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Abstract— There is increasing interest in the deployment and
operation of multiple autonomous marine vehicles (AMVs) for
a number of challenging scientific and commercial operational
mission scenarios. Some of the missions, such as geotechnical
surveying and 3D marine habitat mapping, require that a
number of heterogeneous vehicles operate simultaneously in
small areas, often in close proximity of each other. In these
circumstances safety, reliability, and efficient multiple vehicle
operation are key ingredients for mission success. Additionally,
the deployment and operation of multiple AMVs at sea are
extremely costly in terms of the logistics and human resources
required for mission supervision, often during extended periods
of time. These costs can be greatly minimized by automating
the deployment and initial steering of a vehicle fleet to a
predetermined configuration, in preparation for the ensuing
mission, taking into account operational constraints. This is one
of the core issues addressed in the scope of the Widely Scalable
Mobile Underwater Sonar Technology project (WiMUST), an
EU Horizon 2020 initiative for underwater robotics research.

WiMUST uses a team of cooperative autonomous ma-
rine robots, some of which towing streamers equipped with
hydrophones, acting as intelligent sensing and communicat-
ing nodes of a reconfigurable moving acoustic network. In
WiMUST, the AMVs maintain a fixed geometric formation
through cooperative navigation and motion control. Formation
initialization requires that all the AMVs start from scattered
positions in the water and maneuver so as to arrive at required
target configuration points at the same time in a completely au-
tomatic manner. This paper describes the decoupled prioritized
vehicle motion planner developed in the scope of WiMUST that,
together with an existing system for trajectory tracking, affords
a fleet of vehicles the above capabilities, while ensuring inter-
vehicle collision and streamer entanglement avoidance. Tests
with a fleet of seven marine vehicles show the efficacy of the
system planner developed.

I. INTRODUCTION

A. Widely Scalable Mobile Underwater Technology

The aim of the Widely scalable Mobile Underwater Tech-
nology project (WiMUST, [2]) is to conceive, design, and en-
gineer an intelligent, manageable, and distributed underwater
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Fig. 1: Seven vehicles were used in the WiMUST trials: the
ULISSE (a) and Delfim (b) catamarans; three Medusas (c)
and two Folagas (d) autonomous underwater vehicles.

acoustic array. The objective of this novel acoustic array is
to improve the efficiency of geophysical and geotechnical
acoustic surveys at sea. These include seabed mapping, sea-
floor characterization, and seismic exploration, which are
fundamental operations for the oil and gas industry, as well as
civil engineering. The main novelty of WiMUST is the intro-
duction of a cooperative team of autonomous marine robots,
acting as intelligent sensing and communicating nodes of a
dynamic seismic recording network. Two types of vehicles
are part of the WiMUST fleet (see Fig. 1). First, autonomous
underwater vehicles (Fig. 1c and Fig. 1d) with the role
of towing streamers of hydrophones of small aperture (see
Fig. 2). Second, surface autonomous vehicles that work as
anchor nodes for communication and carry the sparker units
responsible for producing seismic acoustic signals. (Fig. 1a
and Fig. 1b). The array is capable of acquiring seismic
data by illuminating the seabed and the ocean sub-bottom
with strong seismic waves sent by the sources installed
on-board of the anchor nodes. Such configuration allows
the overall system to behave as a large moving distributed
acoustic antenna. The resulting operational flexibility allows
improving the resolution of seabed and sub-bottom mapping
and obtaining side lobe rejection at almost any frequency and



for any plane. Also, WiMUST facilitates the operations at sea
through the use of wireless, acoustic communication between
the surface ship and the acquisition equipment. As its name
suggests, scalability has been an important priority for the
WiMUST project. Hence, several solutions were adopted to
make the whole system scalable with the number of deployed
vehicles. This paper presents how the problem of scalability
was tackled in the context of motion planning for multiple
AMVs.

Fig. 2: Two Medusas AMVs equipped with streamers.

