
Integrated Virtual Reality Game

Interaction:

The Archery Game

Domenico Sammartino

Submitted to

University of Hertfordshire

in partial fulfilment for the award of the degree of

Masters by Research

March 2015

Contents

1 Introduction 2

2 Background Knowledge 6

2.1 Binocular Vision and Stereoscopy . 6

2.1.1 Binocular Vision . 6

2.1.2 Stereoscopy . 9

2.1.3 Stereoscopic Video Games in the past 12

2.1.4 Stereoscopic Video Games Today 13

2.1.5 Medical Consequences . 14

2.2 Motion Sensing Devices . 15

2.2.1 Microsoft Kinect . 15

2.2.2 Nintendo Wii Remote . 16

2.2.3 Optical Tracking . 17

2.3 Unity3D: a Game Engine . 18

2.4 Physical Model of a Bow . 20

3 State Of The Art 22

3.1 Stereoscopic Human Interfaces . 22

3.2 Immersive 3D User Interface for 3DTVs 24

3.3 A Bow as an Interaction Device . 25

4 Proposed Investigation 26

4.1 3D Archery Game: Potential and Shortcomings 27

4.2 Proposed Solution . 28

4.2.1 Motion Capture Module . 29

4.2.2 Stereoscopic-3D component . 37

4.2.3 Integrated System . 44

5 Implementation 48

5.1 Stereoscopic-3D Visualization Component 48

5.1.1 Preliminary Idea: Realising a Stereo Camera system in Unity3D 48

5.1.2 Implementing a Toed-in Stereoscopic-3D System 51

2

5.1.3 Immersive User Interface . 54

5.2 Motion Capture Component . 57

5.2.1 Tracking Tools and Unity3D communication 57

5.2.2 The OptiTrackUDPClient class 57

5.2.3 Tracking Object Script . 60

5.3 Implementing The ArcheryGame2.0 Game 61

5.3.1 Integration between the modules 61

5.3.2 Building the game components 64

5.3.3 Implementing the Game Mechanics 64

5.4 Testing System Functionality . 65

6 Conclusions 70

6.1 Summary and Achievements . 70

6.2 Future Works . 71

Appendices 76

A Code 77

A.1 OptiTrackUDPClient.cs . 77

A.2 handTracking.cs . 85

A.3 ToedInCamera.cs . 86

A.4 StereoAlgorithm.cs . 88

3

List of Figures

2.1 Altamira prehistoric cave - Spain . 7

2.2 Panum’s Area and Horopter. Original Source: Robert Earl Patterson

Ph.D., Binocular Vision and Depth Perception, Springer Berlin Heidel-

berg, pp 121-127. 8

2.3 Mirror Stereoscope . 9

2.4 View Master Binoculars and disks . 10

2.5 Anaglyph System . 11

2.6 Polarised Light . 11

2.7 The Sword of Damocles . 12

2.8 SEGA SubRoc3D console, separate from its cabinet 13

2.9 The TomiTronic3D (left) and GCE Vectrex 3D (right) 13

2.10 Nintendo Virtual Boy . 14

2.11 Microsoft Kinect . 16

2.12 Nintendo Wii Remote . 17

2.13 Ubisoft’s state-of-art performance capture studio in Toronto, Canada

(Ubisoft) . 18

2.14 Unity3D interface . 19

2.15 physical model of a bow, and efficiency curve 20

3.1 Effective working area graphic . 23

4.1 Proposed solution diagram . 27

4.2 Augmented Reality medical application using Motion Capture and

Stereoscopy-3D. Concept picture . 29

4.3 Motion Capture Module diagram . 29

4.4 The virtual space is superimposed onto the real one, delimited by the

area in front of the screen. 30

4.5 An object is characterised by the (x, y, z) coordinates and the rotation

along the axes (pitch, yaw, roll). The reference system is Right-Handed. 32

4.6 Typologies of client/server communication using the NatNet SDK. The

library is provided as support for some clients, otherwise it allows the

programmer to develop a custom depacketization client. 34

4

4.7 The UDP header is formed by 4 fields of 2 bytes each (16 bits). The

offset index starts from 0 and the length of the message can be maximum

65,535 bytes (8 byte UDP header + 20 byte IPv4 header + 65,507 byte

data). 34

4.8 The UDP payload stores the data sent by the OptiTrack server. Depend-

ing on the type of ID Message received, the buffer is filled with different

types of information. 36

4.9 S3D component diagram . 37

4.10 Parallel Stereoscopic-3D configuration 38

4.11 Toed-in Stereoscopic-3D configuration 39

4.12 It is possible to represent the camera frustum as a triangle (a) where

α represents the field of view angle. To calculate the dimension of the

clipping plane it is necessary to represent it as a goniometric circle (b). 42

4.13 Illustration of the Toed-in system designed on Unity3D. The figure is a

simplified version of the one seen in Chapter 3. 43

4.14 Calculating the dimension AB of the floating object, using the screen

size (W), the user-to-screen distance (d) and the user-to-object distance

(z). p represents the interaxial eye separation. 44

4.15 Integrated System diagram . 44

4.16 The substantial difference between the two systems is the version direction

sign of the z axis. 46

5.1 Stereo Camera in Unity3D . 48

5.2 The two cameras produce an unique view (a). The TV 3D Software then

produces the stereoscopic image (b) . 49

5.3 How a stereoscopic image is visualised in Unity3D 51

5.4 The calculation of the Projection Disparity allows to understand what is

the range in which the stereoscopic-3D object can be correctly seen by

the user. 53

5.5 Formula Application at a distance of 5 cm from the object 56

5.6 Formula Application at a distance of 2 cm from the object 56

5.7 Communication scheme between the tracked object and the server (Track-

ing Tools). The Unity3D Client receives and processes the data from the

server, then the Tracking Object Script reads this information directly

from it. 58

5.8 The Client side is composed by two or more different scripts. The

tracked object script, which is assigned directly on the virtual object on

the Unity3D scene, and the OptiTrack UDP client, which communicates

directly with the Tracking Tools server. 58

5

5.9 UML diagram of the OptiTrackUDPClass. 60

5.10 UML structure of a RigidBody Class 61

5.11 The two tracker sets have been built from scratch. In particular (b) were

a pair of sunglasses from which the lenses were removed, and the markers

installed with some screws. 62

5.12 The markers on the crossbow are placed to prevent the OptiTrack from

losing the object while the player is moving. Moreover, the variation of

the distance between A and B is used as a trigger event to shoot the

virtual arrow. 63

5.13 Every tracked object is equipped with reflective markers, placed in order

to compose different geometrical figures. The OptiTrack system transmits

the information relative to the marker sets centroid (red point). 65

5.14 Small Captured Area . 67

5.15 Big Captured Area . 67

5.16 The Monitor Tracker Set must be placed on or in proximity of the monitor. 68

6

Abstract

The aim of this research is to develop an innovative technology framework that allows a

new type of human-computer interaction, where user’s motion recognition is combined

with immersive visualisation. The demonstrator program allows the user to visualise a

virtual arrow on the top of a real physical crossbow used as game controller. Stereoscopic-

3D Visualisation is implemented using two virtual cameras with a variable angle between

them (Automated Toed-in). An algorithm is also used to calculate the maximum

acceptable dimension of the stereoscopic arrow, in relation with the screen size and

the data provided by the Motion Capture system about the user position. The Motion

Capture data are transmitted to the video game using a network interface demanded

also to depacketize and process the motion data. Tests prove that the Stereoscopic-3D

effect is strong enough to visualise the virtual arrow in a realistic position on the top of

the crossbow. The theory formulated may be utilised to develop a new generation of

Stereoscopic applications easy to use and immersive.

Chapter 1

Introduction

The field of user-computer interaction may be considered one of the most relevant

topics in Computer Science nowadays. Indeed, it is common to read about Augmented

Reality and Intelligent Interfaces in specialised journals and the everyday news. Fur-

thermore, the game industry is now moving towards a direction where the player or the

real environment1 become part of the game.

Nowadays touch-less devices are growing between end users, due to the innovation

which they bring among the different types of interactions between humans and machines.

For example, it is more comfortable to swipe a hand in front of a tablet to turn the

page of an ebook2 or to use hand gestures to control a SmartTV3. Theoretically, the

next step for touch-less devices is to allow users to perform more complicated actions,

such as driving a robot using military hand and arm signals4 or for an artist to carve

his\her next masterpiece.

Speech Recognition is another example of touch-less interaction; it is commonly

implemented in many electronic devices (especially smart-phones and tablets), and

allows the user to interact with the device using voice commands. Through these, it is

possible to perform different types of tasks such as sending emails, dialling a number,

setting an appointment on the calendar and so on. Apple Siri and Google Now are the

most important examples of this technology.

A wider scenario is offered by motion capture devices. These systems are able to

capture the movements of body parts, and to use them to interact with the user interface.

The most well-known motion capture device is Microsoft Kinect[28] (codename in

development Project Natal), developed by Micorsoft as a game controller for XBOX

1RoomAlive is a proof-of-concept realised by Microsoft, which transforms any room in an immersive
and augmented space, where the player can move and interact freely with virtual objects

2digital book publication in electronic form, commonly used on devices such as smart-phones or
tablet.

3New generation of TVs or set-top boxes integrated with broadcasting media functionality or the
possibility to install application on it to improve the device functions

4form of visual communication used by a military force when the soldiers need to remain undetected

2

360 and XBOX One. Equipped with an RGB camera, depth sensor and multi-array

microphones, this device is able to provide full-body motion capture, facial and voice

recognition. Following the XBOX edition, Microsoft released a version to be used on

Microsoft Windows - dedicated especially to developers - that has also been used to

implement gesture recognition[4] on the PC.

Used principally in film making, nowadays motion capture is widely used in gaming

and, more recently, with the introduction of the LEAP Motion Controller, has also

been introduced as a PC input device. Previously, motion gestures on PCs were possible

principally using webcam-based software (much less accurate), or using the Kinect

(which was something outside the competence of the common user).

The next step for new generation devices is to be able to analyse and understand how

the user interacts with the outside world and use this data to create a new interaction

model between the user and the machine, thus creating a more natural and instinctive

user experience. Moreover, this new kind of model could make things easier for those

classes of users with disabilities, or those who have difficulty using standard models

of interaction. An example would be a simultaneous translator from sign language to

voice, using a motion capture system that is able to translate sign language into spoken

words. The google Project Tango is an example of this. This proof-of-concept project

aims to make a portable device capable of analysing the room in which the user is

located, and to perform certain operations in relation to it.

The introduction of motion-sensing game controllers such as PlayStation Move
TM

,

Nintendo Wiimote
TM

and Microsoft Kinect
TM

has led to a new generation of game-play

which aims to create a fully immersive game experience for the player. Furthermore,

the comeback of HMD5 technology introduced a new concept of game-play in which

the player feels immersed in the virtual environment. Stereoscopic 3-D (S3D) visual-

ization, instead, was particularly appreciated in the early 2000s, and reached its peak

with James Cameron’s ’Avatar’, which led to a revolution[31] in this particular field6.

Nowadays, S3D is also commonly integrated into video-games, but only in terms of

graphic-effects improvement.

Do (Research) What People Want

The starting point of this research project was a motivation to expand the theory

behind an only Stereoscopic-3D Game, and to apply S3D to a wider scenario. Moreover,

the theory on which this research is based can also be used to develop an Augmented

Reality application, which is considered a hot topic nowadays. There are many examples

related to this kind of application that are trying to change the way people look at

reality; starting from the experiment by the supermarket chain Tesco[25] - to improve

5Head-mounted display: helmet provided with a small display optic in front of the user’s eye
6in terms of shooting and displaying stereoscopic movies

3

the e-commerce user experience - , to the marketing campaign delivered by Tissot[20]

to publicize their products.

It is important to propose a research study on an innovative topic, especially in order

to give an important contribution to human knowledge and the evolution of technology.

Improvements

Comfort and user experience are of supreme importance to mainstream consumers.

Nowadays, many computer games producers equip their products with a stereoscopic-

3D feature, but they are only concerned with the ”special effects”, and not with

serious improvements to the game-play. Moreover, most recent TV or PC-Monitors are

Stereoscopic-3D ready, and the related technology[10] is continuously improving.

Having a stereoscopic-3d effect that causes discomfort and does not add anything to

the user experience is unreasonable. For this reason, the focus of this project was to

study this field in depth, in order to formulate a better theory for obtaining an S3D

effect that is not as disturbing to the user, and which either fundamentally improves

the overall experience or is necessary to enjoy the content.

A Matter of (right) Movements

The possibility of using a stereoscopic-3d interface as a new way of interacting with

a pc is exceptional only if combined with a revolutionary input interface. Raise their

hands those who have never dreamt of interacting with a pc like Tom Cruise in Minority

Report. The good news is that this kind of technology exists nowadays. LEAP Motion

Control and Microsoft Kinect are only two examples of hand-gesture input peripherals.

The moment in which this kind of technology will be embedded in any device is not too

far off in the future[9][19].

Motion Capture is the most natural answer if someone wants to develop an easy to

use and immersive interface. For this reason, it is necessary to use a Motion Capture

system that is as precise as possible, and to make it work in all kinds of environments.

Why a Game

Despite the fact that video-games have always been considered as a hobby limited

to younger people only, nowadays they are starting to become more relevant in the

entertainment industry. In United States, video-games are considered to be one of the

fastest growing industries, and generated as much as $20.77 billion in profits in 2012[6].

Moreover, video-games are also used for educational or training purposes, (i.e. serious

games7) and the introduction of a Stereoscopic and a Motion Capture component can

7a game designed not only for an entertainment purpose. A flight simulator to train pilots is
considered a serious game.

4

open even wider scenarios of utilization.

Summary

Starting from the main motivation of studying a relevant topic, this research focuses

on two main topics. Although Stereoscopy and Motion Capture are two technologies that

are evolving continuously, they are not expanding as fast among mainstream consumers.

The purpose of this research is also to demonstrate that these two technologies are

more than adequate for developing good Augmented Reality software, in particular

video-games that can also be used for educational purposes8.

8lets imagine a game that allow kids to truly interact with an environment using hand gestures and
moving freely

5

Chapter 2

Background Knowledge

This chapter examines and analyses the knowledge at the basis of this research project.

Starting from an introduction to binocular vision in humans and the perception of

depth, the analysis will then move on to a brief history of Stereoscopic 3D Visualisation,

its function in computer graphics and the long-term side effects (mainly relating to the

nervous system and sight) that may arise as a consequence of prolonged use of this type

of technology.

The second part of the chapter will then focus on analysing the Motion Sensing

devices available on the market today, comparing them with the device used in this

research project and highlighting its benefits and shortcomings.

The game engine Unity3D will be the focus of the third part of this chapter, in which

the reasons for this choice will be explored.

Finally, the chapter will close with a very brief analysis of the physical aspects of

using a real object, in this case a bow, in a videogame. In particular, the mathematical

model used in the simulation of the arrow’s movements will be set out and explained.

2.1 Binocular Vision and Stereoscopy

2.1.1 Binocular Vision

“What is real? How do you define real? If you’re talking about what you can feel,

what you can smell, what you can taste and see, then real is simply electrical signals

interpreted by your brain. This is the world that you know.” (Morpheus’ answer to Neo

in The Matrix, 1999)

Sight is by far the most important of the senses: through sight, humans are able to

immediately gain consciousness of what is around them, subsequently completing the

information captured in this way through stimuli coming from the other senses. Sight

also enables humans to learn things faster, as can be exemplified by prehistoric cave

paintings used to recount historic events, or by paintings in churches used to explain

6

Figure 2.1: Altamira prehistoric cave - Spain

passages of the Bible or lives of the Saints.

What we see is determined by light being reflected off objects and passing through

the pupil, which is then “corrected” by dioptric correction. The light is then reproduced

on the retina and subsequently interpreted by the brain. What we see, therefore, is

none other than the result of electric impulses driven by the quantity of light that we

receive from our surroundings.

The aforementioned principle is valid for all species capable of vision, apart from

characteristics such as colour perception and the dimensions of the visual field. In fact,

some animals are unable of perceiving the full colour spectrum, while in others the

position of the eyes is such that the visual field is larger. In humans, the eyes collaborate

in a quasi-absolute way: the two ocular images combine in the brain to produce a single

image. In many animals, however, the vision of each eye is independent form the other,

resulting therefore in a wider visual field. In the case of eyes that present the same type

of perception, the term used is binocularity[8], while in the case of eyes with different

perceptions, the reference term is two-edged vision1.

Stereopsis is the ability of superior mammals and primates to perceive the depth of

space through the binocular system, i.e. using both of the images captured by each

eye, in order to obtain a final, single image. Depth perception, furthermore, is assisted

also by other monocular elements: information that can be gathered and elaborated by

even just one eye (occlusion, perspective, variations in contrast and motion-induced

parallax), as well as experience gained by the individual in evaluating the position of an

object in space based upon the individual’s own experience of the object’s properties.

Stereopsis, therefore, allows an individual to have greater perception, although there is

a limit of 6 to 8 metres from the observer in which stereopsis can function.

Therefore, humans are capable of seeing one singular imagine despite the eyes each

producing a separate image at the same time. This is possible because of a mechanism

known as sensorial fusion2 between the two distinct images. At the same time, the

1Some eye conditions such as strabismus, may cause binocular vision in humans as well.
2Motorial fusion, on the other hand, allows the individual to keep both images inside the fovea, due

7

Figure 2.2: Panum’s Area and Horopter. Original Source: Robert Earl Patterson Ph.D.,
Binocular Vision and Depth Perception, Springer Berlin Heidelberg, pp 121-127.

differences between the two images are analysed- a mechanism that allows the individual

to perceive depth, as well as greater ease in the recognition of the object[17].

