A VLBA Survey of radio stars in the Orion Nebula Cluster: II. Astrometry

SERGIO A. DZIB,¹ JAN FORBRICH,^{2,3} MARK J. REID,³ AND KARL M. MENTEN¹

¹Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany ²Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK ³Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, MS 72, Cambridge, MA 02138, USA

ABSTRACT

From Very Long Baseline Array (VLBA) observations we previously identified a population of 123 young stellar systems with nonthermal radio emission toward the core of the Orion Nebula Cluster (ONC). We find optical sources in the *Gaia* DR2 catalog for 34 of them within 0."2 of the radio positions. Most of the radio sources are likely *companions* of *Gaia* detections. However, there are 11 stars whose VLBA position differ from *Gaia* by < 1.6 mas, and some of these radio sources probably are the direct counterparts of the optical stars. We are able to obtain radio proper motions for 23 stars. Combining the stellar proper motions derived from the VLBA and *Gaia* DR2 data we find the global motion and velocity dispersion of the ONC to be $(\mu_{\alpha}*, \mu_{\delta})=(1.20\pm 0.09, 0.18\pm 0.09)$ mas yr⁻¹ and $(\sigma_{\mu_{\alpha}*}, \sigma_{\mu_{\delta}})=(0.84\pm 0.09, 1.30\pm 0.09)$ mas yr⁻¹. Finally, we looked for ordered motions by estimating the means of scalar and vectorial products, which results in $\overline{\mathbf{v}\cdot\hat{\mathbf{r}}} = -0.61\pm 1.00$ km s⁻¹. These do not show indications that the young stellar cluster is in expansion, contraction or rotation.

Keywords: astrometry — radiation mechanisms: non-thermal — stars:formation — stars:kinematics

1. INTRODUCTION

The Orion Nebula Cluster (ONC), at a distance of about 400 pc (Menten et al. 2007; Kim et al. 2008; Kounkel et al. 2017), is the nearest region in which massive stars have formed < 2 million years ago (Muench et al. 2008). It contains a rich stellar population composed of a few high-mass stars, which already are on the main sequence, and many low-mass pre-main sequence young stellar objects (YSOs). With its \sim 3500 members, the ONC is the most extensively studied young, partially embedded, star cluster (e.g., Hillenbrand 1997; Getman et al. 2005; Da Rio et al. 2012).

The Kleinmann-Low (KL) Nebula is located a fraction of a parsec behind the ONC (Zuckerman 1973; Genzel & Stutzki 1989). Within it, the deeply embedded Becklin-Neugebauer object (BN) and a number of other embedded near infrared (NIR) sources are evidence for more recent star formation.

At radio wavelengths, a rich population of compact sources has been found, many of which represent young stars in the ONC that are visible at NIR and optical wavelengths whereas others are associated with optically invisible NIR sources in the KL region. In the radio and the NIR range, the most prominent radio source in this region is BN (Garay et al. 1987; Churchwell et al. 1987; Zapata et al. 2004; Kounkel et al. 2014; Forbrich et al. 2016). Some very deeply embedded sources show no optical or even infrared counterparts at all, but are still detected at X-ray and/or radio wavelengths (see, e.g., Menten & Reid 1995; Forbrich et al. 2008). Multi-epoch high-resolution interferometric studies of these YSOs at radio wavelengths have helped to constrain the ONC distance (Sandstrom et al. 2007; Hirota et al. 2007; Menten et al. 2007; Kounkel et al. 2017), study their kinematics (e.g. Dzib et al. 2017) and uncover sources related to the dynamical decay, some 500 yr ago, of a multiple stellar system within the KL Nebula (e.g., Gómez et al. 2008; Rodríguez et al. 2017, 2020, and references therein).

Magnetically active young low-mass stars produce nonthermal radio emission from their coronae (Feigelson & Montmerle 1999). The coronae have sizes of at most a few stellar radii (Güdel 2002), and have high brightness temperatures (> 10^6 K). Thus, they provide excellent targets for observations with the Very Long Baseline Interferometry technique (VLBI) which provides astrometric precision of the order of tens of micro-arcseconds (Reid & Honma 2014).