Go-to formation maneuver: Among the several challenges
addressed in the scope of WiMUST (see [2] for a detailed
list), in this paper we consider and present a solution to the
problem of making a number of autonomous vehicles reach
a desired geometric formation at a specified initial location,
prior to starting an acoustic survey. In fact, before a survey
can start, the vehicles carrying the array of hydrophones
and the acoustic sources need to be in a precise formation.
Hence, the objective of this phase is to bring the vehicles
from random positions in the ocean to the initial formation
needed for the survey. Current methods include deploying
the vehicles at the desired positions or manually driving
them to the required locations. Such methods suffer from
poor scalability. The operation of manually placing or driving
the vehicles to the desired positions is already cumbersome
for a fleet of a few vehicles, and grows in complexity for
every new vehicle added to the array. Sea conditions and the
number of human operators are limiting factors when the
number of vehicles increases. The WiMUST project aimed
for the automation of the go-to formation task. When the
operations at the sea start, all the vehicles are scattered
randomly around the survey area. The task of the WiMUST
motion planner is to drive the vehicles autonomously from
their random initial positions to the location of the starting
formation, limited by the physical and control dynamics
of the vehicles. Additional constraints include making the
AMVs arrive at the desired configuration at the same time
while avoiding inter-vehicle collisions and streamer entan-
glement. To automatically generate the desired trajectories
for each vehicle, we propose a decoupled prioritized motion
planning approach that extends the rapidly-exploring random
tree algorithm (RRT, [16]).

B. Multiple AMVs Motion Planning
Motion planning is at the core of advanced systems for

single and multiple vehicle operations in vastly different

domains that include marine, land, aerial, and space robotics.
See for example [12] [3] and the references therein. There is
by now a wealth of methods available for motion planning
that exploit different, yet possibly complementary theoret-
ical frameworks, ranging from artificial potential functions
and roadmap path planners to cell decomposition meth-
ods and optimal control-based trajectory generation algo-
rithms. Optimal control methods for motion planning are
especially suited to take directly into account time and
energy objectives, as well vehicle dynamics and ambient con-
straints. Direct multiple shooting [8], pseudo-spectral [17],
and PRONTO [3] are but a few examples. In general, they
are quite demanding in terms of computational power. Direct
discretization methods (whereby the states of the systems
involved, the inputs, or a combination thereof are approx-
imated by specific classes of polynomial functions) have
computational advantages, for they have the potential to cast
the original problem in the form of nonlinear programming
problem with a reduced search space. Examples include the
use of classical polynomials [12], splines [18], and Bezier
curves [7]. Sampling-based methods for motion planning
algorithms, which were used in the WiMUST project, are
among the methods that scale well to multiple vehicles
problems [14]. To obtain smooth and dynamically-feasible
paths, they must be combined with other techniques [13]. A
comparison of the computation times obtained by different
sampling-based strategies can be found in [9].

II. METHODS: DECOUPLED SAMPLING-BASED MOTION
PLANNING

The WiMUST motion planner solves the problem of
computing collision-free trajectories that the vehicles must
track in order to be brought to a desired geometric formation.
The latter is crucial to properly synchronize the initialization
of the ensuing WiMUST cooperative mission. Meeting this
objective requires quick computation of a motion plan that
will allow the vehicles to arrive at the same time at their
desired final configuration from any arbitrary initial config-
uration. In this section we define the corresponding motion
planning problem and present the solutions adopted by the
consortium to solve it efficiently.

A. The multi-AMVs Motion Planning problem

For AMV motion planning, the space where the vehicles
trajectories are computed consists of the set of possible
transformations that can be applied to the vehicles, also
called the configuration space X (or C-space) [15]. To solve
a motion planning problem, an algorithm must perform a
search in the C-space. For the i-th of the N surface vehicles
A1, . . . , Ai, . . . , AN , the C-space Xi is a manifold charac-
terized by the set of all possible 2D rigid-body homogeneous
transformations in R2. Since any qxi , q

y
i can be selected

for translation, this alone yields a manifold M1 = R2.
Independently, rotations in yaw qθi ∈ [0, π) can be applied
along the z axis yielding the circle manifold M2 = S1. To
obtain the complete manifold corresponding to all 2D rigid-
body motions we take Xi = M1 ×M2 = R2 × S1 (i.e., a



space that ”looks like” a cylinder). Hence, the resulting C-
space is a three-dimensional manifold, with two dimensions
deriving from translations and one more deriving from the
yaw rotation. Since in the WiMUST missions seven vehicles
were deployed in the environment W = R2 (N = 7), their
corresponding C-spaces Xi can be combined using Cartesian
products to obtain the configuration space X of the whole
multiple vehicle system. Hence, the complete C-space is
defined as X = X1 ×X2 × . . . X7.

