
MATERIALS AND METhODS

Cortical Circumferential Profile
Hams et al. (15) described the generation of a cortical circum

ferential profile (CCP) for studying patternsofcortical perfusion in
SPECT images. They highlight the difficulties associated with
manual placement of multiple regions of interest (ROI) over a
continuous structure such as the cortex, noting the time-consuming
nature of such a task in particular. The CCP is obtained from a
given SPECT image slice in several stages:

1. The outer edge of the cortex is defined by an operator with
reference to the grey scale image, as is a marker defining the
best estimate of the point of intersection of the cortical edge
with the anterior inter-hemispheric midline (to allow normal
ization for rotational offset).

2. Thegeometriccenterof thisouterboundaryis determined,
from which are drawn a series of radii with 6Â°separation,
such that they intersect with the cortical edge at 60 locations.
The radii are rotated so that the hemispheric midline marker
lies directly between two adjacent radii.

3. Sixty pointsaredefined,eachlying alongoneof the radii at
a distance of 1 cm from the brain edge in the direction of the
center. These points are used as the centers of a series of
1-cm2 areas.

4. The average count rate in each area is determinedand
normalized to the mean cerebellar count. The normalized
mean count rates for each area, plotted against the radial
angle, define the CCP. Note that the CCP always consists of
a vector of 60 numbers and thus normalizes for overall brain
size.

Hams et al. claim that the CCP is more reliable, objective and
easier to produce than alternatives based on operator-defined ROIs.
They substantiate these claims by generating CCPs for 23 subjects,
15 of whom had been diagnosed as having probable Alzheimer's
disease (16), the remainder being age-matched normals. For each
subject, CCPs were generated, blind to diagnosis, using two axial
slices: the first slice (BG) was that which â€˜â€˜bestpassed through the
basal ganglia' â€ãccording to a visual inspection; the second slice
(SU) was 1.1 cm superior to the first. The reliability of the CCP
method compared favorably with that of a method requiring the
manual placement ofROIs and analysis ofthe mean CCPs obtained
from patients and normals indicated significant differences. The
principal finding was of significant hypoperfusion in the temporo
parietal regions of patients relative to normals.

Furthercompression of the profile information was achieved by
taking average count values over six contiguous values within the
CCP; each resulting value thus represented the mean perfusion
value over a 36Â°cortical arc, with five such values per hemisphere.
The regions from which these values are extracted are chosen to
approximate functional zones within the cortex, namely frontal
(FR), posterior-frontal (PF), sensory-motor (SM), temporo-panetal
(TP) and occipital (OC) zones. Pearlson et al. (18) used such
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I@ recentyears,artificialneuralnetworks(ANN)havebeen
applied to a broad range of problems in the medical domain
(1â€”9).In this article, we describe their application to the
automated diagnosis of Alzheimer's disease from SPECT brain
images. In any neural network application, the choice of a
format for the input set is of paramount importance: this choice
is influenced not only by the likelihood that a given input
format will aid the network in performing the required task, but
also by computational tractability of the network implied by
that format. Such restraints suggest the preprocessing of images
so as to extract from each a pattern, or profile, of relatively low
dimension, which nonetheless contains sufficient information to
enable diagnosisto be learnedand performed. It is, of course,
preferable that the extraction of this profile should not itself be
computationally expensive and/or time-consuming in terms of
operator intervention.

Previous work with SPECT perfusion images of Alzheimer's
disease patients has suggested that the pattern of cortical
perfusion deficits is strongly indicative of the disease (10â€”14).
We now describe a particulartechniquefor extractinga low
dimensional profile of cortical perfusion from a given axial
brain SPECT image before detailing the means by which such
profiles can be used for automated diagnosis.
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compressed zonal profiles in a study which employed traditional
statistical techniques to discriminate between scans from Alz
heimer's disease and control subjects.

The first task involved application of the CCP method to a new
and larger corpus of SPECT scans than that used by Harris et al.
The results are compared with those described above.

Data Collection and Analysis
Subjects. There were 3 1 right-handed patients (17 men) selected

from consecutive referrals to the Memory Clinic at the Maudsley
Hospital, all of whom fulfilled the NINCDS/ADRDA criteria for
probable Alzheimer's disease (16). Each patient underwent a
standardized assessment procedure which included history, physi
cal and mental state examination, blood tests and CT. Alzheimer's
disease patients had a mean age of67.9 yr (s.d. 7.7 yr, range 53â€”83

yr) and a mean score on the Mini-Mental State Examination
(MMSE) of 17.1 (s.d. 5.1).