An object projects a pair of retinal points, one for each retina, formed by the object

point that is observed in any particular moment. These retinal points are otherwise

known as correspondent, as they are both fused into a single point by the visual system.

The point in which the ocular axes converge is known as fixation. For each point of

fixation, there is a curve known as the horopter, composed of all the points of the

visual space in which fixation occurs. In order to recognise observed objects, it is

necessary that these are perceived as singular- therefore, cerebral cortex continuously

adjusts the muscles involved in this operation, so as to ensure that the images fall on

correspondent retinal points.

The points FLE and FRE in figure 2.2 represent the correspondent retinal points

of the fixation point F, which is perceived as singular. If we consider another point,

X, we can notice that it forms another pair of retinal points that, compared to the

previous two points, are positioned internally in the right eye and externally to the

left eye. The distance between FLE and XLE and between FRE and XRE is known as

retinal disparity. Due to the pairing of the correspondent retinal points, point X will be

visualised as a singular image. However, the different position of the F points to that of

the X points will result in the individual perceiving point X as being to the right of

point F. Furthermore, point X lies in a visual area known as Panum’s fusional area,

which extends in front of and behind the horopter. In this area, fusion still takes place

and the point will be visualised as a singular image, albeit more distant than point F.

Points that lie outside of Panum’s fusional area, on the other hand, are visualised as

double. This phenomenon is known as Diplopia, or double vision. The images of these

points are formed on retinal points that, being unpaired, are known as disparate and

to the continuous alignment of the ocular axes.

8

do not lead to fusion.

Humans do present a physiological form of Diplopia, but do not realise this as the

brain focuses on the object that the individual is observing, thus ignoring the double

images.

In reality, as an object is three-dimensional it is perceived as an ensemble of object

points that project their image in a corresponding set of retinal points. As there can be

only one point of fixation, the other points fall on the Horopter or Panum’s fusional

area, and are fused into singular points. However, they generate retinal disparities

that, once analysed by the visual system, generate the perception of the objects three-

dimensionality. Of course, it is essential that the points fall in Panum’s fusional area,

i.e. that they are perceived in absence of Diplopia.

2.1.2 Stereoscopy

Despite having always been a natural phenomenon, the first formal definition of

Stereoscopy was given in 1832 by Charles Wheatstone: “. . . the mind perceives an

object of three dimensions by means of the two dissimilar pictures projected by it on

the two retinae. . . ”[27]. Wheatstone demonstrated his assertion by constructing a

machine capable of simulating the perception of depth in an image- in this way, the

first stereoscope was born. The machine consisted of two cabins placed on either side

of the operator, on which were placed two images slightly differing from each other, as

seen by the human eye. A system made of mirrors and prisms sent the images back to

the eyes, allowing the individual to perceive the optical effect.

Figure 2.3: Mirror Stereoscope

A stereoscopic system must imitate the parallax angle that forms between the eyes in

9

order to aid the brain in interpreting the perception of depth in the stereoscopic image;

Wheatstone’s machine was based on this theory, as well as all the other systems created

since.

William Gruber’s View-Master, commercialised for the first time in 1938 by Sawyer’s

Photographic Service, was the first attempt at presenting this kind of machine to the

greater public. Over the course of subsequent years many models have been presented

and are still available to this day, but are fundamentally the same: the system is made

up of a pair of binoculars and a space in which disks are placed. These disks contain

slides that form the stereo image, and contain 14 images in total, although the individual

will only see 7 of them: in fact, each image visible to the individual is made up of two

slides, one for each eye.

Figure 2.4: View Master Binoculars and disks

In the computer era stereoscopy has largely been revisited in particular by the film

and video game industry, bringing about a distinct revolution in stereoscopic techniques.

Many stereoscopic models exist, ranging from images visible to the naked eye to

complex digital systems. This chapter will now cover the most relevant models of the

present day.

Anaglyph

This system, widely used by the film industry in the 1960s, is made up of a pair of

monochromatic stereoscopic images, each with a different dominant colour and mounted

on the same support. The images must be viewed using a particular filter, so as to

enable each eye to observe its relevant image. The coloured filters used most widely

are red, green, blue and their complementary colours: cyan, magenta and yellow. The

choice of colours to be used is determined by the fact that any given colour cannot be

present on both images. The overall effect of the Anaglif is less than satisfactory, as it

10

is impossible to view images in full colour and the brightness of the images is highly

limited. On the other hand, the model is extremely cheap to put together.

Figure 2.5: Anaglyph System

Polarised Light

A highly complex system used in the film industry, the Polarised Light model uses to

projectors with polarised lenses and particular glasses used to view the images. The

glasses used also have polarised lenses in order to enable each eye to view its relevant

image. This system is evidently more expensive than the Anaglif, but produces much

better results. The same effect can be obtained by projecting the images on a canvas on

which a polarised filter has been applied. The greater part of 3D televisions currently

available on the market is based on this technique.

Figure 2.6: Polarised Light

Shutter Glasses

Invented in 1922 by Laurens Hammond and William F. Cassidy and known at the

time as Teleview, this system entails an alternated shuttering of each eye so that a

single frame is viewed by the correct eye. The first prototype of this model used a pair

of glasses equipped with an automatic shuttering system. Towards the end of the 20th

century, this system was revisited and applied to an electronic digital system using

11

glasses with LCD lenses. These are then coordinated by a processor, and the system

can be used both at the cinema and at home, and linked to PC’s, consoles and more.

Using an appropriate type of software, the processor sends the left-hand and right-hand

images alternately to the projector or display. In order for this to be possible the display

must have a frequency of 120Hz- exactly double that of a regular display. The glasses

are then synchronised with the projector, so as to free each eye at the right moment.

Auto-stereoscopy

With this system, the images can be viewed in 3D without the aid of external

instruments positioned in front of the observer’s eyes (such as glasses, stereoscopes,

etc.). In fact, the support is already equipped with the appropriate technology that

will hide a certain image from the eye that is not supposed to view it. The most widely

used specimen of this system is the parallax barrier.

2.1.3 Stereoscopic Video Games in the past

The need to create more realistic and impactful video games has spurred developers

to experiment with new and innovative types of gameplay.

The major breakthrough came in 1969 with Ivan Sutherland’s Sword of Damocles.

Despite not being an actual video game, it is considered to be the first ever attempt

at creating a 3D virtual reality system. The experiment was composed of a helmet

equipped with two small CRT screens, one for each eye, connected to an enormous

mainframe, and the helmet displayed a simple stylised cube in stereoscopic 3D.[26] The

system was named the “Sword of Damocles” because the helmet was fixed on to the

ceiling due to its excessive weight- just like the Greek prince Damocles’ famous sword.

Figure 2.7: The Sword of Damocles

In 1982, 3D Stereoscopy enters arcades with the SubRoc3D arcade game produced

by SEGA. The game was equipped with a binocular visor, in which a rotating disk

was placed, alternately shuttering each eye. The game environment was made up of

12

Figure 2.8: SEGA SubRoc3D console, separate from its cabinet

hand-drawn elements placed in a 3D environment.[24] The aim of the game was to sink

the largest number of enemy ships, using a submarine.

The TomiTronic3D and GCE Vectrex 3D (1983 and 1982, respectively) were the first

attempts at bringing 3D video games into the homes of consumers. The former was the

pioneering portable 3D console, while the latter the first 3D peripheral for consoles.

Figure 2.9: The TomiTronic3D (left) and GCE Vectrex 3D (right)

In 1995, Nintendo attempted to create its own “portable” 3D games console: Virtual

Boy. This, sadly, revealed itself to be one of the company’s biggest failures. Made up of

a tripod-based helmet connected to a joypad, the game was discontinued by Nintendo

itself after a year after several customers complained of severe headaches caused by

Virtual Boy games sessions.

2.1.4 Stereoscopic Video Games Today

In 2010, Sony releases new firmware for the PlayStation3, adding a stereoscopic

support. In the same year, several 3D-supported games are released and 3D gaming

sees its golden moment.

13

Figure 2.10: Nintendo Virtual Boy

The next year, in 2011, Nintendo releases its latest portable console, the Nintendo

3DS, which allows individuals to play stereoscopic games without auxiliary instruments.

Despite a couple of booming years, 3D technology has now somewhat slowed down

due to decreasing interest from the greater public. The 3DTV market is winding down

and the Nintendo 3DS is currently being singled out as the company’s latest flop.[21]

The problem lies in the fact that 3D visualisation has been understood until this

moment as a graphic effect that makes video games “cooler”, adding nothing to the

actual game-play. Furthermore, the graphic quality of the game remains poor as the

console needs to go through the same process twice, elaborating a separate image for

each eye. Another obstacle to the diffusion of stereoscopy in video games lies in the

quality of 3D displays, as in order to achieve the best possible 3D experience the monitor

must be as extended as the individual’s visual field. The size of a monitor is directly

proportional to its cost, and very few gamers are willing to spend the amount of money

required for the best possible type of 3D system.

2.1.5 Medical Consequences

A common perception is that 3D visualisation is harmful to eyesight, and generates

painful headaches. This kind of reaction in the human body is the result of the optical

illusion created by stereo images.

In nature, accommodation3 and convergence4 are closely linked, as they enable the

individual to visualise and focus on objects that are placed at a certain distance. Each

3the process by which the eye increases optical power to maintain a clear image (focus) on an object
as it draws near

4simultaneous inward movement of eyes toward each other to maintain the observed object always
in sharp

14

time an individual observes an object, the effort required of the eye muscles is directly

proportional to the object’s distance from the observer.

In the visualisation of stereo content, the link between the two aforementioned

mechanisms is interrupted, as the eyes both adjust to the level of the support that

visualises the image rather than where the object is projected by the stereo effect. At

the same time, however, both eyes converge on the 3D object. This condition is known

as discordance between accommodation and convergence, and is the principal cause of

3D-related visual strain.[12]

For the same reason, it is clear that stereoscopy is possible only for individuals that do

not suffer from visual conditions that cause this type of discordance, such as strabismus.

2.2 Motion Sensing Devices

In 1984 the first mouse appeared with the Macintosh 128K. This innovative input

system shook the world of IT, as it was now possible to use hand movements to interact

with a computer.

For the same reason, the introduction of the graphic board revolutionised the world

of digital graphic design as it allowed designers to use familiar movements – such as

those required to draw with a pencil – in order to develop digital designs.

Motion sensing devices have the same goal: to use movements that are natural to

human beings in order to interact with digital devices. Examples of such movements

are turning the page of a book, or moving a steering wheel in order to simulate driving.

Nowadays, the videogame industry has reached a level where the graphic models

used in videogames are extremely close to reality. Therefore, the only way to create

new games able capable of attracting more consumers is to offer new experiences in

game-play. Many companies have turned to motion sensing devices to achieve this aim.

The following paragraphs are dedicated to a description of some of the devices that

are at the moment changing the world of video games, as we know it.

2.2.1 Microsoft Kinect

Released by Microsoft in 2010, the Kinect is a revolutionary input device capable of

capturing body movements and of using them to interact with digital content. Initially

only available for the Xbox, the Kinect was then released in 2012 with a kit that allowed

it to be used with a PC.

The device is equipped with an RGB camera, a depth sensor and an array of

microphones. The depth sensor is an infrared laser combined with a CMOS sensor,

capable of capturing 3D data under any light conditions. The sensitivity of the sensor

is adaptable in relation to the gameplay, the individual gamer’s physical conditions

15

and any obstacles present in the device’s field of action. The microphone allows a

localisation of sounds, as well as noise reduction.

Figure 2.11: Microsoft Kinect

Unfortunately the device does not capture the movements of all body parts, as it is

unable of recognising individual body parts such as the fingers. Furthermore, it cannot

capture movements made by objects, but only those made by the human body.

2.2.2 Nintendo Wii Remote

Released in 2005 along with the Wii console, the Wii remote is considered to be the

greatest revolution in console-based gameplay.

The remote is formed of an infrared camera placed at the top, and an accelerometer

on the inside. These allow for the manipulation of objects on the screen through the

movement and pointing of the device.

The controller is capable of capturing movements on three axes through the use of

the accelerometer and of moving a pointer on the screen through the camera and a

sensor strip placed along the display. The sensor strip is formed by 4 LEDs in line that

allows the Wii Remote to locate its physical position.

In subsequent years, the device has been upgraded several times through a communi-

cation portal placed at the base of the controller. Examples include the Wii Motion

Plus, which captures even more complex hand movements, the Wii Vitality Sensor, that

reads the individual’s vital stats through an oximeter, and the Numchuck, a type of

joystick equipped with an internal gyroscope that allows the expansion of the movement

area.

This controller is capable of capturing the movement of a single hand (or of both, in

the case of the Numchuck) but not of the entire body. Therefore, the gameplay of an

16

FPS (First Personal Shooter) could be easily enhanced, while this would not work in

the case of a football game.

Figure 2.12: Nintendo Wii Remote

2.2.3 Optical Tracking

In order to develop a device capable of recognising the movement of individual fingers

or of the head, or capable of achieving the greatest precision possible, the two devices

discussed above are not suited to the task. In order to achieve this, it is necessary to

turn to the family of devices known as Optical Tracking Systems.

Largely used by the film industry (e.g. Avatar) and in the development of certain

video games (such as Splinter Cell: Blacklist), these devices are the most accurate

currently available on the market.

The devices are based on a simple principle: a set of three or more cameras are

installed in a quasi-circular space, and markers made of a particular reflecting material

are placed on the object or individual that is to be traced. During the capture session,

the cameras trace the movement of the markers and transmit these movements (under

the form of X, Y and Z coordinates) to the computer, which elaborates them for the

relevant application.

There are two types of optical tracking systems: active and passive. The former is

the most common and cheapest, as the markers are small spheres made of a particular

material that allows the light reflected from the cameras to be once more received by

them. The latter works on the same principle, although the markers themselves emit a

form of light (usually infrared) that is then captured by the cameras.

An example of these devices is Natural Point’s OptiTrack camera set- this device was

also chosen for the development of this project.

17

Figure 2.13: Ubisoft’s state-of-art performance capture studio in Toronto, Canada
(Ubisoft)

2.3 Unity3D: a Game Engine

Unity3D is a cross-platform engine developed by Unity Technologies. Born in 2005

as a development tool for games on OSX (Apple’s Operating System), today it is one

of the most widely used tools in the development of video games.

Developed in C/C++, it supports code written in C-sharp, Javascript and Boo and

allows for these to be simultaneously used in the same project. This tool allows the

development of video games that can function on PlayStation 3, Xbox 360, iOS (Apple’s

mobile operating system), Android, PC Windows, Linux, OSX and web applications.

Unity has its own internal tool for the construction of virtual video game environments,

but also supports models imported from other programs such as 3DStudioMax, Maya,

Blender and many others. It also supports the widely known physical engine NVIDIA

PhysX, for the simulation of more complex physical effects and the ulterior enrichment

of the game play.

Unity3D comes in two versions- free and pro. The former has all the standard

characteristics needed to develop a video game with this engine, while the pro version

also includes support at diversified levels of detail for better features, better audio

filters, audio and video import and reproduction, a support with dynamic lighting and

much more.

Last but not least is the worldwide community that offers help and advice as well as

contributing to continuously improve this software.

Unity’s philosophy is based on the following principles:

• Scene: the virtual location in which the game is set. A scene can be an entire

level or a single part of it as it is often better to distribute a level in multiple

scenes in order to increase the loading quality.

• Assets: The most basic of the blocks that make up the video game. These are

18

the resources used to build the game such as texture, scripts and XXX. Assets

are assigned to game objects and prefab.

• Game object: The active objects present in a scene. It is possible to create

empty ones (that only have the possibility to transform- i.e. to be rotated or

moved), or to choose from the pre-made ones.

• Prefabs: Sometimes a developer needs to reuse the same game objects in many

scenes and many times. Prefabs allow the memorisation of complete objects for

them to be reused at a later time.

• Components: particular objects that can be linked to the game objects in order

to change their behaviour. Functionality can be added and their appearance can

be changed. Common components in Unity are particle emitters, cameras and

lights.

The interface is composed of five principal views:

Figure 2.14: Unity3D interface

• Scene: The section in which it is possible to add, move or remove the active

objects in a scene. In other words, this is the visual editor in Unity.

• Game: Here the entire video game can be previewed through the principal camera

(if present). When test mode is on, the entire game can be tested, although the

more advanced effects are not active.

19

• Hierarchy: This lists all the active objects present in the actual scene. Through

this list, it is possible to quickly select an object or add a particular activity or

component to an active object.

• Project: A global vision of the project file. From here, it is possible to select the

activities and components imported from other programs, or downloaded from

other sources.

• Inspector: After having selected something in the hierarchical or project view, in

this section it is possible to view and modify its properties. If a script is selected,

it is possible to preview the written code on the inside. From here it is also

possible to add something to a selected object.

2.4 Physical Model of a Bow

Used since ancient times by the human race to fight and hunt, nowadays the bow

is used principally as a recreational activity. Normally, when an individual throws

an object with his or her arms, the final speed of the object is determined by the

kinetic energy transferred from the muscle. People with longer arms or more muscle

are naturally more capable of throwing the object further and at a higher speed. A

force-speed relation limits the power generated in this way and, even when the muscles

contract at the right time and release the object at the right speed, the force lost in the

throw is more than half of the total force.