Let O ⊂ X denote the obstacle region i.e., the portion
of the configuration space X that either cause the vehicles
to collide with each other, with the streamers, or cause
the streamers to entangle in W . A motion planning al-
gorithm must find a path from an initial configuration to
a goal configuration that traverses only the leftover space
Xfree ⊂ X , which is obtained by removing O from X i.e.,
Xfree = X\O. Hence, in WiMUST the multi-AMVs motion
planning problem consists of finding a set of trajectories
−→x 1,
−→x 2, . . . ,

−→x 7 in the collision-free space Xfree that start
at a given starting configuration xs ∈ Xfree (i.e., the vehicles
in the vicinity of the support vessel) and that end at a desired
goal configuration xg ∈ Xfree (i.e., the vehicles at the
geometrical formation that is required to properly initialize
the autonomous geotechnical survey). The pair (xs, xg) is
called a query of the motion planning problem. In the
following section we present the techniques adopted to solve
this problem in the context of the WiMUST project.

B. Sampling-based motion planning

In WiMUST, the solution developed for the problem
described in the previous section belongs to the broad class of
sampling-based motion planning algorithms [15] [13]. This
section provides a brief introduction to such sampling-based
techniques. The key idea behind this class of algorithms is
to avoid the explicit construction of O and instead conduct
a search that probes the C-space sampling randomly chosen
configurations. This probing is enabled by the presence of
the geometric models of the vehicles and streamers, which
are used by a collision detection module that verifies the
validity of each sampled configuration (i.e., if it is collision-
free or not). The collision detection module used within
the WiMUST Motion Planner was implemented using the
Flexible Collision Library (FCL) [11]. The aim of this sam-
pling process is to construct a compact graph data-structure
(usually called roadmap) which, once searched, efficiently
solves queries. The roadmap is a topological graph G(V,E)
in which the set of vertices V represents the sampled valid
vehicles configurations and the edges E correspond to the
set of paths that connect such configurations in the space
Xfree. Hence, once the roadmap is constructed, a specific
query pair (xs, xg) is solved applying standard discrete graph
search algorithms in G (e.g., depth-first search) to obtain a
sequence of edges that form a collision-free path from xs to
xg .

C. The WiMUST motion planner

The WiMUST motion planner is an extension of the
Rapidly expanding Random Tree (RRT) algorithm [16]. It
was integrated in the general WiMUST software architecture
using the Open Motion Planning Library (OMPL) [20]
running on ROS (Robot Operating System [19]). This library
was extended to implement a prioritized decoupled motion
planning approach, which includes kinematical constraints
for the vehicles and geometrical constraints to avoid the
entanglement of the streamers. In addition, a simple and
effective solution was found to make all the vehicles arrive
at the chosen final formation at the exact same time. Such
extensions, together with the main challenges encountered
during the project and the solutions adopted to tackle them,
will be described in the following sections.

1) Kinematic constraints: In WiMUST, the imposition of
differential constraints was necessary to develop a planner
capable of computing collision-free trajectories from xs to
xg that take into account the vehicles kinematics in terms of
velocity profiles. The differential constraints that arise from
the vehicles kinematics restrict the allowable velocities at
each points in the state space X1. For the i-th vehicle, these
constraints are usually expressed in terms of a state transition
equation such as ẋi = f(xi, ui) defined on the smooth state
manifold Xi and with control vector ui ∈ U ⊂ R2, where U
is the control space, which for all the vehicles is composed
by the their surge velocity vi and yaw turning rate ri. The
state-space model f adopted to take the vehicles’ kinematic
constraints into account is given by

[
q̇xi
q̇yi

]
= R(qθi )

[
vi
0

]
q̇θi = ri

where R(·) is the rotation matrix from body to inertial
reference frames, vi ∈ [0.3, 1] m/s, and ri ∈ [−0.2, 0.2]
rad/s for all vehicles.

In this context, the solution trajectory of the i-th vehicle
−→x i is derived from a sequence of sampled motion primitives
−→u p
i via repeated integrations of the state transition equation.

These sampled −→u p
i are control trajectories for which a

randomly chosen control input ui is held constant for a short
amount of time ∆t. Given a control trajectory −→u i and start-
ing from the initial state xi(0) at time t = 0, the WiMUST
motion planner derives the corresponding state trajectory −→x i

from −→u i integrating the equation ẋi = f(xi, ui) to yield
xi(t) = xi(0) +

∫ t
0
f(xi(τ), ui(τ))dτ . Let us define the

state trajectory −→x i in the time interval T = [0, T̃ ] ⊂ R.
Then, the output of the WiMUST motion planner is a control
trajectory −→u i : T → U for which the corresponding state
trajectory −→x i satisfies xi(0) = xsi , and there exists some
0 < t < T̃ for which xi(t) = xgi . Note that, since motions