We also studied 26 right-handed, age-matched controls (10
men), mainly recruited from the spouses of the chosen patients.
The mean age ofthe normal group was 64.1 (s.d. 9.0, range 48â€”85)
and their mean MMSE score was 28.8 (s.d. 1.0). None of the
controls had any symptoms or signs of dementia.

All subjects were drug-free for at least 3 wk, both at the time of
scanning and of neuropsychological assessment.

The SPECTimagesfromthisgrouphavealreadybeensubjected
to conventional methods of image analysis (13). In this earlier
report, regional cerebral blood flow was assessed both semiquan
titatively and from measurements from 18 cortical and 4 subcorti
cal ROIs, normalized to the mean cerebellar flow. Alzheimer's
disease patients were shown to have foci of reduced flow in the
temporal, parietal, frontal and left occipital areas.

Imaging and Image-Processing Procedures
Imaging was performed using a 99mTc@labeledhexa-methyl

propylene amine oxime (HMPAO) tracerand a scanner linked to a
computer. Subjects received an intravenous injection of 550 MBq
99mTcHMpAO underresting conditions with eyes closed in a quiet
room. Imaging was performed within 90 mm of tracer administra
tion, producing 14 overlapping transverse slices parallel to the
orbito-meatal line. Each slice, acquired over 3 mm, was 15 mm
thick with an in-plane resolution of 7.5 mm.

For each subject, two slices were selected by expert visual
inspection: the first was that slice thatbest passed throughthe basal
ganglia (BG); the second, that which best passed through the
cerebellum. The slices were displayed and manipulated within the
MIDAS system developed by Peter Freeborough at Imperial
College. CCP generation involved the definition ofa single ROI on
each slice: the operatormade a visual assessment of the location of
the cortical edge and defined it on the BG slice by clicking a mouse
at multiple points; the boundary of the cerebellum was defined in
a similar way on the second slice. In addition, the interhemisphen
cal marker was defined by a single mouse click. All subsequent
steps in the generation of the CCP were automatic: these comprise
the calculation of the mean cerebellar perfusion value, the defini
tion ofthe 60 cortical sample areas and the generation ofthe profile
itself. All CCPs were generated blind to clinical diagnosis.

RESULTS
For each group of subjects, a mean profile was produced as

previously reported (15 ). The reliability of these mean profiles
was assessed by having the same operator generate each profile
twice, on separate days. Intraoperator reliability was expressed
by correlation coefficients for all 60 profile points: all correla
tions were greater than 0.89, apart from five values taken from
regions near the interhemisphenc line, which were in the range
of 0.85â€”0.89.This supportedthe operator's subjectivebelief
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FIGURE1. Mean profilesfor each group fromfirstblindprofilegeneration.

that the corticaledge was often a littlemore difficultto define
in these regions. For the compressed zonal profiles, correlation
coefficients for all 10 regions were greater than 0.95. Figure 1
shows the mean profiles for the 3 1 Alzheimer's disease patients
and the 26 controlsfromthe firstprofilegeneration:the x-axis
represents angular position and is additionally labeled with the
corresponding zones (e.g., RIP = right temporo-parietal), the
y-axis represents mean perfusion value relative to that of the
cerebellum and the error bars denote the s.e.m.

Figure 2 shows the differences between the means for the two
groups (controls minus patients) at each angular position and
for each of two profile generationsâ€”thegreatest deficits for
patients relative to controls are found in the left and right
temporo-parietal regions and the left posterior frontal regions.
In addition, the two sample points on either side of the anterior
interhemispheric midline show large deficits, although these are
not sustained to the same degree across the whole frontal
region.

Unlike the results obtained by Han-is et al. (15), the mean
Alzheimer's disease profile is not below the mean normal
profile at all angularpositions;in the vicinityof the posterior
interhemispheric midline, the Alzheimer's disease mean profile
goes above the mean control profile. This unexpected increased

FIGURE2. Differencesbetween mean profilesfor two blindprofilegenera
tions.
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FIGURE5. Differencesbetween compressed mean profilesfortwo blind
profilegenerations.

result is consistent with that of Harris et al. (15), but the LPF
result differs for the two studies.

