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1 Introduction and motivation

Recent years have seen a surge in novel geometric constructions describing physical quanti-

ties in quantum field theories. In particular, it has been shown that scattering amplitudes

in (planar) N = 4 super Yang-Mills theory (sYM) are encoded in geometric spaces called

“Amplituhedra”. These are examples of a recently introduced class of interesting geome-

tries called positive geometries [1]. The latter are regions with boundaries inside projective

spaces, equipped with rational differential forms which have the defining property that they

are logarithmic on approaching any boundary of the positive geometry. Amplituhedra form

a family of positive geometries labelled by discrete parameters which, in the language of

amplitudes, translate as the number of particles (n), the total helicity of the amplitude

(k) and an additional parameter (m) which in the physical case takes the value m = 4.

We distinguish two types of amplituhedra depending on which space they are defined: the

ordinary amplituhedron A(m)
n,k [2] is defined on momentum twistor space [3], while the mo-

mentum amplituhedron M(m)
n,k [4], for even m, is defined on the space of spinor-helicity

variables. At the moment, we know much more about the ordinary amplituhedra, which

for k = 1 are familiar objects — cyclic polytopes — and for larger k provide a general-

ization of convex polytopes into the Grassmannian space. Similar to polytopes, they have

an intricate combinatorial structure of boundaries, which has already been classified for

the first few examples: for m = 1 in [5] and for m = 2 in [6]. Less is known about their

topology and the only available results are the one in [5], where it was proven that the

m = 1 amplituhedron is homeomorphic to a k-dimensional ball, and in [7] where it was

shown that the amplituhedron A(m)
n,k is a ball for a particular choice of external data. The

latter result does not provide however any enumeration of the boundaries. For the momen-

tum amplituhedron even less is known: for m = 2 it was shown in [8] that M(2)
n,k shares
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many properties with the hypersimplex ∆k+1,n, which is a well studied convex polytope

with known boundary structure. However, from the point of view of physics, we are mostly

interested in the case when m = 4 for which many features are yet to be discovered and

proven. For instance, it is conjectured that amplituhedra encode physical singularities of

scattering amplitudes in the structure of their boundaries. While this can be straightfor-

wardly seen for the codimension one boundaries, which encode factorisation channels and

collinear limits, a careful study of all boundaries deeper in the geometry is still missing.

In this paper we fill this gap by studying the boundary structure of the momentum

amplituhedronMn,k ≡M
(4)
n,k. We show how the physical singularities of the amplitude are

encoded in the boundaries of this geometry. Moreover, for all cases studied, we find their

Euler characteristic to be one, strongly indicating that the momentum amplituhedron is a

(2n−4)-dimensional ball. This is a remarkable fact, which shows an advantage in studying

the momentum amplituhedron compared to the ordinary amplituhedron for which the

structure of boundaries is much more complicated and as yet unknown.

This paper is organised as follows. In section 2 we review the singularities of scattering

amplitudes, first for pure Yang-Mills theory and then for N = 4 sYM. We provide there an

explicit form of the super-splitting functions and discuss in detail how to obtain soft limits

as a combination of two consecutive collinear limits. In section 3 we review the definition

of the momentum amplituhedron and explain how to find the complete stratification of

its boundaries. We discuss the Euler characteristic of the momentum amplituhedron and

construct the generating function encoding the number of its boundaries.

2 Singularities of scattering amplitudes

Let us begin by reviewing the well-known behaviour of colour-ordered amplitudes under

collinear and soft limits at tree level. These are governed by universal functions, which

depend only on the particles which become collinear, or, in the case of soft limits, on the

nearest neighbours of the soft particle. We first recall the known behaviour of collinear

and soft gluons in pure Yang-Mills theory (see for instance [9] and references therein) in

order to extend this analysis to N = 4 sYM. As a result, we provide an explicit form of the

super-splitting functions for the case when two super-particles become collinear. One finds

two such functions, which correspond to a helicity-preserving and a helicity-decreasing case.

For super-soft limits, we confirm that only the gluons present in the N = 4 sYM superfield

have divergent behaviour when becoming soft. Again one finds two super-soft limits and

each of them can be thought of as two simultaneous collinear limits of the same type.

2.1 Pure Yang-Mills theory

Colour-ordered amplitudes at tree- and loop-level exhibit known factorization properties

when external momenta reach certain singular configurations. These limits provide both

useful constraints for the evaluation of amplitudes and tests for the consistency of obtained

results. In what follows, we shall focus exclusively on tree-level amplitudes. In this case,

colour-ordered amplitudes can develop poles when the sum of adjacent momenta goes on
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shell: P 2
i,j = (pi + pi+1 + . . . + pj)

2 → 0. On these poles, called multi-particle poles,

amplitudes factorize in the following way

Atree
n (1, . . . , n)

P 2
i,j → 0
−−−−−→

∑
h=±1

Atree
j−i+2(i, . . . , j, P hi,j)

1

P 2
i,j

Atree
n−j+i(P

−h
i,j , j+ 1, . . . , i− 1), (2.1)

where the particles are cyclically ordered.

