periodic signal in the time series of the three activity indices provided (BIS SPAN,
FWHM and log(R′HK)). Both the rotation period (most prominent in FWHM and log(R′HK) index) and its first harmonic (most prominent feature in
BIS SPAN) are clearly seen in the activity time-series. In the three periodograms, the tested model contains sinusoid (ciruclar orbit), an offset, a
linear trend and a extra white-noise jitter component.

hood periodograms shown in Fig. 7. A more detailed descrip-
tion of the methodology used by team 3 is given in the appen-
dices of the paper.

For a signal to be tagged as a planet candidate several
conditions must be met:

– the period of the signal has to be well-constrained from
above and below,

– the amplitude of the signal has to be statistically signif-
icantly different from zero (the zero value must be ex-
cluded from the 99% credibility interval),

– all other local maxima (peaks in posterior or likelihood
periodogram) must be 100 times smaller than the pre-
ferred solution (uniqueness condition), and

– a model with this extra signal is statistically more signif-
icant than a model without it when computing a Bayes
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Fig. 7. Likelihood periodogram searches for the first, second and third signals in the time-series when adjusting the full noise model (first order
moving average term plus linear correlations) at the same time as the Keplerian signals. In the first panel, we show the likelihood periodogram
of the original RV time-series with and without accounting for correlations. In that case we would incorrectly conclude that the rotation period
is a planet candidate. The correlations also reduce the impact of unstructured noise (eg. caused by high-frequency, sub-day jitter) which is made
obvious by the much higher significance of the first planet candidate against the detection of the rotation period in the model without activity
correlations.

factor using the mixture of posterior and prior densities
(Newton & Raftery 1994).

As a threshold, it is often said that the more complex
model must have a Bayes factor 150 times higher than the
simpler one (Kass 1995), but team 3 uses a threshold of 104 in
Doppler time series to acknowledge that the space of model
is likely incomplete (eg. sinusoids fitting instrumental and
activity features can still improve the model without imply-
ing the presence of extra Keplerian signals). This thresh-
old was considered sufficient and adopted after examination
and combination of data from the UVES and HARPS spec-
trographs, that is, signals producing improvements on the
model in the UVES data below 104 were often not confirmed
when combining the measurements with available HARPS
data (Tuomi et al. 2014).

2.4. Team 4: P. Gregory - Bayesian framework with apodized
Keplerians to account for red noise

Team 4 is composed of P. Gregory. He analyzed the first 5 sys-
tems of the RV fitting challenge. For each system, he reported
the period, semi-amplitude, time of periastron passage, eccen-

tricity and argument of periastron of the detected planets. He did
not report stellar rotation periods.

2.4.1. General framework

P. Gregory analyzed the RV fitting challenge data set with a novel
approach using apodized Keplerians. Stellar short-term activity
creates semi-periodic signals due to stellar rotation and active re-
gion evolution, unlike the periodic signal induced by planets. He
therefore decided to fit every significant signal in the RVs using
Keplerians that could change their semi-amplitude as a function
of time using a Gaussian apodization function. The two param-
eters that characterize each Gaussian apodization function, are
fitted as free parameters. If the timescale appears to be much
shorter than the time span of the RV measurements, it implies
a non-stationary signal as a function of time, and therefore this
signal is flagged as being induced by stellar activity. In addition,
as team 3, P. Gregory also includes in its RV model a correlation
with log(R′HK) to account for the RV effect of magnetic cycles in
a statistically robust approach.

A detailed step-by-step approach can be found in Gregory
(2016). We however give a small summary of the approach in the
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appendix of the paper (Section B.3). In the following subsection,
we give an example of how the method works for system 2.

2.4.2. Example for system 2

Fig. 8 shows an example of the Bayesian Fusion MCMC results
for system 2, for which apodized Keplerians were used to char-
acterize both planetary and stellar activity signals.

Fig. 9 shows a comparison of the GLS periodograms of RV
and FWHM data, each corrected by the removal of the best-fit
log(R′HK) correlation model. There are three traces in each of the
6 panels. The black trace is the modified RV periodogram. The
blue trace is the negative of the modified FWHM periodogram
and the red trace shows the difference, i.e., the black trace plus
the blue traces. One can clearly see blue trace counterparts to the
black trace around periods of 12.5 and 20.2 days, indicating they
are likely stellar activity signals. In contrast there is no blue trace
counterpart to the peaks near 3.77 and 10.6 days.

2.5. Team 5: Geneva team - Bayesian framework with white
noise

Team 5 is composed of, in order of contribution, R. Díaz, D.
Ségransan and S. Udry. Team 5 analyzed the two first systems
of the RV fitting challenge. For each system, team 5 reported the
period, semi-amplitude and eccentricity of the detected planets.
Team 5 did not report stellar rotation periods.

2.5.1. General framework

Team 5 considered models including several Keplerians to rep-
resent planetary companions and velocity variations related to
stellar rotation period. To account for the correlation between RV
and log(R′HK) induced by magnetic activity cycles, team 5 fitted
log(R′HK) using a third order polynomial. The posterior distribu-
tions of this fit are then used as priors for a third order poly-
nomial added to the model used to fit the RVs. In other words,
the low-frequency structure of the log(R′HK) is included in the
model of the RVs. A source of additional white noise whose
amplitude was set to scale linearly with activity (measured by
the log(R′HK) index) was added to the model to account for the
known correlation between stellar activity level and velocity jit-
ter. The model is fully described in Díaz et al. (2016).

After fitting several models with different numbers of Ke-
plerians, team 5 used two estimation of the Bayesian evidence
logZ to compare between models: the Chib & Jeliazkov (2001)
and the Perrakis (2014) estimators. The best model is the one
that exhibits a reasonable instrumental white noise component
and not too-low evidence using the two estimators.

3. Methods to deal with stellar signals without
using a Bayesian Framework

3.1. Team 6: A. Hatzes - Pre-whitening

Team 6 is composed of A. Hatzes. He analyzed the 14 systems of
the RV fitting challenge. For each system, he reported the period
and semi-amplitude of the detected planets, as well as the best
estimate of the stellar rotation period.

3.1.1. General framework

A. Hatzes used the so-called pre-whitening procedure. One first
computes the Discrete Fourier Transform (DFT) to find the dom-
inant peak in the Fourier amplitude spectrum. A least squares
sine fit to the data is made using this frequency and the resulting
sine fit is subtracted from the data. One then performs a DFT
on the residual data to find the next dominant peak. In finding a
subsequent signal in the data, a simultaneous fit is made using
all the previously found sine functions. The process stops when
the final peak amplitude is less than about four times the mean
amplitude of the surrounding noise peaks. Kuschnig et al. (1997)
established that this corresponds to a p-value of about 1%. Ex-
amples of this process performed on RV data can be found for
CoRoT-7 (Hatzes et al. 2010) and GL 581 (Hatzes 2013). The
DFT analysis was only performed out to the nominal Nyquist
frequency of 0.5 d−1. This means that periods shorter than 2 days
were not actively searched for even if they were in the data.

Given the large number of time series, the program Period04
(Lenz & Breger 2005) was used to perform pre-whitening.
This program provides a convenient environment for computing
DFTs, selecting peaks in the amplitude spectrum, fitting those,
and searching for additional signals in the residual data. The pro-
gram also provides an option for computing the signal-to-noise
ratio (amplitude of a peak divided by the computed mean noise
level).

The pre-whitening procedure was performed on all time se-
ries. Significant peaks found in the RV data were compared to
those found in the activity indicators (log(R′HK), BIS SPAN, and
FWHM). If a significant peak found in the RV did not have a
corresponding peak in the activity indicators it was identified as
a planet. Signals found in the RVs and in the activity indicators
were attributed to activity, with the dominant peak chosen as the
rotation period.

Note that in this case, only fitting sine waves is dangerous,
because not removing the correct solution for a planet or stellar
signals can then perturb the residuals and lead to the detection of
false positives.

3.2. Team 7: Brera team - Filtering in frequency space

Team 7 is composed of, in order of contribution, F. Borsa, G.
Frustagli, E. Poretti and M. Rainer, from INAF - Brera Astro-
nomical Observatory. Their activities are in the framework of the
Global Architecture of Planetary Systems (GAPS) project (e.g.
?). Team 7 analyzed the 14 systems of the RV fitting challenge.
For each system, team 7 reported the period, semi-amplitude,
time of periastron passage, eccentricity and argument of perias-
tron of the detected planets. Team 7 did not report stellar rotation
periods.

3.2.1. General framework

Team 7 decided to try an approach that is not model dependant
for stellar signals. This approach is based on filtering signals in
the frequency domain of the RVs, using the frequency informa-
tion found in the different activity indicators. The details about
the method used by team 7 to analyze the data of the RV fitting
challenge can be found in the appendix of the paper (Section
B.4). In the next subsection we illustrate the method using as
example system 2.
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Fig. 8. Upper left: Log10[Prior × Likelihood] versus iterations for the 8 signal apodized Keplerian model used to fit system 2. Upper right:
Log10[Prior × Likelihood] versus period showing the 8 periods detected. Middle left: Values of the 8 unknown period parameters versus iteration
number. Middle right: Eccentricity parameters versus period parameters. Lower left: Apodization window for each signal (gray trace for MAP
values of the apodization time constant τ and the apodization window center time ta, black for a representative set of samples which is mainly
hidden below the gray). Lower right: Apodization time constant versus apodization window center time for each signal (Credit: Gregory 2016).

3.2.2. Example for system 2

As an example, Fig. 10 shows the different steps used by team 7
to detect the 3.77-day planetary signal present in System 2.

3.3. Team 8: IMCCE team - Compressed sensing and
frequency filtering

Team 8 is composed of, in order of contribution, N. Hara, F. Dau-
vergne and G. Boué, from the Institut de Mécanique Céleste et
de Calcul des Éphémérides in Paris (IMCCE). Team 8 analyzed
the 14 data sets of the RV fitting challenge. For each system,
team 8 reported the period and semi-amplitude of the detected
planets, as well as the best estimate of the stellar rotation period.