In order to characterize the non-thermal population of the ONC and study its kinematics, we initiated a campaign of high angular resolution observations with the Very Long Baseline Array (VLBA) targeting all 557 compact radio

	Date	Synthesized beam	
Epoch	yyyy/mm/dd	$(\theta_{\rm maj} \times \theta_{\rm min}; {\rm P.A.})$	#Ant.
1	2015/10/26	0''.00471×0''.00165; +22.1°	8
2	2017/10/26	0''.00435×0''.00135; -17.3°	7
3	2017/10/27	0''.00407×0''.00139; -17.8°	7
4	2018/10/26	0''.00283×0''.00116; -02.1°	10

Table 1. Observed epochs.

NOTE—Columns are (left to right): Epoch of the observation, civil date, FWHM major and minor axis and position angle (E of N) of the synthesized beam and the number of antennas used.

sources¹ known to exist in the region (e.g., Forbrich et al. 2016; Dzib et al. 2017). In a companion paper we focused on the detection criteria and sample definition (Forbrich et al. submitted; hereafter Paper I), and in future articles we shall discuss in detail the properties the whole sample. In this paper we report the measured positions and proper motions for sources detected in two or more epochs.

2. OBSERVATIONS

A full description of the observations is given in Paper I, and only a brief summary follows. Four C-band observations, centered at 7.196 GHz, were carried out with the VLBA in three different years (Tab. 1). Three of these observations were arranged to be made at the same day of the year, October 26, in 2015, 2017, and 2018. The observations in 2015 and 2017 resulted in larger synthesized beam sizes because the array's most outlying antennas (Mauna Kea or St. Croix), which provide the longest baselines, were not operational (see Paper I for full details). An additional epoch was obtained on 2017 October 27. Given the low declination of the ONC, the synthesized beam is elongated in north-south

direction, resulting in a better astrometric precision in right ascension than in the declination direction.

The 557 known sources within the primary beam were correlated using the DiFX software correlator (Deller et al. 2011), which generates separate visibility data sets for each source position. The phase calibrator was the quasar J0541–0541 correlated at the position R.A.= $05^{h}41^{m}38^{s}083384$; Dec.= $-05^{\circ}41'49''.42839$ i.e., with angular separations from the ONC of 1°6 in right ascension and 0°3 in declination. The correlated position was 0.24 mas off in right ascension and 0.07 mas off in declination from the most recent determined position of this quasar provided by the AstroGeo website², and source positions in this paper have been corrected to reflect the new calibrator position.

Data calibration was performed using the Astronomical Image Processing System software (AIPS; Greisen 2003). The calibration was done following standard procedures and images of detected sources were produced with pixel sizes of 50 μ as. See Paper I for further information on the image processing and a detailed description on detection criteria. Images are exported in FITS format and read into the CASA software. General properties of the images are listed in Table 1. Source positions are measured with the CASA task imfit. The formal position errors derived from *imfit* range from 0.02 to 0.60 mas. However, we note that at this frequency, systematic residual position errors are expected to be ≈ 0.1 mas per degree-of-separation between the phase calibrator and the target (Reid et al. 2017), however it is not clear if this systematic residual is direction dependent. In our case, we have to consider a total systematic error of 0.16 mas appropriate for the 1°6 separation between the phase calibrator and the ONC. The 0.16 mas error affects both coordinates, and for each coordinate we consider 0.16 mas/ $\sqrt{2} \simeq 0.11$ mas. This value was added in quadrature to the formal position errors derived from imfit.

Table 2. Positions of detected sources in the VLBA images and their formal errors as derived from imfit.

[FRM		$lpha_{ m J2000}$	σ_{lpha}	$\delta_{ m J2000}$	σ_{δ}		$\Delta \theta$	$\Delta \alpha$	$\Delta \delta$
2016]	Epoch	5 ^h	μs	-5°	μ as	Gaia ID	(mas)	(mas)	(mas)
2-1	3	34 ^m 55. ^s 975458	10	23'13''02414	330	3017364613086735360	22.4 ± 0.3	16.1 ± 0.3	15.6 ± 0.3
2-2	4	34 ^m 55. ^s 974448	1	23'13''03823	44	3017364613086735360	1.5 ± 0.3	-0.6 ± 0.3	1.3 ± 0.3
10	4	35 ^m 06 ^s 283539	1	22'02''66564	114	3017364303848915072	6.6 ± 1.0	2.3 ± 1.2	6.1 ± 1.0
11	3	35 ^m 06. ^s 416885	5	24'21'.'34747	200	•••	•••	•••	•••

Table 2 continued

¹ We use the nomenclature [FRM2016] followed by the catalog number in Forbrich et al. (2016) to name these sources.