A special case of the above factorization formula (which we shall argue below) are

collinear singularities. In general, collinear singularities arise when the momenta of two

particles become proportional (pi ∼ pi+1), which is equivalent to P 2
i,i+1 = 0. On the other

hand, soft singularities arise when the on-shell momentum of one of the external particles

goes to zero: pi → 0. In these limits, scattering amplitudes at tree-level exhibit universal

factorization properties given by

Atree
n (. . . , ihi , (i+ 1)hi+1 , . . .)

pi||pi+1−−−−−→
∑
h=±1

Atree
n−1(. . . , P hi,i+1, . . .) Splittree

−h (ihi , (i+ 1)hi+1),

(2.2)

Atree
n (. . . , i, sh, j, . . .)

ps → 0−−−−→ Atree
n−1(. . . , i, j, . . .) Softtree(i, sh, j), (2.3)

where Splittree and Softtree are universal functions known as the tree-level splitting and soft

functions, respectively.

In order to argue that collinear limits arise as a particular case of the factorization

formula (2.1), let us, without loss of generality, take the particles with momenta p1 and p2

to be collinear. In this case, the momentum P12 ≡ P1,2 = p1 + p2 goes on-shell and (2.1)

becomes

Atree
n (1, 2, . . . , n)

P 2
12→0
−−−−→

∑
h=±1

Atree
3 (1, 2, P h12)

1

P 2
12

Atree
n−1(P−h12 , 3, . . . , n), (2.4)

where

P 2
12 = (p1 + p2)2 = 2p1 · p2 = 〈12〉[12]→ 0 . (2.5)

Note that when the brackets [12] and 〈12〉 are independent, then the collinearity condition

p1 ·p2 = 0 in (2.5) can be achieved either by taking 〈12〉 → 0 or [12]→ 0. The independence

of these two limits follows from three-particle special kinematics: for three-particle ampli-

tudes to be non-vanishing and satisfy momentum conservation, angle and square brackets

must be allowed to be independent. The independence of angle and square brackets can be

accomplished by considering complex momenta (or (2, 2) space-time signature). As we shall

show later for N = 4 sYM, 〈12〉 → 0 parametrises the helicity-preserving collinear limit,

while [12] → 0 describes the collinear limit which decreases the helicity of the resulting

amplitude by one.

To make a direct connection to the description of collinear limits in terms of split-

ting functions, let us examine Atree
3 (1, 2, P h12) 1

P 2
12

for a particular helicity assignment, say

(1+, 2−, P+
12). In this instance

Atree
3 (1+, 2−, P+

12)
1

P 2
12

=
[1P12]4

[12][2P12][P121]

1

〈12〉[12]
= − [1P12]3

[12]2[1P12]

1

〈12〉
. (2.6)
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From three-particle special kinematics for two positive-helicity gluons and one negative-

helicity gluon, we know that all angle brackets vanish for Atree
3 (1+, 2−, P+

12) and therefore

〈12〉 → 0 parametrizes the singularity in (2.6). In particular, three-particle special kine-

matics requires

λP12 = α1λ1 = α2λ2, (2.7)

with

λ̃P12 = α−1
1 λ̃1 + α−1

2 λ̃2 , (2.8)

following from momentum conservation. This allows us to rewrite the three-point ampli-

tude as

Atree
3 (1+, 2−, P+

12)
1

P 2
12

=
α1

α3
2

1

〈12〉
. (2.9)

Having removed any dependence on square brackets, we can now restrict our attention to

real external momenta which forces λ and λ̃ to be conjugate to each other:

λ1 = α−1
1 λP12 =

√
zλP12 , λ2 = α−1

2 λP12 =
√

1− zλP12 , (2.10)

λ̃1 = α−1
1 λ̃P12 =

√
zλ̃P12 , λ̃2 = α−1

2 λ̃P12 =
√

1− zλ̃P12 , (2.11)

where z parametrizes the fraction of the total momentum P12 = p1 +p2 (0 ≤ z ≤ 1) carried

by p1 and p2. In this case, (2.9) reduces to the well-known splitting function

Atree
3 (1+, 2−, P+

12)
1

P 2
12

= Splittree
+ (z; 1+, 2−) ≡ (1− z)2√

z(1− z)

1

〈12〉
. (2.12)

Similarly, repeating the above analysis for different helicity assignments produces

Atree
3 (1−, 2+, P+

12)
1

P 2
12

= Splittree
+ (z; 1−, 2+) =

z2√
z(1− z)

1

〈12〉
, (2.13)

Atree
3 (1−, 2−, P+

12)
1

P 2
12

= Splittree
+ (z; 1−, 2−) =

1√
z(1− z)

1

[12]
, (2.14)

Atree
3 (1+, 2+, P+

12)
1

P 2
12

= Splittree
+ (z; 1+, 2+) = 0 . (2.15)

The remaining splitting functions are obtained in the same way and are given by

Splittree
− (z; 1h1 , 2h2) = Splittree

+ (z; 1−h1 , 2−h2)
∣∣∣
[12]↔〈12〉

. (2.16)

This analysis motivates our diagrammatic notation employed later on in this paper in which

we indicate collinear limits by attaching three-point amplitudes.

Having demonstrated how collinear limits follow from factorization on two-particle

poles, we now argue that taking consecutive collinear limits of the same type produces a

soft limit.1 To this end, let us consider the explicit example of An(1+, 2+, 3, . . . , n) (with

1Consecutive collinear limits of different types do not lead to a divergent behaviour.
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unspecified helicity assignments for particles 3, . . . , n) and consider the two consecutive

collinear limits 〈12〉 → 0 and 〈23〉 → 0, keeping 〈13〉 generic. When particles 1 and 2

become collinear we find that

An(1+, 2+, 3, . . . , n)→ A3(1+, 2+, P−12)
1

P 2
12

An−1(P+
12, 3, . . . , n), (2.17)

using the parametrisation given in (2.10). If we additionally take the limit 〈23〉 → 0, we

can parametrise this limit as

λ2 =
√
wλQ23 , λ3 =

√
1− wλQ23 , (2.18)

λ̃2 =
√
wλ̃Q23 , λ̃3 =

√
1− wλ̃Q23 , (2.19)

where now the momentum Q23 = p2 +p3 is distributed as p2 = wQ23 and p3 = (1−w)Q23.