DISCUSSION
Comparison of these results with those of Harris et al. (15)

shows that while the mean profiles for each group in Harris et
al. are more clearly separated, the increased statistical power
that results from our use ofa much larger subject group, reveals
significant differences between patients and controls in a larger
number of cortical areas. Analysis of the compressed zonal
profiles suggests that only the occipital areas are unaffected by
Alzheimer's disease. Both studies show high statistically sig
nificant differences in the left temporo-parietal region, while
our study indicates comparable differences in the left posterior
frontal region. This evidence of frontal involvement is sup
ported by O'Brien et al. (13), who used manually-defined ROIs
to investigateperfusionpatternsin the currentgroupof patients.

Data Clessifica@on
Our next task was to investigate whether the profile infor

mationgeneratedabovecould be used in automateddiagnosis.
The profiles were analyzed by being subjected to a number of
traditional statistical techniques and used to train a neural
network classifier. For comparison, performance was assessed
relative to that of an expert viewer. All performance results
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FiGUREa Significanceprofilefordifferencesbetween group mean profiles.

regional flow for Alzheimer's disease patients over controls
was not, however, statistically significant.

Figure 3 shows a â€œsignificanceprofile,â€•which plots the p
value obtained from a two-tailed t-test at each angular position.
The upper dashed line corresponds to p = 0.05, indicating
significance without the Bonferroni correction; the lower
dashed line corresponds to p = 0.00083(0.05/60), indicating
significance with the Bonferroni correction. This correction
assumes uncorrelated data, an assumption that is probably not
justified here; to the extent that the data are correlated, our
correction make conservative estimates of statistical signifi
cance. As shown by Harris et al. (15), the samples from the left
temporo-parietal region (LTP) show the most significant differ
ences between the two groups.

Further statistical analysis was performed on the compressed
zonal profiles. Mean compressed profiles for patients and
controls are shown in Figure 4 and the difference between the
two(controlminuspatient)is shownin Figure5. A significance
profile for the group-mean differences is plotted in Figure 6.

Eight of the ten regions show differences significant at the
p = 0.05 level, and seven of these show significant differences
even after application ofthe Bonferroni correction (p < 0.005).
For the regional averages, the LPF and LTP regions show the
most significant differences between the two groups. The LTP

FiGURE 4. Mean compressed profiles for each group from the first blind
profilegeneration.
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were reported on the basis of the relative operating character
istic (ROC) curve (1 7). One generates an ROC curve by
plotting the true-positive response ratio against the false
positive response ratio for various settings of a decision
criterion. The area under the resulting curve gives a single
measure of diagnostic performance that is â€˜â€˜uninfluencedby
decision biases and prior probabilitiesâ€• (1 7). This measure can
alternatively be derived from the intercept and slope values
obtained by plotting the ROC curve on a binormal graph (17),
and this was the method preferred here.

Statistical Analyses
Before the application of any of the statistical techniques, the

compressed zonal profiles obtained above were normalized.
This was done purely to expedite later processing and consisted
of scaling the profile values so that they all lay in the interval
[0,1], which indicates the standard mathematical notation for
the range 0â€”1inclusive. The normalization was performed
across the whole set, rather than separately for each profile, thus
ensuring that the structure of the data was unaffected.

The first statistical analysis performed on the compressed
CCP data was the same as that detailed by Pearlson et al. (18).
The ability of a perfusion measure, taken from a single region
of the compressed profile, to allow discrimination between
patients and controls was determined by the placement of a
discriminant function line (see below). By varying the position
of the discriminant function line (DFL), we can generate an
ROC curve and assess performance.

The second statistical technique involved the training of a
discriminant analysis classifier (DAC). Kippenhan et al. (19,20)
used this type of classifier in the evaluation ofa neural-network
classifier (NNC) applied to perfusion profiles extracted from
PET scans. In the former paper, the profiles consisted of
eight-dimensional vectors representing mean metabolism in
each of eight lobar regions; in the latter paper, 25-dimensional
vectors representing mean metabolism in 25 lobules were
additionally employed. The use ofthe same statistical technique
facilitates comparison with the results presented in these papers,
but caution must still be exercised. Discriminant analysis, using
optimal quadratic discriminants, was carried out using the SAS
statistical package (21 ). ROC curves were generated by varying
the prior probabilities for class membership. Kippenhan et al.
(19,20) used larger datasets than the one used here and assessed
the cross-validation performance of both of their classifiers
(discriminant analysis and neural network) by dividing the
dataset into two independent groups: a training set and a test set.
For the simulations presented here, we used the L-method of
cross-validation testing: for each pattern in the complete
dataset, a classifier is trained on all other patterns and then
tested with the pattern itself. Use of the L-method maximizes
the size of the training set while preserving the independence of
the test set. Ideally, one would want to further test the trained
classifier on an entirely new set, but this was not feasible with
the numbers of subjects available.

