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Abstract

Development is the powerful process involving a genome in
the transformation from one egg cell to a multicellular or-
ganism with many cell types. The dividing cells manage to
organize and assign themselves special, differentiated roles
in a reliable manner, creating a spatio-temporal pattern and
division of labor. This despite the fact that little positional
information may be available to them initially to guide this
patterning. Inspired by a model of developmental biologist
L. Wolpert, we simulate this situation in an evolutionary set-
ting where individuals have to grow into “French flag” pat-
terns. The cells in our model exist in a 2-layer Potts model
physical environment. Controlled by continuous genetic reg-
ulatory networks, identical for all cells of one individual, the
cells can individually differ in parameters including target
volume, shape, orientation, and diffusion. Intercellular com-
munication is possible via secretion and sensing of diffusing
morphogens. Evolved individuals growing from a single cell
can develop the French flag pattern by setting up and main-
taining asymmetric morphogen gradients – a behavior pre-
dicted by several theoretical models.

Introduction

The development of multicellular organisms from a sin-

gle fertilized egg cell has fascinated humans at least since

Aristotle’s speculations more than 2000 years ago (34). In

the more recent past our understanding of how interacting

genes direct developmental processes has greatly increased

(31; 12; 34). Cell differentiation, the inducing effects of in-

tercellular signaling, changes in cell form like contraction,

the self-organizing properties of adhesion and cell sorting in

animal morphogenesis (13) are among the important prin-

ciples better understood now. And although every cell is

controlled by a Genetic Regulatory Network (GRN), the re-

sulting multicellular dynamics are also strongly influenced

by physical constraints.

Development has also caught the attention of computer sci-

entists. Traditionally their evolutionary algorithms (EAs)

would neglect development for a relatively direct mapping

from genotype to phenotype. To overcome problems with

these EAs, many models have been proposed that incorpo-

rate development in some way – reviews of these are given

in Stanley and Miikkulainen (28), Kumar and Bentley (21).

One of the earliest researchers looking for a theoretical ex-

planation of how cells in a developing embryo could estab-

lish their different roles was Turing (30). He proposed a

general symmetry breaking mechanism via the setting up of

chemical gradients with reaction diffusion systems. Some-

what later, Wolpert (32, 33) came up with the very illustra-

tive French flag model as an attempt to explain how mor-

phogen gradients could give cells positional information as

a general biological process. “Stem cells” placed along a

given morphogen gradient would only have to read the mor-

phogen contraction at their position and react to threshold

values to decide whether they are in the blue, white or red

part of the flag. Note that this assumes the existence of a gra-

dient but does not explain how such a gradient could be set

up by the cells. Jaeger and Reinitz (16) proposed a revised

French flag model which to some degree takes the dynamic,

feedback-driven nature of pattern formation into account.

These theoretical models have inspired the present work.

From a single cell, placed in the middle of a 60 × 40 pixel

grid, a multicellular organism has to grow. The organism not

only has to span the grid but its cells also have to express dif-

ferent colors in different areas (blue, white, red – from left

to right).

Several other “French flag” inspired implementations exist

which are related to our work to varying degrees. Miller

(25) evolved cells to match a 12 × 9 French flag pattern,

with a particular focus on self repair in the evolved individ-

uals. There was a concept of cell division, however the pos-

sibility of overwriting of neighboring cells during division

might have been crucial for the outcomes. This work was

extended by Federici (9), who evolved individuals to match

less regular 9 × 6 patterns. An interesting analysis of why

evolved developmental individuals are often also fault toler-

ant is given in follow-up work (10).

More recently, Devert et al. (8) evolved neural network con-

trolled cells to match 32 × 32 pixel patterns, without divi-

sion (cells would be everywhere from the beginning).They

focused on robustness and an adaptable stop criterion –

an individual was considered final when a stable state was
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reached.

Crucially, in all these models cells were homogenous in size,

namely 1 pixel on a grid each. Also, cell-cell communica-

tion was predefined as directed between nearest neighbors

(with fixed neighbors).

Bongard and Pfeifer (3) and Bongard (2) use a spatial, devel-

opmental system (“Artificial Ontogeny”) to create impres-

sive critters, however their model is not very biologically

faithful as the units their creatures are composed of have a

pre-specfied cylindrical shape (different length possible) and

complex internal elements like motoric joints. Symmetry

breaking activation is induced by application of morphogens

to the opposing ends of all new units.