We obtain

A3(1+, 2+, P−12)
1

P 2
12

=
1√

z(1− z)

1

〈12〉
p2||p3−−−→ 1

z

〈13〉
〈12〉〈23〉

, (2.20)

where the dependence on the parameter w drops out entirely. We want to guarantee that

the momenta p1 and p3 are independent. The only way to achieve this is by taking the

limit z → 1 and w → 0 which implies that P12 = p1 and Q23 = p3 giving

An(1+, 2+, 3, . . . , n)→ 〈13〉
〈12〉〈23〉

An−1(1+, 3, . . . , n). (2.21)

A similar calculation can be done for other helicity configurations. One finds that the

soft behaviour of an amplitude depends only on the helicity of the soft particle and on

the momenta of its two closest neighbours, but not on their helicities. For a soft positive

helicity gluon, the soft factor is given by

Softtree(i, s+, j) =
〈ij〉
〈is〉〈sj〉

, (2.22)

while for a soft negative helicity gluon

Softtree(i, s−, j) =
[ij]

[is][sj]
. (2.23)

Here (i, s, j) are three consecutive particles.

2.2 N = 4 supersymmetric Yang-Mills theory

Let us start by recalling that the on-shell multiplet of N = 4 sYM can be collected into

a single on-shell chiral superfield by means of the Grassmann-odd variables ηA with A =

1, . . . , 4:

Φ = g+ + ηA λ
A +

1

2!
ηAηB S

AB +
1

3!
ηAηBηC ε

ABCDλ̄D +
1

4!
ηAηBηCηDε

ABCD g−, (2.24)

with gluons g+ and g−, gluinos λA and λ̄D, and scalars SAB. A generic n-particle super-

amplitude An = An(Φ1,Φ2, . . . ,Φn) can be expanded in terms of helicity sectors

An = An,2 +An,3 + · · ·+An,n−2, (n ≥ 4) (2.25)

– 5 –
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where An,k is the superamplitude for the Nk−2MHV sector and has Grassmann degree

4k. Superamplitudes factorize on multi-particle poles in a very similar way as for pure

Yang-Mills theory

An,k(1, . . . , n)
P 2
i,j→0
−−−−→ (2.26)

k∑
k′=1

∫
d4ηPi,jAj−i+2,k′(i, . . . , j, Pi,j)

1

P 2
i,j

An−j+i,k−k′+1(Pi,j , j + 1, . . . , i− 1) .

In the following we present a generalization of the splitting and soft functions which

were discussed in the previous section. Let us start by considering the collinear limit. In

the limit P 2
12 → 0, An,k factorizes as follows

An,k(1, 2, 3, . . . , n)
P 2
12→0
−−−−→

2∑
k′=1

∫
d4ηP12A3,k′(1, 2, P12)

1

P 2
12

An−1,k−k′+1(P12, 3, . . . , n) ,

(2.27)

where the sum runs over two contributions: one where the helicity of the original super-

amplitude is preserved (k′ = 1) and one where the helicity is reduced by one (k′ = 2). The

integration over ηP12 corresponds to summing over all possible types of fields exchanged in

this factorization channel.

Let us investigate the helicity-decreasing contribution first. Following the steps for

pure Yang-Mills theory, we consider

A3,2(1, 2, P12)
1

P 2
12

=
δ(8)(Q)

〈12〉〈2P12〉〈P121〉
1

〈12〉[12]
, (2.28)

where QαA =
∑n

i=1 λ
α
i η

A
i . With the three-particle special kinematics in mind, we take the

limit [12]→ 0 and find

A3,2(1, 2, P12)
1

P 2
12

=
δ(8)(Q)

〈12〉4
α1α2

[12]
, (2.29)

where we used λP12 = α−1
1 λ1 + α−1

2 λ2. We can further simplify the super-momentum-

conserving delta function to obtain

A3,2(1, 2, P12)
1

P 2
12

=
α1α2

[12]

4∏
A=1

(η1Aη2A + α−1
2 η1AηP12A − α−1

1 η2AηP12A). (2.30)

Restricting to real momenta, we find that α1 and α2 are no longer independent and we can

again use (2.10) to parametrise this dependence and produce

A3,2(1, 2, P12)
1

P 2
12

= Splittree
−1 (z; η1, η2, ηP12), (2.31)

where

Splittree
−1 (z; η1, η2, η3) ≡ 1√

z(1− z)

1

[12]

4∏
A=1

(η1Aη2A +
√

1− zη1Aη3A −
√
zη2Aη3A) (2.32)

– 6 –



J
H
E
P
0
7
(
2
0
2
0
)
2
0
1

(a) [ii+ 1] = 0 (b) 〈ii+ 1〉 = 0

Figure 1. Representation of collinear limits. In figure 1(a) we represent the super-splitting func-

tion Splittree−1 with a black trivalent vertex. In figure 1(b), Splittree0 is represented by a white

trivalent vertex.

is the helicity-decreasing tree-level super-splitting function. One immediately recovers the

pure Yang-Mills splitting functions by expanding (2.32) and focusing on terms proportional

to η4
1η

4
2, etc.