3.3.1. General Framework

The IMCCE team used an approach based on Compressed Sens-
ing (or Compressive Sampling, see Donoho 2006; Candès et al.
2006) and frequency filtering. This method was devised to avoid
fitting the planets one by one. Indeed, after removing a certain
number of signals, the tallest peak of the periodogram of the
residuals might not correspond to a real planet. One might even

face the case where the maximum of the periodogram of the
raw data is significant but spurious. The usual way to circum-
vent this issue is to fit a complete model accounting for several
planets and sometimes noise parameters. In that case, one uses
MCMC methods or genetic algorithms to explore the whole pa-
rameter space and avoid being trapped in a suboptimal local min-
imum. The compressed sensing framework allows in a certain
sense to search all the planets at once while considering an ob-
jective function which has only one minimum. As the minimiza-
tion problem is convex, one can design fast algorithms.

The key is to use an a priori information: the signal is sup-
posed to be “simple” in a certain sense. Here, it means that there
exists a set of vectors, termed the dictionary, such that a linear
combination of a few of its entries reproduces the signal. For
instance, dictionaries made of wavelets are appropriate to rep-
resent most images. This feature is exploited for the JPEG2000
format (Taubman & Marcellin 2002). The image is stored via its
significant wavelet coefficients, which are a few compared to the
total number of pixels. The MP3 and AAC audio formats rely on
the same principles.

In our case, the movement of a star due to its planets is quasi-
periodic. In other words, it is a linear combination of a few sine
functions exp−iωt and expiωt. However, we do not measure the
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Fig. 9. Comparison between GLS periodograms of RV and FWHM data for system 2, each modified by the removal of the best-fit
log(R′HK) correlation model (hereafter called modified RV and FWHM). There are three traces in each of the 6 panels. The black trace is the
modified RV periodogram, the blue trace is the negative of the modified FWHM periodogram, and the red trace is the difference, i.e., the black
trace plus the blue traces. Each plot show an interesting portion of the periodogram. As explained in the text, interesting signals that can be seen
in both the modified RV (black) and the modified FWHM (blue) are not fitted as they probably are the result of stellar activity, while signals only
present in the modified RVs are considered (Credit: Gregory 2016).

motion of the star only. The signal is also contaminated - and in
the present challenge, dominated - by the stellar activity. To ac-
count for this effect, in addition to the sine functions, frequency-
filtered FWHM, bisector span and log R′HK were incorporated
into the dictionary.

Once the dictionary is defined, one searches for a combina-
tion of a few of its element which is close to the observations.
The output of that procedure are the coefficients of the linear
combination of dictionary elements reproducing the data within
a certain tolerance. This vector is plotted versus the frequency (or
the period), just like a GLS periodogram. To avoid the confusion
with this one, the figure obtained is termed `1-periodogram (see
Fig. 11).

The procedure applied to the RV fitting Challenge data was
at an intermediate stage of development and is outlined in sub-
section 3.3.2 on an example. This preliminary method was not
very robust, and was greatly improved afterwards. For a precise
description of the most recent version, see (Hara et al. 2016),

where system 2 of the RV Fitting Challenge is treated in detail
along with real radial velocity signals.

3.3.2. Example for system 2

In this section the results of the method applied to the second
system of the RV Fitting Challenge are presented. The system
contains five planets, whose periods and true amplitudes are rep-
resented in red in Fig. 11. The blue curve on the top plot of Fig.
11 is the GLS periodogram of the raw RV data (Zechmeister &
Kürster 2009), displayed for comparison.

The dictionary is made of sine functions exp−iωk t and expiωk t

for n = 3.105 frequencies, ωk = 3kπ/n radian per day, k =
0..n − 1. To obtain a representation of the activity, each of the
FWHM, bisector span and log(R′HK) signals are bandpass filtered
by projection onto five families of orthonormal polynomials. The
family j, j = 1..5 is made of D j − d j + 1 polynomials of degrees
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Fig. 10. Different steps used by team 7 to detect the 3.77-day planetary signal present in System 2. Upper left panel: DFT of the RVs, FWHM, BIS
SPAN and log(R′HK). Upper right panel: Cleaned DFT (CDFT) obtained after applying the CLEAN algorithm to the DFTs of all observables. In
the inset, the resulting pass-planet filter in the frequency domain, that is later applied to the DFT of the RVs to mitigate the effect of stellar signals.
Lower left panel: The RVs before (black circles) and after (red squares) applying the pass-planet filter. Lower right panel: The phase-folded result
of the Keplerian fit to the 3.77-day planetary signal found in the RVs.

d j to D j. Here D j = d j+1 − 1, and d1 = 0, d2 = 15, d3 = 60,
d4 = 160, d5 = 300.

The `1-periodograms - in a version used for the RV Fitting
Challenge - of the RV, FWHM and bisector span are represented
in the middle plot of Fig.11. We then selected planetary signals
following this principle: If a "high" peak of the `1-periodogram
of the radial velocity data is sufficiently far from peaks of the
`1-periodogram of the FWHM and bisector span, it is retained.
If this peak is too close to at least one of the peaks of the FWHM
or bisector span `1-periodogram, it is discarded. Here, the three
smallest peaks do not appear. The 10.64 days periodicity does
show up, but was discarded due to its proximity to features of the
other signals. Finally, we see clearly the 3.77 days periodicity,
which was indeed selected.

As said above, the IMCCE team kept on working on the
method. If one subtracts the estimated activity of the star before
performing the `1 minimization and with further improvements,
one obtains the bottom plot in Fig. 11. In this case, the four
strongest signals appear without ambiguity. There are also two
signals close to 5.4 and 37 days, which are signatures of the first
harmonics of the eccentric orbits at 10.64 and 75.26 days. We

however could not see clearly the 5.79 days periodicity, which
seems to be buried in the noise. A further study shows that the
five planets plus the harmonic of the 10.64 days orbit are statis-
tically significant in some sense. This system is treated in detail
in (Hara et al. 2016).

4. Results

In this section, we analyze the results of the different teams, in
term of stellar rotation periods found, planetary signals detected
and false positives announced. We also discuss the accuracy of
orbital parameters recovered, as well as the realism of the sim-
ulated systems generated for the purpose of the RV fitting chal-
lenge. Because a wrong estimate of the stellar rotation period
can lead to the detection of false positives, this is the first point
we discuss.
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not used for the challenge
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Fig. 11. Top: GLS of the RV fitting challenge system 2 (raw time series). The red horizontal lines correspond to the true planetary signals injected
into the data. Middle: Figure used for the challenge, blue: `1-periodogram of the RVs, yellow: `1-periodogram of FWHM, purple: `1-periodogram
of log(R′HK). Only the 3.77-day signal was detected by team 8. Bottom: New version of the `1-periodogram (Hara et al. 2016).
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Fig. 12. Stellar rotation periods detected by teams 1, 3, 6 and 8 for the 14 systems of the RV fitting challenge.

4.1. Detection of stellar rotation periods

As described in detail in Dumusque (2016), the data of the RV
fitting challenge include planetary signals, but also stellar sig-
nals, i.e., oscillations, granulation, short-term activity and long-
term activity signals. Among all these stellar signals, the most
difficult to deal with is short-term activity, induced by active
regions, i.e., spots and plages, rotating with the stellar surface.
Because several active regions rotating with the star are present
simultaneously on the stellar surface, the observed RV signal in-
duced by short-term activity is characterized by signals at the
stellar rotation period Prot, and its harmonics (Prot/2, Prot/3, . . . ,
Boisse et al. 2011). Therefore, one of the very important aspects
to differentiate between planetary signal and short-term activity
signal is the detection of the stellar rotation period. If a signal is
found in the RVs with a periodicity similar to Prot or its harmon-
ics, it is very likely that this signal is induced by active regions.
For teams that used a GP regression to model short-term activity,
it is essential for them to have a good guess of the stellar rotation
period, otherwise the flexibility of a GP applied to the RVs could
model planetary signals.

Teams 1, 3, 6 and 8 reported stellar rotation periods for all
the RV fitting challenge systems, while the other teams did not
explicitly derive such an estimate. All the teams that performed
this analysis compared the signals found in the RVs with the ones
found in the other observables sensitive to activity, i.e., the cal-
cium activity index log(R′HK), the BIS SPAN and the FWHM. A
clear detection at the same period in the RVs and any other ob-
servables was assigned to a non-planetary component, because
certainly due to short-term activity. Team 1 used a GLS peri-
odogram to have a first estimate of the stellar rotation period,
and then fitted a GP using a MCMC starting at this first estimate
(see Equation B.1). Team 3 smooths the time series of the differ-
ent activity observables using a moving average, and then looked
for the stellar rotation period using a GLS periodogram. Team 6
looked at significant peaks in the DFT of the RVs and different
activity observables, and finally team 8 at significant peaks in
the GLS and `1-periodograms of the RVs, the BIS SPAN and the
FWHM.
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In Figs. A.1 to A.6, we show for each team and system, the
stellar rotation period found. In Fig. 12, we summarize those
results by classifying them as:

– correct rotation period detected in green,
– detection of an harmonic of the true rotation period in yellow,
– and wrong rotation period announced in red).

There are only a small number of wrong periods detected, which
is positive. We will see their impact in Section 4.2 when ana-
lyzing the detection of planetary signals. However, we can see
that in 20 to 45% of the cases, the different teams detected a har-
monic of the stellar rotation period, and not the true period used
to model the data. This can be a problem as we expect short-term
activity to induce signals at Prot, Prot/2, Prot/3 and so on, but not
at 2Prot and 3Prot. Therefore, if the detected stellar rotation pe-
riod is in fact Prot/2, it is possible to confuse an activity signal
found at Prot with a planet. We will see further that this case hap-
pened when team 1 analyzed systems 5, 9, 10, 11 and 12, team
3 analyzed system 13 and team 7 analyzed system 5.