Hogeweg (14) has used a model were cells also have spa-

tial extent and can move relative to each other. Cell types

were under control of a boolean GRN, where the GRN’s ex-

pression pattern was interpreted as one of the predefined cell

types. Differential gene expression was initiated by two pre-

scheduled asymmetric cell divisions (i.e. one gene would be

on in one daughter cell and off in the other). Communica-

tion was direct between nearest neighbor cells; a cell had

the states of two nodes from neighboring cells as input to

two of its own nodes. Unlike in the other mentioned works,

selection was not for particular cell arrangements, but the

number of exhibited cell types was used as fitness criterion

– an evolutionary algorithm would select for individuals that

expressed many different types. The cell type would deter-

mine some cell properties like adhesion (the possible adhe-

sion values were pre-specified), so that certain multicellular

forms could be observed as an evolutionary byproduct.

On the contrary, in our model there are no predefined com-

munication channels; cells can only sense morphogen con-

centrations. Morphogens are excreted by cells and diffuse

on the grid without preference for direction. Cells can ac-

tively aim to adopt heterogenous sizes and shapes – the im-

portance of which for morphogenesis has been shown by

other researchers, e.g. Merks et al. (23), Zajac et al. (35).

A cell’s GRN also individually and independently controls

other cell properties like morphogen secretion and cadherin

expression. So there is no a priori notion of cell types.

Genetic Regulatory Network (GRN) model

In (20), where our proposed GRN model was first described

in its basic form, we used it to evolve single-celled biolog-

ical clocks with the circadian rhythm abstracted to a sinu-

soidal wave or other periodic function. GRNs producing

such cyclic behavior in response to various periodic envi-

ronmental stimuli could easily be evolved. Reproducing the

phase of their input as well as the production of the inverse

or shifted phase was demonstrated1, however in that inves-

tigation every evolutionary run had only one of these objec-

tives. In later experiments we showed that it is possible to

1For results from those experiments see also
http://panmental.de/GRNclocks/.

integrate two functionalities in one GRN instantiated in dif-

ferent contexts within a multicellular entity (18). However,

differentiation was still induced by a given signal instead of

evolving through the interaction of GRNs. Here GRNs of

this type are used for the first time as “control units” of spa-

tially extended cells. 2

Every GRN consists of proteins and a genome made up of

genes. Gene activation is controlled by regulatory sites (cis-

sites or cis-modules), each composed of – possibly – sev-

eral protein binding sites. Depending on the attachment of

proteins to the binding sites the corresponding cis-modules

positively or negatively influence the production of (not nec-

essarily different) proteins. In molecular biology, proteins

acting in such a way are called Transcription Factors (TFs).

In our model all proteins are potentially regulatory and there

are no restrictions on recurrence. A main difference from

the Biosys GRN model by Quick et al. (27) is that there

can be any number of cis-modules per gene and every cis-

module can have any number of protein binding sites. This

is to model a second, non-linear, level of regulation: Molec-

ular biologists have found that TFs not only show additive

behavior in influencing a gene’s transcription. Some TFs

interact with each other or even form protein-protein com-

pounds, resulting in synergistic changes to their influence,

see e.g. (Schilstra and Nehaniv; 7).In logical terms (but note

that values are actually continuous) one can think of this

grouping of inputs as an OR of ANDs. The AND level cer-

tainly constitutes a canalizing function in the sense of Kauff-

man (17) as a single zero value there causes the whole term

to be zero no matter what the other stimuli are. In summary

the model, as compared to previous models, is designed to

facilitate the evolution of complex dynamics, coming a little

closer to nature than previous models in terms of regulatory

logic, where “5-10 regulatory sites are the rule that might

even be occupied by complexes of proteins” (1) and non-

linear synergetic effects are possible (7).

The following subsections describe our GRN model. For a

more formal description and analysis of the model and its

representation please see (20; 19).