Repeating the above analysis for the helicity-preserving case, one can show that in the

collinear limit 〈12〉 → 0 we have

A3,1(1, 2, P12)
1

P 2
12

= Splittree
0 (z; η1, η2, ηP12), (2.33)

where

Splittree
0 (z; η1, η2, η3) ≡ 1√

z(1− z)

1

〈12〉

4∏
A=1

(η3A −
√
zη1A −

√
1− zη2A) (2.34)

is the helicity-preserving tree-level super-splitting function. Again, one can easily show

that the pure Yang-Mills theory splitting functions can be obtained by expanding (2.34)

and focusing on terms proportional to η4
1, etc. We observe from (2.34) and (2.32) that

helicity-preserving and helicity-decreasing collinear limits are parametrised by 〈12〉 → 0

and [12] → 0, respectively, and that these are two physically distinguishable processes,

which we depict in figure 1. Although we believe these to be known results, to the best of

our knowledge, the expressions for the super-splitting functions given in (2.34) and (2.32)

do not appear in the literature, and we therefore record them here for convenience.

As for pure Yang-Mills theory, we can also take consecutive collinear limits to produce a

soft limit. Let us start with the helicity-preserving case. Using the parametrizations (2.10)

and (2.18), and taking the limit z → 1, we obtain

Splittree
0 (z; η1, η2, ηP12)→ 〈13〉

〈12〉〈23〉

4∏
A=1

(ηP12A − η1A). (2.35)

Substituting this into (2.27) and integrating over ηP12 we find the helicity-preserving

soft limit

An,k(1, 2, 3, . . . , n)→ 〈13〉
〈12〉〈23〉

An−1,k(1, 3, . . . , n). (2.36)

– 7 –
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(a) 〈ii+ 1〉 = 0 = 〈i− 1i〉 (b) [ii+ 1] = 0 = [i− 1i]

Figure 2. Soft limits of an amplitude with the soft particle indicated by a black (white) lollipop.

These correspond to two consecutive collinear limits of angle (square) brackets.

Similarly, for consecutive helicity-reducing collinear limits we find

Splittree
−1 (z; η1, η2, ηP12)→ [13]

[12][23]

4∏
A=1

η2A(ηP12A − η1A), (2.37)

and the helicity-decreasing soft limit given by

An,k(1, 2, 3, . . . , n)→ η4
2

[13]

[12][23]
An−1,k−1(1, 3, . . . , n). (2.38)

Notice that for soft limits the only divergent contribution comes from soft gluons: in

the first case, only the positive-helicity gluon contributed to (2.36), while in the second

case, (2.38) comes solely from the negative-helicity gluon. We depict the soft limits in

figure 2.

Until now, we have considered N = 4 sYM written in the chiral superspace for which

the superfield is given by (2.24), i.e. (λα, λ̃α̇, ηA). In order to connect our considerations

with the following section, we need to rewrite all formulae in the non-chiral superspace,

which consists of two η’s and two η̃’s, i.e. (λα, ηα|λ̃α̇, η̃α̇), where the latter are the Fourier

transform of two of the η’s. We can accomplish this by performing Fourier transforms of

all our formulae with respect to η3 and η4 which will introduce their conjugate fermionic

coordinates η̃1 and η̃2. The main conclusions from our calculations will remain unchanged

and we get the following formulae for the super-splitting functions

Splittree
−1 (z; η1, η2, η3, η̃1, η̃2, η̃3)→ 1√

z(1− z)

1

[12]

2∏
α=1

(η1αη2α +
√

1− zη1αη3α −
√
zη2αη3α)

×
2∏

α̇=1

(η̃3α̇ −
√
zη̃1α̇ −

√
1− zη̃2α̇) ,

Splittree
0 (z; η1, η2, η3, η̃1, η̃2, η̃3)→ 1√

z(1− z)

1

〈12〉

2∏
α=1

(η3α −
√
zη1α −

√
1− zη2α)

×
2∏

α̇=1

(η̃1α̇η̃2α̇ +
√

1− zη̃1α̇η̃3α̇ −
√
zη̃2α̇η̃3α̇) ,

– 8 –
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and soft limits:

An,k(1, 2, 3, . . . , n)
〈12〉→0,〈23〉→0−−−−−−−−−→

2∏
α̇=1

η̃2α̇
〈13〉
〈12〉〈23〉

An−1,k(1, 3, . . . , n) ,

An,k(1, 2, 3, . . . , n)
[12]→0,[23]→0−−−−−−−−−→

2∏
α=1

η2α
[13]

[12][23]
An−1,k−1(1, 3, . . . , n) .

3 Physical singularities from the momentum amplituhedron

After having reviewed the singularities of tree-level scattering amplitudes in the previous

section, we now want to describe how these are encoded in positive geometries. It is

conjectured that the physical singularities of tree amplitudes correspond to the boundaries

of the momentum amplituhedron. While for facets, i.e. codimension one boundaries, this

has already been established [4], the lower dimensional boundaries also encode further

multi-particle factorizations and multi-particle collinear limits which are present deeper in

the positive geometry and have not been classified before. We will start with a review of

the momentum amplituhedron construction followed by a description of its boundaries and

an algorithm for finding them. We also provide evidence that, for the extensive number of

cases analysed, this positive geometry has Euler characteristic one which suggests that the

momentum amplituhedron is homeomorphic to a ball and therefore it is simpler than the

ordinary amplituhedron.