We know that depending on the active region configuration
on the stellar surface, and depending on the sampling of the data,
the first harmonic of the rotation period (Prot/2) can have more
power that the fundamental (Prot, Boisse et al. 2011). To prevent
confounding a signal due to short-term activity with a planetary
signal when the detected stellar rotation period is a harmonic
of the real period, an easy solution is simply to reject signals
at 2Prot and 3Prot. In addition, we can use the average activity
level of a star and its spectral type to guess its rotation period.
First demonstrated by Noyes et al. (1984), and then updated by
Mamajek & Hillenbrand (2008), a relation exists between the
average log(R′HK) level, the spectral type and the stellar rotation
period, with a few day error. Therefore, when analyzing the RVs
of an old star, for which the rotation period is longer than 20
days, using such a relation can tell us if the period detected is the
true stellar rotation period, or a harmonic of it. The spectral type
of the stars were not given for the RV fitting challenge, therefore
the different teams could not use this relation to estimate rotation
periods. This was done on purpose because, as explain in de-
tail in Dumusque (2016), only the variation of the log(R′HK) was
properly simulated for the RV fitting challenge, and not the abso-
lute value of it. Therefore using the average log(R′HK) level given
in the RV fitting challenge dataset to calculate rotation periods
would give wrong rotational period estimates. If this would have
been possible, several yellow detections in Fig. 12 would turn
green, therefore only leaving a few mistakes. This is something
that should be taken into account for any further RV fitting chal-
lenges.

Because the different teams did not make mistakes on the
same systems, it is difficult to conclude on the origin of these
mistakes. However, among all the teams, team 3 performed the
best as it reported no mistakes. Therefore, the technique used
by this team to estimate stellar rotation periods from the activity
observables (log(R′HK), FWHM and BIS SPAN), consisting on
first modeling correlated noise using a moving average and then
analyzing the residuals to find the stellar rotation period, seems
to be the most robust (see Section 2.3).

4.2. Detection of planetary signals

In this section, we analyze the results of the different teams in
terms of planetary detection. In total, 14 planetary systems were
given, including a total of 45 simulated planetary signals and
6 published planetary signals probably present in real datasets
9,10,11 and 14 (α Centauri Bb and Corot-7b, c and d). As we

can see in Dumusque (2016), and in Figs. A.1 to A.6, the semi-
amplitude of the planetary signals was ranging between 0.16 and
5.85 m s−1, with rather low eccentricities. The RV fitting chal-
lenge time series for systems 9, 10, 11, and 14 are real observa-
tions obtained with HARPS, while the time series of all the other
systems were simulated using the modelization of stellar signals
described in Dumusque (2016). Note that no planetary signal
were present in simulated systems 4, 8 and 13. In addition, no
planetary signal was injected in real system 9, however the time
series used for this system are the published HARPS measure-
ments of α Centauri B that led to the discovery of an Earth-mass
planet (Dumusque et al. 2012), therefore a 0.5 m s−1planetary
signal might be recovered when analyzing this system.

4.2.1. Comparing the results obtained by the different teams

To compare the results between the different team, we define the
K/N ratio as:

K/N =
Kpl

RVrms

√
Nobs, (1)

where Kpl is the semi-amplitude of each planetary signal, Nobs is
the number of observation in each system, and RVrms is the RV
rms of each system once the best-fit of a model consisting of a
linear correlation with log(R′HK) plus a second order polynomial
as a function of time was removed. This model allows removal
of the effect of magnetic cycles (Meunier & Lagrange 2013; Du-
musque et al. 2011b) and any long-term drift in the RVs due to
binary companions.

In Fig. 13, we summarize the results of the different teams
when analyzing only the first five systems and all the systems.
For each signal detected, we assign a different color flag depend-
ing on the true signals present in the data. The different possibil-
ities are:

– dark green: the team recovered a planetary signal that exists
in the data and would have published the result.

– light green: the team recovered a planetary signal that exists
in the data but is not confident enough in its detection for
publication.

– yellow: the team recovered a planetary signal that exists in
the data and would have published the result, however the
semi-amplitude or period is wrong compared to the truth or
an alias of the true signal was detected.

– grey: the team recovered a planetary signal that exists in the
data but is not confident enough in its detection for publica-
tion. The semi-amplitude or period is wrong compared to the
truth or an alias of the true signal was detected.

– white: non-detected planetary signal for which K/N > 7.5.
– cyan: non-detected planetary signal for which K/N ≤ 7.5.
– orange: the team recovered a planetary signal that does not

exist in the data but is not confident enough in its detection
for publication.

– red: false positive or false negative, i.e., the team recovered
a planetary signal that does not exist in the data and would
have published the result, or the team rejected with confi-
dence the detection of a true signal, respectively.

To study planetary population, we believe that the most im-
portant criteria are publishable planets with correct parameters
(dark green flag), false positives or false negatives (red flag) and
non-detection of planetary signals (white flag for K/N > 7.5,
cyan flag for K/N ≤ 7.5). The selection of the threshold K/N =
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Fig. 13. Top: Summary of the signals detected in the first 5 systems of the RV fitting challenge data set. All the teams have analyzed those system,
expect team 5 that only looked at system 1 and 2. The different color flags are defined in the legend and in more details in the second paragraph
of Section 4.2. For each team, the outer circle diagram represents true planetary signals that were present in the data, and show how well the
different teams could recover those. The inner circle diagram represents signals announced by the teams, but that were not present in the provided
RV measurements. Bottom: Same but considering all the systems in the RV fitting challenge. Only teams 1, 3, 6, 7 and 8 performed this analysis.
Size of the circle diagrams represents the number of systems analyzed: large size for all 14 systems, medium size for the first 5 systems and small
size for the first 2 systems.

7.5 will be discussed in the next paragraph. Publishable signals
that are slightly wrong (yellow flag) represent only a small frac-
tion of the detections and therefore should not strongly bias plan-
etary population statistics. All the other signals flagged as light
green, grey, and orange would not have been published. There-
fore, in Fig. 13, the most successful teams in terms of planet de-
tection should have a large dark green region, while having small
red, white and cyan regions. Given those criteria, we can sepa-
rate the teams in two different groups: teams 1 to 5, and teams
6 to 8. This delimitation separates teams that used a Bayesian
framework with red-noise models, which allows to compare be-
tween different solutions and model stellar signals, from teams
that used other frameworks (see Table 1 and Sections 2 and 3 for
more details about the different techniques used).

In Figs. 14 and 15, we plot the different planets that have
been detected by the different teams as a function of the K/N
ratio. We also highlight the false positives and false negatives.
Note that only one false negative was announced: the true plan-
etary signal in system 11 with a K/N ratio of 6 rejected by team
8 (see Fig. A.5 and the lowest red dot for team 8 in Fig. 15).
Except for this signal, all the other mistakes correspond to false
positives therefore we will only discuss false positive in the rest
of the section.

Looking at the results of the different teams for the first five
systems (Figs. 14), we see that teams 1, 3, 6 and team 4 were

able to detect confidently (i.e. color flags dark green and yel-
low) planetary signals with a K/N ratio as low as 6 and 7.5, re-
spectively. Excluding false positives found at the stellar rotation
period when the correct rotation period was detected a priori,
because those mistakes could have been avoided (hatched red
dots), those teams did not detect any false positives above a K/N
level of 5. For the other teams, i.e. 2, 5, 7 and 8, it was more
difficult to detect confidently planetary signals with a small K/N
ratio, and the threshold between detecting and not detecting a
planetary signal is closer to K/N = 10. We note also that team 7
detected a lot of false positives, therefore the filtering technique
in frequency space they used does not seem optimal to prevent
false positives.

On the first 5 systems of the RV fitting challenge, there was
not many planetary signals with a K/N ratio between 5 and 10. It
is therefore worth analyzing the results of teams 1,3, 6, 7 and 8
with the entire data set to get a better idea at which threshold in
K/N planets start to be detected. In Fig. 15, all the teams that ana-
lyzed the entire data set were able to confidently detect planetary
signals with a K/N level above 7.5. However teams 1 and 3 de-
tected most of the planetary signals above this threshold, which
is not the case for teams 6, 7 and 8. We therefore see here a sig-
nificant difference between techniques using a Bayesian frame-
work with model comparison in addition to red noise models and
technique that do not.
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Fig. 14. K/N ratio for all the planets present in the 5 first systems of the RV fitting challenge, in addition to the false positives and the false negatives
announced for those 5 first systems. All the teams analyzed those 5 first systems, except team 5 that only looked at the first two systems, which
explain why there is less dots corresponding to planetary signals. The different color flags are defined in the legend of Fig. 13 and in more details
in the second paragraph of Section 4.2. We separate the false positives or false negatives appearing in red in two categories. Either they cannot be
explained easily (plain red dots), or the activity signal at the stellar rotation period has been confused with a planetary signal despite the fact that
the correct stellar rotation period was found a priori (hatched red dots). The red horizontal line corresponds to a K/N ratio of 7.5. Note that the
RV rms used to calculate K/N is the rms of the raw RVs once the best-fit of a model consisting of a linear correlation with log(R′HK) plus a second
order polynomial as a function of time was removed. This model allows removing the effect of magnetic cycles and any long-term drift in the RVs.
We removed from this plot the 2 planets in system 11 and 12 that have an orbital period longer than 3000 days, much longer than the timespan of
the data, which explain why they were not detected by any team despite their large K/N values (see Section 4.2.4). Article number, page 17 of 36
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Fig. 15. Same as Fig. 14 but for all the signals announced by the different teams in the entire dataset of the RV fitting challenge. Only team 1, 3,
6, 7 and 8 performed this full analysis. We separate the false positives or false negatives appearing in red in three categories. Either they cannot be
explained easily (plain red dots), or the activity signal at the stellar rotation period has been confused with a planetary signal despite the fact that
the correct stellar rotation period was found a priori (hatched red dots) or the activity signal at the stellar rotation period has been confused with a
planetary signal when a wrong stellar rotation period was found a priori (red dots with stars).
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In Figs. 15, we distinguish between three types of false posi-
tives: those that cannot be explained easily (plain red dots), those
that correspond to the stellar rotation period when the correct ro-
tation period was detected a priori (hatched red dots), and those
that correspond to the stellar rotation period when a wrong rota-
tion period was detected a priori (red dots with stars). The sec-
ond type of false positive could have been avoided assuming that
all signals close to the rotation period should be excluded, and
the third type could have been avoided using a better algorithm
to estimate the stellar rotation period2. We therefore decided to
exclude the second and third-type false positives discussed jsut
above from the following discussion. When doing so, we see
that team 1 detected 2 false positives at K/N ratios of 6 and 9.7,
therefore the confidence level to detect a planetary signal with-
out risking a false positive is close to K/N = 10. For team 3
this level is closer to K/N = 5, and for team 6 and 7, closer
to K/N = 7.5. Finally, team 7 have detected too many false
positives, up to K/N = 25, making it impossible to estimate a
threshold between confidently detecting a planetary signal with-
out risking a false positive. As a general conclusion, the limit
between confident and non-confident detections is somewhere
close to K/N = 7.5. Only the method used by team 3 allows
to detect a few candidates with a K/N ratio between 5 and 7.5,
without risking of announcing a false positive.