1For the scope of this paper, the term ”state space”, usually used when
differential constraints are introduced, can be identified with the term
”configuration space”. Hence, in the following the two terms will be used
interchangeably.



are expressed in terms of sequences of motion primitives
−→u p
i , but collision detection tests must be performed in Xi,

the system ẋi = f(xi, ui) needs to be integrated frequently
during the planning process. In addition, when kinematic
constraints are considered, the edges E of the roadmap graph
G do not represent paths, but motion primitives −→u p

i instead.
2) Decoupled prioritized approach to tackle the multi-

vehicles’ curse of dimensionality: The scalability of motion
planning for multiple autonomous vehicles is a computation-
ally hard problem. Planning in the joint configuration space
of all the vehicles can lead to an intractable problem. Such
intractability arises from the linear growth of the dimensions
of the configuration space with respect to the number of
vehicles. In Section II.A the C-space of the seven vehicles
of the WiMUST fleet was defined as the Cartesian product
X = X1×X2×. . . X7. In theory, X can be considered as an
ordinary C-space, hence the same standard motion planning
algorithms developed for a single vehicle may be applied
without particular adaptation. Nevertheless, the main concern
is that the dimension of X grows linearly with respect to
the number of vehicles, hence the dimension of X might
not scale well for real-time applications. Take for instance
the case of WiMUST, where for each of the seven vehicles
Xi = R2 × S1, and therefore the total dimension of X is
3 × 7 = 21. This large dimensionality would require too
many samples to have a coverage of the C-space that would
allow to quickly find proper collision-free trajectories from
xs to xg .

An alternative approach, which was adopted to decrease
the computational complexity of the WiMUST planner, is
decoupled prioritized motion planning [21]. The idea is
to sort the vehicles by priority and plan for each vehicle
separately, considering higher priority vehicles first. Low
priority vehicles then plan by viewing the vehicles with high
priority as moving time-dependent obstacles. Suppose the
vehicles are sorted by A1.A2, . . . , A7, where A1 has the
highest priority. The prioritized planning approach proceeds
inductively as follows:

• Base case: use the RRT algorithm with kinematic
constraints to compute a collision-free trajectory −→x 1

for vehicle A1, independently from all other vehicles
of the fleet.

• Inductive step: suppose that the trajectories
−→x 1, . . . ,

−→x i−1 have been computed for vehicles
A1, . . . , Ai−1 , and that these avoid vehicle and
streamers collisions among any of the first i − 1
vehicles. Let us represent the first A1, . . . , Ai−1

vehicles as moving time-dependent obstacles in W for
the vehicles with priority larger than i − 1. In other
words, for each time t ∈ T the configurations of all
vehicles −→x j(t), with j ∈ {1, . . . , i − 1}, are added to
the corresponding obstacle regions Ok(t) of vehicles
with priorities k ∈ {i, . . . , N}.

Since in prioritized decoupled motion planning the obsta-
cle region Oi(t) of each Ai becomes time-dependent (i.e.,
vehicles high in the hierarchy are seen as moving obstacles
by vehicles with low priority), we need to add time as an

additional dimension to the state space X . This leads to
the new time-dependent state space X̂ = X × T . Hence,
a state x̂ is represented as x̂ = (x, t) to indicate the vehicles
configurations x at time t. Thus, to use the prioritized
decoupled approach, the WiMUST motion planner must
perform a search in X̂ . In this regard, the obstacles’ time
dependency was taken into account to verify if sampled
configurations are collision-free: the validity of a sampled
configuration (xi, t) of Ai at time t is verified by detecting
potential collisions with its obstacle region Oi(t) at time
t. During the WiMUST project the OMPL was extended to
take into account prioritized decoupled motion planning and,
consequently, the representation of time-varying obstacles.

On one hand, in terms of computational efficiency, instead
of sampling a 21-dimensional space this approach searches
for 7 different solutions, with each solution sampled in in a
3-dimensional space, therefore saving a considerable amount
of computational time. On the other hand, the drawback
is that this approach is not complete, meaning that if the
prioritization is not chosen carefully, even with a large
number of samples it may not be able to find a solution,
if it exists. In WiMUST, the prioritization was chosen by
taking into account the inter-vehicle distances in xs and xg

and the distances from xsi to xgi for all i = 1, . . . , 7.
3) To make the vehicles arrive at the same time: Another