3.1 Definition of momentum amplituhedron

The tree momentum amplituhedron M(m)
n,k has been introduced in [4] for m = 4 and gen-

eralized to any even m in [8]. We focus here only on the physical case m = 4, denoted

simply Mn,k, which is the positive geometry encoding tree-level scattering amplitudes in

N = 4 sYM directly in spinor-helicity space. The momentum amplituhedron Mn,k is

defined as the image of the positive Grassmannian G+(k, n), that is a subset of the Grass-

mannian G(k, n) consisting of elements described by matrices with all ordered maximal

minors non-negative, through the map

Φ(Λ,Λ̃) : G+(k, n)→ G(k, k + 2)×G(n− k, n− k + 2) . (3.1)

Here Λ and Λ̃ are bosonised versions of the non-chiral superspace coordinates

(λα, ηα|λ̃α̇, η̃α̇). In particular, Λ̃ is a (k+ 2)× n positive matrix and Λ is a (n− k+ 2)× n
twisted matrix (see [10] for the precise definition). To each element C = {cα̇i} of the

positive Grassmannian G+(k, n) the map ΦΛ,Λ̃ associates a pair of Grassmannian elements

(Ỹ , Y ) ∈ G(k, k + 2)×G(n− k, n− k + 2) in the following way

Ỹ Ȧ
α̇ = cα̇i Λ̃Ȧi , Y A

α = c⊥αi ΛAi , (3.2)

where C⊥ = {c⊥αi} is the orthogonal complement of C. Although the dimension of the

(Y, Ỹ )-space is 2k + 2(n − k) = 2n, the image of the positive Grassmannian through the

Φ(Λ,Λ̃) map is 2(n−2)-dimensional since one can show that the following relation holds true

(Y ⊥Λ) · (Ỹ ⊥Λ̃) = 0, (3.3)

and therefore the image is embedded in a surface of codimension four.
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The boundary structure of the momentum amplituhedron Mn,k is closely related to

the boundary structure of the positive Grassmannian G+(k, n) and, in particular, each

boundary of Mn,k can be labelled by a subset of labels for G+(k, n). The positive Grass-

mannian has been studied by Postnikov [11] and is known to have a very rich and interest-

ing combinatorial structure. Each boundary stratum of G+(k, n) is called a positroid cell

and can be labelled by a variety of combinatorial objects, including affine permutations,

(equivalence classes of) plabic diagrams and L-diagrams. An affine permutation is a gener-

alization of the ordinary permutation which allows for two types of fixed-points. It is a map

π : {1, 2, . . . , n} → {1, 2, . . . , 2n} such that a ≤ π(a) ≤ a+ n and it reduces to an ordinary

permutation mod n. We will use affine permutations to label positroid cells Sπ ⊂ G+(k, n),

but also to label images of Sπ in the momentum amplituhedron. For a given positroid cell

Sπ ⊂ G+(k, n) we denote by dimC π its dimension and by ∂Cπ its boundary stratification.

We also denote by ∂−1
C π the inverse boundary stratification of π, i.e. the set of all positroid

cells Sπ′ ⊂ G+(k, n) for which π ∈ ∂Cπ′.
For each positroid cell Sπ ⊂ G+(k, n) we define the momentum amplituhedron dimen-

sion dimM π as

dimM π = dim Φ(Λ,Λ̃)(Sπ). (3.4)

It is always true that dimC(π) ≥ dimM (π) and we can distinguish two cases:

• dimC(π) = dimM (π): we will refer to cells satisfying this condition as simplicial-like,

• dimC(π) > dimM (π): these cells are polytopal-like.

This distinction refers to properties of polytopes: a simplex is a polytope which cannot

be subdivided into smaller polytopes without introducing new vertices. Similarly here,

the simplicial-like cells are those for which their images cannot be subdivided into smaller

images of positroid cells. This is not the case for polytopal-like cells. In particular, given a

positroid cell π for which dimC(π) > dimM (π), we can find a collection of cells in its bound-

ary stratification ∂Cπ, with the same amplituhedron dimension as π. Moreover, there exists

a (non-unique) subset {π1, . . . , πr} ∈ ∂Cπ such that the images {Φ(Λ,Λ̃)(π1), . . . ,Φ(Λ,Λ̃)(πr)}
triangulate the image Φ(Λ,Λ̃)(π).

After this basic introduction to the momentum amplituhedron, we are ready to explore

its boundary stratification. In particular, the facets of the momentum amplituhedronMn,k

have been studied in [4] and they belong to one of the following classes:

〈Y ii+ 1〉 = 0 , [Ỹ ii+ 1] = 0 , Si,i+1,...,j = 0 , (3.5)

where

Si,i+1,...,j =

j∑
a<b=i

〈Y ab〉[Ỹ ab] (3.6)

are equivalent to the Mandelstam invariants written in the momentum amplituhedron

space. The invariant brackets here are defined as

〈Y ij〉 = εA1A2...An−k+2
Y A1

1 Y A2
2 . . . Y

An−k

n−k Λ
An−k+1

i Λ
An−k+2

j , (3.7)