In Table 2, we report for each team the recovery rate of plane-
tary signals detected and publishable with K/N ratios above and
below 7.5. Planetary signals detected correspond to color flags
dark green, light green, yellow and grey, and publishable planets
to color flag dark green and yellow only (see definition of color
flags in the second paragraph of Section 4.2). We show the re-
sults when studying only the first 5 systems, analyzed by all the
teams except team 5 that only worked on system 1 and 2, and
when studying all the RV fitting challenge system, analyzed by
teams 1, 3, 6, 7, and 8.

When looking at detected planetary signals with K/N > 7.5,
it is clear that teams 1 to 5, which used a Bayesian framework
with model comparison in addition to red noise models, were
more successful at finding those type of planetary signals. There
is however a difference between detecting planetary signals, and
being confident in those to publish them. Only publishable re-
sults will be used for planetary statistics, therefore those are the
most important. When looking at publishable planetary signals
with K/N > 7.5, we arrive to a similar ranking in performance.
However, except in the special case of team 3 when analyzing the
5 first models, 20 to 30% of planetary detections with K/N > 7.5
will not be good enough to lead to publications. Those signals
are however detected, which is a valuable argument to get more
data for a system and thus publish it at a later stage.

As we can see in Fig. 15, compared to team 1 and 3, team 6 to
8 have a significantly larger proportion of detections flagged as
yellow, i.e. planetary signals for which the teams are confident in
the detection, however the period or semi-amplitude differs from
the true solution, or the detection corresponds to an alias of the
true signal. Including those solutions would bias any statistical
analysis on planetary semi-amplitude and period distributions.
Therefore, when searching for planetary signal for which K/N >
7.5, techniques using Bayesian model selection with red-noise
models allow to recover more signals and give better estimates
of the orbital period and semi-amplitude (see Section 4.2.2 for
more details).

2 For the two cases of third-type false positive, only detected by team
1, all the other teams were able to find the correct stellar rotation period.

When looking at detected planetary signals with K/N ≤ 7.5,
we have very few number of detections and even less of publish-
able planetary signals. It is therefore difficult to draw out strong
conclusions. Only team 3 and 6 were able to find a significant
number of candidates, 6 and 4 respectively. However, 3 plane-
tary signals out of the 4 found by team 6 have incorrect period
or semi-amplitude (yellow color flag), in addition to 3 false posi-
tives announced. The results found by team 3 are therefore more
robust.

The K/N ratio is used here as a measure of the detectability
of planetary signals that were present in the RV fitting challenge
dataset. In the case of the RV fitting challenge, systems 1 to 13
were very similar, with:

– a large number of measurements, between 433 and 527,
– planetary signals much shorter than the timespan of the data,
– planetary signals with a good phase coverage,
– and stellar signals similar to what is observed for the Sun,

with a RV rms ranging from 1.8 to 5 m s−1once the best-fit of
a model consisting of a linear correlation with log(R′HK) plus
a second order polynomial as a function of time was removed
to the raw RVs.

For those systems, we show that for most of the teams it was
possible to confidently detect planetary signals above a thresh-
old in K/N of 7.5, without announcing false positives. However
teams that used a Bayesian framework with model comparison in
addition to red noise models where able to detect nearly all the
planetary signals above this threshold, which was not the case
for the other teams.

Systems 14 and 15 exhibit a higher level of stellar signals,
with a RV rms of 8.9 and 7.6 m s−1once the best-fit of a model
consisting of a linear correlation with log(R′HK) plus a second
order polynomial as a function of time was removed to the raw
RVs. In addition, those two systems presented only 170 mea-
surements. However, in these very different cases compared to
system 1 to 13, most of the team were able to detect the signals
of Corot-7c and Corot-7d with a K/N ranging from 8 to 10, while
only team 1 was able to detect the K/N = 5 signal of Corot-7b
(see Fig. A.6 in the appendix). Therefore, it seems that this K/N
threshold of 7.5, and probably 5 for team 3, can be applied to
quite different set of data. We however only have a few systems
in the RV fitting challenge to test this hypothesis and a detailed
study of the behavior of this threshold as a function of number of
measurements, ratio of the planet period to the timespan of the
measurements, phase coverage of the signal and level of stellar
signals would be something extremely useful to explore.

This threshold K/N = 7.5, or 5 for team 3, is the best that can
currently be done by the different teams when analyzing the RV
fitting challenge data set. We expect that this level goes down
with ongoing progress in the different methods used to detect
planetary signals in the presence of stellar signals.

4.2.2. Accuracy of estimated planetary period and
semi-amplitude

Detecting a true planetary signal and being confident in its verac-
ity is a difficult task, even more when K/N ≤7.5. We discussed
in the previous sections that some techniques to deal with stellar
signals are performing better. In this section, we look at the pa-
rameters found for each planet detected by the different teams,
and compare them to the true parameters that were used to gen-
erate those planetary signals. When dealing with real data in-
cluding planetary signals like in system 14, we compared with
the latest published parameters.
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System 10 (Prot = 38.0 days)
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System 11 (Prot = 38.0 days)
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System 12 (Prot = 40.0 days)

Fig. 16. Periods and semi-amplitudes reported by each team for the planets detected in systems 1, 2, 3, 5, 7, 10, 11 and 12. We divided those
parameters by the values of the true signals, so that a perfect estimate would fall on one. Team 8 was the only one not reporting error bars on their
parameters, therefore we just show their best estimates as red vertical lines.Article number, page 20 of 36
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Table 2. Recovery rate of planetary signals detected (dark green, light green, yellow and grey color flags), of publishable planets with correct
orbital parameters (dark green and yellow color flags) and of false positives and false negatives (red color flag) for each team. Recovery rates
between 0 and 33, 33 and 66, and 66 and 100% are highligthed in red, yellow and green, respectively.

Bayesian framework + red-noise models Other techniques
1: Torino 2: Oxford 3: Tuomi 4: Gregory 5: Geneva 6: Hatzes 7: Brera 8: IMCCE

Detected planetary signals K/N > 7.5
5 first systems (total 10) 80% (8) 70% (7) 90% (9) 90% (9) 83% (5/6) 30% (3) 40% (4) 50% (5)

all systems (total 18) 68% (12) - 83% (15) - - 39% (7) 50% (9) 50% (9)
Publishable planetary signals K/N > 7.5
5 first systems (total 10) 50% (5) 40% (4) 90% (9) 70% (7) 67% (4/6) 20% (2) 20% (2) 30% (3)

all systems (total 18) 50% (9) - 61% (11) - - 28% (5) 39% (7) 39% (7)
Detected planetary signals K/N ≤ 7.5

5 first systems (total 13) 8% (1) 8% (1) 8% (1) 8% (1) 25% (1/4) 8% (1) 15% (2) 0%
all systems (total 30) 3% (1) - 20% (6) - - 13% (4) 7% (2) 3% (1)

Publishable planetary signals K/N ≤ 7.5
5 first systems (total 13) 0% 0% 8% (1) 0% 0% 8% (1) 8% (1) 0%

all systems (total 30) 3% (1) - 13% (4) - - 13% (4) 3% (1) 0%
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System 14 (Prot = 22.3 days)
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System 15 (Prot = 22.3 days)

Fig. 17. Same as Fig. 16 for systems 14 and 15.

In Figs. 16 and 17, we show for each system and each planet
detected, the period and semi-amplitude parameters found by
each team. We divided those parameters by the values of the
true signals, so that a perfect estimate would fall on one. Team 8
was the only team that did not report error bars on their measure-
ments, therefore we just show their best estimates as red vertical
lines in Figs. 16 and 17. Note that we included in those figures
all the signals for which the teams were confident in (dark green
and yellow color flags).

It is difficult to conclude which team have recovered the best
period and semi-amplitude parameters for the planetary signals
present in the RV fitting challenge data set, as some teams dis-
covered more signals than others. However, if we look at system
1, 2, 3, 14 and 15, for which many teams detected a lot of sig-
nals, team 3 found the best estimate for the different parameters.
Therefore using a moving average model to account for stellar
signals seems the best approach to deal with the correlated noise
induced by RV stellar signals. This does not mean that team 3
always found the best parameters, and as a general conclusion,
the errors on the period and semi-amplitude parameters are often
underestimated, certainly due to the fact that the models used to
account for stellar signals are not perfect.

4.2.3. Comparing the results obtained by teams using a GP
regression and teams using other red-noise modelings

When looking in Fig. 14 at the first 5 systems, we notice that GP
regression techniques (team 1 and 2) could not confidently re-
cover 3 planetary signals with K/N > 7.5 compared to teams that
used other red-noise models (team 3 and 4). This is probably due
to the fact that stellar signals do not have the same covariance
in RVs than in the activity observables. Just as an example, an
equatorial spot on a star seen equator-on will induce a sinusoidal
variation with a period of Prot/2 when the spot will pass on the
visible hemisphere (e.g., Dumusque et al. 2014a). Then no sig-
nal is observed when the spot is behind the star. For the signal in
log(R′HK), projection effect comes into play; log(R′HK) increases
when a spot moves from the limb to the stellar disc center, and
symmetrical decreases when a spot moves from the disc center
to the opposite side of the limb. Therefore, the observed signal
is half of a sine wave with the stellar rotation period. Then, like
for the RVs, no signal is seen when the spot is behind the star.
Although the signals in RVs and log(R′HK) seems to have differ-
ent periods, they do not as after a full stellar rotation period, the
same signal will appear again in RVs and log(R′HK) if there is no
spot evolution. However, because many spots are present on the
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stellar surface at the same time, in addition to their evolution, the
RVs of stars spot-dominated will tend to have a significant sig-
nal at period Prot/2, while the log(R′HK) will present a significant
signal at Prot. This example shows that the RVs and the activity
observables can have a different covariance and therefore could
explain why teams 1 and 2 were confident in fewer true planetary
signals than team 3 and 4 when analyzing the first five systems.
We believe that further investigations should be done to confirm
or reject this argument.