A bow aids this process as the muscles are able to work at a slower pace and most of

the work is done by the bow in the form of potential elastic energy. This energy is then

transferred to the object (arrow) when the bow is released, giving it a much higher

speed and allowing it to travel a much greater distance.

Figure 2.15: physical model of a bow, and efficiency curve

As illustrated in Figure 2.15, the force (F) applied to the arrow is correlated to the

distance by which the chord is moved from its resting position to a position of tension

20

(point x in the figure), and is tightly correlated to the potential energy stored by the

bow as the chord tenses. This relationship is described as such:

Epot =
1

2
∗ k ∗ x2 (2.1)

In Equation 2.1 k is a constant known as the elastic constant, and is linked to the

type of bow used (a long bow will have a different k to that of a short one). The greater

k is, the more energy will be needed to tense the chord (for example, Ulysses’ bow must

have had a k tending to infinity).

As described in Equation 2.2, when the chord is released, the potential energy is

transferred to the arrow in the form of kinetic energy, minus a small part that

dissipates through friction with the air (this is illustrated as µ). In the end (Equation

2.4), the initial speed of the arrow will be the following (m being the arrow’s mass):

µ ∗ Epot = Ekin (2.2)

1

2
∗ µ ∗ k ∗ x2 =

1

2
∗m ∗ v2arr (2.3)

v2arr =

√
µ ∗ k ∗ x2

m
(2.4)

21

Chapter 3

State Of The Art

3.1 Stereoscopic Human Interfaces

Tele-operation is widely applied to robotics in order to operate in a remote context

trough the utilisation of a robot. In their paper[7], Ferre et al. illustrate the possibility

of adopting a Stereo-3D visualisation system to obtain a better representation of the

remote operation space. Indeed, when the operator seeks a precise robot guidance, in

order to manipulate objects as well (for example thorough the utilization of robotics

arms), it is necessary to obtain a better perception of the remote environment. Please

note that a monoscopic system is better, where either only a supervision of the robot’s

movements and a remote programming procedure are required.

In humans, each eye has a field of view angle of 120◦, while the region where the

images are captured by both eyes is 50◦ wide. The images captured in this smaller area

are correctly merged by the brain, generating a depth perception of the individual’s

surroundings. This merging mechanism is realised through the combined work of

the different parts of the eye. Reproducing this mechanism is the largest obstacle in

developing a 3D-Visualization system capable of reproducing a realistic depth perception.

Indeed, it is fundamental to keep in mind that no 3D visualization system is as effective

as than as binocular human eyesight. Taking this as assured, it is still possible to design

a binocular camera set-up that partly reproduces the natural human stereoscopic vision.

The solution is to use two cameras with a focal length equivalence of 50 mm, placed

at a distance of 6-7 cm from each other and with a small angle (less than 25◦) between

them. The angle between the two cameras is a key point in determining where the

images are properly merged, and the dimension of the effective working area. The

effectiveness of the system is calculated using Equation 3.1, that calculates the maximum

projection disparity achieved by the aforementioned system.

projectionDisparity(d) = 2 ∗ focallenght ∗ tan

(
α

2

)∣∣∣∣Hd − 1

∣∣∣∣ , with α > 0 (3.1)

22

Using the same formulation, it is possible to calculate the maximum projection

disparity in the case of a parallel axis camera system (α = 0).

projectionDisparity(d) = focallength ∗ O
d
, with α = 0 (3.2)

Please note that H represents the distance between the cameras and where their

axes intersect, while O represents the interaxial distance between the two cameras. α

is the angle between them and d the distance between the camera setting and a generic

observed object.

Figure 3.1: It is possible to calculate the effective working area, according to the
maximum projection disparity. In the case of α > 0 (a) the objects placed at a distance
between A and B are correctly merged. On the other hand, in an α = 0 configuration
(b), the object must be placed further than 1200 mm (point M) to be correctly fused.

Figure 3.1 illustrates the results of the above formulas, compared to a maximum

acceptable disparity defined as 12 mm. This value depends on the user-to-screen

distance (in this case 45 cm) and the human thresholds (1.5◦) for image disparity. It

is possible to observe that the effective working area dimension varies considerably

between the two configurations. A system with crossed axes is better if used when the

object is near the cameras, meanwhile a parallel axes configuration is better for objects

that are placed further away. The best solution is to have a system that is able to

adapt the angle between the two cameras by itself, depending on the distance from the

observed object.

The above theory is also applicable to the context of virtual reality, albeit taking

some considerations into account. The biggest obstacle is represented by the different

typology of cameras used to develop the ArcheryGame video-game. The virtual cameras

utilised in Unity3D are able to sharply visualise all the objects located inside the Field

of View, whether they are placed really close or at a distance up to infinity. In Chapter

4 & 5 we will see how to apply this theory to calculate the effectiveness of a Toed-in

stereoscopic system realised in Unity3D, which is able to vary the α angle between the

two cameras.

23

3.2 Immersive 3D User Interface for 3DTVs

Stereoscopic-3D visualisation can also be applied to designing Immersive 3D User

Interfaces, which can be applied to many fields. An Immersive 3D environment allows

users to see 3D objects and still have the perception of their own body, while interacting

with the virtual components. The floating object produced with Stereoscopic-3D

visualisation can compose an interface that allows users to interact with those objects

as naturally as in real life.

Du et al. [5] analyse the realisation of this kind of User Interface, solving some

important technical issues particularly relating to the user experience.

Nausea is eliminated by applying a constraint directly related to Martin Banks’ ”1/3

dioptre” law[16][3]. This law is expressed by Equation 3.3, where z is the perceived

distance from the virtual object and d is the user-to-screen distance.∣∣∣∣1z − 1

d

∣∣∣∣ ≤ 2.3 (3.3)

The perceived dimension of the object is also an important issue when realising an

immersive 3d user interface. If too small, users may experience strong difficulties in

interacting with the floating object. At the same time, if too big, the object may not

be displayed correctly by the visualisation system.

Equation 3.4 illustrated by Du et al. allow the calculation of the maximum acceptable

dimension (WxH) of a floating object, in relation with:

• Screen Size w

• Watching Distance d

• Interpupillary Distance p

• Screen Height h

W =
z(w + p)

d
− p

H =
z ∗ h
d

(3.4)

The solution takes into account the realisation of a User Interface where the Stereo-

3D floating object is only defined by its height and width. In our case, the virtual

arrow is also characterised by its depth, which does not influence the user experience if

maintained proportionally to the other two dimensions.

In realising the Archery Game, the above formulation was used in order to establish

the actual dimension of the floating object at a certain distance z calculated by the

OptiTrack System. In this way, it may be possible to enhance the Stereoscopic effect in

relation to the perceived distance, and to scale the object dimension when it changes.

24

3.3 A Bow as an Interaction Device

The idea of an Archery Game was taken from two past related works that explored

the realisation of a Virtual Reality game where the user can interact with the virtual

world through the utilisation of a real bow. Both works rely on the utilisation of optical

tracking to capture the bow movements performed by the user, as well as on stereoscopic

3D visualisation to visualize the real environment.

In Deer Hunter [23], the authors use a system formed by two cheap security cameras

located on the left and right sides of the player. These cameras are equipped with a

IR emitter for night vision operation. At the same time, a set of three IR reflective

markers are placed on the bow, that can be seen by the two cameras. Using global

thresholding they are able to distinguish those pixels that contain the information

relative to the reflective markers. With triangulation it is possible to calculate the exact

spacial position of each marker. Through network communication, the information

relative to the position of the bow and its orientation are sent to a Virtual Environment

Client, which will use them to interact with the virtual world. The game has also been

designed to work in multi-player, where two users located in different rooms (as well as

at greater distances) can compete inside the same Virtual Environment.

Bow Operated Virtual World [1] expands the previous work, using a Panorama Screen

and implementing new bow actions as well. Indeed, the user is now able to move freely

inside the Virtual Environment. The Panorama is realised using a curved screen that

completely covers the user’s field of view. A set of different projectors is needed, which

uses an active shutter glasses system to visualise the Stereo-3D images.

These two projects were used as the starting point for developing the new ArcheryGame.

Despite the fact that both projects aim to realise an immersive game, they do not focus

on the Stereo-3D component, but merely implement a simple system that is able to visu-

alise the images giving a moderate depth perception to the user. The ArcheryGame 2.0

analysed in this master thesis aims to focus particularly on the Stereoscopic component,

bringing the user further inside the Virtual Environment.

25

Chapter 4

Proposed Investigation

The aim of this research is to develop an innovative technology framework that allows

for a new type of human-computer interaction, where the recognition of the user’s

movements is combined with immersive visualisation. The ultimate goal is a simple

to use and more effective touch-less type of human-computer interaction, compared to

what is currently available. The proposed new concept is applied to an innovative game,

where players use their own body movements in the surrounding 3D space and provide

commands to the game. The game of reference is the 3D Archery Game, which is

presented in the next section. In this game, it is possible for a user to interact with and

play the game by using hand gestures while effectively benefiting from S3D visualization.

The proposed research and development activity aims to demonstrate the feasibility of

this new type of interaction. In order to achieve this goal, the following objectives were

set out:

• Motion capture. Develop an accurate motion capture technology setup that

provides positional input to the game engine.

• 3D Visualization. Develop an accurate 3D visualization method, which allows

the integrated system to display 3D visualization information consistently to the

motion capture.

• Integrated System. Develop an integrated system capable of managing motion

captured positional information, 3D visualisation, and computer graphics objects

visualised according to the 3D visualisation method developed in the previous

point.

The following sections describe the proposed idea and the motivation behind this

research.

26

Figure 4.1: Proposed solution diagram

4.1 3D Archery Game: Potential and Shortcomings

To test the main idea, it was decided to develop an improved version of an Archery

Game (formerly know as ArcheryGame1.0), developed by the author in 2013. The game

consists of the possibility for the user to shoot virtual arrows using a real bow - the

bow is then tracked by the motion sensing system. Moreover, the 3D Visualisation

system allows the user to see the virtual arrow superimposed on the real bow.[22]

Potential

New type of interaction The system allows the user to interact with

the virtual environment using a real object.

In this case, a bow that can be chosen based

on the player’s requirements

Full-immersive gameplay The 3D effects transform the room in which

the system is installed in the game envi-

ronment. The player and the environment

around it are part of the game.

27

Idea with infinite potential The ArcheryGame is only an example of the

basic idea. Following the same principle, it is

possible to develop other types of applications,

not only related to the field of video games.

Shortcomings

Limited interaction The user is only able to rotate the field of

view. The virtual arrow cannot follow all the

movements of the bow, which means that the

arrow will not be seen exactly superimposed

on the bow.

No system integration The motion capture and the stereoscopic sys-

tems are not able to communicate between

each other. The arrow is rendered based on

an approximate position of the user.

Basic tracking performances The motion capture does not track position,

but only the rotation angles (yaw, pitch, roll).

Tracking is limited only to one object at any

one time.

Basic stereoscopic effect The game is not designed for the S3D. The

stereoscopic visualisation is achieved by con-

verting the 2D rendering in 3D, using a fea-

ture integrated into the GPU. Due to this,

the user is not able to customize the S3D

effect, but only to (slightly) change the depth

perception.

Game affected by lags The game runs on the same machine that has

to elaborate the motion capture data. The

workload may then become very high.

4.2 Proposed Solution

A Virtual Reality game is defined as a game which is playable using only the body

movements of the player or through the utilisation of a real object (like a bow), which is

not directly connected in any way to the pc on which the game runs. In this way, every

object can be used as a game controller -from a bow to a blade- without any limitations

28

in player fantasy or requirements.

A video game, especially an Archery Game, needs a game controller that must be

reactive and as accurate as possible in reflecting the player’s actions in game. The

principal features that must be taken in account to choose the Motion Capture system

to be adopted as game controller are accuracy and reliance.

The previous section highlighted the limitations present in the first version of the

game. In order to make a game playable in stereoscopic-3D visualization, it is necessary

to redesign the motion capture and the stereo-3D module, and to implement an effective

connection between them.

Figure 4.2: Augmented Reality medical application using Motion Capture and
Stereoscopy-3D. Concept picture

4.2.1 Motion Capture Module

Figure 4.3: Motion Capture Module diagram

Motion capture devices (also known as motion sensing devices) are capable of

recording the movements of objects or people.

The first version of the ArcheryGame was implemented using an Optical Tracking

system, capable of detecting the movements of a real bow on which some passive

29

Figure 4.4: The virtual space is superimposed onto the real one, delimited by the area
in front of the screen.

markers are installed. The first procedure proposed to detect player movements was

not complete and had some shortcomings.

The Virtual World superimposed onto the Real World

A motion capture system is a technology that is able to continuously detect the

position of an object moving inside a real space. To develop an Augmented Reality

game that uses this technology to allow the user to interact with the virtual object,

it is necessary to translate the real environment -in which the user operates- into the

virtual one, where the interface components are located (Figure 4.4).

The movement of an object is characterized by the change of its positional coordinates

along the axes (x,y,z) and by the rotation along them (pitch, yaw, roll). It is not possible

to identify the virtual object inside the real world using the same coordinates of the

virtual environment. Indeed, we need to align the real and the virtual world,and also

to align both coordinate systems. To do so, we must identify a unique reference system

on which we can translate the coordinates of both the real and virtual space. There are

two ways of obtaining this: the first one is to create a virtual space which is based on

the same reference system of the real space, while the second one is to translate into

real space coordinates the virtual space coordinates.

An example is shown in Figure 4.4, where the real world is represented by the area

around the screen. The objects (two little grey balls) are visualised through the 3D

30

Visualization system, in order to appear inside the real world.

This problem, related to the reference system, is strictly connected to the kind of

motion capture technology that will be used to track the user’s movements.

Three motion capture systems have been considered, the features of which were

analysed in order to choose the most appropriate system for the game. Those systems

are LEAP Motion Controller, Microsoft Kinect and Natural Point OptiTrack.

The following table gives a brief view of the features of interest. It should be noted

that hFoV and vFoV stand for Horizontal and Vertical Field of View, and represent the

view angle of the embedded cameras. FPS stands for Frame per Second, and it is the

frequency on which the images are captured by the system.

Device Full-

Body

Marker-

less

Range Frequency Accuracy

LEAP No Yes 150◦hFoV 290FPS 1\100th mm

Kinect Yes Yes 57◦hFoV

43◦vFoV

30FPS 1-2mm

OptiTrack Yes No 46.2◦hFov

34.7◦vFoV

100FPS sub-

millimiter

The LEAP Motion and Kinect are Marker-less systems. They are simpler in terms

of installation and configuration. It is not necessary to place markers on the player

and, usually, they are already calibrated to be used out-of-the box. On the other hand,

they are able to capture the human body rather than objects. The Microsoft Kinect

full body capture is limited to 20 articular joints, which means that the fingers are not

recognised. Leap motion, on the other hand, is able to capture the fingers and most

common hand gestures, but is not capable of full body recognition.

31

After an accurate analysis, it was found that the OptiTrack system satisfied the project

requirements. It allows for tracking both body movements and objects manipulated by

a user, by placing IR reflective markers on the object to be tracked. The shortcomings

of this system include the necessity to have at least 3 cameras -OptiTrack is usually

expensive- that must be installed around the tracking area. Furthermore, the calibration

process is not simple. Nonetheless, the system is highly configurable and can easily be

adapted for several applications.

Kinect and Leap motion have their own reference system, which requires specific

mapping between real and virtual coordinates. Using the OptiTrack system it is

relatively simple to do so.

The main theory behind this is very simple: the origins of the virtual and real world

must coincide, as well as the direction of the axes.

The OptiTrack system maps the captured area to a virtual space. This mapping is

based on metric units. In principle, is straightforward to map the OptiTrack virtual

space onto the Unity3D virtual space, if fixed reference points are provided.

It was decided that the common coordinates system origin was to be located at the

bottom of the visualization screen in use. This origin of the coordinates system is

supposed to be estimated by placing markers on the monitor. Once this position is

known, all objects can be related to the common coordinates system.

Each object visualised is characterised by two sets of information. The first describes

the object’s centre position (along the x, y and z axes), while the second one describes

the rotational position (pitch, yaw, roll).

Figure 4.5: An object is characterised by the (x, y, z) coordinates and the rotation
along the axes (pitch, yaw, roll). The reference system is Right-Handed.

32

Using the OptiTrack data

The script that receives and processes the data in Unity3D from the OptiTrack

System, was provided by the system vendor (Natural Point). It was a generic example

able to track the movement of a single Rigid Body or a Skeleton1. This research aims

to use three Rigid Bodies and, in order to do so, it was necessary to analyse in depth

the communication mechanics and the different typologies of frame transmitted from

the OptiTrack. Given that no documentation was provided to guide the improvement

of this communication script, the analysis below was produced by the author and can

be used as a starting point for future improvements.

Once the real object is correctly tracked by the optical system, the data must be

analysed and then processed by the game engine, in order to visualize the game interface.

The communication channel has been designed to work on network bases, using User

Datagram Protocol (UDP) and a socket connection between the server on which the

optical tracker is installed and the client, where the game engine runs. The server sends

each packet through the networks, using a multicast address, allowing several clients to

receive the data. If a multicast connection is not available, it is possible to set up a

unicast connection specifying the server IP address on the client side.

UDP is appropriate for data transmission where it does not matter if one packet is

lost during the communication, rather than the data streaming arriving to the receiver

as close to live as possible. Moreover, the OptiTrack server allows to transmit up to

100 frames per second, and the loss of one or two frames does not influence the quality

of the motion capture.

The OptiTrack server uses a proprietary library to stream and receive the data

through the network. This library works as an interface of communication (using

the scheme explained above) and depacketisation of the data received by the client.

