Cluster Adjacency for m=2 Yangian Invariants
Lukowski, Tomasz, Parisi, Matteo, Spradlin, Marcus and Volovich, Anastasia
(2019)
Cluster Adjacency for m=2 Yangian Invariants.
ISSN 1126-6708
We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.
Item Type | Article |
---|---|
Uncontrolled Keywords | hep-th; Scattering Amplitudes; Supersymmetric Gauge Theory |
Subjects | Physics and Astronomy(all) > Nuclear and High Energy Physics |
Divisions |
?? sbu_spam ?? ?? rg_mtp ?? |
Date Deposited | 18 Nov 2024 11:47 |
Last Modified | 18 Nov 2024 11:47 |