Genetic Representation

The genome is represented as a string of base four digits, en-

coding several genes and some global parameters of the net-

work. Digits 0 and 1 are coding digits that may be involved

in regulation or protein coding. To differentiate between a

sequence of coding bits, a cis-module boundary and a gene

boundary the genetic alphabet was increased to four values,

with digit 2 delimiting the end of a cis-module and digit 3
delimiting the end of a gene. In the version of the model

used here there is a predefined number 24 = 16 of different

protein types, so that always four bits encode a protein type.

2Please see the associated web page at
http://panmental.de/ALifeXIflag for more results, videos, and
the full source code.
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Figure 1: Activation Types. Every gene produces pro-

teins according to the cumulative activation level of its cis-

modules and its activation type: either even when no acti-

vation is present (“default on” - left) or only with positive

activation (“default off” - right).

In the experiments described here we used a fixed number

of genes, namely twenty, to facilitate analysis. After parsing

the genome into genes, the last four coding digits of every

gene determine its output behavior, a number of bits for the

protein type produced and the last bit for the gene’s acti-

vation type, which can be “default on” – active unless re-

pressed or “default off” – silent until activated by regulatory

sites,see fig. 1. The genome also encodes several evolvable

variables global to the GRN. These are the protein-specific

decay rates (four bits for every protein, indexing into a fixed

look-up table of values), the global binding proportion (also

four bits indexing into a look-up table, but identical for

all proteins), and finally the global saturation value (three

bits indexing to a look-up table, again identical for all pro-

teins). These latter variables especially facilitate changes in

the strength and timing of gene expression important in the

evolution of multicellular individuals, cf. Buss (4).

Regulatory Logic

The model is run over a series of discrete time steps, its life-

time. In each time step initially a fraction of the free pro-

teins, determined by the global binding proportion param-

eter, are bound to matching sites. The fraction of proteins

available for binding is assigned to the binding site that has

the same binary code as the protein. If there is more than

one binding site competing for the same protein the frac-

tion is equally distributed between all matching sites. In this

process all protein binding sites are treated the same, regard-

less of the cis-module they belong to. Calculation of every

gene’s activation level is done by adding (activatory) or sub-

tracting (inhibitory) the values per cis-module but only the

lowest value of bound protein per cis-module is used to al-

low for non-linear effects. The cumulative activation level

of all cis-modules then serves as input to one of two activa-

tion functions, depending on the gene’s type, “default on”

or “default off” as shown in fig. 1. The output of the gene’s

activation function is added to the unbound concentration of

that gene’s output protein type. After this calculation the

concentrations of all unbound proteins are, if necessary, re-

duced to the global saturation value and all proteins, free

or bound, are decayed by the protein-specific rate. Finally

environmental input occurs by increasing the unbound con-

centration of certain proteins by some value and output by

reading protein concentration values. Simple scaling is used

to map stimulus input levels from the signal range to a pro-

tein concentration, and vice versa for output protein levels.

Spatial model

The Cellular Potts Model (CPM) has been introduced by

Glazier and Graner (13), who developed it to simulate dif-

ferential adhesion driven cell arrangement. Since then CPM

has been used for a variety of cell-level modeling tasks, re-

cently reviewed by Merks and Glazier (24). Although quite

complex models have been realized with CPM, like the de-

velopment of a cellular slime mold by Marée and Hogeweg

(22), the cell level CPM simulation has not been combined

with a GRN controlling cell parameters individually, with-

out predefined cell types, before.

CPM is a two level system: On the lower level there is a

grid of pixels, while the higher level cells consist of any

number of lower level pixels. Cells have properties like tar-

get volume, shape, etc. and deviations from these targets

incur energy penalties. Every pixel on the other hand has

an integer value assigned, designating it as belonging to the

cell with that identifier or zero if it is part of the “medium”

(empty space). The system changes by trying to copy over

one pixel’s value to a randomly chosen neighbor pixel (mor-

phogen concentration values are not copied, instead they dif-

fuse in a separate process described below). In every time

step (“Monte Carlo Step”) one copy attempt is undertaken

for every grid pixel on average. Copying is limited by en-

ergy constraints: Changing a pixel will change the energy

properties of one (if either pixel is part of the medium) or

two cells. The overall energy E is the weighted sum of all

constraining properties. Copying is accepted with probabil-

ity:

P =

{

e−(∆E−δ)/kT ∆E ≥ −δ

1 ∆E < −δ

In the work presented here we set offset δ = 0.0, Boltz-

mann constant k = 1.0 and temperature T = 2.0. A two-

dimensional, non-toroidal 60× 40 pixel grid was used.