² This website (http://astrogeo.org/) provides a catalog of accurate positions for ~17000 extragalactic sources with compact radio emission. The positions are updated four times per year. We have consulted the current catalog rfc_2020c released in September 23rd, 2020. The position of J0541–0541 is listed as R.A.=rahms054138083368±0.000007; Dec.=decdms-05414942846±0.00011.

ASTROMETRY OF ORION RADIO STARS

Table 2 (continued)

[FRM		$\alpha_{ m J2000}$	σ_{lpha}	$\delta_{ m J2000}$	σ_{δ}		$\Delta \theta$	Δα	Δδ
2016]	Epoch	5 ^h	$\mu { m s}$	-5°	μ as	Gaia ID	(mas)	(mas)	(mas)
14	2	35 ^m 07. ^s 243891	7	22'26".30111	324				
18	1	35 ^m 09. ^s 675491	5	23'55''91216	203				
	2	35 ^m 09. ^s 676642	10	23'55'.'93895	480				
21	2+3	35 ^m 09. ^s 769705	5	23'26''88897	341	3017363994611276032	1.0 ± 0.4	0.1 ± 0.3	0.9 ± 0.4
22	3	35 ^m 09. ^s 769946	3	21'28'.34796	168	3017364406917802752	5.7 ± 1.6	-0.6 ± 1.7	5.4 ± 1.6
24	1	35 ^m 09. ^s 882645	10	23'38''33131	468				
25	2+3	35 ^m 10. ^s 043939	7	21'21".93669	414				
30	2	35 ^m 10. ^s 252267	10	21'57".11309	301	3017364406926998784 ^{<i>a</i>}	148.8 ± 0.8	-148.6 ± 0.8	7.0 ± 1.1
32	2+3	35 ^m 10. ^s 494684	10	22'45''.75147	361	3017364235129434624	26.7 ± 0.6	1.1 ± 0.6	-26.7 ± 0.6
35	2+3	35 ^m 10. ^s 597692	7	22'55''66427	294				
37	3	35 ^m 10. ^s 736683	6	23'44''.72569	278	3017363994611283840	56.8 ± 0.4	36.8 ± 0.3	$-\!43.3 \pm 0.4$
42	4	35 ^m 10. ^s 940386	2	23'26".41294	168				
47	2+3	35 ^m 11. ^s 255552	12	22'16''80621	543				
53	4	35 ^m 11. ^s 562674	2	24'48''09454	138				
55	3	35 ^m 11. ^s 615114	5	20'22''21699	225				
64	3	35 ^m 11. ^s 725033	7	25'12''.78408	385				
66	1	35 ^m 11. ^s 804276	3	21'49''.26414	129				
	2	35 ^m 11. ^s 804447	1	21'49''.26663	74				
	3	35 ^m 11. ^s 804440	1	21'49''.26656	78				
	4	35 ^m 11. ^s 804558	1	21'49''.26779	48				
70	3	35 ^m 11. ^s 955534	7	20'32''36771	280				
72	3	35 ^m 12.º049462	8	22'12''07822	315				
75	4	35 ^m 12 ^s 141226	1	24'33'.46621	106				
86	2+3	35 ^m 12.600988	7	21'45''50568	265				
93	1	35 ^m 12 ^s 847280	7	21'33''97869	244				
98	1	35 ^m 12. ^s 964607	6	23'54''.70582	204				
122	3	35 ^m 13. ^s 428370	14	22'52''27556	228				
127	3	35 ^m 13. ^s 506072	12	22'19''94996	360				
129	3	35 ^m 13. ^s 529464	5	21'12''75039	231	•••	•••	•••	•••
130	1	35 ^m 13. ^s 586150	13	23'55'.26292	456		•••	•••	•••
	2	35 ^m 13. ^s 586319	2	23'55'.26712	111	•••	•••	•••	•••
	3	35 ^m 13. ^s 586308	1	23'55'.26701	60		•••	•••	•••
	4	35 ^m 13. ^s 586438	1	23'55'.26861	33		•••	•••	•••
133	3	35 ^m 13. ^s 646517	6	24'09'.10777	295				•••
135	2	35 ^m 13. ^s 702626	5	21'49'.17879	260			•••	
137	3	35 ^m 13. ^s 708093	5	25'08''17479	265				
	4	35 ^m 13. ^s 708136	5	25'08''21691	314				
148	2	35 ^m 13. ^s 957145	11	23'20'.'47154	501				
149	2+3	35 ^m 13. ^s 903353	5	24'09''28667	278				
154	1	35 ^m 13. ^s 972262	4	24'09''84011	149				
	3	35 ^m 13. ^s 972311	7	24'09''83995	310				
	4	35 ^m 13. ^s 972375	1	24'09''83914	40				
158	2	35 ^m 14 ^s 054152	11	23'38'.45757	428	3017363960251335424	10.7 ± 0.8	-7.1 ± 0.8	-7.9 ± 0.8
	4	35 ^m 14. ^s 054327	4	23'38''45545	320				
161	1	35 ^m 14. ^s 058854	33	20'12''573445	518				
167	4	35 ^m 14. ^s 196172	3	26'21".14518	241				
170	4	35 ^m 14. ^s 262925	4	22'35''45441	196				
176	4	35 ^m 14. ^s 339783	3	21'17''44629	219				
177-1	1	35 ^m 14. ^s 335495	9	23'17".42271	373				
	4	35 ^m 14. ^s 336155	2	23'17''42214	216		•••	•••	
177-2	4	35 ^m 14. ^s 335835	1	23'17".39939	56		•••	•••	•••