When looking at the 14 systems of the RV fitting challenge,
team 1 announced 6 false positives with K/N > 7.5 (see Fig.
15). Out of those 6 false positives, one cannot be explained eas-
ily (plain red dots), three are due to a confusion with the stellar
rotation period, thus stellar activity, despite the fact that the cor-
rect stellar rotation period was found a priori (hatched red dots),
and the two last one due to a confusion with the stellar rotation
period knowing that a wrong stellar rotation period was found a
priori (red dots with stars). Although it is difficult to draw any
conclusion on the first and the two last false positives, for the
three other ones, it seems that the GP regression used by team 1
was not able to fully model stellar activity and that an extra Ke-
plerian with a period close to stellar rotaion was needed to better
explain the observed RV variations. This is therefore something
that should be explored in detail as we do not want GP regression
to create some false-positives. Team 2 used GP regression with
a different formalism, unfortunately it is not possible to compare
the results of team 1 and 2 because team 2 only analyzed the first
five systems, for which only one false positive was announced by
team 1.

4.2.4. Detection of long period planets

In the different systems of the RV fitting challenge, we injected
long-period signals to see if they could be recovered despite the
RV stellar signal induced by magnetic cycles. In total 6 planetary
signals with periods longer than 500 days were present in the
data:

– 596 and 2315 days for system 3, with K/N = 8.3 and 16.9,
respectively (K=1.91 and 3.87 m s−1),

– 616 days for system 5, with K/N = 5.2 (K=0.55 m s−1),
– 542 days for system 7, with K/N = 18.7 (K=2.38 m s−1),
– 3245 days for system 11, with K/N = 15.8 (K=1.54 m s−1),
– 3407 days for system 12, with K/N = 19.2 (K=1.64 m s−1).

Regarding our previous discussion about signal smaller than
K/N = 7.5 (see Section 4.2.1), it is clear that the 596-day pe-
riod signal in system 3, and the long-period signal injected in
system 5 are difficult to find. However, all the other signals have
K/N > 15 and could have been discovered by the different
teams, mainly those using a Bayesian framework with red-noise
models to mitigate the impact of stellar signals.

The long-period signals in systems 3, 11 and 12 are close
to 6, 9 and 9 years, much longer than the 4-year time span of
the RVs for these systems. Therefore, the RVs do not cover an
entire phase of those signals, which makes it very difficult to
characterize them, as in general orbital periods need closure for
correct parameter estimation (e.g. Black & Scargle 1982). Team
3 and 4 reported a signal at 1202 and 1306 days for system 3,
which is half of the period of the real signal. Because the RVs do
not cover an entire phase, the power of the signal is transferred to
its first harmonic, i.e., half of its period. The two other planetary
signals were not detected, and this can be explained by the fact
that the different teams added in their RV model a polynomial
up to the second order to account for any drift in the data, which

absorbs any long-period planetary signals if the time span of the
data is much shorter than the orbital period of the planets.

The 542-day signal in system 7 has a shorter period than the
time span of the data and was thus confidently announced by
team 1 and 7, and detected but not confidently by team 3.

4.2.5. Detection of short period planets

In opposition to long-period planetary signals, 6 signals in the
RV fitting challenge have periods shorter than 5 days:

– 3.77 days for system 2 with K/N = 15.6 (K=2.75 m s−1),
– 1.12 days for system 3 with K/N = 4.2 (K=0.96 m s−1),
– 0.82 day for system 10 with K/N = 7.3 (K=0.67 m s−1),
– 3.08 days for system 12 with K/N = 5.6 (K=0.48 m s−1),
– 0.85 day for system 14 with K/N = 5.1 (K=3.44 m s−1),
– and 0.88 days for system 15 K/N = 5.9 (K=3.44 m s−1).

Out of these 6 signals, all the teams recovered the one in system
2, which can be explained by the high K/N ratio. The 5 other sig-
nals all have K/N ≤ 7.5 and therefore, following our discussion
in Sections 4.2.1, they were difficult to find. Three of them, in
systems 12, 14 and 15, were confidently recovered only by team
3. This shows that the technique used by team 3 seems more ef-
ficient at finding short-period planets. A probable explanation is
that the moving average model used by team 3 includes correla-
tion between points on short-period timescales, which therefore
reduces the effect of granulation (timescale up to 2 days) and
of stellar short-term activity over a few day timescale that can
be important for active stars (systems 14 and 15). Short-period
planets are therefore easier to find.

The short-period planets in systems 14 and 15 are the true
and simulated version of Corot-7b, the first Earth-radius planet
ever detected. This planet was first found by photometry (Léger
et al. 2009), and then confirmed with the RV measurements of
system 14 (Queloz et al. 2009). It is however interesting to see
that only team 3 was able to recover this planet without imposing
as priors the period and time of transit derived from photometry.

The planets recovered by team 3 in system 14 and 15 have a
very similar periods and a smaller K/N ratio than the planet not
detected in system 10. Therefore the K/N ratio is not the only
criterion to separate detections from non-detection. The detec-
tion of the planets in system 14 and 15 and not in system 10 can
be explained by two effects here: i) for system 14 and 15, the
signals from short-term activity is dominating the other sources
of stellar signal; short-term activity is better characterized and
therefore easier to model with the moving average, and ii) the
0.82-day planetary signal has an amplitude much larger than the
expected perturbations induced by the other sources of stellar
signal, i.e., granulation and stellar oscillations.

When comparing the K/N ratio of the planets in systems 10
and 12, we would guess that the one in system 10 is easier to re-
cover. However, team 3 could not recover it but could confidently
detect the other. This can be explained by the longer period of the
planet in system 12, 3 days, compared to close to 1 day for the
planet in system 10. Indeed, this difference in period implies a
better phase coverage of the planet with a longer orbital period.
Nine measurements per orbit can be obtained for a 3-day period
planet when observing with a strategy of 3 measurements per
night (similar to the sampling of the different systems in the RV
fitting challenge) compared to only 3 for a 1-day period planet.
In addition, planetary signals close to 1 day are more affected by
granulation signal that affects RV measurement on a timescale
smaller than 2 days, which makes them harder to find. Team 3
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was the only team to recover the 3-day signal, and this is prob-
ably because it is the only team that considered, with its mov-
ing average model, correlation between points on short-period
timescales. The moving average reduces the impact of granula-
tion on RV measurements, and therefore increases the signifi-
cance of planetary signals with similar or shorter periods.

Speaking about planetary signals with periods shorter than 5
days, we need to discuss system 9,10 and 11, for which the RVs
have been extracted from the HARPS measurements that led to
the detection of α Centauri Bb. The RVs and the activity ob-
servables for system 9 are the raw data published in Dumusque
et al. (2012). We only reversed time, added a Gaussian noise
of 0.05 m s−1, and changed the gamma velocity of the star, so
that the time series for this system could not be recognized (Du-
musque 2016). These modifications should not perturb the 0.5
m s−1 planetary signal of α Centauri Bb present in the data. This
planetary signal should also be present in system 10 and 11, how-
ever for those systems we added extra planets, which can perturb
the detection of this small semi-amplitude signal. The K/N ratio
for α Centauri Bb in system 9, 10 and 11 would be 5.7, 5.4 and
5.1 respectively, implying a very challenging detection accord-
ing to the discussion in Section 4.2.1. None of the teams were
able to recover the signal of α Centauri Bb. However, team 3
was able to confidently recover the simulated planetary signal of
α Centauri Bb in simulated system 12. Based on this result, team
3 should have been able to detect the signal of α Centauri Bb in
systems 9,10 and 11. It is therefore possible that the signal of α
Centauri Bb announced in Dumusque et al. (2012) is in fact a
spurious one induced by a combination of the sampling of the
data and of the model used to fit stellar activity, as questioned by
Rajpaul et al. (2016). The signal of α Centauri Bb is however at
the limit of what can be done with current methods to deal with
stellar signals and more RV measurements are needed to really
conclude on the existence or not of α Centauri Bb.

4.3. Results for real RV data compared to simulated ones

Testing the efficiency of different techniques on simulated data
can be useless, if those simulated data are not realistic.

To be able to test the realism of simulated data, Dumusque
(2016) included in the data set of the RV fitting challenge some
real observations done with HARPS, and then simulated RVs
as close as possible to those real data. Thus systems 6 and 7, 9
and 13, 11 and 12, and 14 and 15, including real and simulated
data, can be compared. Unfortunately, as discussed in Dumusque
(2016), system 6 cannot be used. The comparison of the other
systems is described below and each time we refer to the RV
rms, this one is calculated on the raw RVs once the best-fit of
a model consisting of a linear correlation with log(R′HK) plus a
second order polynomial as a function of time was removed:

System 9 and 13 The two systems have a similar RV rms,
1.82 and 2.06 m s−1, respectively, therefore the level of stel-
lar signal present in the simulated data seems realistic. For real
system 9, only team 1 could not find the correct stellar rotation
period, and team 1 and 6 announced 3 false positives. For sys-
tem 13, only team 3 could find the correct stellar rotation period
while the other teams found the first harmonic. Team 3 and 8 an-
nounced 2 false positives. It is difficult to conclude as no similar
mistake was done on the two systems, however it seems that it
was as difficult to analyze the real and the simulated data.

System 11 and 12 The simulated data seems to have a real-
istic level of stellar signal as the two systems have a similar RV
rms, 2.04 and 1.78 m s−1, respectively. Regarding stellar rota-

tion period, all the teams could recover the correct value, except
team 1 for simulated system 12. By making this mistake, team
1 announced a false positive at Prot/2. Four mistakes were done
on system 12, while only two were done on system 11. In addi-
tion, team 3, 6 and 8 could recover the K/N = 5.95 signal at 15
days orbiting system 11 (note however that team 8 announced it
as false-negative), while no one could recover the same signal in
system 12. From the comparison of these two systems, it seems
that is was more difficult for the different teams to find planetary
signals in the simulated data, and easier to make some mistakes.