We use a flexible open source CPM implementation called

CompuCell3D, see (6; 5) for implementation and formalism

details. Through a modular plugin structure (where usually

one plugin adds one energy constraint) it is easy to write ex-

tensions for the existing software (standard plugins include

volume, surface, mitosis and connectivity constraints).
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a) b) c) d)

Figure 2: Cell change example. The blue cell in a) has volume 23 and the orientation shown by the arrow. Assuming for this

cell a target ratio of 1 between the length in arrow direction and the length in the direction orthogonal to the arrow. In b) the

yellow pixel is tested for becoming part of the cell. However, as this would change the ratio from 6:5 to 7:5, the transaction is

energetically unfavorable. The yellow pixel in c) brings us closer to the target length ratio so it is more likely to be accepted

(target volume and other constraints permitting). In d) the cell reached the mitosis volume of 24 so it split evenly along an

axis orthogonal to its orientation. The daughter cells inherit an orientation rotated by 90 degrees (which can be continuously

modified by GRN dynamics).

GRN controller

A GRN is able to control the cell’s volume via a protein level

mapping to the ratio of the size required for mitosis. So a

maximal protein level meant the cell would try to grow until

mitosis took place while a zero protein level would initiate

shrinking and usually lead to apoptosis within a few steps.

The actual volume of the cell could however differ from the

target size due to neighboring cells for example. To take this

and the fact that externally enforced size differences can af-

fect the behavior of biological cells (11; 15) into account,

the actual volume ratio served as input to the GRN, i.e. de-

termined another protein’s level.

Two protein levels were used to determine a cell’s color. The

continuous protein levels were interpreted as boolean values

for this (above 0.5 threshold: true, below threshold: false).

The color however does not correspond to cell type as in

other models, where the type would determine cell parame-

ters. All other parameters are controlled by the GRN inde-

pendent of the color chosen. Also the color was not chosen

once and for all but protein levels would be interpreted in

every time step anew.

The GRN could also control the expression of “cadherins”,

factors that influence adhesion to other cells expressing

them, i.e. it could be to some degree energetically favorable

for cells with adhesion to “stick together”. The adhesion

strengths of the three expressible cadherin proteins were pre-

specified (see web page for table).

Diffusion Morphogens diffuse and decay on the underly-

ing grid (substrate) – so it does not immediately matter for

diffusion whether a cell is present or not. A cell can how-

ever increase the concentration of a morphogen on the pixels

it consists of. Unlike earlier models with directed cell-cell

communication mechanisms, where a cell receives as input

some output (often state) of its direct neighbors, this allows

for long distance communication. On the other hand mean-

ingful communication might be harder to evolve this way as

it is less directed and morphogens do not correspond to other

cell variables.

The diffusion plugin “FlexibleDiffusionSolver” we used

comes already with CompuCell3D and is explained (espe-

cially the numerical approximation) in its manual (6) so we

only give a brief description here. The concentration ci of

morphogen i with diffusion constant di and decay constant

ki changes as:

∂ci

∂t
= di∇

2ci + kici + secretionixy

The term secretionixy is the increase of morphogen i in

pixel (not cell) xy. Here we used two morphogens, with the

constants d1 = 0.2, k1 = 0.009 and d2 = 0.2, k2 = 0.003.

A cell receives the average morphogen concentration of the

pixels it consists of as input (determining one protein level

per morphogen). Two other protein levels determined the

secretion of the corresponding morphogen, realized as in-

creasing the average concentration of the cell’s pixels.

Cell Shape Control Apart from the plugin which manages

GRN control over parameters determining cell dynamics we

developed another major new module: CellShapeControl.

Earlier work successfully used a plugin to model cell elonga-

tion along the cell’s longest axis (23; 35). However, in these

earlier works elongation followed the cell’s longest axis, so

orientation was due to initial random effects. In our model

the orientation is partially inherited and partially under the

GRN’s control (see mitosis section below for details). Fur-

thermore, better results were found during evolution when

not the length directly was under GRN control but the ratio

of the length along the orientation axis to the length along

the orthogonal axis, see fig. 2 a)-c).
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Figure 3: Gaussian offset crossover. Genomes of (1) par-

ent 1, (2) parent 2, (3) offspring 1, (4) offspring 2. Only

the compartment chosen for crossover and two neighboring

genes are shown. Both children get digits up to the crossover

point (solid bar) from their respective parent, but then con-

tinue in the other parent’s genome with opposite gaussian-

distributed offsets (−3 and +3, respectively, here).