Table 2 continued

DZIB ET AL.

Table 2 (continued)

[FRM		α _{J2000}	σ_{lpha}	$\delta_{ m J2000}$	σ_{δ}		$\Delta \theta$	$\Delta \alpha$	Δδ
2016]	Epoch	5 ^h	μs	-5°	μ as	Gaia ID	(mas)	(mas)	(mas)
182	3	35 ^m 14. ^s 424573	9	21'26''70387	344				
184	1	35 ^m 14. ^s 501740	14	22'38''69711	459				
	2	35 ^m 14. ^s 501784	4	22'38''.70306	212				
	3	35 ^m 14. ^s 501787	6	22'38''.70296	264	•••		•••	
	4	35 ^m 14. ^s 501883	1	22'38''.70192	52				
188	2	35 ^m 14. ^s 505056	11	23'10''34936	403				
189	1	35 ^m 14. ^s 545411	9	23'15''99164	267				
196	1	35 ^m 14 ^s 655810	4	22'33''74156	152	3017364132048871168	17.9 ± 0.2	-16.7 ± 0.2	6.5 ± 0.2
197	2	35 ^m 14. ^s 646950	5	20'42''23801	260	3017365918756031744	173.8 ± 2.1	-165.6 ± 2.1	52.7 ± 1.8
198	3	35 ^m 14. ^s 665959	10	22'11''28275	348				
	4	35 ^m 14. ^s 665154	3	22'11''28841	215				
203	2+3	35 ^m 14. ^s 731189	4	22'29''82403	296				•••
205	1	35 ^m 14. ^s 794851	20	21'53''89877	497	•••		•••	
211	1	35 ^m 14. ^s 898525	11	22'25'.40704	380				
	2	35 ^m 14. ^s 898318	3	22'25'.'41142	153				
	3	35 ^m 14. ^s 898317	2	22'25'.'41168	134				
	4	35 ^m 14. ^s 898408	3	22'25'.'41948	280				
212	1	35 ^m 14. ^s 916016	2	22'39''20577	82	3017364127743283584	25.6 ± 0.3	-25.3 ± 0.3	4.2 ± 0.2
222	3	35 ^m 15. ^s 234278	12	22'56''.71107	356				
227	3	35 ^m 15. ^s 340230	8	22'18''22981	361				
230	4	35 ^m 15. ^s 393924	6	22'33''11715	149				
232	4	35 ^m 15. ^s 391542	4	22'29''88937	214				
240	1	35 ^m 15. ^s 521395	5	23'37".49236	271				
241	1	35 ^m 15 ^s 555065	4	25'14''.12514	144	3017360966647238272	1.3 ± 0.2	-0.2 ± 0.2	1.3 ± 0.2
	2	35 ^m 15. ^s 555280	2	25'14".12257	130			••••	•••
	3 ^b	35 ^m 15. ^s 555262	13	25'14''.12239	444				
	4	35 ^m 15. ^s 555413	1	25'14''12075	47				
242	2+3	35 ^m 15. ^s 588076	12	21'26'.87028	382				
249	4	35 ^m 15. ^s 749637	6	23'38'.74543	302				
250	1	35 ^m 15. ^s 773727	2	23'09''87026	81	3017364127743288704	1.0 ± 0.2	-0.3 ± 0.2	1.0 ± 0.2
	2	35 ^m 15. ^s 773899	1	23'09''86841	86	•••	•••	•••	•••
	3	35 ^m 15. ^s 773902	1	23'09''86840	65			••••	•••
	4	35 ^m 15. ^s 773989	1	23'09''86683	39				
254	1	35 ^m 15. ^s 829235	2	23'14''15060	72	3017364132050194688	183.8 ± 0.2	33.8 ± 0.2	180.6 ± 0.2
	2	35 ^m 15. ^s 829898	1	23'14''15607	67				•••
	3	35 ^m 15. ^s 829878	1	23'14''15598	72	•••	•••	•••	•••
	4	35 ^m 15 ^s 830213	1	23'14".15819	34	•••	•••	•••	•••
273	4	35 ^m 16 ^s 096551	2	23'27'.'94239	171		•••		
285	2+3	35 ^m 16 ^s 184889	3	21'32'.'84282	192		•••		
300	1	35 ^m 16 ^s 356075	5	24'02''.82463	309		•••		•••
303	3	35 ^m 16 ^s 411129	8	22'12''37498	406				
314	1	35 ^m 16.°642910	8	20'26'.63953	330				
319	1	35 ^m 16. [°] /66695	7	24'04''25260	284	3017363955944478976	12.7 ± 0.4	-4.3 ± 0.4	-12.0 ± 0.4
	2	55 ^m 16, /66633	10	24.04.24963	341	•••	•••		•••
	3	35 ^m 16. [°] /66632	10	24.04.24969	389				•••
221	4	55 ^m 16, 766638	3	24.04.24/56	254	•••	•••		
321	2	55 ^m 16.738295	17	23 28 30463	446	•••	•••		•••
326	3	55 ^m 16,935631	4	22 10:22981	225	•••	•••		•••
321 225	1	55 10.985500	15	25 55:02930	409		•••	•••	•••
333 320	ے ۸	35 ^m 17 ^s 121026	01	23 39.03100 24/34//50100	410 220	•••		•••	•••
537	4	JJ 17.121020	0	24 34.30190	230				