System 14 and 15 These two systems exhibit similar RV rms,
8.86 and 7.64 m s−1, respectively, therefore implying at first or-
der a correct modelization of stellar signals. From the compari-
son of those two systems presenting the real and simulated data
of Corot-7, we find that it was easier to detect the correct rota-
tion period in the real time series. Regarding false positives, none
was announced for system 14, while 2 were detected in system
15. Except team 3 that found exactly the same solution, the dif-
ferent teams were more confident in the signals found in system
14 than in system 15.

In general, it was slightly more difficult for the different
teams to analyze simulated data. However, we note that team
3, that performed the best at the exercise of the RV fitting chal-
lenge, found very similar solutions when analyzing real and sim-
ulated data. We therefore believe that even if not perfect, the sim-
ulated data are realistic enough to be used to test the efficiency of
techniques to recover planetary signature despite stellar signals.

5. Conclusion

In total, 8 different teams participated in the analysis of the RV
fitting challenge data set. They all used different techniques to
find the low eccentricity planets that were hidden inside stellar
signals. Except system 14 and 15, that present the real and simu-
lated RVs of the active star Corot-7, all the other systems present
a typical level of stellar signal for inactive G-K dwarfs. Those
stars are the typical targets of most high-precision RV surveys
searching for low-mass planets, and therefore the conclusions
made here can be applied to most of the RV measurements gath-
ered up to now.

With 14 different systems, 48 planets with semi-amplitude
ranging between 0.16 and 5.85 m s−1, and different modeliza-
tions of stellar signals, the number of parameter is huge, and it
is difficult to draw some strong conclusions with the analysis of
only 8 different teams. In addition, the data set of the RV fitting
challenge was given to the different teams 8 months before the
deadline. Techniques used by team 1 to 5, based on a Bayesian
framework with red-noise models, required significantly more
computational time than the other techniques used by teams 6
to 8. As a result, team 2 and 4 could only analyze the first five
systems out of 14, team 5 only the first two, and teams 1 to 5
used statistical shortcuts to find planetary signals in the data, or
could not test all possible models, taking the risk of biasing their
final results. Readers should therefore be aware that the results
presented in this paper are preliminary, and depends on (1) how
much time each team was able to invest in the challenge, (2) how
mature their analytical methods were, and (3) how experienced
the team members were with such analyses. Looking at the re-
sults presented in this paper, it seems that some techniques work
better at recovering planets despite stellar signals, however fur-
ther investigation need to be performed to be confident in the
conclusions presented here. Note that the best techniques all re-
quire intensive computational efforts.
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A first important step before finding planets is the detection
of the stellar rotation period. For team 1 and 2, this period is used
in their model that accounts for short-term activity, for the other
teams, this period and its harmonics defines regions in period
space were planetary signal should be excluded because likely
due to short-term activity. Finding the correct stellar rotation pe-
riod is therefore crucial to reduce the number of false positives in
the end, and team 3, using its moving average model to account
for stellar signals, performed the best at this exercise. Among all
the teams that reported explicitly a stellar rotation period, we no-
tice that only a small number of mistakes were done. However in
many cases, a harmonic of the stellar rotation period was found,
which can be dangerous because then a signal at the true rotation
period can be confounded with a planet. To distinguish between
the true stellar rotation period and a harmonic of it, an activity
level-rotation calibration as the one developed by Mamajek &
Hillenbrand (2008) can be used. This was however not possible
here due to lack of information in the RV fitting challenge data
set, but this is something that people analyzing RV data should
strongly consider to prevent false positives (see Section 4.1).

When looking at the recovery rate of planetary signals for
each team, teams can be separated in two groups. Teams 1, 2,
3, 4 and 5 that used a Bayesian framework with red-noise mod-
els and teams 6, 7 and 8 that used pre-whitening, compressed
sensing and/or filtering techniques in the frequency domain to
deal with stellar signals. The first group discovered more true
planetary signals than the second one, and also made fewer mis-
takes. In addition, when asked if those detections are significant
enough to lead to publications, the first group of teams was also
more confident in announcing a planetary signal. The planets
for which the K/N ratio (see Eq. 1) was above 7.5 were nearly
all recovered by the best teams. Below this threshold, the detec-
tion rate drops to 20% at best. Note that team 3 was able to find
the smallest K/N ratio true planetary signals, with K/N ratios
between 5 and 7.5, without announcing false positives. Below
K/N = 5, no planetary signals were confidently recovered, it is
therefore a lower limit for planetary detections using data with
similar properties as those of the RV fitting challenge (see Sec-
tion 4.2.1).

Regarding accuracy when estimating the best orbital param-
eters for planetary signals qualified as publishable most of the
teams recovered the correct orbital parameters within 3−σ from
the truth. A few signals were however out of the 3−σ limit,
which is probably due to the fact that the models used in this
paper to account for stellar signals are not perfect. This is not sur-
prising as models to account for stellar activity are not perfect,
however those are the best we have so far (see Section 4.2.2).

Besides recovering real planetary signal in the data and
giving correct orbital parameters, it is very important that
the false positive rate stays low. Above a threshold of 7.5 in
K/N ratio, team 7 announced nine false positives, team 1 six,
team 6 one, and the other teams none. The technique use
by team 7 is therefore prone to false positive and cannot be
used to reliably detect planets. Team 1 also announced sev-
eral false positives, however a few of them correspond to the
stellar rotation period, despite the fact that the correct rotation
period was found a priori. Therefore, although their GP regres-
sion has the correct stellar rotation period, it seems that the GP
regression cannot fully model stellar signals and that an extra si-
nusoidal signal is needed. Further investigation on GP modeling
needs therefore to be performed to be sure that GP regression
does not create false-positives. For the time being, signals close
to the stellar rotation period or its harmonics should always be

associated to stellar activity to prevent false positives (see Sec-
tion 4.2.3).

For planetary signals with periods longer than 500 days, sev-
eral effects make their detection difficult. It is common that drifts
in the data are observed due to magnetic cycle effects and long-
period binaries. To remove such long-period signals, the differ-
ent teams corrected the RVs from magnetic cycle effects by using
the observed long-term correlation between the RVs and the dif-
ferent activity observables (log(R′HK), BIS SPAN, FWHM), and
removed the effect of binaries by fitting polynomials as a func-
tion of time. People analyzing RVs data should be aware that
such a model can absorb the signal of planets that have orbital
periods similar or longer than the time span of the data, and that
orbits need closure before inferring planet parameters (see Sec-
tion 4.2.4).

When analyzing the recovery of planets with periods shorter
than 5 days, teams 3 found 4 out of 6 planets, including 3 with
K/N ≤ 7.5, while all the other teams found only the planet
for which K/N > 7.5. It seems therefore that the moving av-
erage model used by team 3 is more sensitive to short-period
planets because such a model consider measurement correlation
on short-period timescales, which therefore mitigate the effect
of granulation on quiet stars, and the strong short-timescale ef-
fect of short-term activity on active stars like Corot-7. We would
therefore encourage people using GP modeling, or apodized Ke-
plerians, to add on top of their model a correlation between mea-
surements on short-period timescales, as this seems critical to
detect short-period planetary signals with small K/N ratios (see
Section 4.2.5).

The RV rms of real and simulated systems was similar, going
in the direction that the different sources of stellar signals were
realistically taken into account. Team 3, that performed the best
at the exercise of the RV fitting challenge found very similar so-
lutions between real and simulated data. However, it was slightly
more difficult for the other teams to analyze simulated data. We
therefore believe that even if not perfect, the simulated data are
realistic enough to be used to test the efficient of techniques to
recover planetary signature despite stellar signals (see Section
4.3

With more time, each technique can be improved, and the
different teams are making progress (see Gregory 2016; Hara
et al. 2016). The Oxford team also made some important pro-
gresses (priv. comm.). Now they are able to perform a full
Bayesian marginalisation over all parameters (planets + GP),
which give them much more reliable Bayesian model evidences.
Following a private communication with N.C Hara from team
8, It seems that their method is now delivering similar perfor-
mances in terms of planetary detection as Bayesian framework
techniques using red-noise models and with a much shorter com-
putational time (see bottom plot in Fig. 11 and Hara et al. 2016).
However, following the first results of the RV fitting challenge
presented here, techniques using a Bayesian framework and red-
noise models seem the most efficient at modeling the effect
of stellar signals, and therefore detecting true planetary signals
while limiting the number of false positives. Moving average,
GP regression and apodized Keplerian modelizations should be
investigated further, to see the sensitivity of these models to plan-
ets at short and long-periods, to planets with a similar period than
stellar rotation, to planet with high and low K/N ratios, to multi-
planet systems.

The goal of the RV fitting challenge was to test the efficiency
of the different techniques to recover planets in RV data given
the presence of stellar signals, while limiting the number of false
positives. As we can see in the different discussions above, the
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Bayesian framework and moving average model used by team 3
performed the best. Then, in second position comes the Bayesian
framework and apodized Keplerian model used by team 4, fol-
lowed by the Bayesian framework and GP model used by team 1
in third position. Although team 1 performed well in analyzing
system 6 to 15 in terms of true planetary signals detected, they
announced a lot of false-positives at the stellar rotation period.
Further investigation need to be performed to test if those false
positives originate from the GP regression they used, or from
another part of their method.