Mitosis

Mitosis was initiated automatically once the cell reached a

volume of 24 pixels, implemented as equal split along the

axis orthogonal to the cell’s orientation, see panel d) in fig. 2.

The heritable part of the cell’s orientation was shifted by

90 degrees and target volume set to half the parent’s value

in both daughter cells. Also, protein levels were divided

equally.

Initial State In the experiments reported here we ne-

glected “maternal factors”, i.e. the first cell started without

spatial extension at a size of 1 pixel, in the middle of the

grid. All protein levels were set to zero for the GRN and no

morphogen was present.

Evolutionary setup

A standard Genetic Algorithm with elitism, tournament se-

lection and replacement was used. An evolutionary run

lasted 250 generations containing 250–300 individuals3.

The initial population started with one cis-module per gene

and one protein binding site per cis-module, all coding bit

values being randomly assigned; in network terms the nodes

were randomly connected, with at most one incoming arc.

Selection

Later generations are formed by carrying over the best-

performing individual of the last generation automatically

and the other individuals are replaced by offspring. To gen-

erate each pair of offspring, 15 (not necessarily different)

individuals of the prior generation are chosen randomly and

of these the best two selected to be “parents”.

3The variable number of individuals is due to our particular
setup where clustering software Condor operated on student lab
machines, so that sometimes PC usage would interrupt computa-
tions. In order not to wait for the last results to arrive we always
started 500 individuals in batches of 20 but would progress to the
next generation as soon as more than half of them were back. Due
to batch size and step timing it could however happen that more
than 260 jobs arrived before the next check.

Figure 4: French flag. Evolutionary target was a 60 × 40
pixel three striped pattern.

Variability

A single-point crossover between the parent genomes oc-

curred 90 percent of the times and every coding bit was

flipped with a mutation probability of one percent. As there

could be a variable number of cis- and of protein binding

sites per gene their lengths will vary, so a standard bit-string

crossover could change their numbers drastically. To con-

serve all but (at most) one of the genes as basic building

units, the genomes of the parents were divided into com-

partments: one compartment for every gene and one com-

partment for the global variables. Then (with a probability

of 0.9) a single compartment was chosen for crossover and

in this compartment a point allocated for crossover.4 Every

pair of compartments was aligned regardless of the lengths

of other compartments, as indicated in fig. 3. This process is

inspired by the biological mechanism known as synapsis, the

pairing of homologous chromosomes where mostly “simi-

lar” sectors pool together. To achieve variable length genes,

the unequal crossing-over observed in biology is mimicked:

When crossing over from parent 1’s genome to the second

parent’s genome copying does not necessarily continue at

the same position of parent 2’s genome but is shifted by an

offset (see fig. 3).

This offset is randomly drawn from a gaussian distributed

random variable with mean 0 and standard deviation 4. The

relatively large number four was chosen to increase the

chance of duplicating genetic information, the importance of

which was already pointed out by Ohno (26) for the evolu-

tion of biological complexity. Ohno put emphasis on whole-

genome duplications while it is now, with better techniques,

becoming ever clearer that “both small- and large-scale du-

plication events have played major roles” (29, page 320ff).

Note that the offset point is limited to stay within the bound-

aries of the compartment, hence if crossover point + off-

set is smaller/larger than the left/right boundary it is set to

the corresponding boundary value. So the number of 2s

(cis-modules) might increase by crossover – mutation was

only applied to coding digits (0s and 1s) – but not the num-

ber of 3s as these are the compartment boundaries. When

4This is why ‘at most’ one gene is changed: The crossover point
could be zero or equal to the gene’s coding length.
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t = 5 t = 40

t = 10 t = 45

t = 15 t = 50

t = 20 t = 75

t = 25 t = 100

t = 30 t = 150

t = 35 t = 200

Figure 5: Morphogenesis example. The left picture shows the colors of the cells while the right one shows adjusted morphogen

level (red=high to blue=low), respectively. Cell outlines are given in yellow, t is the time step the snapshot was taken at. See

online version for color. In the left column it becomes quite clear that morphogen diffuses on the underlying grid as you can

see low levels of it in areas without cells. Similarity to the target French flag pattern at t = 200 is 87 percent.
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crossover occurs in the part encoding for global parameters

the offset is always set to 0 as offsets would be meaningless

here.