requirement for the WiMUST project was to plan trajectories
that will allow the vehicles to arrive at the goal configuration
simultaneously. This requirement was compulsory to initial-
ize properly the autonomous survey. Once the time dimen-
sion is added to the state space of the planning problem,
this can be achieved simply by assigning to all the vehicles
the same desired time of arrival tg to the goal configuration
x̂g = (xg, tg). This feature allows the planner to find
trajectories that arrive at the required final configuration xg

at a specific desired time tg . One of the problems tackled
during the project was how to chose a reasonable tg . In
this regard, the solution adopted was the following: first,
compute a motion plan for each vehicle with no desired time
of arrival; then, choose tg as the maximum time among all
the times tg1, t

g
2, . . . , t

g
7 needed to arrive at the corresponding

xg1, x
g
2, . . . , x

g
7 in the previously computed trajectories. As

will be described in the following section, to add a desired
time to the goal configuration considerably increases the
computational complexity of the search performed by the
motion planner.

4) To avoid streamers’ entanglement: Because some of
the vehicles of the WiMUST fleet are equipped with 13 meter
long streamers, one of the key requirements of the WiMUST
project was to avoid vehicle-streamer collisions and streamer
entanglement. To adopt the classical approach of considering
the system composed by a vehicle plus its own streamer as a
single chain of linked bodies would be too computationally
expensive. In fact, even if a complete model of such system
were available (as in [4]), to represent the dynamics of a
streamer as the one of a chain composed by n joints, at least
five dimensions would be needed to model the state of each
joint (i.e., two for position, two for velocity, and one for



angle). Hence, to represent the complete system composed
by the vehicle plus its streamer would require at least 5 ×
n + 3 dimensions. For instance, with n = 8, this would
imply covering through sampling a 43-dimensional space for
each vehicle, which would require too many computational
resources for the computation of an acceptable solution.

Fig. 3: The streamer bounding box built around the trajectory
of a Medusa AMV.

The alternative and more practical approach adopted it the
WiMUST project was to construct online a set of bounding
boxes around the heuristically predicted positions of the
streamers at each time t and then to add them to the
corresponding obstacle regions Oi(t). The main assumption
behind this heuristics is that, when the vehicles speed is
large enough (i.e., at least 0.3 m/s), a streamer essentially
follows a trajectory that is identical to that followed by the
AMV over a previous time window (this was experimentally
observed during the project). To this aim, at each time
step t, the WiMUST motion planner keeps a set of buffers
with the time-stamped positions of the AMVs equipped
with streamers, for the amount of time needed to cover
the streamers’ length at the current vehicles’ speed. Then,
for each streamer, the planner constructs a bounding box
centered around the coordinates stored in the buffer of its
corresponding vehicle and adds it to the obstacle regions
Oi(t). To illustrate the output of this method, in Figure 3
the path of a simulated Medusa is compared with the
corresponding streamer’s bounding box built around it.

III. RESULTS: THE WIMUST TRIALS

The planner was tested at sea at the end of 2018 in Sines,
Portugal. A full survey was carried out by the WiMUST team
including seven vehicles. The fleet included the ULISSE [5]
and Delfim autonomous catamarans, three Medusas [1] and
two Folagas [6] autonomous underwater vehicles (see Fig. 1).
In the context of the go-to formation task, all the vehicles
were at the surface of the sea, even though some had under-
water capabilities. Figure 4 shows the initial positions of the
vehicles, the calculated paths and the final required positions
in one of the performed trials. In the figure, the grey squares
represent the initial positions of the vehicles, qxs and qys . The
final positions qxg and qyg and heading qθg of each AMV are
represented by the grey triangles. The colored lines between

Vehicle Init Init Final Final Error
East qxs North qys East qxg North qyg

Delfim -42 -42 0 0 0.17
ULISSE 52 -42 10 0 2.13
MedusaBLACK -47 -58 -5 -16 0.54
MedusaRED -27 -62 2.5 -10 1.46
MedusaYELLOW 37 -62 7.5 -10 1.37
Folaga54 -27.5 -62 2.5 -22 0.40
Folaga55 15.5 -82 7.5 -22 0.17

TABLE I: Initial and final positions of the go-to formation
task in meters. The error column shows the euclidean dis-
tance between the required final positions and the calculated
final positions by the planner.

the initial and final position are are the paths calculated
by the planner −→x 1,