 Table 2 continued

ASTROMETRY OF ORION RADIO STARS

Table 2	(continued)
---------	-------------

[FRM		α _{J2000}	σ_{α}	$\delta_{ m J2000}$	σ_{δ}		$\Delta \theta$	Δα	$\Delta \delta$
2016]	Epoch	5 ^h	μs	-5°	μ as	Gaia ID	(mas)	(mas)	(mas)
343	1	35 ^m 17. ^s 220600	15	21'31".70144	423	3017364368261463936	11.3 ± 0.4	3.3 ± 0.3	10.8 ± 0.4
347	4	35 ^m 17. ^s 334877	1	22'36".12379	154				
350	1	35 ^m 17. ^s 392308	11	22'03''62402	414				
	2^{b}	35 ^m 17 ^s 392548	9	22'03''62441	410				
	4	35 ^m 17 ^s 392764	1	22'03''62460	146				
357	2+3	35 ^m 17 ^s 503387	23	21'06''03158	575				
360	3	35 ^m 17 ^s 529123	13	21'45",79922	665				
364	3	35 ^m 17 ^s 677673	6	23'41",15188	244				
367	2	35 ^m 17. ^s 710690	5	24'43''20288	322				
373	2+3	35 ^m 17. ^s 869362	16	22'15''27217	868				
378	1	35 ^m 17. ^s 952561	2	22'45''43436	80	3017364127743299328	1.0 ± 0.2	-0.5 ± 0.2	0.8 ± 0.2
	2	35 ^m 17. ^s 953051	1	22'45''42909	64				
	3	35 ^m 17. ^s 953037	1	22'45''42902	67				
	4	35 ^m 17. ^s 953269	1	22'45''42740	33				
382	$_{1}b$	35 ^m 18 ^s 030668	12	22'05''39440	605	3017364166397351296 ^a	1.6 ± 0.8	1.1 ± 1.0	1.1 ± 0.8
562	1	35 ^m 18 ^s 031363	12	22'05''40002	140		1.0 ± 0.0	1.1 ± 1.0	1.1 ± 0.0
380	1	35 ^m 18 ^s 216537	7	22'05'.40002	304	3017364063330467072	194.0 ± 0.3	1237 ± 02	-1495 ± 03
308	1	35 ^m 18 ^s 305932	1	25'05"71411	100	5017504005550407072	194.0 ± 0.5	123.7 ± 0.2	-149.5 ± 0.5
400	1	35 ^m 18 ^s 372044	2	25 05.71411	74	301736/16210303010/	1.1 ± 0.2	-0.4 ± 0.2	1.0 ± 0.2
400	2	35 ^m 18 ^s 373244	1	22 37.42734	72		1.1 ± 0.2	-0.4 ± 0.2	1.0 ± 0.2
	2	35 ^m 18 ^s 373230	1	22 37.42042	63				
	1	35 ^m 18 ^s 373427	1	22 37.42023	32				
402	4	35 ^m 18 ^s 388443	2	22 37.42342	202	30173650/8800/3/62/	43 ± 20	31 ± 24	-0.6 ± 2.7
402		35 ^m 18 ^s 550783	12	20/20.34921	202	5017505940009454024	4.5 ± 2.0	J.1 ± 2.4	-0.0 ± 2.7