[Ỹ ij] = εȦ1Ȧ2...Ȧk+2
Ỹ Ȧ1

1 Ỹ Ȧ2
2 . . . Ỹ Ȧk

k Λ̃
Ȧk+1

i Λ̃
Ȧk+2

j . (3.8)
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In what follows, we would like to extend our understanding of the momentum ampli-

tuhedron boundary structure beyond the facets. To this end, we will follow the method used

in [6]: assume that we have found all momentum amplituhedron boundaries of momentum

amplituhedron dimension larger than d. Let us study all positroid cells π with momentum

amplituhedron dimension dimM π = d. For a given cell π, there are two options:

• either the momentum amplituhedron dimensions for all inverse boundaries of π are

higher than the momentum amplituhedron dimension of π:

∀π′∈∂−1
C π : dimM π′ > dimM π ,

• or we can find a cell among the inverse boundaries of π which has a higher Grass-

mannian dimension but the same momentum amplituhedron dimension as π:

∃π′∈∂−1
C π : dimM π′ = dimM π and dimC π

′ > dimC π .

We only keep the former cells since the latter are necessarily elements of a triangulation of a

boundary of the momentum amplituhedron. After discarding these latter cells, there is still

a possibility that some of the remaining cell images are spurious boundaries, which arise as

internal boundaries in triangulations of polytopal-like boundaries. Spurious boundaries can

be identified (and removed) because they belong to a single (d+1)-dimensional momentum

amplituhedron boundary, while external boundaries belong to at least two such boundaries.

This procedure allows us to find all external boundaries of dimension d. We can follow this

procedure recursively, starting from the known codimension-one boundaries, and work our

way down to zero-dimensional boundaries: points.

3.2 Boundary stratification

The algorithm described above has been implemented in the Mathematica package

amplituhedronBoundaries [12]. Using it we were able to find the momentum amplituhe-

dron boundary stratifications for up to n = 9 and for all k. These results are summarised in

table 1. A careful study of these stratifications lead us to postulate a dual graph notation,

see section 3.3, which allowed us to conjecture the general form of momentum amplituhe-

dron boundaries and extend our analysis up to n = 11, see table 2. In particular, we

were able to calculate how many boundaries of a given dimension there are in Mn,k for

up to n = 11. In all these cases, we found that the Euler characteristic of the momentum

amplituhedron equals one.

Let us take a more careful look at the structure of boundaries of Mn,k. We have

already specified that codimension one boundaries come in three different types: two of

them are the collinear limits given by 〈Y ii + 1〉 = 0 or [Ỹ ii + 1] = 0, and there are

factorization channels corresponding to Si,i+1,...,j = 0. To each of these boundaries we

can associate a plabic diagram which labels the corresponding positroid cell. They are of

the form presented in figure 3. Notice that the two collinear limits can be understood as

factorization channels with the top cell plabic diagram for three-particle amplitudes A3,1

(white trivalent vertex) or A3,2 (black trivalent vertex) attached as connected sub-diagrams.
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(n, k)\ d 0 1 2 3 4 5 6 7 8 9 10 11 12

(4, 2) 6 12 10 4 1

(5, 2) 10 30 40 30 15 5 1

(6, 2) 15 60 110 120 90 50 21 6 1

(6, 3) 20 90 180 215 180 114 54 15 1

(7, 2) 21 105 245 350 350 266 161 77 28 7 1

(7, 3) 35 210 560 910 1050 938 665 350 119 21 1

(8, 2) 28 168 476 840 1050 1008 784 504 266 112 36 8 1

(8, 3) 56 420 1400 2870 4200 4788 4424 3262 1820 720 188 28 1

(8, 4) 70 560 1960 4200 6426 7672 7420 5696 3264 1280 300 32 1

Table 1. The number of boundaries of Mn,k of a given dimension.

〈Y ii+ 1〉 = 0 [Ỹ ii+ 1] = 0 Sii+1...j = 0

Figure 3. Plabic diagrams for codimension one boundaries of the momentum amplituhedron.

〈Y ii+ 1〉 = 0 = 〈Y i− 1i〉 [Ỹ ii+ 1] = 0 = [Ỹ i− 1i]

Figure 4. Plabic diagrams for codimension two boundaries of the momentum amplituhedron

corresponding to physical soft limits of an amplitude.

At codimension two we find that the boundaries are either further factorizations of the

factors in the previous step or further collinear limits. Concerning the latter, an interesting

new behaviour emerges when we take the intersection of two consecutive codimension one

boundaries corresponding to collinear limits of the same type. In this case, the plabic

diagram corresponding to this boundary is a lollipop detached from the top cell diagram for

a lower point amplitude, see figure 4. These are exactly the soft limits which we described in

the previous section. These features can be generalized deeper into the geometry. A generic
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Figure 5. Plabic diagram for a generic boundary of the momentum amplituhedron.

boundary of the momentum amplituhedron will be a combination of collinear limits and

factorizations, and the corresponding plabic diagram will have the generic form depicted

in figure 5. In particular, a plabic graph for a generic boundary of Mn,k will consist of a

number of disjoint pieces, which can be of the following form:

• a black lollipop — corresponding to a helicity-preserving soft limit

• a white lollipop — corresponding to a helicity-reducing soft limit

• a single line — corresponding to a forward-limit

• a top cell, a collinear limit or a factorization channel for an amplitude An′,k′ with

n′ < n and k′ ≤ k. In particular, it can be any boundary of Mn′,k′ as long as it is

given by a connected diagram.