−→x 2, . . . ,
−→x 7. The sizes of the arrows

represent the speeds along each path. The values of the
initial and final positions are shown in Table I. Clearly, the
short distances among the vehicles when they reach the final
configuration make the problem of multiple vehicle motion
planning extremely challenging. The difference between the
final position of the calculated trajectory compared with the
required final position represents the error in the calculated
trajectories. The requirements of the WiMUST mission, the
dynamics of the AMVs, and the sea conditions, were used
to define an acceptance threshold for the difference between
real and calculated positions of the vehicles. In Table I,
the Error column shows the euclidean difference between
the required and calculated final positions in meters. The
arrival time tg for all the AMVs was 106 seconds, with
an error of ±3 seconds. Note that this amount of time is
small compared to the time that would be needed if the
go-to formation task would have been performed manually.
The final heading of the vehicles is also part of the solution
space. The pointing direction towards north represents the
final desired heading for each AMV. The sinuous paths of
the solutions is explained by the different distances that
each vehicle has to cover in order to arrive at the final
configuration at the same time. Vehicles further from their
final positions tend to have a more linear path than the ones
closer to their final positions2.

In the full configuration of the system, on a 3.10GHz
8 cores computer the planner took an average of 5 minutes
per vehicle to compute the trajectories. The planner can
compute the trajectories for all the vehicles under 5 seconds
when the time for the final position is not part of the
solution space. This significant difference is due to the
time dimension T added to the searched space and to the
non-reversible nature of the dynamics of the vehicles. On
average, the planner spawned a roadmap graph G composed
by 1, 000, 000 vertices V per vehicle and the final trajectories
were composed of 100 waypoints.

Figures 5a and 5b shows selected views of the WiMUST
operational console. The console tracks the positions of the
vehicles in real-time. The triangles indicate the positions

2The minimum speed of the vehicles is always positive in order to avoid
streamers entanglement.



Fig. 4: Calculated paths for each vehicle in the formation.
Grey squares represent the initial positions. Grey triangles
represent position and heading of the final positions for each
vehicle. Arrows represent the headings that the vehicles are
required to follow, while the sizes of the arrows represent
the speeds along each path.

and headings of the AMVs. The red and green lines are
the paths calculated by the planner −→x 1,

−→x 2, . . . ,
−→x 7 that

the vehicles must track at assigned speeds. The WiMUST
system runs a trajectory tracking algorithm embedded in
every vehicle. The trajectory tracker computes the vehicle
control references for linear speed and yaw rate required to
reduce the distance between the actual position of the vehicle
and the next time-stamped position of the desired trajectory,
as computed by the mission planner. Figure 5b shows the
result of the tracking task. The light blue, yellow, and light
green lines show the real paths followed by the vehicles. The
differences between the calculated paths and the actual paths
are due to several factors that include reading error from the
GPS system in each AMV, sea currents, and actuators limits
on the vehicles. In Figure 5b, the vehicles are about to reach
the final desired positions. After all the vehicles have arrived
at the desired configuration, the automated seismic survey
starts. Finally, Figure 5c shows a superposition of an image
taken from a drone of the real vehicles performing the go-to
formation task with the path calculated by the planner.

IV. CONCLUSIONS

This paper presented the motion planner used in the
WIMUST project to generate reference trajectories for multi-
ple vehicle to steer them from initial scattered positions at sea
to desired target positions, prior to mission execution, while
avoiding vehicle collisions and streamer entanglements. The
planner uses a prioritized decoupled approach to overcome
the computational cost of planning in the space consisting
of the Cartesian product of all vehicle configurations. This
approach allowed for the WiMUST system to plan for
the motions of several vehicles, while keeping the solution
search time within bounds acceptable for real-time usage.

(a) Console initial view (b) Console final view

(c) Actual paths obtained during sea tests superimposed with
the vehicles photographed by a drone during a trial.

Fig. 5: (a) and (b) show two views of the WiMUST op-
erational console for real-time tracking. The triangles show
the positions and headings of the vehicles. The lines in (a)
represent the paths that the vehicles have to follow to arrive
at their desired formation. (b) shows the tracking of the paths
by the vehicles. (c) shows the real vehicles photographed by
a drone following the superimposed trajectories.

The planner includes geometrical and kinematical constraints
for the streamers and the vehicles. These constraints, together
with the inclusion of time in the state space, allow for solu-
tions that are collision and entanglement free and realisable
by the AMVs in the open sea. The trials at sea showed that
the WiMUST motion planner’s trajectories and the effective
tracking systems of the vehicles yield safe (no collisions nor
streamer entanglement), controlled behavior (respecting the
AMVs dynamics) and operability (all the vehicles arrived
at the same time at the formation point regardless of the
distance and initial orientation with respect to the goal).
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