Team 3 was able to confidently discover a few planetary sig-
nals with K/N ratios between 5 and 7.5 without announcing false
positives, and nearly all the planetary signal with K/N > 7.5.
Team 4 and 1 detected confidently most of the signals for which
K/N > 7.5, and none below this threshold. In conclusion, for RV
measurement similar to those of the RV fitting challenge, a ratio
K/N = 7.5 seems to be a threshold separating confident detec-
tion from non-detection of planetary signals. Note however that
the method used by team 3 could confidently detect ∼20% of the
planetary signals with K/N ratios as low as 5, without announc-
ing false positives.
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Fig. A.1. Summary of signal detection for RV fitting challenge systems 1 and 2 reported by the different teams. Color flags are defined in the
legend of Fig. 13 and in more details in the second paragraph of Section 4.2. Note that the RV rms shown here is the one obtained from the raw
RVs once the best-fit of a model consisting of a linear correlation with log(R′HK) plus a second order polynomial as a function of time was removed.
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Fig. A.2. Same as Fig. A.1 but for RV fitting challenge systems 3 and 4.
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Fig. A.3. Same as Fig. A.1 but for RV fitting challenge systems 5 and 7.
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Fig. A.4. Same as Fig. A.1 but for RV fitting challenge systems 8, 9 and 10.
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Fig. A.5. Same as Fig. A.1 but for RV fitting challenge systems 11, 12 and 13.
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Fig. A.6. Same as Fig. A.1 but for RV fitting challenge systems 14 and 15.
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Appendix A: Summary of the planet detection
results obtained by the different teams

Figs. A.1, A.2, A.3, A.4, A.5 and A.6 show a summary of the
planet detection results obtained by the different teams.
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Appendix B: Details about the different algorithmes
used by the different teams to analyze the data
of the RV fitting challenge

Appendix B.1: Team 1

Appendix B.1.1: The step-by-step approach

Here is a detailed summary of the different steps performed by
team 1 to analyze the data of the RV fitting challenge.

1. Pre-treatment phase: removing long-term trends of stellar
origin: When generating the data of the RV fitting challenge,
Dumusque (2016) considered magnetic cycles and their ef-
fect on the different observables, i.e., log(R′HK), BIS SPAN
and full width at half maximum (FWHM) of the CCF. In this
case, strong correlation between log(R′HK) and FWHM, and
between log(R′HK) and RV are expected (Lovis et al. 2011;
Dumusque et al. 2011b; Lindegren & Dravins 2003). To test
those correlations, the Torino team calculated Spearman’s
rank correlation coefficients and found, in most cases, a very
strong correlation between these observables, i.e., ρ > 0.9.
In the case of significant correlation, i.e., ρ > 0.5, team
1 detrended the RV and the log(R′HK) using linear fits be-
tween log(R′HK) and RV, and log(R′HK) and FWHM, respec-
tively (Meunier & Lagrange 2013). Detrending the RV and
the log(R′HK) allows suppressing almost entirely the long-
term activity effect induced by magnetic cycles, and there-
fore leaves only the short-term activity effect, that team 1
further modeled using a GP. In the case of systems 9, 10,
and 11, RV were detrended with a linear fit as a function of
time, as a significant long-term signal, probably due to a bi-
nary, was still visible after correcting for the magnetic cycle
effect.

2. GP regression of the activity index log(R′HK): To model
log(R′HK) with a GP, team 1 used the combination of a ra-
tional quadratic (RQ) and a quasi-periodic (QP) covariance
function (Pont et al. 2013; Rasmussen 2006):

kRQ,QP(t, t′) = A2 exp
(
−

sin2[π(t − t′)/θ]
2L2

)
×

(
1 +

(t − t′)2

2αl2

)−α
+ σ2

t δtt′ , (B.1)

where t and t′ represent epochs of observations, θ the stel-
lar rotation period, σt is the uncertainty of the measurement
at time t, and δtt′ is the Kronecker’s delta. When there is
no a suitable guess about the timescale over which the data
are varying, the RQ kernel can be assumed as a reasonable
choice because it is intended to model the data by account-
ing for many different timescales. In fact, it is equivalent to
an infinite sum of squared exponential (SE) kernels:

kS E(t, t′) = h2 exp
[
−

(t − t′)2

2l2

]
, (B.2)

with different length-scales l (Rasmussen 2006), with the
inverse squared timescales l−2 distributed according to a
Gamma distribution with parameters α and β = l−2. When
α→ ∞ the RQ kernel converges to the SE kernel. The func-
tion kRQ,QP(t, t′) describes the degree of correlation between
each pair of measurements at times t and t′, reducing to un-
correlated noise, i.e., white noise, when t=t′. This form of
covariance function is suitable for data sets spanning a few
years. For example, for the long-term photometry data set

of HD189733, Pont et al. (2013) discussed the choice of a
kRQ,QP(t, t′) instead of a simpler exponential decay covari-
ance function to model the observed signal due to stellar ac-
tivity.

The best-fit values of the covariance function hyper-
parameters were obtained using an MCMC analysis. Initial
guess for hyper-parameter θ was derived by performing a pe-
riodogram analysis with the Generalized Lomb-Scargle al-
gorithm (GLS, Zechmeister & Kürster 2009). After a burn-
in phase, typically consisting of 1500 steps per chain, team 1
maximized the following log-likelihood function:

lnL = −
n
2

ln(2π) −
1
2

ln(det K) −
1
2

rT ·K−1 · r, (B.3)

where K is the covariance matrix built from the covariance
function in Equation B.1, and r is the detrended log(R′HK).
The best-fit estimates of the hyper-parameters, inferred from
their posterior distributions, were used as guess values for the
subsequent modeling of the RVs, as explained below. Team 1
derived stellar rotation periods from the posterior distribution
of θ.

3. First identification of significant signals; GLS analysis of
the RV time series: The Torino team applied the GLS algo-
rithm to search for significant signals in the original RVs.
Team 1 explored the frequency space below the Nyquist fre-
quency and estimated peak significance using p-values de-
termined through a bootstrap with replacement analysis con-
sisting of 10’000 random shuffles of the data by keeping the
time stamps fixed. Team 1 selected for further considerations
only peaks with p-values<10−3 (0.1%), except for systems
14 and 15, because of the lower number of data points.

Team 1 iteratively removed sinusoidal fits from the data, with
periodicity corresponding to the periodogram peaks, and ob-
tained guess values for the orbital period of the candidate
Keplerian signals. Team 1 looked at the window function to
discard aliases.

As a general rule, only significant RV signals with period
shorter than the data time span were considered, except for
system 7, where a signal with a longer period than the data
time span was modeled with a Keplerian in the global fit, de-
spite the inability of characterizing reliably the potential or-
bit. Moreover, the approach followed by the team was con-
servative, i.e. aimed at avoiding as much false positives as
possible, favoring the analysis of signals with the highest
semi-amplitudes.

4. RV model and MCMC analysis: After the analysis of the
GLS periodogram, and the identification of significant sig-
nals that could be due to planetary candidates, the Torino
team performed a global fit of the RVs with a model con-
sisting of Keplerian orbits and correlated noise, to account
for short-term stellar activity signals. This correlated noise
is modeled using the GP covariance function seen in Equa-
tion B.1. The training of the GP on the log(R′HK) gives ini-
tial guess for the GP hyper-parameters used when fitting the
RVs. Doing so, team 1 assumes that short-term activity sig-
nals seen in RV and log(R′HK) have a similar covariance.
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The general Keplerian model fitted to the RVs is described
by:

∆RVKep(ti) =

nplanet∑
j=1

∆RVKep, j(ti) + γ

=

nplanet∑
j=1

Ki

[
cos(ν(ti,T0 j, peri., P j) + ω j) + e j cos(ω j)

]
+ γ. (B.4)

Instead of fitting e j and ω j separately, team 1 introduced:

Ci =
√

ei · cosωi S i =
√

ei · sinωi, (B.5)

to uniformly sample the eccentricity parameter space (Ford
2006). Short-term stellar activity is fitted simultaneously by
the GP applied to the RV residuals obtained by subtracting
the Keplerian model from the raw RV data. The best-fit is
found by maximizing the log-likelihood seen in Equation
B.3. Note however that in this case the array r represent the
RV residuals.
The MCMC analysis used a number of random walkers, typ-
ically in the range 50-150, and was characterized by a burn-
in phase, in general consisting of 1500 steps. For each fitted
parameter the team adopted non-informative, uniform priors.
The hyper-parameters of the covariance function were con-
strained within a range with reasonable finite lower and up-
per limits comprising the best-fit estimates found with the
analysis of log(R′HK), except for the semi-amplitude term A
of the covariance function, which for the RVs is necessar-
ily different from that of log(R′HK) and was only imposed
to be positive. No upper limits were fixed for T0 j, peri. and
semi-amplitude K, while the orbital periods were constrained
over ranges of reasonable semi-amplitude centered on the
guessed values obtained from the GLS periodogram analysis.
To test the convergence of the different chains, team 1 used
the Gelman-Rubin statistics as described in Ford (2006). The
best estimate of each parameter is derived using the median
of its posterior distribution, with their asymmetric uncertain-
ties derived from the 16th and 84th percentile (1−σ uncer-
tainty).

5. Model selection: The GP analysis requires a significant com-
putational effort. Due to the relatively short timescale of the
RV fitting challenge, team 1 could only test a limited num-
ber of different models for each system. Team 1 performed
a Bayesian selection based on the truncated posterior mix-
ture (TPM) method described in Tuomi & Jones (2012). In
some cases, team 1 tested models with an equal number of
planets, but fixing or not the eccentricities to zero. In few
other cases, when signals could be of planetary or stellar na-
ture, team 1 compared models with a different number of
planets, limiting the analysis to circular orbits. Finally, when
the Bayesian analysis showed to be inconclusive, team 1 se-
lected the model with fewest parameters, following the ”Oc-
cam razor” principle. Note however this was not the case for
system 15, because the three candidate signals appear to be
well modeled by a sinusoid, even if the true nature of one
Keplerian was flagged as doubtful.

Appendix B.1.2: Algorithms and Tools

Here is a list of the different tools that team 1 used to perform
the analysis:

– Spearman’s rank correlation coefficients were evaluated with
the R_CORRELATE function, which is part of the IDL library.

– Linear fits (log(R′HK) vs. FWHM and log(R′HK) (or time) vs.
RV), and estimation of the GP hyper-parameters and Kep-
lerian parameters were performed using the publicly avail-
able EMCEE Affine Invariant Markov Chain Monte Carlo En-
semble sampler, developed by Foreman-Mackey et al. (2013)
(see also http://dan.iel.fm/emcee/current/).

– The GP regression analysis was performed with the George
Python library developed by Foreman-Mackey (2015) and
Ambikasaran et al. (2014), and publicly available at http:
//dan.iel.fm/george/current/

– The search for sinusoidal modulations in the log(R′HK) and
RV data were performed with the Generalized Lomb-Scargle
(GLS) algorithm developed by Zechmeister & Kürster
(2009).