We can now use the package amplituhedronBoundaries to find all such boundaries of all

dimensions from d = 0 to d = 2n − 4. For k = 2 and k = n − 2 the boundaries of Mn,2

and Mn,n−2 trivially agree with the boundary stratifications of the positive Grassman-

nians G+(2, n) and G+(n − 2, n), respectively, which are identical to each other via the

Grassmannian duality. For 2 < k < n− 2 the number of boundaries of a given dimension

are organized in table 1. Importantly, one can check that the Euler characteristic of the

momentum amplituhedron Mn,k is equal to one for each of the cases we studied. We have

also checked for the first few non-trivial cases that the poset of boundaries is Eulerian.

We conclude this section with the observation that there is an easy way to calculate

dimM π, the momentum amplituhedron dimension of a given boundary, directly from its

graphic representation. Consider first a connected diagram which depicts factorizations

and collinear limits. Connected diagrams are always composed of lower-point amplitudes

(An1,k1 , An2,k2 , . . . , Anp,kp) connected together into a tree graph. For this type of diagram

we find that its dimension is given by p∑
j=1

(2nj − 4)

− (p− 1) , (3.9)

where the sum counts the dimension of the images of top cells for each of the lower-point

amplitudes, and we subtract one dimension for each connecting internal edge in the tree.
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Figure 6. Dualization of a connected component of a boundary of the momentum amplituhedron.

For the disconnected diagrams it is sufficient to add the dimensions of all disconnected

pieces. Finally, every lollipop counts with dimension zero and every line with dimension

one. This is demonstrated in the following example:

dimM = 0 + 0 + 1 + (2 · 5− 4 + 2 · 4− 4− 1) + (2 · 4− 4) = 14 . (3.10)

3.3 Dual graph representation

Having explicitly found all boundaries of the momentum amplituhedron for up to n = 9, we

now propose an efficient enumeration for these boundaries which enables us to extend our

analysis beyond n = 9 and to conjecture all boundaries for up to n = 11. This enumeration

is based on the notion of dual graphs where each boundary is labelled by a partial triangu-

lation of a regular n-sided polygon (or n-gon) together with some additional decorations.

Consider an on-shell diagram corresponding to an arbitrary boundary of the momen-

tum amplituhedron. In general, such an on-shell diagram is a disconnected graph comprised

of a collection of connected sub-diagrams. We shall focus first on dualizing the connected

sub-diagrams and later reassemble them to obtain a diagrammatic label for the full on-shell

diagram. Each connected component is a tree consisting of n′ external legs and a finite

number of internal vertices, where each vertex is an on-shell diagram corresponding to the

top cell of some positive Grassmannian G+(k′′, n′′). For the present discussion, suppose

n′ > 1. Dualizing such a tree graph, one obtains a labelled subdivision of an n′-gon as

depicted in figure 6. For each element of the subdivision, we need to indicate which top

cell on-shell diagram it represents, but since n′′ is precisely the number of vertices of each

such element, it is enough to specify the value of k′′ only which we have indicated inside

each element of the subdivision. For each connected component, it is very easy to generate

all possible subdivisions of an n′-gon and fill it in with all allowed k′′ values. Once all such

labelled subdivisions have been generated, there is one more thing to take into account: if

in the connected sub-diagram (which is a tree graph) we have two A3,1 (respectively A3,2)

amplitudes joined by an edge, then one can obtain an equivalent representative of the same

sub-diagram using the so-called flip move. In order to address this possible overcounting,

we need to quotient by this equivalence relation.
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Figure 7. Dual diagrammatic labels for boundaries of the momentum amplituhedron.

Having generated all possible connected pieces, we then combine them in all possible

ways, keeping in mind how the total helicity of an amplitude is related to the helicities of

its connected pieces. To each boundary, the combined diagrammatic label consists of the

dual graphs for each connected component fitted together to form a partial triangulation

of the n-gon as shown e.g. in figure 7. Borders between disconnected pieces are highlighted

by thick internal edges. Finally, lollipop sub-diagrams, i.e. components with single external

legs, are denoted by thick external edges. In particular, the white and black lollipops are

depicted by thick white and black external edges, respectively.

In this way we are able to (conjecturally) generate all boundaries for the momentum

amplituhedron Mn,k for up to n = 11 and for any k.

3.4 Generating function for boundaries

Let us denote by Bn,k the set of all boundaries of the momentum amplituhedronMn,k. The

set Bn,k is naturally divided into different sectors labelled by the momentum amplituhedron

dimension. Therefore, knowing the number of momentum amplituhedron boundaries of all

dimensions, we can construct the following generating function

Fn,k(x) =
∑

σ∈Bn,k

(−x)dimM σ . (3.11)

For n ≤ 9 this function can be easily found by using the data available in table 1. We

provide the explicit forms of the generating functions Fn,k for 9 ≤ n ≤ 11 in table 2. In

particular, in all the cases we studied we found that

Fn,k(1) = 1 , (3.12)

which implies that the Euler characteristic of the momentum amplituhedron equals 1.
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F9,2 =x14−9x13+45x12−156x11+414x10−882x9+1554x8−2304x7+2898x6−3066x5