414-1	1	35 ^m 18 ^s 660441	12	20/33//83380	184				
717-1	2	35 ^m 18 ^s 660697	14	20/33//83502	862				
	2 1	35 ^m 18 ^s 660855	14	20/33//83662	257				
414-2		35 ^m 18 ^s 673470	3	20'33''71209	187	3017365880080058012	11.6 ± 1.1	86+12	77 ± 11
414-2	3	35 ^m 18 ^s 673562	1	20/33/711/09	07	5017505880089958912	11.0 ± 1.1	0.0 ± 1.2	/./ ± 1.1
426		35 ^m 18 ^s 070086	7	25'08"14860	305				
420	3	35 ^m 10 ^s 213224	, Л	22'50''68184	183	3017364007600170712	1.1 ± 0.4	0.5 ± 0.6	0.8 ± 0.4
440	1	35 ^m 10 ^s /03670	3	22 50.00104	204	5017504097090179712	1.1 ± 0.4	0.5 ± 0.0	0.0 ± 0.4
456	7	35 ^m 10 ^s 855122	8	22 58.80720	204				
450	2	35 ^m 20 ^s 067807	16	23 37.33121	785 785				
459	1	35 ^m 20 ^s 135592	3	21'00'.22525	114	3017365643877358464	15+02	-0.3 ± 0.2	15+02
462	1	35 ^m 20 ^s 168294	1	26'39''08568	94	3017360313812222720	1.0 ± 0.2 1.0 ± 0.3	-0.3 ± 0.2	1.9 ± 0.2 0.9 ± 0.3
466	2	$35^{m}20^{s}226344$	3	20'56''81211	204	3017365884396345600	1.0 ± 0.5 165.2 ± 3.7	42.7 ± 4.0	1595 ± 3.7
100	3	35 ^m 20 ^s 226344	1	20'56''81220	68		105.2 ± 5.7	12.7 ± 1.0	157.5 ± 5.7
467	3	35 ^m 20 ^s 296851	5	25'04"46652	195				
468	4	35 ^m 20 ^s 400552	2	22' 13''62575	160	3017364162103048704	46 ± 06	41 ± 0.6	19 ± 05
470	4	35 ^m 20 ^s 481920	31	24'20"28599	851				1.9 ± 0.5
477	4	35 ^m 20 ^s 665562	13	22'45"41051	659				
480	1	35 ^m 20 ^s 725215	11	21'44"33936	396	3017365643879095040	36.1 ± 0.3	21.3 ± 0.2	29.2 ± 0.4
100	4	35 ^m 20 ^s 724666	1	21'44"33392	97				
485		35 ^m 21 ^s 049414	3	23'49"00528	132	3017361108393637120	0.5 ± 0.2	-0.4 ± 0.2	0.3 ± 0.2
105	2	35 ^m 21 ^s 049475	5	23'49"00468	250		0.5 ± 0.2		0.5 ± 0.2
	23	35 ^m 21 ^s 040468	2	23 49.00408	103				
	5 4	35 ^m 21 ^s 049575	1	23'49"00162	88		•••	•••	•••
501	- - 2	35 ^m 22 ^s 116650	8	24'32"31589	311				
508	4	35 ^m 22. ^s 299739	2	24'14".14305	171				

Table 2 continued

DZIB ET AL.