These processes allow both neutral crossover and mutational

changes, as degenerate cis-modules (i.e. too short to bind a

protein) have no regulatory effect. Additionally this means

that genes could become dysfunctional, in a similar manner

to the so called pseudo-genes found in nature, e.g. if there

were not a single cis-module and the gene had an activation

type of “off by default”.

Fitness Evaluation

The lifetime of each individual was 200 time steps. Its fit-

ness was defined simply as the match of the cell formation at

the last time step compared with the 60×40 pixel target pat-

tern comprising the entire spatial field, see fig. 4. Formally,

the difference d between individual i’s result pattern Ri and

the target T , both of size w × h, is:

d(Ri, T ) =
1

wh

w−1
∑

x=0

h−1
∑

y=0

|sgn(Ri
xy − Txy)| ∈ [0, 1]

Note that this measure does not specify the number, size or

position of cells, only the lower level pixels are taken into

consideration. Accordingly, the correctness of the match or

similarity s is simply s(Ri, T ) = 1− d(Ri, T ).
One refinement we introduced was that the difference be-

tween the patterns would be multiplied by four minus the

number of colors present in the final individual. An indi-

vidual using all three possible colors would get a factor of

one, while individuals using fewer colors would be penal-

ized with a higher factor. The aim of this was to “encourage”

individuals early on in evolution to use all colors – without

this measure runs were prone to get stuck in local maxima

with huge single-color individuals.

To improve robustness, every individual was run 10 times

with different random seeds and the overall fitness calcu-

lated as the average of these repetitions.

Results and Discussion

The proposed model combines for the first time spatially ex-

tended cells with GRN control over individual cell param-

eters like size, shape, adhesion, morphogen secretion and

orientation without predefined cell types. Evolved multicel-

lular organisms were able to autonomously set up an asym-

metric morphogen gradient and organize into a close match

of the French flag pattern, so the model will certainly be of

good use for future research.

A majority of evolutionary runs achieved final pattern

matches of over 75 percent5. In particular, some individuals

5Seven out of the ten runs conducted with the particular config-
uration of plugins and parameters described here ended with simi-
larities above 0.75. Recall, this is the average match over 10 repe-
titions with different random seeds.

used morphogens to set up, and maintain, a gradient across

the grid, as did the example in fig. 5. The cells would usu-

ally quickly divide and spread over the grid early on during

an individual’s lifetime while becoming more stable later –

pattern similarities at time step 210 were very close to the

originally measured fitness at time step 200. A detailed

assessment of intra- and extracellular dynamics is unfortu-

nately beyond the scope of this paper.

The fact that the initial cell in the first time step had an ab-

solute orientation of zero degrees is clearly biologically un-

realistic. The reason was simply that this made assessing

fitness easier. We do not think this is a major drawback as

when we started the initial cell with an orientation of 90 de-

grees and rotated the grid and target pattern by 90 degrees as

well, the similarity achieved was just as good.

Due to the inherent randomness in the spatial process we

can probably not expect a perfect pattern match on such a

low level – nobody expects identical twins to be identical

down to the cell level. However statistical analysis of many

runs is needed to quantify these effects. Also it would be de-

sirable to investigate robustness as well as evolvability of the

system. Self-repair properties after perturbations to develop-

ment would be expected as for example Miller (25) observed

in his work.

In the future we plan to use more natural fitness measures

and to extend the evolution of morphogenesis to more com-

plex, three dimensional forms instead of 2D patterns (as the

name CompuCell3D suggests this is relatively straightfor-

ward with the software used). Also, biological cells are even

more flexible and irregular in the forms they can take; for ex-

ample it is known that contraction, leading to a wedge like

shape, is important for gastrulation (34). It would be in-

teresting to see if evolvability is increased further when the

GRN gets more control over cell shape.
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