The Figure 4.6 represents the exchange of data between various kinds of client and

the server. Two-way communication allows the two parties to exchange information.

In particular, the client asks who can transmit and the server sends the data to the

requesters. The game engine Unity3D utilised to develop this project is not present in

the list of NatNet SDK supported clients. It was necessary to design and develop a

custom client application in order to receive and read the frames sent by the server2.

The server sends the frame through the network using a buffer, and its dimension

depends on the number of markers that are present inside the captured scene. Using an

index, which is updated every time the application reads a set block of information, it is

possible to go through the buffer and read all the data inside. Inside a UDP packet are

stored not only the data to be transmitted, but also the address information to reach

1A Skeleton is a set of Rigid Bodies grouped together to simulate the movement of a more complex
object, such as a human body

2The complete implementation of the client will be explained in Chapter 5

33

Figure 4.6: Typologies of client/server communication using the NatNet SDK. The
library is provided as support for some clients, otherwise it allows the programmer to
develop a custom depacketization client.

Figure 4.7: The UDP header is formed by 4 fields of 2 bytes each (16 bits). The offset
index starts from 0 and the length of the message can be maximum 65,535 bytes (8
byte UDP header + 20 byte IPv4 header + 65,507 byte data).

the client. For this reason is important to discern between the two typologies of data so

as to analyse exactly from which index position the marker information starts. Figure

4.7 illustrates the UDP packet structure. The first 16 bits of the frame are composed

by the header, which contains the Source and Destination port, the total length of

the message and the Checksum.

The communication between the Server and the Client happens using two different

ports. The Command port is used to exchange the command requests between the

two parts, while the Data one is used to transmit the motion capture data. Every

OptiTrack frame carries an ID Message, which denotes what kind of data are inside the

packet. The complete list of those IDs are listed in the following table.

MESSAGE ID

PING 0

PING RESPONSE 1

REQUEST 2

34

RESPONSE 3

REQUEST MODEL DEFINITION 4

MODEL DEFINITION 5

REQUEST FRAME OF DATA 6

FRAME OF DATA 7

MESSAGE STRING 8

UNRECOGNISED REQUEST 100

UNDEFINED 999999.9999

The server and the client communicate using these IDs. For example, if the client

sends ID=6 the server will answer sending an entire frame of data starting with ID=7.

The principal ID Messages needed to be handled by the client are 5 and 7. The

complete structure of those two frames is illustrated in Figure 4.8. When the client

requests a data frame, the server fills the entire buffer with the requested information.

The client then allocates part of the memory to store this buffer and to start the

depacketization, using an offset pointer. This variable goes through the allocated

memory, by only updating its value adding the exact dimension of the data just read.

Usually, each information occupies 4 bits, otherwise it is longer than the number of bits

stored. For example, after reading the ID Message at the beginning of the payload,

the pointer is updated adding 2 bits to read the next set of information. Instead, if it

is necessary to read the name of a Rigid Body, the pointer is updated by adding the

corresponding number of bits as the characters which compose the name (ex. ”hand” is

4 bits).

35

(a) When the MessageID is 7, the buffer is filled with the information regarding the markers
and Rigid Bodies coordinates.

(b) When the MessageID is 5, the buffer is filled with the definition of the data which will be
transmitted from the server.

Figure 4.8: The UDP payload stores the data sent by the OptiTrack server. Depending
on the type of ID Message received, the buffer is filled with different types of information.

36

4.2.2 Stereoscopic-3D component

Figure 4.9: S3D component diagram

After studying how a stereoscopic image is generated and visualized, the following

step was to design a system inside Unity3D able to generate a stereoscopy output, and

then subsequently to visualise it through the utilisation of either a passive or an active

system. Unity3D implements the possibility to use the integrated Stereo-3D render3,

converting any mono image into a stereo one. However, this solution does not give a

wide range of customisation for the user. Using Nvidia3D Vision, the only parameter

which is easily modifiable is depth perception. At the same time, the documentation

on this render engine is not exhaustive, and fails to give a complete explanation of the

entire rendering process and how the stereoscopic image is generated.

In order to obtain a virtual object which is superimposed on a real one, it is necessary

to have a depth perception which allows the generated stereoscopic object to reach a

considerable distance from the screen. If this is too elevated it may provoke eyesight

distress or sickness. For this reason, the utilization of NVidia3D was been abandoned in

the first moment. This decision was followed by a strategy to develop a way to visualize

a video game developed in Unity3D in Stereo-3D from scratch.

The first and easiest way consists of realising a system of two cameras in Unity3D,

and to visualise them in a Side-by-Side (SBS) configuration. The monitor software

then merges the two images in one to obtain a stereoscopic image. The two cameras

are placed with the axes parallel between them, in order to have the simplest system

possible (Figure 4.10).

Furthermore, how the image is rendered has to be to take in account. The integrated

stereoscopic render adapts the aspect ratio of the final output images. This value

represents the proportional relationship between the height and width of a picture, and

is directly correlated to the chosen rendering resolution. It is expressed by two numbers

separated by a colon (i.e. 4:3). This issue is easily solved by assigning a custom aspect

ratio to each camera, in order to obtain a final picture which is rendered correctly.

As mentioned above, a parallel camera axis system is the simplest to realise, rather

than a system with converged axes. In this research, both systems have been analysed

3NVidia3D Vision

37

Figure 4.10: Parallel Stereoscopic-3D configuration

in order to find the best configuration possible to develop the User Interface.

Parallel Axis Configuration

The main concern of this system is to create a horizontal shift between the two images

(left and right). In this case, the object appears to be placed at an infinite distance and

is properly merged at greater distances from the camera. This configuration is the best

choice if the operation area (in this case the scene on Unity3D) is extensive, and if the

objects to be visualised are placed at greater distances. As shown on Figure 4.10 on

page 38, the distance between the cameras is equal to the horizontal shift between the

two pictures (parallax). Moreover, if it is equal to the distance of the user’s left-right

irises, and the angle of view of the camera lens and the display screen are also equal,

all the conditions to obtain a distortion-free representation are fulfilled[29]. However, it

is almost impossible to obtain a similar system, as the shooting and the visualization

conditions often vary.

Convergent Axis Configuration

A crossed axis configuration (or Toed-in) allows to shoot stereoscopic images, changing

not only the separation distance between the two cameras, but their axis angle as well.

The subject to be visualised in 3D should be captured in correspondence to the

convergence point of the two camera axes. By changing this point, it is possible to

move it back and forth from the viewer. At the same time, the camera separation may

be changed to adjust the stereoscopic effect.

This system allows a greater manipulation of the stereoscopic effect, and for this

reason it has been widely used in this work. This configuration has been adapted to be

used with the same theory used to design a stereoscopic 3D configuration for robotic

telemanipulation.

38

Figure 4.11: Toed-in Stereoscopic-3D configuration

Realising a Toed-in stereoscopic system in Unity3D

As seen in the previous section, a toed-in cameras configuration is the best choice to

design a stereoscopic system that is adaptable to every scene size. To build this kind of

system, Ferre et al’s theory (illustrated in Chapter 3: State of the Art) on designing a

stereoscopic system configuration for robotic telemanipulation was used[7].

This configuration is reliable for rendering a stereoscopic subject in order to obtain

an Augmented Reality interface, because it reproduces human vision and provides an

effective reproduction of the rendered scene, simplifying the subsequent operation of

rendering the stereoscopic object at a determined distance from the user.

Before doing so, it is important to consider the virtual cameras used in Unity3D. The

system analysed is based on the utilisation of real cameras, which have a specific Focal

Length. It is possible to define Focal Length as the distance in mm from the optical

centre of a lens to a point where a subject at infinity appears in sharp focus. Usually,

this is the distance between the lens and the surface of a film or a digital camera’s

sensor.

For example, a 28mm lens gives a wide-angle view, while a 300mm telephoto lens

offers a much narrower angle of view that brings far-away subjects much closer.

Since Unity3D cameras do not have a proper lens system4, a definition of Focal

Length does not exist. On the other hand, the magnification factor of the image is

given by the Field of View, expressed in degrees along the Y axis.

Instead of completely eliminating the definition of field of view and thus modifying

the theory used to develop the toed-in system, it was decided to find a correspondence of

this measure inside the Unity3D camera system. Through some experiments, it has been

observed that for higher Field of View values the camera performs an equivalent zoom.

Moreover, on Unity3D the Field of view decides the dimension of the Far Clipping

Plane, which is the furthest point that the camera can catch. It also changes the

4like most virtual camera systems, they are based on the pin-hole model

39

dimension of the Near Clipping Plane which is, on the other hand, where the camera

view begins. These two planes delimit the dimension of the camera’s virtual frustum,

which is the limited area inside which the subject is rendered.

As Focal Length, the horizontal distance between the two Clipping Planes was used,

as only the objects placed inside this place are rendered. Using the trigonometric

notations and the Figure 4.12 on page 42 as reference, it is possible to calculate the

height in mm of each Clipping Plane.

BO3 = tan(β) ∗ AO , with β in radians . (4.1)

BC = BO ∗ 2 (4.2)

The value of BC (Equation 4.2) represents the height in mm. To find the width

(Equation 4.3) it is necessary to first divide the image plane height by the screen vertical

resolution (in pixels), and then multiply the result by the horizontal resolution.

widthmm =

(
BC

hscreen

)
∗ wscreen (4.3)

hFoVrad = arctan

(
widthmm

aspectRatio

)
(4.4)

dist =
widthmm

tan(hFoVrad)
(4.5)

disttot = distfar − distnear (4.6)

It is important to keep in mind that this measure is not a real focal length, but the

dimension of a virtual space between the two planes of the camera, where the object is

always seen in sharp focus.

The Figure 4.11 on page 39 represents the design of a Toed-in system in Unity3D,

using the theory illustrated in [7]. It is characterised by the distance between the centres

of the cameras (O), the angle between the camera axes (α) and the distance between

point I and the intersection of the camera axes (H). All these parameters are related

between them by Equation 4.7

O = H sin(α) , with α > 0 (4.7)

Defining as d the distance between a point P of the central line and point I, it

is possible to calculate the projection disparity (Equation 4.8) between the camera

projections of the point located on the central line. This measure is useful for calculating

40

an acceptable distance between the two cameras, in order to avoid vision issues in the

user. This measure must be less than the maximum acceptable disparity, which is

calculated keeping into account the user-to-screen distance and the human threshold.

projectionDisparity(d) = 2 ∗ focallenght ∗ tan

(
α

2

)∣∣∣∣Hd − 1

∣∣∣∣ , with α > 0 (4.8)

Immersive User Interface

We define an Immersive User Interface the typology of human-computer interaction

that allows the user to be part of the virtual environment represented through the

utilization of stereoscopic-3D visualization. In an immersive environment, the user is

able to see the 3D object, the background contents and his own body, and it would be

natural for the user to use his/her own body to interact with the objects floating out

from the screen. The idea was inspired by the study carried out by Du et al. [5], from

which the equations illustrated in this section have been taken.

An Immersive User Interface has to take into account various variables to be considered

truly immersive; above all, the 3D floating object must be perceived by the user at an

acceptable distance from the screen, which allows the user to operate with it.

The main goal of this research is to develop an Augmented Reality videogame, using

the principle of a Stereoscopic-3D interface. For this reason, the real environment

around the player and the characteristics of the visualization system (for example the

screen size) must be taken into account.

In real world, when we observe a real object, we are able to estimate our distance

from it by analysing its dimension. For example, we can understand how far we are

from a skyscraper (let’s say the Shard in London), depending on whether it occupies

just a few centimetres, or all our field of view.

Using the same principle, it is possible to determine the distance between the user

and the floating object using this measure to calculate the dimensions of the object.

Using the Figure 4.14 on page 44 as reference,with Equation 4.9 it is possible to define

the dimensions (Width, and Height) of the virtual object as AB.W =
z(w + p)

d
− p

H =
z ∗ h
d

(4.9)

Where:

• z is the perceived distance to the virtual object

• w is the screen width (in cm)

41

(a) Setting A as the camera position and AO the distance to the near clipping plane. BC also
represents the field of view extension with an angle α

(b) BO represents the mid field of view with angle β. Knowing the distance AO it is possible
to calculate the field of view extension by trigonometric notation.

(c) Representation of the virtual camera frustum. The zone delimited by the two planes is the
rendering area.

Figure 4.12: It is possible to represent the camera frustum as a triangle (a) where α
represents the field of view angle. To calculate the dimension of the clipping plane it is
necessary to represent it as a goniometric circle (b).

42

Figure 4.13: Illustration of the Toed-in system designed on Unity3D. The figure is a
simplified version of the one seen in Chapter 3.

• p is the inter-pupillar distance (p = 0.065m)

• d is the user-to-screen distance

• h is the screen height (in cm)

It is possible to use the screen height dimension and the vertical resolution to calculate

the best user-to-screen distance (Equation 4.10).

dbest =
h
v

2 tan
(

1
120

) ≈ 3400
h

v
(4.10)

Using these results in addition to those previously formulated to realise the Toed-in

configuration, it is possible to obtain a stereoscopic system which allows the user to

visualise an object floating out of the screen at a certain distance. The above formula

must be completed using the user’s and real environment information captured by the

Motion Capture system, which has been illustrated in the previous section.

43

Figure 4.14: Calculating the dimension AB of the floating object, using the screen size
(W), the user-to-screen distance (d) and the user-to-object distance (z). p represents
the interaxial eye separation.

4.2.3 Integrated System

Figure 4.15: Integrated System diagram

An integrated system is defined as the union of the two previously illustrated tech-

nologies, in order to obtain a smart interface that is able to adapt itself to the player’s

requirements.

The main goal of this work is to develop an Augmented Reality video game that

must be adaptable and fully-immersive.

The Stereo-3D system must obtain from the OptiTrack the information regarding

the player’s position and the real environment around him/her. In particular, it is

necessary to settle a new system of coordinates where the monitor is the origin. Once

all this information is available, all the calculations needed for the video game interface

are performed by the Stereo-3D algorithm.

44

The last obstacle is how the information regarding the position of the markers is

transmitted to the game engine. The coordinate system in Unity3D is right-handed,

while the OptiTrack is left-handed. Moreover, the information sent by the Motion

Capture system needs to be converted from quaternion to Euler angles, in order to

detect the exact orientation of the tracked object.

Quaternion to Euler Angles conversion

Quaternion are commonly used to calculate rotations in a 3-Dimensional space. In

particular, they are stored inside the OptiTrack frame with the notation: (qx,qy,qz,qw)5.

The process followed to perform the conversion takes some conventions into account:

• input and output units are both in radians

• Euler order is YZX

• Euler angles are about global axes

• The results are right-handed

• Y = Heading(YAW)

• Z = Attitude(Pitch)

• X = Bank(Roll)

The first step consists of testing the singularity at the north and south pole, by

calculating a variable test using Equation 4.11. If this is higher than +90◦there is a

singularity at the north pole (Equation 4.12). If it lower than -90◦, it is at the south

pole (Equation 4.13).

test = qx ∗ qy + qz ∗ qw (4.11)

North Pole


Y = 2 ∗ 2 arctan

√
qx2 + qw2 − qx

qw

Z =
π

2

X = 0

(4.12)

South Pole


Y = −2 ∗ 2 arctan

√
qx2 + qw2 − qx

qw

Z = −π
2

X = 0

(4.13)

5The complete explanation of the Quaternion to Euler Angle conversion, and the reason for which it
is preferable to use a 4D system to describe the rotation of a 3D object, can be found at the following
website[2]

45

in the other cases (-90≤test≤90) the conversion is as such:

a = 2 ∗ qy ∗ qw − 2 ∗ qx ∗ qz (4.14)

b = 1− 2 ∗ qy2 − 2 ∗ qz2 (4.15)

c = 2 ∗ qx ∗ qw − 2 ∗ qy ∗ qz (4.16)

d = 1− 2 ∗ qx2 − 2 ∗ qz2 (4.17)


Y = 2 arctan

√
a2 + b2 − a

b

Z = arcsin(2 ∗ test)

X = 2 arctan

√
c2 + d2 − c

d

(4.18)

Once the triplet (X,Y,Z) is obtained using Equation 4.18, it is possible to perform

a conversion from radians to degree, and to apply the result to the virtual object on

Unity3D. This operation is only used to deduct the rotational angles of the tracked

object, to be applied onto the virtual one. The conversion itself changes the reference

system from left-handed to right-handed, so in this case it is not necessary to perform

further operations.

Right or Left Hand?

Figure 4.16: The substantial difference between the two systems is the version direction
sign of the z axis.

If the issues regarding the rotation angles are settled, the difference between the

coordinates system must still be faced for the translation of the point inside the space.

As mentioned before, the OptiTrack is a Left-Handed system, while Unity3D is

Right-Handed. The difference is illustrated in Figure 4.16, where the sign of the vector

46

alongside the z axis must be changed if the translation is converted from the first to

the second system, and viceversa.

In this research the Right-Handed convention was adopted to describe the movement

along the axes. This reference system is used by the game engine and it is, therefore,

more simple to convert the triplet from the Motion Capture once they are integrated

inside the game engine.

47

Chapter 5

Implementation

5.1 Stereoscopic-3D Visualization Component

5.1.1 Preliminary Idea: Realising a Stereo Camera system in

Unity3D

To understand how the configuration was implemented, it is necessary to briefly

explain how the camera system on Unity3D works. The GameObject ”camera” in

Unity3D renders inside a rectangle (knows as Viewport rect), which covers the entire

screen area (Figure 5.1). The viewport rect is characterised by four values that indicate

the coordinates (0-1) where the camera should be visualised on the screen.