+2646x4−1764x3+840x2−252x+36

F9,3 =x14−36x13+279x12−1227x11+3726x10−8370x9+14322x8−19152x7+20622x6

−18270x5+13230x4−7476x3+3024x2−756x+84

F9,4 =x14−45x13+540x12−3003x11+10089x10−23049x9+38298x8−48618x7

+49140x6−40656x5+27468x4−14490x3+5460x2−1260x+126

F10,2 =x16−10x15+55x14−210x13+615x12−1452x11+2850x10−4740x9+6765x8

−8340x7+8862x6−7980x5+5880x4−3360x3+1380x2−360x+45

F10,3 =x16−45x15+395x14−1955x13+6705x12−17412x11+35640x10−58440x9

+77490x8−84120x7+75852x6−57120x5+35280x4−17010x3+5880x2

−1260x+120

F10,4 =x16−60x15+880x14−5780x13+23385x12−65990x11+137835x10−220662x9

+277890x8−281940x7+235410x6−163380x5+92862x4−41160x3+13020x2

−2520x+210

F10,5 =x16−65x15+1045x14−7915x13+34740x12−101240x11+212285x10−336220x9

+415890x8−412980x7+336840x6−228102x5+126420x4−54600x3+16800x2

−3150x+252

F11,2 =x18−11x17+66x16−275x15+880x14−2277x13+4917x12−9042x11+14355x10

−19855x9+24057x8−25542x7+23562x6−18480x5+11880x4−5940x3+2145x2

−495x+55

F11,3 =x18−55x17+539x16−2959x15+11275x14−32692x13+75735x12−143913x11

+226908x10−297990x9+326997x8−301620x7+235158x6−154308x5+83160x4

−34980x3+10560x2−1980x+165

F11,4 =x18−77x17+1342x16−10109x15+46849x14−153527x13+380402x12−738067x11

+1143780x10−1435005x9+1475562x8−1259412x7+901362x6−540540x5

+265650x4−101640x3+27720x2−4620x+330

F11,5 =x18−88x17+1782x16−16522x15+88924x14−318197x13+820512x12

−1602986x11+2450437x10−2996972x9+2984520x8−2457840x7+1693230x6

−975744x5+460152x4−168630x3+43890x2−6930x+462

F12,2 =x20−12x19+78x18−352x17+1221x16−3432x15+8074x14−16236x13+28314x12

−43252x11+58278x10−69564x9+73656x8−68904x7+56232x6−39072x5

+22275x4−9900x3+3190x2−660x+66

Table 2. Generating functions for momentum amplituhedron boundaries. Recall that Fn,k =

Fn,n−k.
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Presently we do not know the general form of the generating function Fn,k for arbitrary

n and k. It is, however, worthwhile to note that a corresponding generating function for

the positive Grassmannian G+(k, n) has been found in [13]. The method used there relied

on finding a recursion relation for the number of L-diagrams [11] of a given type. It

remains an open question whether a similar calculation can be repeated for the momentum

amplituhedron boundaries which are described by a subset of these L-diagrams. As a first

step in this direction, we classify the L-diagrams corresponding to permutations in the

positive Grassmannian which do not label momentum amplituhedron boundaries for k = 3

and k = 4. Consider the first non-trivial2 momentum amplituhedron example: M6,3. The

cells in the positive Grassmannian G+(3, 6) which are not in M6,3 are labelled by the

following L-diagrams:

+ * +

* + +

+ +

,
+ * +

* + +

+ + +

,
* + *

+ + +

* + +

, (3.13)

where ∗ can be either + or 0, excluding the case when the last two diagrams are completely

populated with + symbols as this labels the top cell of G+(3, 6). For k = 3, we conjecture

that for all n, a cell in G+(3, n) is not in Mn,3 if and only if its associated L-diagram

contains one of the L-diagrams in (3.13) as a sub-diagram. We have explicitly confirmed

this result for n = 7, 8, 9. For k = 4, the above criterion is not sufficient, and one needs

to include additional “bad” L-diagrams. In particular, for G+(4, 8) we find that the above

condition captures all but one cell whose L-diagram is given by

+ 0 0 +

0 0 + +

0 + +

+ +

. (3.14)

Interestingly, we find that all cells G+(4, 9) which are not inM9,4 are labelled by L-diagrams

which contain either one of the L-diagrams in (3.13) or the one in (3.14) as a sub diagram.

4 Conclusions and outlook

In this paper we classified all physical singularities of tree-level scattering amplitudes in

N = 4 sYM by studying the boundaries of the momentum amplituhedron Mn,k. Each

singularity comes from a subsequent multi-particle factorization and collinear limit of the

amplitude, which can be translated to geometry as an appropriate intersection of facets of

the momentum amplituhedron. There are a few natural questions to investigate following

our work. From a mathematical point of view, we have laid the foundation for proving that

the momentum amplituhedron Mn,k is a ball. In particular, we showed that, for all the

cases we analysed, the Euler characteristic is equal to one. It would also be desirable to find

a general form of the generating function, similar to the one for the positive Grassmannian

found in [13], to show that this feature holds for any n and k. Moreover, we showed that

in the first few cases the momentum amplituhedron has an Eulerian boundary poset. The

2M6,3 is the first example whose boundary stratification is not isomorphic to that of the positive Grass-

mannian G+(3, 6).
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fact that the momentum amplituhedron has the combinatorial structure of a ball provides

evidence that it is a simpler geometry compared to the ordinary amplituhedron, for which

our preliminary studies indicate that the boundary structure is more complicated. From

the point of view of physics, the natural question to ask is whether we can extend this

analysis beyond tree level. At the moment, the loop-level momentum amplituhedron, i.e.

the geometry associated to scattering amplitudes at loop level in spinor-helicity space, is

not known. Once its definition is found, the methods from this paper suggest a natural

starting point for finding and studying its boundary structure.
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