Appendix B.2: Team 3

Appendix B.2.1: The step-by-step approach

Here is a detailed summary of the different steps performed by
team 3 to analyze the data of the RV fitting challenge.

1. First identification of significant signals Team 3 first an-
alyzed all time series of the RV fitting challenge using a
likelihood-ratio periodogram including a first order moving
average, i.e. a correlation dependence of each data point with
their preceding neighbor (see last term of Equation B.6). Sig-
nificant signals in activity observables, i.e. log(R′HK), BIS
SPAN and FWHM, were associated to stellar activity effect,
and significant signal in the RVs were associated to potential
planetary candidates if a similar signal was not seen in the
activity observables.

2. RV model and MCMC analysis:
To fit the RVs, team 3 used a model composed of:

– one or several Keplerians,
– a polynomial function up to the 2nd order to fit any long-

term trend due to distant companions,
– linear correlation with activity observables, to account

for the effect of magnetic cycles,
– a Gaussian white noise εi with zero mean and variance
σ2

i + σ2, where σi is given by the data and σ is a free
parameter to account for additional instrumental white
noise,

– and a first order moving average component with expo-
nential smoothing accounting for the intrinsic correla-
tions in the RVs.

In this case, the RV model that team 3 used can be described
as:

∆RVtot(ti) = ∆RVKep(ti) + εi + Cte + α ti + β t2
i +

+ c01 BIS SPAN + c02 FWHM + c03 log(R′HK)

+ φ
[
∆RVtot(ti−1) − ∆RVKep(ti−1)

]
exp

ti−1−ti
τ ,(B.6)

where Cte, α, β, and c01, c02, c03 are the free parameters of
the polynomial fit and to account for correlation with ac-
tivity observables, respectively. The parameter φ measures
the strength of the correlation between consecutive measure-
ments, τ is the correlation timescale, and ∆RVKep is the Kep-
lerian model described in Equation B.4. Team 3 analyzed the
data of the RV fitting challenge using adaptive-Metropolis
Markov Chain Monte Carlo samplings (Haario et al. 2001),
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maximizing the following log-likelihood:

lnL = −
1
2

ln(2π(σ2
i +σ2))−

 (RV(ti) − ∆RVtot(ti))2

2(σ2
i + σ2)

 . (B.7)

Note that in their analysis, team 3 fixed the correlation
timescale τ to 4 days, as this value seemed to give good re-
sults on previous analysis of HARPS high-cadence data.

3. Model selection: Team 3 used the MCMC samplings to cal-
culate the integrated likelihoods and obtain Bayesian esti-
mates for model probabilities when assuming equal prior
probabilities. Team 3 applied the method based on the mix-
ture of posterior and prior densities, described in Newton &
Raftery (1994), to compare between models.
When detecting a Keplerian signal, team 3 interpreted it as
existing if:
(a) including the signal in the model increased the model

probability by a factor of 1000;
(b) the corresponding signal was unique in the period space

such that there were no other periods with posterior den-
sity (i.e. local maxima) in excess of 0.1% of the global
maximum;

(c) and the period and the semi-amplitude of the signal were
well constrained from above and below, and the semi-
amplitude, in particular, statistically significantly differ-
ent from zero.

In addition to these criteria (Tuomi et al. 2014), team 3 inter-
preted the signal to be related to activity-induced variations
if any of the activity indices showed a significant signal at
the same period.

Appendix B.2.2: Algorithms and Tools

Here is a list of the different tools that team 3 used to perform
the analysis:

– Moving average (Baluev 2013; Tuomi et al. 2013)
– Adaptive Metropolis MCMC algorithm (Haario et al. 2001)
– Model selection using posterior and prior mixture (Newton

& Raftery 1994)

Appendix B.3: Team 4

Appendix B.3.1: The step-by-step approach

Here is a detailed summary of the different steps performed by
team 4 to analyze the data of the RV fitting challenge.

1. First identification of significant signals To look for signifi-
cant signals in the RVs, P. Gregory corrected the RVs from
the effect of the magnetic cycle using the log(R′HK)-RV cor-
relation, and considered any signal in a GLS periodogram
with p-values smaller than 0.01. Note that contrary to team
1 and 3, P. Gregory estimated p-values analytically.

2. RV model and MCMC analysis: Once the first peak is de-
tected, P. Gregory runs a Bayesian Fusion MCMC (Gregory
2013) analysis to find the best parameters for the signal,
and look for extra signals in the residuals using a GLS pe-
riodogram. To fit the RV data, P. Gregory used the following
model:

∆RVtot(ti) =

nsignals∑
j=1

∆RVKep, j(ti) × exp

− (ti − ta, j)2

2τ2
j


+ γ + εi + a log(R′HK), (B.8)

where nsignals is the number of significant signals in the data
independent of their nature, i.e. planetary or stellar activity,
ta, j and τ j are the center and timescale of the apodized win-
dow of signal j, and a is a free parameter to account for a
possible correlation between RV and log(R′HK).

3. Distinguishing planetary from stellar short-term activity sig-
nals: If the signal j is induced by a planet, the apodized term

exp
[
−

(ti−ta, j)2

2τ2
j

]
will essentially be constant over the duration

of the data because the semi-amplitude of the signal is con-
stant. In this case τ will be greater than the time span of the
data. On the other hand, the apodized term will strongly vary
as a function of time in the case of stellar activity, due to ap-
pearance and disappearance of active regions on the stellar
surface. In this case τ will be smaller than the time span of
the data.
To help distinguish between planetary and stellar activity
signals, P. Gregory used a second approach based on the
FWHM. The FWHM is first corrected for the effect of
the magnetic cycle using the log(R′HK)-FWHM correlation.
Then any significant signal found in either the initial cor-
rected RVs or the later stage RV fit residuals, that coincides
with a significant signal in the corrected FWHM, is associ-
ated with stellar activity.
At each stage in the RV analysis, the number of Keplerian
signals was extended to include the period with the highest
peak in the periodogram of the residuals from the previous
model as a starting point for a Bayesian Fusion MCMC ex-
ploration in parameter space.

4. Model selection:
Model comparison was based on Bayes factors computed
using the Nested Restricted Monte Carlo (NRMC) estima-
tor (Section 2.2 in Gregory 2016, Gregory 2013, Gregory &
Fischer 2010, and in more details in Section 1.6 of the Sup-
plement to Bayesian Logical Data Analysis for the Physical
Sciences available in the resources section of the Cambridge
University Press website for P. Gregory’s Textbook Bayesian
Logical Data Analysis for the Physical Sciences: A Compar-
ative Approach with Mathematica Support).

Appendix B.3.2: Algorithms and Tools

Here is a list of the different tools that P. Gregory used to perform
the analysis:

– GLS periodogram (Zechmeister & Kürster 2009) to look for
significant signals,

– Bayesian Fusion MCMC (Gregory 2013) to explore param-
eter space,

– and Nested Restricted Monte Carlo estimator (Gregory 2013;
Gregory & Fischer 2010) to compare between different mod-
els.

Appendix B.4: Team 7

Appendix B.4.1: The step-by-step approach

1. DFT of all observables and cleaning from the spectral win-
dow: To move from the time-domain to the frequency do-
main for the RV, BIS SPAN, FWHM and log(R′HK), team 7
used, like team 6, a DFT. In the frequency domain, any un-
even data as a function of time will be affected by the sam-
pling of the signal. To reduce the effect of sampling, team 7
used the CLEAN algorithm (Roberts et al. 1987). The team
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got as a result a cleaned DFT (CDFT) for all time series (see
upper-left panel of Fig. 10). Particular attention is made to
carefully select the gain parameter, in order to remove as
much spurious frequency peaks as possible without remov-
ing significant signals.

2. Removing stellar signals: To remove stellar signals, team
7 subtracted the CDFT of all the activity observables (BIS
SPAN, FWHM, log(R′HK)) from the CDFT of the RVs. The
obtained CDFT, exempt of stellar signals, is used to create
a pass-planet filter in the frequency domain (see upper-right
panel of Fig. 10). By applying this filter to the DFT of the
RVs, team 7 obtained RVs in the frequency domain that are
cleaned from any stellar signals. At this stage, any signifi-
cant signal in those filtered RVs should be due to planets.
Team 7 selected the highest peak and recorded its period,
semi-amplitude and phase.

3. Fitting planets: To fit the planetary signal found at the pre-
vious step with a Keplerian, team 7 first transformed the fil-
tered RVs back into the time-domain using an inverse DFT,
and then used the RVLIN package (Wright & Howard 2009)
to fit the planetary signal, fixing the initial parameters to what
was previously found.

4. Iterative process: Once team 7 found the best-fit for the
planet inducing the strongest RV signal, it removed the sig-
nal from the raw RVs. Team 7 applied the CLEAN algorithm
on the residual RVs and restarted the whole process from the
beginning. To be conservative and prevent the detection of
false positives, team 7 stopped when the semi-amplitude of
the signal found in the filtered residual RVs was smaller than
the average uncertainty of the RV measurements.

This method presents the advantage of being independent of
any model to account for stellar signals, and it is computation-
ally very fast compared to Bayesian methods. However this tech-
nique presents the disadvantage that planetary signals are only
fitted one by one, thus it is difficult to constrain orbital parame-
ters such as eccentricity and argument of periastron. In addition,
the imperfect removal of a signal causes the introduction of spu-
rious frequencies that can lead to false detections. In addition,
lack of statistics forced team 7 to stop at a S/N level of 1 (S/N
once the data have been filtered from stellar signals), preventing
the detection of small S/N planetary signals. Finally significant
signal around one day were not considered, to avoid strong resid-
uals of the spectral window not fully cancelled by the cleaning
process.

Appendix B.4.2: Algorithms and Tools

Here is a list of the different tools that team 7 used to perform
the analysis:

– Discrete Fourier Transform (as described in Roberts et al.
1987)

– CLEAN algorithm to remove sampling effects (Roberts et al.
1987)

– RVLIN package to fit Keplerians (Wright & Howard 2009)
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