Figure 5.1: Stereo Camera in Unity3D

• X: The initial horizontal position on which the camera view will be drawn.

• Y: The initial vertical position on which the camera view will be drawn.

• W(Width): Width of the camera output on the screen.

• H(Height): Height of the camera output on the screen.

48

By changing the above values it is possible to render more than one camera on the

screen, establishing the exact starting point and size of each camera. The following

settings produce the result illustrated in Figure 5.2.

Left Camera Right Camera

X 0 0.5
Y 0 0
W 0.5 0.5
H 1 1

Table 5.1: ViewPort settings for left and right camera

(a) Side-by-Side image generated by Unity3D

(b) Final Output generated by the TV 3D software

Figure 5.2: The two cameras produce an unique view (a). The TV 3D Software then
produces the stereoscopic image (b)

49

public c lass cameraAspect : MonoBehaviour {
f loat AspRat = 0 .0 f ;
// Use t h i s f o r i n i t i a l i z a t i o n
void Update () {

// Ca lcu la te the aspect r a t i o o f the monitor in use
AspRat = (f loat) Screen . cur r entReso lu t i on . width /
(f loat) Screen . cur r entReso lu t i on . he ight ;
// a s s i gn i t to the l i nked camera
this . gameObject . camera . aspect = AspRat ;

}
}

Code 5.1: CameraAspect.cs

What is observed in Figure 5.2(b) is a stretching of the final merged image, caused

by the aspect ratio of the two previously generated ViewPort Rects. The chosen

resolution for this project is 1920x1080, and the monitor used has an aspect ratio of

16:91. Consequently, the two camera ViewPort Rects should render using an Aspect

Ratio that, summed together, will result in 16:9. When the two views are merged by

the TV software, the pixels are stretched in order to cover a wider area.

To avoid this phenomenon, the aspect ratio of each camera is forced to 16:9. This is

done by calculating the aspect ratio of the monitor in use, and then initialising each

camera with this value.

In Unity3D, it is not possible to assign a custom Aspect Ratio to the camera using

the common options provided by the Inspector, but through a specific script linked to

the camera, (Code 5.1) which calculates and assigns the value.

The result of the above operation is illustrated in Figure 5.3. The images represented

on the two camera ViewPort Rects appear stretched, and this is caused by the fact that

the two images now are rendered with a 16:9 aspect ratio (double than before). The

deformation is caused by the visualisation area which is also 16:9, so the images are

stretchered horizontally. The final picture (b) is no longer deformed, given the result

ratio is the same as that of the visualization area.

1It is the international standard format for HDTV

50

(a) The two images are horizontally stretched, to fit the visualization area

(b) After the merging, the deformation is gone

Figure 5.3: How a stereoscopic image is visualised in Unity3D

5.1.2 Implementing a Toed-in Stereoscopic-3D System

The next step is to realise a convergent axis system on Unity3D. As explained in

Chapter 4, a toed-in configuration allows to move the stereoscopic object back and

forth, by only changing the convergence point between the two camera axes.

Starting from the results explained in the previous section, it is necessary to create a

script which allows the change of the angle between the two cameras, in a smart way,

rather than setting a unique angle. This is the best solution for implementing a system

that can be adapted to user requirements, as eyesight varies from person to person.

Code 5.2 illustrates the implementation of the Toed-in system. The script calculates

the angle between the cameras using the triangle theorems. Knowing the camera-to-

camera and the object-to-camera distances, it is possible to calculate an angle β. Then

51

// Update i s c a l l e d once per frame
void Update () {

//To c a l c u l a t e the angle between the two camera the proce s s i s :
//1− Calcu la te the middle d i s t ance between the two cameras

cameraDist = (Mathf . Abs (this . t ransform . po s i t i o n . x − cameraR . transform . po s i t i o n . x)) /2 ;
//2− Calcu la te the d i s t ance between the ob j e c t and the cameras

ob j e c tD i s t = Mathf . Abs (t a rg e t . transform . po s i t i o n . z − source . transform . po s i t i o n . z) ;
//3− Imagine having a t r i a n g l e between the two cameras . Using the two l engths we have :

alpha=arctang (c/b)
angleAlpha = Mathf . Atan (cameraDist / ob j e c tD i s t) ;

//4− then beta= pi /2 − alpha
angleBeta = Mathf . PI/2 − angleAlpha ;
angleBeta = angleBeta ∗ Mathf . Rad2Deg ;

//now we need to a s s i gn the value to each camera , f i r s t subt rac t ing 90 degree from the prev ious
r e s u l t

// because we need to know by how much to ro ta t e the camera inwards to obta in t h i s ang le
this . t ransform . Rotate (Vector3 . up , (angleBetha − 90)−this . t ransform . r o t a t i on . y , Space . S e l f) ;
cameraR . transform . Rotate (Vector3 . up , −((angleBeta − 90)−cameraR . transform . r o t a t i on . y) ,

Space . S e l f) ;
}

}

Code 5.2: ToedInCamera.cs

subtracting this angle from 90, it is possible to calculate the actual axis angle of each

camera.

Up to this point we have a system that is able to adapt itself in order to maintain

the virtual object on the point of intersection of the two axes.

The following table lists various angles α calculated at a certain distance between

the camera and the object. Applying the formula seen in Chapter 4, it is possible to

calculate the relative Projection Disparity of each angle, and to formulate an evaluation

of the system.

52

object dist angle α

0.68 11.93

1.1 6.63

2.1 3.48

3.1 2.36

4.1 1.78

5.1 1.43

6.1 1.20

7.1 1.03

8.1 0.90

9.1 0.80

12.1 0.60

15.1 0.48

The result is illustrated in Figure 5.4. It is possible to notice that using a interaxial

distance between the two cameras of 0.25, objects placed further have a disparity value

which is acceptable, while objects too close to the camera cannot be correctly merged.

Figure 5.4: The calculation of the Projection Disparity allows to understand what is
the range in which the stereoscopic-3D object can be correctly seen by the user.

It is possible to perform the same calculation using a settled distance between the

cameras and the object, and changing the interaxial distance. However, the objects

near the camera will still not be merged correctly.

To overcome this issue, it is necessary to utilise a further theory that allows the

visualisation of a stereoscopic object by changing its dimension depending on the

object-to-camera distance.

53

5.1.3 Immersive User Interface

The previous section explained how stereoscopic-3D visualization is realised in

Unity3D. This methodology is enough to visualize objects which are placed at a

medium distance from the camera. This research aims to visualize a virtual arrow

superimposed on a real bow. For that reason the arrow is virtually placed as close as

possible to the cameras, and the 3D effect may be annoying or generate discomfort in

the user’s eyesight.

The theory analysed in Chapter 3 regarding the realisation of an Immersive User

Interface for 3DTV illustrates the possibility of developing an UI by changing the

dimension of the visualised object in relation to the theoretical distance from the user.

This theory can be implemented only by using some additional information from

the motion capture system, as the user-to-screen and the user-to-object distance must

be recovered from the real position data. Otherwise, it is possible to deduct this

information or to insert it manually inside the system. However, the principal aim of

this work is to obtain a smart interface which is able to adapt itself.

Given the formula explained in Chapter 4W =
z(w + p)

d
− p

H =
z ∗ h
d

(5.1)

While the variable p is fixed at 0.065 m, the other values need to be calculated in

relation to the typology of screen used, in particular the monitor resolution and actual

dimension in cm. The first step consists of calculating this information, knowing that

the monitor resolution is 1920x1080, the aspect ratio is 16:9 and the diagonal is 24

inches2.

Base(w) = 16x

Height(h) = 9x

Diagonal =
√
Base2 +Height2 ≈ 18.37

w =

(
24

18.37

)
∗ 16 = 20.90inch⇒ 53.086cm

h =

(
24

18.37

)
∗ 9 = 11.70inch⇒ 26.718cm

The value of z and d are calculated using the measures calculated by the OptiTrack

2These calculations can be transposed to be used in other typology of visualization screens, including
video projectors

54

private f loat c a l cu l a t eRa t i o () {
aspectRat io = widthRes / heigthRes ;

return (d iagona l Inch / Mathf . Sqrt (Mathf .Pow (aspectRatio , 2) + 1)) ;
}
public void calculateMonitorDim () {
heigthCm = ca l cu l a t eRa t i o () ∗ 2 .54 f ;
widthCm = aspectRat io ∗ c a l cu l a t eRa t i o () ∗ 2 .54 f ;
}

Code 5.3: Calculation of the screen actual dimension in cm

public f loat [] calcObjectDim () {

f loat [] dim = new f loat [2] ;

dim [0] = (z ∗ (s c r . getWidth () + p)) / d − p ;
dim [1] = (z ∗ s c r . g e the i g th ()) / d ;

return dim ;
}

Code 5.4: Snippet for the calculation of the object maximum dimensiona at a certain
position z.

system between the user head, the crossbow and the monitor (all equipped with some

markers, as will be explained later on the chapter). As an example, we are going to

establish that those distances are z=50 cm and d=84cm3.

Substituting all the values on the Equation 5.1, we obtain

W = 28.96cm

H = 15.90cm

which represent the maximum dimension of the virtual object to be seen at the

distance of 50cm from the user. These measurements allow us to find a scaling variable

to be applied directly on the Unity3D virtual object. This allows us to visualise a very

close stereoscopic-3D object, without moving the convergence centre of the two cameras.

In relation to its distance from the two cameras, the object will be consequently scaled.

3using the best distance formula illustrated on the previous chapter

55

Figure 5.5: Formula Application at a distance of 5 cm from the object

Figure 5.6: Formula Application at a distance of 2 cm from the object

56

5.2 Motion Capture Component

5.2.1 Tracking Tools and Unity3D communication

The communication between the OptiTrack and an external application happens

normally through the utilisation of a library (NatNet SKD) provided by the OptiTrack

producer. At present, Unity3D is not among the officially supported applications. This

means that it is necessary to develop a C-sharp script in order to send and receive

packets from the server located over the network.

In Chapter 4 the structure of the communication and the packets exchanged between

the client and the server were analysed in detail.

The server was already implemented by the company that produced the OptiTrack

system. It is an application called TrackingTools that allows to stream the captured data

over the network, using a multicast or a local address. This application is structured

in order to continuously stream the data, once the relative option is activated. A

handshaking procedure is necessary to synchronize the client to the streaming channel,

otherwise the data received will not be time synchronised with the server, causing lags

and glitches.

The handshake between the client and the server includes three different stages (Figure

5.7): the first is related to the tracked object which opens the socket communication

with the server, then it moves to the second stage where the OptiTrack Client sends a

request of connection to the server. Finally, the server answers by sending back the

first frame. After this handshaking, where the connection is initialised, there is no

necessity for the client to send other requests as the server will keep sending data until

the application is closed by the user.

Figure 5.8 represents the activity diagram between the scripts, which compose the

server. Inside the Unity3D scene it is possible to have more than one object tracked at

one time, and for this reason it is necessary to have a unique script which receives the

data, and more than one script that use these data to perform the multiple translations.

It is impossible to implement a unique script assigned to every scene object, which

include the communication part as well, otherwise we will have the same number of

open sockets as there are active objects in the scene.

The following two sections provide an analysis of the structure of the scripts that

compose the communication platform: OptiTrackUDPClient and TrackedOb-

jectScript.

5.2.2 The OptiTrackUDPClient class

This is the class demanded to connect directly with the Tracking Tools server. It has

been developed following the guidelines provided by the NatNet SDK documentation.

57

Figure 5.7: Communication scheme between the tracked object and the server (Tracking
Tools). The Unity3D Client receives and processes the data from the server, then the
Tracking Object Script reads this information directly from it.

Figure 5.8: The Client side is composed by two or more different scripts. The tracked
object script, which is assigned directly on the virtual object on the Unity3D scene,
and the OptiTrack UDP client, which communicates directly with the Tracking Tools
server.

58

The complete structure of the class is illustrated in Figure 5.9.

The first four variables dataPort, commandPort, multicastIPaddress and lo-

calIPaddress are allocated with the connection information.

• dataPort: 1511

• commandPort: 1510

• multicastIPaddress: 239.255.42.99

• localIPaddress: 147.197.232.84

Through the dataPort the data are received from the server, while the client sends the

request ID from the command port.

The socket connection through the multicast or the local address is initialised by the

Connect() method. The same method starts the asynchronous connection between

the two parts, by initialising the method AsyncReceiveCallBack. In this way, the

OptiTrack UDP Client will always receive the packet from the server without any

request from the Tracked Object Script.

RequestDataDescription and RequestFrameofData are two methods that use

the command port to send an ID value to the server in order to start the handshaking.

These methods are not directly utilised by OptiTrack UDP Client, but by the Tracked

Object Script. In this way, it is possible to stop and start again the reception of the

data, without closing the socket connection.

ReadPacket first and then ReadRB are the methods dedicated to retrieve the

Rigid Body information from every received packet. ReadPacket goes through the

memory buffer, where the packet is stored, using a pointer that is incremented after

reading each portion of information. Once the pointer reaches the memory allocation

where the Rigid Bodies information is stored, it calls the ReadRB method by forwarding

the memory address where this information is stored. The Rigid Bodies are a complex

set of information, composed by three or more markers, which need an adequate method

to be read correctly. Once this information is retrieved, it is stored inside an apposite

RigidBody object, which is accessible from other scripts (this is a characteristic that

will be analysed further in the next section).

QuaternionToEuler, RadiansToDegrees and QuaternionNormalise are the

methods related to the conversion of the rotational angles from quaternion to euler.

These methods have been developed using [2] as a reference.

Lastly, once the application is closed by the user, the socket connection is interrupted

by the CloseConnection method. Without this, the connection between the client

and the server will never be interrupted unless a time-out occurs.

Inside the class, a number of RigidBody data structures must also be initialised.

These must be as many as the virtual objects that must be tracked inside the Unity3D

59

scene. These data structures are necessary to store the information of each set of

markers tracked in the real scene. For this reason, it is not possible to implement a

unique OptiTrack UDP solution, but should be adapted to the number of set of makers

to take into consideration.

Figure 5.9: UML diagram of the OptiTrackUDPClass.

5.2.3 Tracking Object Script

The last component of the communication platform is the script assigned to the

Unity3D scene object to move using the OptiTrack movements.

Using the OptiTrack it is possible to track one or more sets of markers, which are

called Rigid Bodies. These data structures are characterised by a set of variables that

describe the orientation and the spatial position of the real object, and through them it

is possible to move a virtual object inside the Unity3D game scene.

Figure 5.10 represents the C-sharp structure of a RigidBody object. It is characterised

principally by the translation coordinates and the rotation angle (yaw, pitch, roll), used

to move the virtual object inside the game scene.

The data received from the server are processed and then stored inside this object by

the OptiTrackUDPClient. The TrackedObjectScript simply initialises a reference to the

client, and then uses those data directly. To simplify the concept lets make an example.

Inside the OptiTrackUDPClient class there is a RigidBody called hand, which is

linked to the set of markers placed on the hand of the user.

60

Figure 5.10: UML structure of a RigidBody Class

RigidBody head = new RigidBody () ;

Inside the TrackedObject class we have a reference of the UDP client class, that we

use to open the connection and then receive the data.

public c lass TrackedObject {

OptiTrackUDPClient udpClient = new OptiTrackUDPClient () ;

public void s tar tConnect ion () {
i f (udpClient . Connect ())

udpClient . RequestDataDescr ipt ion () ;
}
public void takePos () {

f loat x = udpClient . hand . pos . x ;
f loat y = udpClient . hand . pos . y ;
f loat z = udpClient . hand . pos . z ;

}
}

Code 5.5: The code take the position of a generic tracked object inside the OptiTrack
space.

A general TrackedObject script is structured as shown in the above code. The

data are taken directly from the UDP Client using the reference udpClient, and the

position information is stored inside some variables directly accessing the RigidBody

hand created in the OptiTrackUDPClient class.

5.3 Implementing The ArcheryGame2.0 Game

5.3.1 Integration between the modules

The S3D algorithm needs the user-to-screen and the user-to-crossbow distance to

generate the stereoscopic output.

Both the screen and the user are equipped with reflective markers that identify their

position inside the real space.

Figure 5.11 shows the solutions to track both the user and the screen. The user must

wear a pair of glasses on which three markers are placed in line, while a cube with three

markers is placed on the top or on the bottom of the screen.

61

(a) Monitor tracker set, to be placed at the bottom or at the top of the screen. The markers
are placed to form a triangle.

(b) Head tracker set, to be worn by the user. The markers are placed in line.

Figure 5.11: The two tracker sets have been built from scratch. In particular (b) were a
pair of sunglasses from which the lenses were removed, and the markers installed with
some screws.

62

Figure 5.12: The markers on the crossbow are placed to prevent the OptiTrack from
losing the object while the player is moving. Moreover, the variation of the distance
between A and B is used as a trigger event to shoot the virtual arrow.

The crossbow is also identified by a set of three markers (Figure 5.12), but they are

placed in a particular way (we will explain further in the next section).

In Euclidean three-space, the distance between two points A and B is

AB =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 (5.2)

The following script uses the above formulae to calculate the user-to-screen distance.

The same procedure is applicable to determine the crossbow-to-player distance.

public class d i s tCa l {
public GameObject s c r een ;

public GameObject user ;

public f loat getDistCm () {
f loat d i s t x = Mathf . Abs (s c r een . transform . po s i t i o n . x − user . transform . po s i t i o n . x) ;

f loat d i s t y = Mathf . Abs (s c r een . transform . po s i t i o n . y − user . transform . po s i t i o n . y) ;

f loat d i s t z = Mathf . Abs (s c r een . transform . po s i t i o n . z − user . transform . po s i t i o n . z) ;

return Mathf . Sqrt (d i s t x+d i s t y+d i s t z) ;

}
}

Code 5.6: Snippet for the calculation of the distance between the user and the screen.