Table 2 (continued)

[FRM		$lpha_{ m J2000}$	σ_{lpha}	$\delta_{ m J2000}$	σ_{δ}		$\Delta heta$	$\Delta \alpha$	$\Delta\delta$
2016]	Epoch	5 ^h	μs	-5°	μ as	Gaia ID	(mas)	(mas)	(mas)
509	4	35 ^m 22. ^s 364446	3	25'01".99665	330				
512	3	35 ^m 22 ^s 676241	6	23'06".17739	227				
514	3	35 ^m 22 ^s 824118	4	25'47".67696	200	3017360730428788608	199.8 ± 1.5	-194.3 ± 1.5	-46.6 ± 1.2
515	4	35 ^m 22 ^s 877839	4	24'57".59939	273				
520	4	35 ^m 23. ^s 495180	9	20'01".67517	406	3017365983169196416 ^a	8.9 ± 4.6	4.3 ± 6.3	1.6 ± 6.3
521	1	35 ^m 23. ^s 596407	19	25'26".71826	594				
522	3	35 ^m 23. ^s 680511	8	23'46".19317	360				
525	2	35 ^m 23. ^s 953379	7	25'09''49805	261				
526	1	35 ^m 24. ^s 016722	19	23'14".09561	579				
527	3	35 ^m 24. ^s 273278	7	25'18''86354	268				
530	4	35 ^m 24. ^s 468753	3	24'00''91711	179				
534	3	35 ^m 24. ^s 853747	4	21'00''81741	169				
535	4	35 ^m 25. ^s 015058	4	24'38''53626	205				
537	2	35 ^m 25. ^s 088440	4	23'46''.79491	204	3017361074033139200	10.2 ± 0.3	8.9 ± 0.3	-5.0 ± 0.4
547	3	35 ^m 26 ^s 397825	2	25'00''.72346	142	3017360833515044480	95.5 ± 0.4	-66.8 ± 0.4	68.3 ± 0.4
552	3	35 ^m 29. ^s 588773	8	23'12".23421	276				
555	2	35 ^m 31. ^s 445661	8	25'16''43957	480				
557	3	35 ^m 14. ^s 950741	7	23'39".24439	324	3017363960237919616	15.1 ± 0.8	9.1 ± 0.9	-12.0 ± 0.8
	4	35 ^m 14. ^s 950932	5	23'39".24586	424				

NOTE— Columns are (left to right): Source number [from Forbrich et al. (2016)], epoch, J2000 right ascension and declination, both with uncertainties, *Gaia* ID, the total separation between the Gaia and VLBA positions and the separation in both coordinate directions. The separations are defined as: $\Delta \alpha = (\alpha_{VLBA} - \alpha_{Gaia DR2}) \cdot \cos \delta$, $\Delta \delta = (\delta_{VLBA} - \delta_{Gaia DR2})$ and $\Delta \theta = \sqrt{\Delta \alpha^2 + \Delta \delta^2}$.

^a Source in *Gaia* DR2 catalog, no proper motion and parallaxes are given. The angular separations from the radio source are estimated using the positions in epoch 2015.5 as given in the *Gaia* DR2 archive. A Gaia ID source number is also listed when there is coincidence

^b Source detected at a level between 6.0 - 6.5 times the image's noise.

3. RESULTS

In Paper I, we described the criteria used for source detection. A total of 123 stellar systems were detected with brightness levels > 6.5 times the noise. Most of the VLBA detections match this criterion in only one epoch. However, once the source has been clearly detected in at least two epochs, we have lowered the detection criterion to be > 6 times the noise for the remaining epochs if the position is in line with the clear detections. In one case, [FRM2016] 382, with just a single VLBA detection at >6.5 times the noise level, we also used a threshold of 6.0 times the noise since its position is consistent with the position of a star in the *Gaia* DR2 catalog.

The measured source positions are listed in Table 2. In a small number of cases we detected multiple sources related to a single source found in the lower resolution VLA observations.