Neural Network Classffier
The structure of a neural network suited to the classification

task is shown in Figure 7. The three-layer feedforward network
has 10 input units, one for each element of the compressed
zonal profiles, a number of so-called hidden units that are
optimized for the task in hand (see below) and a single output
unit. Successive layers in the network are fully connected by a
matrix of adaptable weighted connections. In addition, a toni
cally active â€œbiasâ€•unit sends input via weighted connections
to each unit in the hidden and output layers. Briefly, training is
performed as follows: each profile in the training set is

Output[-0.5,0.51

Output unit
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Bias Bias@ ////@@

Input

FiGURE7. Three-layerfeedforwardneuralnetwork.

presented at the input of the network, and activation is fed
forward through the network; the resulting output value is
compared with a desired value which indicates the class
membership of the current input. In this case, a desired output
of â€”0.5indicated that the current input was an Alzheimer's
disease patient and a desired output of +0.5 indicated a normal
subject. The error, i.e., the desired output minus the actual
input, is then â€œpropagatedâ€•back through the network and the
connection weights at each stage are changed so as to reduce the
error on subsequent presentation of the same input. Testing is
accomplished by presenting test patterns to the learned network
giving a diagnostic output value in the range [â€”0.5, 0.5]. We
used Fahlman's Quickprop algorithm, a variation of the stan
dard backpropagation learning rule which can greatly improve
convergence times (22). The performance ofthe neural network
classifier can be optimized with reference to the number of
hidden units and the number of training â€˜â€˜epochs'â€(̃23 ). Too
much training can lead to overfitting, adversely affecting the
network's capacity to generalize in response to novel input.
Optimum performance was assessed by testing networks with
even numbers of hidden units in the range 4â€”20,at all
500-epoch increments up to 10,000 epochs. The results pre
sented refer to the combination which gave the best perfor
mance averaged over five trials, each trial using random initial
weights and a random ordering of the input set. The ROC
measure itself was obtained by varying an output decision
threshold.

Expert Viewer Classffica@on
To gauge the usefulness of the automated classification

methods, two experts were asked to examine the SPECT scans
and to rate them for perceived evidence ofAlzheimer's disease.
The viewer was informed of the two group diagnoses but was
blind to individual clinical diagnosis during rating. A five-point
rating scale was used where 1 definitely not Alzheimer's
disease, 2 = probably not Alzheimer's disease, 3 = borderline
Alzheimer's disease, 4 = probable Alzheimer's disease and
5 = definite Alzheimer's disease. The experts viewed all the
image slices for a given subject, each slice consisting of 128 X
128 pixels; slices could be enlarged to 256 X 256 pixels to aid
more detailed inspection. Viewing was performed on separate
days under two conditions. In Condition 1, a grey scale was
used so that perfusion data in the separate slices ofa given brain
image were displayed so that the pixel corresponding to the
point of highest perfusion in the whole-brain image appeared
white (grey level = 255) and all other pixels in that brain image
were scaled accordingly, thereby allowing comparison of per
fusion levels between slices. In addition, a lower perfusion
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I gave the best ROC performance values of 0.87 for the lower

resolution PET data and 0.95 for higher resolution data, both
achieved using 25-dimensional lobular profiles.

Expert Viewer
Under Condition 1 (grey scale), the expert viewer achieved

an ROC performance of 0.768, with a maximum classification
rate of 73.7%. Viewing under Condition 2 showed an improve
ment; the ROC performance rose to 0.823, while the maximum
percentage correct remained at 73.7%. The expert viewer used
by Kippenhan et al. (19) achieved an ROC performance of
0.89; we will not attempt to account for the disparity in expert
performance between the two studies.

These results are summarized in Table 1 and the correspond
ing ROC curves are plotted in Figure 9. The curves shown are
best fit curves generated from the intercept and slope informa
tion derived from the bivariate normal plots.

DISCUSSION
Our results permit two conclusions: First, given this partic

ular input pattern set, the neural network performs the classifi
cation task better than other statistical methods. Second, the
neural network performs better than the expert viewers. The
latter comparison is qualitatively different from the former; in
the case of the comparison with other statistical techniques, the
information used is the same for each method. By contrast, the
expert viewer, in making a diagnosis, draws on experience from
outside the current input set. Additionally, the expert viewer can
visualize all the slices in a given brain image, rather than being
given the â€œrestrictedviewâ€•afforded to the automated methods.
Interestingly, of the seven profiles which are consistently
misclassified by the NNC, only one was also misclassified by
the expert viewer, whereas four were also misclassified by the
DFL and the DAC. This might indicate that the expert viewer

FIGURE& Scatterpkt for LPFperfu@onscores.

threshold, below which activities were displayed as black, could
be varied by the viewer as desired. In Condition 2, a color map
that had been specifically designed to view brain SPECT
images by one of the experts was used; the strategic placing of
prominent color boundaries permitted semiquantitative view
ing. Finally, for each brain image, attention was drawn to the
BG image slice used to generate the CCP. The results reported
are those of the better of the two experts (the same expert in
each condition).