The code can be modified to be generic.

Once these distances are calculated they can be considered in Code 5.4, to calculate

the stereoscopic 3D effect.

The virtual objects that compose the game environment inside Unity3D, and are

linked with a real tracked object, must be placed at the origin of the coordinates

system of the game engine. This allows the virtual objects to move according to the

OptiTrack-given coordinates. An example: if the crossbow has real coordinates in the

OptiTrack coordinates (12, 34, -98), the respective virtual object inside Unity3D will

have the same coordinates. In this way ,it is possible to reproduce exactly the spacial

63

positions of the real objects inside Unity3D.
public c lass TrackedObject : MonoBehaviour {

f loat minimum = −1000 f ;

f loat maximum = 1000 f ;

f loat s e n s i t i v i t y = 5 .0 f ;

f loat posX = 0 f ;

f loat posY = 0 f ;

f loat posZ = 0 f ;

public void moveObject () {
f loat trX = Mathf . Clamp ((x − posX) ∗ s e n s i t i v i t y , minimum , maximum) ;

f loat trY = Mathf . Clamp ((y − posY) ∗ s e n s i t i v i t y , minimum , maximum) ;

f loat trZ = Mathf . Clamp ((z − posZ) ∗ s e n s i t i v i t y , minimum , maximum) ;

this . t ransform . Trans late (trX , trY , −trZ) ;

posX = x ;

posY = y ;

posZ = z ;

}
}

Code 5.7: Completation of the Code 5.5.

Code 5.5, shown in the previous section, can be completed with Code 5.7. Once the

position is received from the OptiTrack, it can be assigned to the generic object by

multiplying each coordinate value by a sensitivity variable. Depending on his/her

own preferences, the user can decide which value to assign to sensitivity.

5.3.2 Building the game components

As mentioned above, every tracked object is identified inside the OptiTrack space by

a Rigid Body, which is composed by a set of three markers each.

The markers are applied to each tracked object in order to compose a geometrical

figure.

The glasses that must to be worn by the player are equipped with three markers

placed in line between them, as shown in Figure 5.11b. The crossbow and the monitor

marker sets are instead placed in order to form two triangles, with different sizes between

them (Figure 5.11a and 5.12). The OpiTrack software streams the centroid coordinates

of each rigid body on the network.

Figure 5.13 shows in detail the position of the markers of each game component. The

OptiTrack is able to distinguish each trackable object by its different shape and size.

5.3.3 Implementing the Game Mechanics

For every game frame, a runtime script analyses the distance between markers A

and B on the crossbow (see the Figure 5.12 as reference). As the distance between

the two markers decreases, the script calculates the force that will be used to shoot

the arrow. Once the player pulls the crossbow trigger and the distance between the

markers increases again, the arrow is shot. The next arrow is recharged automatically

after firing.

64

Figure 5.13: Every tracked object is equipped with reflective markers, placed in order to
compose different geometrical figures. The OptiTrack system transmits the information
relative to the marker sets centroid (red point).

5.4 Testing System Functionality

The aim of each test is to verify:

• the reliability of the S3D algorithm, using monitors of opposite sizes.

• the capability of the Motion Capture system to track the user position.

• the integration between the two above mentioned modules is working.

The expected result is that the interface adapts intelligently to each different context,

without the intervention of the user, but using the data provided by the screen in use

and by the motion capture.

Systems Configuration

Each module component is listed in the following table:

S3D

PC: Intel Xeon E5503

NVidia Quadro FX 4800

4 Gbyte RAM

Broadcom NetXtreme GigaBit Ethernet

65

Software: Windows 7 Professional 32-bit

Unity3D v4.6

Screen: LG 55LM620T-ZE 55” 3DTV

Acer GD245HQ 24” 3D Monitor

Motion Capture

PC: Intel Core i7-870

ATI Radeon HD 5700

12 Gbyte RAM

Intel 82578DM Gigabit Network Connection

Software: Windows 7 Enterprise 64-bit

OptiTrack Tracking Tools v2.5.3 32-bit

Motion Capture System: 3x OptiTrack V100:R2 Cameras

1x OptiTrack OptiHub USB

For the motion capture, it was necessary to use a strong hardware configuration, as a

decisive calculation power was needed to correctly process and transmit, without lag,

the data to the computer that had to visualise the video game in 3D.

The test were performed in two different working spaces. The first one is illustrated

in Figure 5.14, where the cameras are installed in order to capture a small area of 1m3

in front of the 24-inch monitor.

The second space, illustrated in Figure 5.15, has the cameras installed around a

55-inch 3DTV, capturing an area of 9m3 in front of it.

The room in which the system is installed must also satisfy certain specific requisites.

There cannot be any obstacles capable of obscuring the cameras, and it must be

completely isolated from external sources of light. Sunlight is a natural source of

infrared light, which could disturb the system by generating “noise” that can easily be

mistaken for undesired data, thus compromising the accuracy of the motion tracking.

Testing Procedure

The real environment is prepared by placing the Monitor Tracker Set (Figure 5.11a)

in front of the screen or on top of it, as shown in Figure 5.16.

The user is asked to stand in front of the monitor 4, and to wear the tracked glasses

as well as the stereoscopic glasses. Once his or her position is correctly recognised by

the motion capture, the game starts and the virtual environment is visualised according

4inside the camera’s field of view

66

Figure 5.14: Small Captured Area

Figure 5.15: Big Captured Area

67

(a) Monitor tracker set placed on the top of the screen.

(b) Monitor tracker set placed in front of the screen using a tripod.

Figure 5.16: The Monitor Tracker Set must be placed on or in proximity of the monitor.

68

to the information provided by the user and the screen position. It is then possible

to visualise the stereoscopic virtual arrow using the tracked crossbow. The user can

modify the depth perception and the arrow’s position using the keyboard, to fit the

virtual environment to his or her point of view.

The Stereoscopic-3D Visualisation is obtained using the ”merging software” provided

by the TV to visualise Side-by-Side contents.

Result Analysis

The stereoscopic effect is distinctly better than in the first version of the ArcheryGame,

as it allows users to visualise the object with a standard error of 1-2 cm from the real

object position, as opposed to the 10-15 cm of the previous version. Due to the Toed-in

system, which can automatically change the angulation of the cameras, the stereoscopic

arrow is constantly maintained on the same point in which the camera axes intersect.

Furthermore, the scaling algorithm maintains the dimensions of the arrow in proportion

to the distance between the user and the screen, and to the dimensions of the screen

itself.

In this way, the video game adapts itself automatically and it is unnecessary for the

user to introduce external data regarding the hardware in use and the dimensions of

the room.

It was observed that it is impossible to define a standard distance, adequate for all

users, between the cameras that compose the stereoscopic image. This is because the

eye distance varies from person to person. It was also observed that the user’s point of

view significantly influences his or her capacity of perceiving the 3D effect, making it

necessary to modify the game environment in relation to the user’s height.

This evidence has been highlighted by asking two individuals of different heights

to test the system while keeping the same configuration. The difference between the

perceived position by the two testers is proportional to the difference between their

respective heights. This issue can be easily overcome by providing the system with an

automatic height calculator, which keeps users’ different heights in consideration.

Despite the fact that the 3D effect satisfied the requirements set, the motion capture

was unable to position the arrow with precision, as it always resulted in appearing 1 or

2 centimetres off in relation to the position of the bow. This error varies from person

to person, in relation to the user’s height and his or her perception of the stereoscopic

effect. It was not possible to define a mathematical relationship capable of explaining

this phenomenon. The problem can be overcome by calibrating at the beginning of the

game, during which the user is able to move the arrow so as to place it exactly on top

of the bow. Once this operation is carried out, the arrow will follow the movements of

the bow and will be visualised in the correct position.

69

Chapter 6

Conclusions

6.1 Summary and Achievements

The initial objective of this research was to develop an innovative model of human-

machine interaction, through the utilisation of Stereoscopic-3D Visualisation and Motion

Capture technologies. The targeting application was a video game that must be playable

only using Stereoscopic-3d Visualisation: The ArcheryGame. The main goal was to

allow the user to visualise a virtual arrow through a Stereoscopic-3D screen, as it is

seen on the top of a real crossbow. Motion Capture technology was used to identify the

user’s exact position inside the room.

Initially, a previous version of the ArcheryGame1 was analysed, to identify the

potential and the shortcomings of the solution. It was decided to completely modify

the video game, only maintaining the concept, and to use a crossbow instead of a bow.

Based on the preliminary analysis, the three principal objectives listed below were

identified:

• Develop an accurate motion capture technology setup that provides positional

input to the game engine.

• Develop an accurate 3D Visualisation method, which allows the integrated system

to display 3D visualisation information consistently to the motion capture.

• Develop an integrated system capable of managing motion captured positional

information, 3D visualisation, and computer graphics objects visualised according

to the 3D visualisation method developed in the previous point.

A first analysis of the state of the art allowed the identification of some related works

necessary to master this research field. Two papers, in particular, were fundamental for

1Developed by the same Author for a Bachelor Thesis

70

the identification of a Stereoscopic-3D theory to visualise the virtual arrow in relation

to externally provided information.

The developed system was divided in two modules: the Motion Capture Module and

the Stereoscopic-3D Visualisation Module, both of which were deployed on two different

machines. The presence of two computers allows for a division of the elaboration load,

thus avoiding the lags and system crashes encountered in the first version of the game.

The game was developed entirely on the cross-platform game engine Unity3D, while a

set of 6 infra-red cameras was used to track the user’s position in the real environment.

A network bridge allowed the communication between the two modules, using UDP

data packets.

The Stereoscopic-3D visualisation was obtained using a system formed by two virtual

cameras, placed Side-By-Side, which were able to modify their axis angle in relation to

the position of the virtual arrow from them. The stereo visualisation of the arrow was

compromised when it was too close to the cameras. For this reason, an algorithm was

developed to scale the arrow dimension in relation to its distance from the cameras.

This solution allowed the system to adapt itself in relation to the screen size used, and

the user’s distance from it.

Users testing the system found that the stereoscopic-3D effect allowed them to

visualise the arrow as if it was at a distance of few centimetres from them. The game

play resulted to be enjoyable, and the 3D effect added a fundamental feature to it.

People found very difficult to play the video game with the Stereoscopic-3D effect

turned off. Some issues were found during the tests, which should be tackled by further

research:

• The arrow is not seen on the top of the crossbows by all the users.

• The arrow launch algorithm suddenly stopped working due to out-of-date Motion

Capture libraries.

• The network communication bridge sometimes did not work properly.

• When moving the crossbow, movement of the arrow was slightly delayed.

6.2 Future Works

An automated calibration procedure was needed to compensate the error between

the Motion Capture data and the visualised arrow. After calibration, the arrow should

be visualised in accordance with the user’s movements. The arrow launch algorithm

issue must be solved using the cameras’ up-to-date software, and this will also solve the

occasional communication breakdown.

71

Subsequent tests using the LEAP motion device and the OptiTrack allowed for the

development of simple interaction interfaces. The user is thus able to interact with a

simple Stereoscopic User Interface, using hand movements as input and the stereoscopic

effect to visualise the components of the interface. Indeed, the possibility of visualising

a virtual object with good precision in a real environment can bring to a new way of

interacting with digital contents, from entertainment to professional applications.

The theories described in this work lay the foundations for the development of new

video games based on 3D stereoscopy, where the latter is no longer seen as merely an

additional effect that enhances the gaming experience, but as a fundamental component

capable of opening a new gaming sector in which it becomes an essential part of the

game play.

Some example of such future developments could be a new generation of video games

in which the stereoscopic object is capable of performing certain actions in relation

to the users’ behaviours and his or her position in the real environment such as, for

example, a fencing simulator. Indeed, it would be possible to use a real environment as a

playground, where everyday objects can be used as interaction device. On-line shopping

can also take advantage of a similar technology, where users can have a preview of the

object that they want to buy, avoiding wasting their money or embarking on annoying

refund procedures.

Exploration and medical research would take an obvious benefit from such technology.

Exploration of dangerous environments, such as volcanoes or broken-down buildings,

can be done by telemanipulated robots, where the operators are able to operate inside

the remote environment with extreme precision. Risky surgeries can be supported by

visualisation systems that help the surgeon to keep the patient’s situation easily under

control.

72

Bibliography

[1] Jens Rosenkjaer Andersen and Bjarne Kondrup Mortensen. Bovw - bow operated

virtual world. Final Report. Aalborg University, january 2007.

[2] Martin John Baker. Conversion quaternion to euler, 2015. [Online; accessed

05-February-2015].

[3] Marty Banks. Basic visual perception concepts related to 3d movies, 2009. presen-

tation slides at NAB’09, Las Vegas, USA.

[4] K.K. Biswas and S.K. Basu. Gesture recognition using microsoft kinect. In Au-

tomation, Robotics and Applications (ICARA), 2011 5th International Conference

on, pages 100–103, Dec 2011.

[5] Lin Du, Peng Qin, Jianping Song, Wenjuan Song, Yan Xu, and Wei Zhou. Immersive

3d user interface for 3d tvs. 3DTV Conference: The True Vision - Capture,

Transmission and Display of 3D Video (3DTV-CON), pages 1–4, 2011.

[6] Entertainment Software AssociationTM. The transformation of the video game

industry, 2012. [Online; accessed 24-October-2014].

[7] M Ferre, R Aracil, and M Sanchez-Uran. Stereoscopic human interfaces: Advanced

telerobotc applications for telemanipulation. IEEE Robotics and Automation

Magazine, 2008:50–57, 2008.

[8] Ian P. Howard. Binocular vision and stereopsis, 1995. Oxford University Press.

[9] Shel Israel. Why apple bought primesense, November 2013. [Online; accessed

24-October-2014].

[10] Michael Karagosian and Younghoon Lee. 3d grows up: Stereoscopic technology

continues to advance, December 2013. [Online; accessed 24-October-2014].

[11] C Keskin, A Erkan, and L Akarun. Real time hand tracking and 3d gesture

recognition for interactive interfaces using hmm. ICANN/ICONIPP, 2003:26–29,

2003.

73

[12] P.T. Kovacs and Balogh T. 3d display technologies and effects on the human vision

system, 2011. 2nd International Conference in Cognitive Infocommunications,

Budapest.

[13] S Livatino, F Banno, and G Muscato. 3d integration of robot vision and laser data

with semi-automatic calibration in augmented reality stereoscopic visual interface.

IEEE Transactions on Industrial Electronics, 8(1):69–77, 2012.

[14] S Livatino, L De Paolis, and et al. Stereoscopic visualization and 3d technologies

in medical endoscopic intervention. IEEE Transactions on Industrial Electronics,

62(1):525–535, 2015.

[15] S Livatino, G Muscato, S Sessa, and V Neri. Depth-enhanced mobile robot teleguide

based on laser images. Elsevier Journal of Mechatronics, 20(7):739–750, 2010.

[16] Hoffman D M, Girshick A R, Akeley K, and Banks M S. Vergence-accomodation

conflicts hinder visual performance and cause visual fatigue. Journal of Vision,

pages 1–30, 2008.

[17] Mario Muratori. Stereoscopic visualization technique, 2007. RAI Innovation and

Research Centre, Turin.

[18] Paul Oliver. Succeeding with your Literature Review: A Handbook for Students.

McGraw-Hill Education, 2012.

[19] David Pierce. Google’s insane all-seeing project tango tablet is coming to consumer

next year, jun 2014. [Online; accessed 24-October-2014].

[20] Retail Gazette. Tissot launches augmented reality display at harrods, 2011. [Online;

accessed 23-October-2014].

[21] Leadbetter Richard. Tech focus: Stereo-3d - year one, 2011. [Online; accessed

08-March-2015].

[22] Domenico Sammartino. Stereoscopic-3d games : Archery game. Bachelor Thesis,

july 2013.

[23] Robert Stepien and Jon Frydensbjerg. Deer hunter: An immersive virtual reality

simulation gaming system with a bow as interaction device. Master Thesis. Aalborg

University, June 2002.

[24] The International Game Museum. Sega subroc-3d, 2009. [Online; accessed 08-

March-2015].

74

[25] The Telegraph. Tesco trials augmented reality, 2011. [Online; accessed 23-October-

2014].

[26] Virtual Worldlets Network. Sutherland’s sword of damocles, 2009. [Online; accessed

08-March-2015].

[27] Charles Wheatstone. Contributions to the Physiology of Vision.–Part the First.

On Some Remarkable and Hitherto Unobserved, Phenomena of Binocular Vision,

pages 371–394. The Royal Society of London, 1838.

[28] Wikipedia , The Free Encyclopedia. Kinect, 2014. [Online; accessed 15-October-

2014].

[29] H Yamanoue. The differences between toed-in camera configurations and parallel

camera configurations in shooting stereoscopic images. 2006 IEEE Internation

Conference on Multimedia and Expo, pages 1701–1704, 2006.

[30] A Zocco, S Livatino, and L DePaolis. Stereoscopic-3d vision to improve situational

awareness in military operations, 2014. Lecture Notes in Computer Science,

Springer. Dec. 2014.

[31] Ray Zone. 3-D Revolution : The History of Modern Stereoscopic Cinema, pages

387–390. The University Press of Kentucky, 2012.

75

Appendices

76

Appendix A

Code

A.1 OptiTrackUDPClient.cs

//#de f i n e DEBUG

using System ;

using System . Net ;

using System . Net . Sockets ;

using UnityEngine ;

using System . Co l l e c t i o n s ;

using System . Co l l e c t i o n s . Generic ;

/∗∗
∗ @class OptiTrackUDPClient

∗
∗ OptiTrackUDPClient i s a c l a s s f o r connect ing to OptiTrack Arena Ske leton data

∗ or Tracking Tools RigidBody data and s t o r i n g in a gene ra l s t a t e c l a s s ob j e c t

∗ f o r a c c e s s by Unity cha ra c t e r s .

∗
∗/
public c lass OptiTrackUDPClient

{
public int dataPort = 1511;

public int commandPort = 1510;

public string mult icast IPAddress = ” 239 . 255 . 42 . 99 ” ;

public string l oca l IPAddress = ” 147 . 197 . 232 . 84 ” ;

public bool bNewData = fa l se ;

public Ske leton ske lTarget = null ;

public RigidBody r ig idbody = null ;

public RigidBody monitor = new RigidBody () ;

public RigidBody hand = new RigidBody () ;

public RigidBody head = new RigidBody () ;

public int [] o f f s e tA r = null ;

Socket sockData = null ;

Socket sockCommand = null ;

S t r ing strFrame = ”” ;

/∗∗
∗ @brie f Constructor .

∗/
public OptiTrackUDPClient () {}

/∗∗
∗ @brie f Destructor .

∗/
˜ OptiTrackUDPClient ()

{
i f (sockCommand != null)

sockCommand . Close () ;

i f (sockData != null)

sockData . Close () ;

77

}

/∗∗
∗ @brie f Method that connects to Arena/Tracking Tools .

∗/
public bool Connect () {
IPEndPoint ipep ;

MyStateObject so ;

#i f DEBUG

Debug . Log (” [UDPClient] Connecting . ”) ;

#end i f

// c r ea t e data socket

sockData = new Socket (AddressFamily . InterNetwork , SocketType .Dgram , ProtocolType .Udp) ;

sockData . SetSocketOption (SocketOptionLevel . Socket , SocketOptionName . ReuseAddress , true) ;

ipep = new IPEndPoint (IPAddress .Any , dataPort) ;

// ipep = new IPEndPoint (IPAddress . Parse (loca l IPAddres s) , dataPort) ;

try

{
sockData . Bind (ipep) ;

}
catch (Exception ex) {
#i f DEBUG

Debug . Log (”bind except ion : ” + ex . Message) ;

#end i f

}

// connect socket to mul t i ca s t group

IPAddress ip = IPAddress . Parse (mult icast IPAddress) ;

sockData . SetSocketOption (SocketOptionLevel . IP , SocketOptionName . AddMembership , new

Mult icastOption (ip , IPAddress .Any)) ;

// sockData . SetSocketOption (SocketOptionLevel . IP , SocketOptionName . AddMembership , new

Mult icastOption (ip , IPAddress . Parse (loca l IPAddress))) ;

so = new MyStateObject () ;

// asynch − begin l i s t e n i n g

so . workSocket = sockData ;

sockData . BeginReceive (so . bu f f e r , 0 , MyStateObject .BUFFER SIZE , 0 , new

AsyncCallback (AsyncReceiveCal lback) , so) ;

// c r ea t e command socket

sockCommand = new Socket (AddressFamily . InterNetwork , SocketType .Dgram , ProtocolType .Udp) ;

ipep = new IPEndPoint (IPAddress .Any , 0) ;

try

{
sockCommand . Bind (ipep) ;

}
catch (Exception ex){
#i f DEBUG

Debug . Log (”bind except ion : ” + ex . Message) ;

#end i f

}
// asynch − begin l i s t e n i n g

so = new MyStateObject () ;

so . workSocket = sockCommand ;

sockCommand . BeginReceive (so . bu f f e r , 0 , MyStateObject .BUFFER SIZE , 0 , new

AsyncCallback (AsyncReceiveCal lback) , so) ;

return true ;

}

/∗∗
∗ @brie f Method that reques t the data d e s c r i p t i o n .

∗/
public bool RequestDataDescr ipt ions ()

{
i f (sockCommand != null)

{
Byte [] message = new Byte [1 0 0] ;

int o f f s e t = 0 ;

ushort [] va l = new ushort [1] ;

va l [0] = 4 ;

Buf f e r . BlockCopy (val , 0 , message , o f f s e t , 1∗ s izeof (ushort)) ;

o f f s e t += s izeof (ushort) ;

va l [0] = 0 ;

Buf f e r . BlockCopy (val , 0 , message , o f f s e t , 1∗ s izeof (ushort)) ;

o f f s e t += s izeof (ushort) ;

IPEndPoint ipep = new IPEndPoint (IPAddress . Parse (loca l IPAddress) , commandPort) ;

int iBytesSent = sockCommand . SendTo(message , ipep) ;

#i f DEBUG

78

Debug . Log (” [UDPClient] sent RequestDescr ipt ion . (Bytes sent : ” + iBytesSent + ”) ”) ;

#end i f

}

return true ;

}

/∗∗
∗ @brie f

∗/
public bool RequestFrameOfData ()

{
i f (sockCommand != null)

{
Byte [] message = new Byte [1 0 0] ;

int o f f s e t = 0 ;

ushort [] va l = new ushort [1] ;

va l [0] = 6 ;

Buf f e r . BlockCopy (val , 0 , message , o f f s e t , 1∗ s izeof (ushort)) ;

o f f s e t += s izeof (ushort) ;

va l [0] = 0 ;

Buf f e r . BlockCopy (val , 0 , message , o f f s e t , 1∗ s izeof (ushort)) ;

o f f s e t += s izeof (ushort) ;

IPEndPoint ipep = new IPEndPoint (IPAddress . Parse (loca l IPAddress) , commandPort) ;

int iBytesSent = sockCommand . SendTo(message , ipep) ;

#i f DEBUG

Debug . Log (” [UDPClient] Sent RequestFrameOfData . (Bytes sent : ” + iBytesSent + ”) ”) ;

#end i f

}

return true ;

}

/∗∗
∗ @brie f Async socket reader ca l l ba ck − c a l l e d by . net when socket async r e c e i v e procedure ,

r e c e i v e s a message

∗ Una vo l ta chiamata l a c l a s s e da headTRacker o g l i a l t r i , in automatico fa p a r t i r e l a

conness ione Asyncrona . . . e dal metodo su c c e s s i v o parte l a catena di l e t t u r a d e l l a frame

∗ @param

∗
∗/
private void AsyncReceiveCallback (IAsyncResult ar)

{
MyStateObject so = (MyStateObject) ar . AsyncState ;

Socket s = so . workSocket ;

int read = s . EndReceive (ar) ;

#i f DEBUG

Debug . Log (” [UDPClient] Received Packet (” + read + ” bytes) ”) ;

#end i f

i f (read > 0)

{
// unpack the data

ReadPacket (so . bu f f e r) ;

i f (s == sockData)

bNewData = true ; // i nd i c a t e to update charac t e r

// l i s t e n f o r next frame

s . BeginReceive (so . bu f f e r , 0 , MyStateObject .BUFFER SIZE , 0 , new

AsyncCallback (AsyncReceiveCal lback) , so) ;

}

}

private void ReadPacket (Byte [] b)

{
int o f f s e t = 0 ;

int nBytes = 0 ;

int [] iData = new int [1 0 0] ;

f loat [] fData = new f loat [5 0 0] ;

char [] cData = new char [5 0 0] ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 2) ; o f f s e t += 2 ;

int messageID = iData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 2) ; o f f s e t += 2 ;

nBytes = iData [0] ;

#i f DEBUG

Debug . Log (” [UDPClient] Proces s ing Received Packet (Message ID : ” + messageID + ”) ”) ;

#end i f

79

i f (messageID == 5) // Data d e s c r i p t i o n s

{
strFrame = (” [UDPClient] Read DataDescr ipt ions ”) ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”Dataset Count : {0}\n” , iData [0]) ;

int nDatasets = iData [0] ;

for (int i =0; i < nDatasets ; i++)

{
// pr in t (” Dataset %d\n” , i) ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”Dataset # {0} (type : {1})\n” , i , iData [0]) ;

int type = iData [0] ;

i f (type == 0) // markerset

{
// name

string strName = ”” ;

while (b [o f f s e t] != ’\0 ’)

{
Buf fe r . BlockCopy (b , o f f s e t , cData , 0 , 1) ; o f f s e t += 1 ;

strName += cData [0] ;

}
o f f s e t += 1 ;

strFrame += Str ing . Format (”MARKERSET (Name : {0})\n” , strName) ;

// marker data

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”marker count : {0}\n” , iData [0]) ;

int nMarkers = iData [0] ;

for (int j =0; j < nMarkers ; j++)

{
strName = ”” ;

while (b [o f f s e t] != ’\0 ’)

{
Buf fe r . BlockCopy (b , o f f s e t , cData , 0 , 1) ; o f f s e t += 1 ;

strName += cData [0] ;

}
o f f s e t +=1;

strFrame += Str ing . Format (”Name : {0}\n” , strName) ;

}
}
else i f (type ==1) // r i g i d body

{
i f (major >= 2)

{
// name

char [] szName = new char [MAXNAMELENGTH] ;

s t r cpy (szName , ptr) ;

ptr += s t r l e n (ptr) + 1 ;

p r i n t f (”Name : %s\n” , szName) ;

}

int ID = 0 ; memcpy(&ID , ptr , 4) ; ptr +=4;

p r i n t f (”ID : %d\n” , ID) ;

int parentID = 0 ; memcpy(&parentID , ptr , 4) ; ptr +=4;

p r i n t f (”Parent ID : %d\n” , parentID) ;

f loat x o f f s e t = 0 ; memcpy(&xo f f s e t , ptr , 4) ; ptr +=4;

p r i n t f (”X Of f s e t : %3.2 f \n” , x o f f s e t) ;

f loat y o f f s e t = 0 ; memcpy(&yo f f s e t , ptr , 4) ; ptr +=4;

p r i n t f (”Y Of f s e t : %3.2 f \n” , y o f f s e t) ;

f loat z o f f s e t = 0 ; memcpy(& zo f f s e t , ptr , 4) ; ptr +=4;

p r i n t f (”Z Of f s e t : %3.2 f \n” , z o f f s e t) ;

}
else i f (type ==2) // ske l e t on

{
I n i t i a l i z e S k e l e t o n (b , o f f s e t) ;

#i f DEBUG

Debug . Log (” I n i t i a l i z e S k e l e t o n ”) ;

#end i f

}

80

} // next datase t

#i f DEBUG

Debug . Log (strFrame) ;

#end i f

}
else i f (messageID == 7) // Frame o f Mocap Data

{
strFrame = ” [UDPClient] Read FrameOfMocapData\n” ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”Frame # : {0}\n” , iData [0]) ;

// MarkerSets

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nMarkerSets = iData [0] ;

strFrame += Str ing . Format (”MarkerSets # : {0}\n” , iData [0]) ;

for (int i = 0 ; i < nMarkerSets ; i++)

{
St r ing strName = ”” ;

int nChars = 0 ;

while (b [o f f s e t + nChars] != ’\0 ’)

{
nChars++;

}
strName = System . Text . Encoding . ASCII . GetStr ing (b , o f f s e t , nChars) ;

o f f s e t += nChars + 1 ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nMarkers = iData [0] ; strFrame += Str ing . Format (”Marker Count : {0}\n” , nMarkers) ;

r ig idbody . markersPos = new Vector3 [nMarkers] ;

for (int j =0; j < nMarkers ; j++) {
r ig idbody . markersPos [j] = new Vector3 (0F,0F,0F) ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

r ig idbody . markersPos [j] . x = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

r ig idbody . markersPos [j] . y = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

r ig idbody . markersPos [j] . z = fData [0] ;

strFrame += Str ing . Format (”\ tMarker {0} :

[x={1} ,y={2} , z={3}]\n” , j , r i g idbody . markersPos [j] . x ,

r ig idbody . markersPos [j] . y , r ig idbody . markersPos [j] . z) ;

}

}

// Other Markers

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nOtherMarkers = iData [0] ; strFrame += Str ing . Format (”Other Markers : {0}\n” ,

nOtherMarkers) ;

for (int j =0; j < nOtherMarkers ; j++) {
Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

f loat x = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

f loat y = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

f loat z = fData [0] ;

strFrame += Str ing . Format (”\ tMarker {0} : [x={1} ,y={2} , z={3}]\n” , j , x , y , z) ;

}

//nBytes = iData [0] ∗ 3 ∗ 4 ;

// Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , nBytes) ; o f f s e t += nBytes ;

// Rigid Bodies

//RigidBody rb = new RigidBody () ;

81

Buf fe r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nRigidBodies = iData [0] ;

o f f s e tA r = new int [nRigidBodies] ;

strFrame += Str ing . Format (”Rigid Bodies : {0}\n” , iData [0]) ;

for (int i = 0 ; i < nRigidBodies ; i++)

{
o f f s e tA r [i] = o f f s e t ;

strFrame += Str ing . Format (” Of f s e t r i g i d body {0} : {1}\n” , i +1, o f f s e tA r [i]) ;

ReadRB(b , ref o f f s e t , this . r i g idbody) ;

strFrame += Str ing . Format (”ID : {0}\n” , r ig idbody . ID) ;

strFrame += Str ing . Format (”pos : [{0} ,{1} ,{2}]\n” ,

r ig idbody . pos . x , r ig idbody . pos . y , r ig idbody . pos . z) ;

strFrame += Str ing . Format (” o r i : [{0} ,{1} ,{2} ,{3}]\n” , r ig idbody . o r i . x ,

r ig idbody . o r i . y , r ig idbody . o r i . z , r i g idbody . o r i .w) ;

}

// s t o r e the two r i g i d bod ies − I didn ’ t f i nd a be t t e r s o l u t i on

int of1 = o f f s e tA r [0] ;

int of2 = o f f s e tA r [1] ;

int of3 = o f f s e tA r [2] ;

ReadRB(b , ref of1 , head) ;

ReadRB(b , ref of2 , hand) ;

ReadRB (b , ref of3 , monitor) ;

strFrame += Str ing . Format (”Head pos : [{0} ,{1} ,{2}]\n” , head . pos . x , head . pos . y , head . pos . z) ;

strFrame += Str ing . Format (”Monitor pos : [{0} ,{1} ,{2}]\n” , monitor . pos . x , monitor . pos . y ,

monitor . pos . z) ;

strFrame += Str ing . Format (”Hand pos : [{0} ,{1} ,{2}]\n” , hand . pos . x , hand . pos . y , hand . pos . z) ;

// Ske l e tons

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nSke letons = iData [0] ;

strFrame += Str ing . Format (” Ske l e tons : {0}\n” , iData [0]) ;

for (int i = 0 ; i < nSke letons ; i++)

{
// ID

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

ske lTarget . ID = iData [0] ;

// # rbs (bones) in ske l e t on

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

ske lTarget . nBones = iData [0] ;

for (int j = 0 ; j < ske lTarget . nBones ; j++)

{
ReadRB(b , ref o f f s e t , ske lTarget . bones [j]) ;

}
}

// frame la t ency

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

// end o f data (EOD) tag

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

#i f DEBUG

Debug . Log (strFrame) ;

#end i f

// debug

St r ing s t r = Str ing . Format (” Ske l ID : {0}” , ske lTarget . ID) ;

for (int i = 0 ; i < ske lTarget . nBones ; i++)

{
St r ing s t = Str ing . Format (” Bone {0} : ID : {1} raw pos ({2 : F2} ,{3 :F2} ,{4 :F2}) raw o r i

({5 : F2} ,{6 :F2} ,{7 :F2} ,{8 :F2}) ” ,

i , ske lTarget . bones [i] . ID ,

ske lTarget . bones [i] . pos [0] , ske lTarget . bones [i] . pos [1] , ske lTarget . bones [i] . pos [2] ,

ske lTarget . bones [i] . o r i [0] , ske lTarget . bones [i] . o r i [1] , ske lTarget . bones [i] . o r i [2] ,

ske lTarget . bones [i] . o r i [3]) ;

s t r += ”\n” + st ;

}
#i f DEBUG

Debug . Log (s t r) ;

#end i f

i f (ske lTarget . bNeedBoneLengths)

ske lTarget . UpdateBoneLengths () ;

}
else i f (messageID == 100)

{
#i f DEBUG

82

Debug . Log (”Packet Read : Unrecognized Request . ”) ;

#end i f

}

}

// Unpack RigidBody data

private void ReadRB(Byte [] b , ref int o f f s e t , RigidBody rb)

{
int [] iData = new int [1 0 0] ;

f loat [] fData = new f loat [1 0 0] ;

// RB ID

Buf fe r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int iSke l ID = iData [0] >> 16 ; // hi 16 b i t s = ID of bone ’ s parent sk e l e t on

int iBoneID = iData [0] & 0 x f f f f ; // l o 16 b i t s = ID of bone

rb . ID = iData [0] ; // a l ready have i t from data d e s c r i p t i o n s

// RB pos

f loat [] pos = new f loat [3] ;

Buf f e r . BlockCopy (b , o f f s e t , pos , 0 , 4 ∗ 3) ; o f f s e t += 4 ∗ 3 ;

rb . pos . x = pos [0] ; rb . pos . y = pos [1] ; rb . pos . z = pos [2] ;

// RB o r i

f loat [] o r i = new f loat [4] ;