RESULTS

DiscÃ±minantFunction Une
A preliminary stepwise discriminant-function analysis iden

tified the LPF as the region that best supported between-group
discrimination. For the LPF perfusion score, the best DFL led to
78.9% correct classification and an ROC performance of 0.850.
Figure 8 shows a scatterplot for the normalized LPF perfusion
score for each subject group, together with the optimal discrimi
nant function line.

Pearlson et al. (18) were able to achieve 89% correct

classification using this simple technique, but the numbers of
patients and normals (20 and 8, respectively) were much
smaller than those employed here.

Discriminant Analysis Clessifier
The discriminant analysis classifier (DAC) gave an ROC area

of 0.821, with a maximum of 77.2% correct classification. For
comparison, Kippenhan et al. (19) report a maximum DAC
performance of 0.80 using nonzero-mean versions of their
eight-dimensional input patterns, whereas in another study,
Kippenhan et al. (20) report equivalent values of 0.86 for lobar
profiles and 0.95 for lobular profiles, both derived from
high-resolution PET data.

Neural Network Classifier
The optimized neural network gave a mean ROC perfor

mance across five trials ofO.913 (s.d., 0.015), and a maximum
classification rate of 88. 1% correct (s.d., 2.9), using a small
negative threshold. The optimum network used 16 hidden units
and was trained for 4500 epochs. While this number of hidden
units might seem excessive, Weigend (24) has pointed out that
given the size of the training set, large networks stopped early
in training can often perform better generalization than small
networks trained for longer time periods. Again for comparison,
the network used by Kippenhan et al. (19) gave an ROC
performance ofO.85; the networks used in their other study (20)
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FiGURE9. ROCcurvesforvatiousclassificationmethods.

199DIAGNOSIS OF ALZHEIMER'S DISEASE FROM SPECT IMAGES â€¢Page et al.



was not, for whatever reason, focussing on those brain areas
which underpin the ability of the profiling technique to support
between-group discrimination.

The comparison with the results of Kippenhan et al. (19,20)
shows that the compressed cortical circumferential profiles,
generated from SPECT brain scans, enable better discnmina
tion between patients and normals than do any of the profiles
derived from their lower resolution PET data or the eight
dimensional lobar profiles derived from the higher resolution
data. We must, ofcourse, be cautious in making too much of the
comparison, since the subject groups were entirely separate,
Kippenhan et a!. used a larger group (41 patients, 50 controls),
where the patients had a mean MMSE score of 15.0 (s.d. 7.3).
Nonetheless, the fact that our method using SPECT data offers
performance comparable with those applied to PET data is
encouraging and perhaps highlights the merits of the CCP as a
profiling technique. Moreover, the generation of a CCP is
largely automated, requiring the manual definition of only two
ROIs. The lobar/lobular profiles used by Kippenhan et al.
(19,20) were generated from 67 ROIs, the definition of which
require considerable operator intervention.

CONCLUSION
We have shown how the CCP technique introduced by Harris

et al. (15) is useful in illustrating the different patterns of
cortical perfusion found in Alzheimer's disease patients relative
to age-matched controls. The familiar pattern of temporo
parietal and frontal deficits emerges. The profiling procedure is
simple, requires relatively little operator intervention and pro
duces profiles of a constant dimensionality. These profiles are
well suited to automated classification, and we have shown how
a variety of classifiers perform in a task requiring discrimina
tion of profiles from Alzheimer's disease patients and controls.
Most ofthe classifiers outperform the expert viewers; the neural
network does so by a considerable margin. They also outper
form the equivalent classifiers used by Kippenhan et al. (19) but
not the best of those used by Kippenhan et al. (20).

Further work will involve applying the methods described
here to larger datasets, including PET data. A particular benefit
ofthe CCP technique is that the provenance, and even modality,
of a given brain image is largely irrelevant. It is hoped that this
work will ultimately lead to a diagnostic tool suitable to assist
routine clinical practice.
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