Buf f e r . BlockCopy (b , o f f s e t , o r i , 0 , 4 ∗ 4) ; o f f s e t += 4 ∗ 4 ;

rb . o r i . x = o r i [0] ; rb . o r i . y = o r i [1] ; rb . o r i . z = o r i [2] ; rb . o r i .w = o r i [3] ;

QuaternionToEuler (rb . o r i . x , rb . o r i . y , rb . o r i . z , rb . o r i .w, out rb . yaw , out rb . pitch , out

rb . r o l l) ;

rb . p i t ch ∗= −1.0 f ;

rb . yaw = (RadiansToDegrees (rb . yaw)) ;

rb . p i t ch = (RadiansToDegrees (rb . p i t ch)) ;

rb . r o l l = (RadiansToDegrees (rb . r o l l)) ;

// RB’ s markers

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int nMarkers = iData [0] ;

// RB’ s makers data

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4 ∗ 3 ∗ nMarkers) ; o f f s e t += 4 ∗ 3 ∗ nMarkers ;

f loat [] markerData = fData ;

// RB’ s marker i d s

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4 ∗ nMarkers) ; o f f s e t += 4 ∗ nMarkers ;

// RB’ s marker s i z e s

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4 ∗ nMarkers) ; o f f s e t += 4 ∗ nMarkers ;

// RB mean e r r o r

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

}

void I n i t i a l i z e S k e l e t o n (Byte [] b , int o f f s e t)

{
int [] iData = new int [1 0 0] ;

f loat [] fData = new f loat [5 0 0] ;

char [] cData = new char [5 0 0] ;

string strName = ”” ;

while (b [o f f s e t] != ’\0 ’)

{
Buf fe r . BlockCopy (b , o f f s e t , cData , 0 , 1) ; o f f s e t += 1 ;

strName += cData [0] ;

}
o f f s e t += 1 ;

strFrame += Str ing . Format (”SKELETON (Name : {0})\n” , strName) ;

ske lTarget . name = strName ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (” SkeletonID : {0}\n” , iData [0]) ;

ske lTarget . ID = iData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (” nRigidBodies : {0}\n” , iData [0]) ;

ske lTarget . nBones = iData [0] ;

for (int j =0; j< ske lTarget . nBones ; j++)

{

83

// RB name

string strRBName = ”” ;

while (b [o f f s e t] != ’\0 ’)

{
Buf fe r . BlockCopy (b , o f f s e t , cData , 0 , 1) ; o f f s e t += 1 ;

strRBName += cData [0] ;

}
o f f s e t += 1 ;

strFrame += Str ing . Format (”RBName: {0}\n” , strRBName) ;

ske lTarget . bones [j] . name = strRBName ;

// RB ID

Buf fe r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

int iSke l ID = iData [0] >> 16 ; // hi 16 b i t s = ID of bone ’ s parent sk e l e t on

int iBoneID = iData [0] & 0 x f f f f ; // l o 16 b i t s = ID of bone

//Debug . Log (”RBID:” + iBoneID + ” SKELID:”+ iSke l ID) ;

strFrame += Str ing . Format (”RBID: {0}\n” , iBoneID) ;

ske lTarget . bones [j] . ID = iBoneID ;

// RB Parent

Buf f e r . BlockCopy (b , o f f s e t , iData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”RB Parent ID : {0}\n” , iData [0]) ;

ske lTarget . bones [j] . parentID = iData [0] ;

// RB l o c a l p o s i t i o n o f f s e t

Vector3 l o ca lPos ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”X Of f s e t : {0}\n” , fData [0]) ;

l o ca lPos . x = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”Y Of f s e t : {0}\n” , fData [0]) ;

l o ca lPos . y = fData [0] ;

Buf f e r . BlockCopy (b , o f f s e t , fData , 0 , 4) ; o f f s e t += 4 ;

strFrame += Str ing . Format (”Z Of f s e t : {0}\n” , fData [0]) ;

l o ca lPos . z = fData [0] ;

ske lTarget . bones [j] . pos = loca lPos ;

//Debug . Log (” [UDPClient] Added Bone : ” + ske lTarget . bones [j] . name) ;

}
ske lTarget . bHasHierarchyDescr ipt ion = true ;

}

// Convert a quatern ion (TrackingTools type) to eu l e r ang l e s (Y, Z , X)

// Y = Heading (Yaw)

// Z = Att i tude (Pitch)

// X = Bank (Rol l)

// From Martin Baker (http ://www. euc l ideanspace . com/maths/geometry/

// r o t a t i o n s / conve r s i ons / quaternionToEuler / index . htm)

// convent ions :

// − input and output un i t s are both in rad ians

// − eu l e r order i s YZX

// − eu l e r ang l e s are about g l oba l axes

// − eu l e r + angle i s r ight−handed

public void QuaternionToEuler (f loat qx , f loat qy , f loat qz , f loat qw , out f loat y , out

f loat z , out f loat x)

{
f loat t e s t = qx ∗ qy + qz ∗ qw ;

i f (t e s t > 0 .499) // s i n g u l a r i t y at north po le

{
y = 2.0F ∗ Mathf . Atan2 (qx , qw) ;

z = Mathf . PI / 2 .0F ;

x = 0 .0F ;

return ;

}

i f (t e s t < −0.499) // s i n g u l a r i t y at south po le

{
y = −2.0F ∗ Mathf . Atan2 (qx , qw) ;

z = −Mathf . PI / 2 .0F ;

x = 0 .0F ;

return ;

}

f loat sqx = qx ∗ qx ;

f loat sqy = qy ∗ qy ;

f loat sqz = qz ∗ qz ;

84

y = Mathf . Atan2 (2 . 0F ∗ qy ∗ qw − 2 .0F ∗ qx ∗ qz , 1 .0F − 2 .0F ∗ sqy − 2 .0F ∗ sqz) ;

z = Mathf . Asin (2 . 0F ∗ t e s t) ;

x = (f loat)Mathf . Atan2 (2 . 0F ∗ qx ∗ qw − 2 .0F ∗ qy ∗ qz , 1 .0F − 2 .0F ∗ sqx − 2 .0F ∗ sqz) ;

}

public f loat RadiansToDegrees (f loat dRads)

{
return dRads ∗ (180 .0 f / Mathf . PI) ;

}

// normal i s ing a quatern ion works s im i l a r to a vector . This method w i l l not do anything

// i f the quatern ion i s c l o s e enough to being unit−l ength . d e f i n e TOLERANCE as something

// smal l l i k e 0 .00001 f to get accurate r e s u l t s

public void QuaternionNormalise (ref f loat x , ref f loat y , ref f loat z , ref f loat w)

{
// Don ’ t normal ize i f we don ’ t have to

f loat t o l e r an c e = 0.00001 f ;

f loat mag2 = w ∗ w + x ∗ x + y ∗ y + z ∗ z ;

i f (mag2 != 0 .0 f && (Math . Abs(mag2 − 1 .0 f) > t o l e r an c e))

{
f loat mag = (f loat)Math . Sqrt (mag2) ;

w /= mag ;

x /= mag ;

y /= mag ;

z /= mag ;

}
}
// c l o s e the socket connect ion . remeber to c a l l i t with OnApplicationQuit () , o therwi se the

connect ion

// w i l l remain always open un t i l the system automat i ca l ly c l o s e i t f o r a timeout

public void c loseConnect ion () {
sockData . Close () ;

sockCommand . Close () ;

}
}

public c lass MyStateObject

{
public Socket workSocket = null ;

public const int BUFFER SIZE = 65507;

public byte [] b u f f e r = new byte [BUFFER SIZE] ;

}

A.2 handTracking.cs

//#de f i n e DEBUG

using UnityEngine ;

using System . Co l l e c t i o n s ;

public class handTracking : MonoBehaviour {
public OptiTrackUDPClient udpClient = null ;

private bool bSuccess ;

public string mult icast IPAddress ;

public string l oca l IPAddress ;

public int dataPort ;

public f loat s e n s i t i v i t yX = 5F;

public f loat s e n s i t i v i t yY = 5F;

public f loat s e n s i t i v i t y Z = 5F;

private f loat minimumX = −1000F ;

private f loat maximumX = 1000F ;

private f loat minimumY = −1000F ;

private f loat maximumY = 1000F ;

private f loat minimumZ = −1000F ;

private f loat maximumZ = 1000F ;

private f loat pos i t ionY = 0F;

private f loat pos i t ionX = 0F;

private f loat pos i t i onZ = 0F;

private Rigidbody rig idBody = new Rigidbody () ;

85

void Star t ()

{
// Make the r i g i d body not change r o t a t i on

i f (this . r i g idbody)

this . r i g idbody . f r e e z eRota t i on = true ;

Ske le ton ske lPer fo rmer = new ArenaSkeleton () ;

RigidBody rbPerformer = new RigidBody () ;

// Connect to a Live Arena s e s s i o n

udpClient = new OptiTrackUDPClient () ;

udpClient . l oca l IPAddress = loca l IPAddress ;

udpClient . mult icast IPAddress = mult icast IPAddress ;

udpClient . dataPort = dataPort ;

udpClient . ske lTarget = ske lPer fo rmer ; // <−− l i v e data w i l l be s t u f f e d in to t h i s

sk e l e t on ob j e c t

udpClient . r ig idbody = rbPerformer ;

bSuccess = udpClient . Connect () ;

i f (this . bSuccess) {
udpClient . RequestDataDescr ipt ions () ;

}

}

void Update ()

{
#i f DEBUG

Debug . Log (”hand pos : [” + udpClient . hand . pos . x + ” , ” +

udpClient . hand . pos . y + ” , ” +

udpClient . hand . pos . z + ”] ”) ;

#end i f

i f (this . bSuccess) {

f loat trX = (udpClient . hand . pos . x − pos i t ionX) ∗ s e n s i t i v i t yX ;

f loat trY = (udpClient . hand . pos . y − pos i t ionY) ∗ s e n s i t i v i t yY ;

f loat trZ = (udpClient . hand . pos . z − pos i t i onZ) ∗ s e n s i t i v i t y Z ;

transform . Trans late (trZ , trY , trX) ;

pos i t ionX = udpClient . hand . pos . x ;

pos i t ionY = udpClient . hand . pos . y ;

pos i t i onZ = udpClient . hand . pos . z ;

}
}
void OnApplicationQuit () {
udpClient . c loseConnect ion () ;

}

}

A.3 ToedInCamera.cs

//#de f i n e DEBUG

using UnityEngine ;

using System . Co l l e c t i o n s ;

public c lass ToedInCamera : MonoBehaviour {

f loat cameraDist = 0 .0 f ;

f loat ob j e c tD i s t = 0 .0 f ;

f loat angleAlpha = 0.0 f ;

f loat angleBetha = 0.0 f ;

private f loat oldCameraDist = 0 .0 f ;

private f loat o ldObjectDis t = 0 .0 f ;

f loat rotat ionA = 0.0 f ;

f loat rotat ionB = 0.0 f ;

bool appRotation ;

public Camera r i gh t ;

public Camera l e f t ;

public GameObject source ;

public GameObject t a r g e t ;

86

//debug purposes

string s t r = ”” ;

void Star t ()

{
appRotation = true ;

}

// Update i s c a l l e d once per frame

void Update () {

//To c a l c u l a t e the angle between the two camera the p r e c e s s i s :

//1− Calcu la te the ha l f d i s t ance between the two camera

f loat d i s t x = Mathf .Pow ((l e f t . transform . po s i t i o n . x − r i gh t . transform . po s i t i o n . x) ,

2 .0 f) ;

f loat d i s t y = Mathf .Pow ((l e f t . transform . po s i t i o n . y − r i gh t . transform . po s i t i o n . y) ,

2 .0 f) ;

f loat d i s t z = Mathf .Pow ((l e f t . transform . po s i t i o n . z − r i gh t . transform . po s i t i o n . z) ,

2 . 0 f) ;

cameraDist = Mathf . Sqrt (d i s t x + d i s t y + d i s t z) ;

cameraDist /= 2 .0 f ;

#i f DEBUG

s t r = ”” ;

s t r += ”Camera Dist /2 : ” + cameraDist + ’\n ’ ;

#end i f

//2− Calcu la te the d i s t ance between the ob j e c t and the cameras

d i s t x = Mathf .Pow (ta rg e t . transform . po s i t i o n . x − source . transform . po s i t i o n . x , 2 .0 f) ;

d i s t y = Mathf .Pow (ta rg e t . transform . po s i t i o n . y − source . transform . po s i t i o n . y , 2 .0 f) ;

d i s t z = Mathf .Pow (ta rg e t . transform . po s i t i o n . z − source . transform . po s i t i o n . z , 2 .0 f) ;

ob j e c tD i s t = Mathf . Sqrt (d i s t x + d i s t y + d i s t z) ;

#i f DEBUG

s t r += ”Camera−to−ob j e c t d i s t ance : ” + ob j e c tD i s t + ’\n ’ ;

#end i f

i f (oldCameraDist != cameraDist | | o ldObjectDis t != ob j e c tD i s t)

{
appRotation = true ;

oldCameraDist = cameraDist ;

o ldObjectDis t = ob j e c tD i s t ;

}
//3− Imagine to have a t r i a n g l e between the two cameras , so us ing the two length we

have : alpha=arctang (c/b)

angleAlpha = Mathf . Atan (cameraDist / ob j e c tD i s t) ;

#i f DEBUG

s t r += ”Angle Alpha : ” + angleAlpha∗Mathf . Rad2Deg +’\n ’ ;

#end i f

//4− then betha= pi /2 − alpha

angleBetha = Mathf . PI/2 − angleAlpha ;

angleBetha = angleBetha ∗ Mathf . Rad2Deg ;

#i f DEBUG

s t r += ”Angle between the two cameras : ” + angleBetha ;

Debug . Log (s t r) ;

#end i f

//now we need to a s s i gn the value to each camera , f i r s t subt rac t ing 90 degree from

the prev ious r e s u l t

// because we need to know how much to ro ta t e inwards the camera to obta in that angle

i f (appRotation)

{
l e f t . transform . r o t a t i on = Quaternion . Euler (0 . 0 f ,90−angleBetha , 0 .0 f) ;

r i gh t . transform . r o t a t i on = Quaternion . Euler (0 . 0 f , angleBetha − 90 , 0 .0 f) ;

rotat ionA = l e f t . transform . r o t a t i on . y ;

rotat ionB = r i gh t . transform . r o t a t i on . y ;

appRotation = fa l se ;

}

}

private Vector3 Vector3 (double p1 , f loat angleBetha , double p2)

{
throw new System . NotImplementedException () ;

}
}

87

A.4 StereoAlgorithm.cs

#de f i n e DEBUG

using UnityEngine ;

using System . Co l l e c t i o n s ;

public c lass StereoAlgor ithm : MonoBehaviour {

monitor s c r ;

f loat z = 30.0 f ;

f loat d = 84.0 f ;

protected f loat p = 0.65 f ;

public GameObject cube ;

//debug

string s t r = ”” ;

public formula () {
s c r = new monitor (Screen . height , Screen . width) ;

}

public f loat [] calcObjectDim (f loat zedPos) {
f loat [] dim = new f loat [2] ;

dim [0] = (zedPos ∗ (s c r . getWidth () + p)) / d − p ;

dim [1] = (zedPos ∗ s c r . g e the i g th ()) / d ;

return dim ;

}

}

class monitor {
private f loat heigthCm = 0.0 f ;

private f loat widthCm = 0.0 f ;

private int heigthRes = 0 ;

private int widthRes = 0 ;

private f loat diagona l Inch = 24.0 f ;

private f loat aspectRat io = 0 .0 f ;

public monitor (int resH , int resW) {
heigthRes = resH ;

widthRes = resW ;

calculateMonitorDim () ;

}
private f loat c a l cu l a t eRa t i o () {
aspectRat io = widthRes / heigthRes ;

return (d iagona l Inch / Mathf . Sqrt (Mathf .Pow (aspectRatio , 2) + 1)) ;

}
private void calculateMonitorDim () {
heigthCm = ca l cu l a t eRa t i o () ∗ 2 .54 f ;

widthCm = aspectRat io ∗ c a l cu l a t eRa t i o () ∗ 2 .54 f ;

}

public f loat ge the i g th () {
return heigthCm ;

}

public f loat getWidth () {
return widthCm ;

}

}

88

	Introduction
	Background Knowledge
	Binocular Vision and Stereoscopy
	Binocular Vision
	Stereoscopy
	Stereoscopic Video Games in the past
	Stereoscopic Video Games Today
	Medical Consequences

	Motion Sensing Devices
	Microsoft Kinect
	Nintendo Wii Remote
	Optical Tracking

	Unity3D: a Game Engine
	Physical Model of a Bow

	State Of The Art
	Stereoscopic Human Interfaces
	Immersive 3D User Interface for 3DTVs
	A Bow as an Interaction Device

	Proposed Investigation
	3D Archery Game: Potential and Shortcomings
	Proposed Solution
	Motion Capture Module
	Stereoscopic-3D component
	Integrated System

	Implementation
	Stereoscopic-3D Visualization Component
	Preliminary Idea: Realising a Stereo Camera system in Unity3D
	Implementing a Toed-in Stereoscopic-3D System
	Immersive User Interface

	Motion Capture Component
	Tracking Tools and Unity3D communication
	The OptiTrackUDPClient class
	Tracking Object Script

	Implementing The ArcheryGame2.0 Game
	Integration between the modules
	Building the game components
	Implementing the Game Mechanics

	Testing System Functionality

	Conclusions
	Summary and Achievements
	Future Works

	Appendices
	Code
	OptiTrackUDPClient.cs
	handTracking.cs
	ToedInCamera.cs
	StereoAlgorithm.cs