3.1. Detection of multiple sources

In the images of [FRM2016] 414 only one source is detected in epochs 1, 2 and 3. However, at epoch 4, two compact radio sources with a separation, $\Delta\theta$, of 0."22 are clearly

detected. Given this large separation, compared with the angular resolution, we confirm that the radio sources detected at epochs 1 and 2 are associated with the eastern source in epoch 4, while the source at epoch 3 is associated with the western source in epoch 4. We refer to the source detected in three epochs as [FRM2016] 414-1 and the source detected in two epochs as [FRM2016] 414-2.

Similarly, source [FRM2016] 177 appears as a single source in epoch 1, while in epoch 4 two sources are clearly detected with a separation of 23.2 mas. A visual inspection of the images allows us to associate the southern source at epoch 4 with the source detected at epoch 1. We refer to southern and northern sources in epoch 4 as [FRM2016] 177-1 and [FRM2016] 177-2, respectively.

Two VLBA detections are related to the VLA source [FRM2016] 2; both were single detections in epochs 3 and 4. The source detected in epoch 4 is separated from the source in epoch 3 by 20.6 mas. As we will discuss later we discard the possibility of a fast moving source since the last detection in epoch 4 is only 1.6 mas from a source in the *Gaia* DR2 catalog, which has a small proper motion of 1.64 ± 0.10 mas yr⁻¹, indicating that the radio detections

Figure 1. Background: VISION 2.1 μ m image of the ONC (Meingast et al. 2016). Cyan arrows indicate the proper motion vectors of YSOs in the ONC-Trapezium region from Table 3, with the exception of source [FRM2016] 137 because of its very large nominal proper motion (see text). The location of the two massive stars θ^1 Ori C and BN are indicated with blue stars.

are from two different sources. As in the previous cases, we named these sources [FRM2016] 2-1 and [FRM2016] 2-2.

3.2. Proper motions

The observations were scheduled on nearly the same day of the year in order to remove the effects of parallax from estimates of proper motion. This allowed us to estimate motions with a minimum of two epochs separated by at least one year. For those sources detected in three or four epochs, the motion fits produced a reduced χ^2 near unity, indicating that our error estimates are realistic. Three exceptions, [FRM2016] 184, and 211, are discussed in Section 4.5, where we also discuss the three sources with proper motions > 10 mas yr⁻¹ ([FRM2016] 18, 137 and 198). The fitted proper motions for 23 sources are listed in Table 3 and plottted in Fig. 1.

4. DISCUSSION

In this section, we compare our results with previous VLBA observations and to *Gaia* DR2 astrometry. The astrometric precision from our observations is similar to those achieved by *Gaia*. A comparison of positions and proper motion measurements from both telescopes can give us clues as to the nature of the detected sources, may show systematic differences between the results from different telescopes, and allow us to study the kinematics of the ONC.

It is interesting to note that the two instruments trace two different populations of stellar sources. *Gaia* measures stars that are bright at optical wavelengths, have low extinction, and are not superimposed on bright nebulosity, while the VLBA observes (mostly) magnetically active stars. Moreover, the VLBA targets are not limited by the heavy dust obscuration of the BN-KL region. Thus, the astrometry derived from VLBA and *Gaia* data is complementary when studying the kinematics of the ONC and the BN/KL region close to it.

Table 3. Sources with determined proper motions from VLBA observations.

			VL	JBA		Gaia	DR2	
	Other	Spectral	μ^*_{lpha}	μ_δ	$\Delta \theta$	μ^*_{lpha}	μ_{δ}	M _{low}
[FRM2016]	Name	Type ^a	(mas yr ⁻¹)	$(mas yr^{-1})$	(mas)	(mas yr ⁻¹)	(mas yr ⁻¹)	(M_{\odot})
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
18 [†]	COUP 338		8.59 ± 0.11	-13.40 ± 0.28				
66	GMR A		1.38 ± 0.10	-1.21 ± 0.07	•••			•••
130	COUP 554		1.43 ± 0.19	-1.76 ± 0.15				
137			0.63 ± 0.19	-42.12 ± 0.44				
154	COUP 594		0.54 ± 0.14	0.32 ± 0.13				
158^{\dagger}	COUP 602	M3	2.62 ± 0.23	2.12 ± 0.55	10.7 ± 0.8	3.23 ± 0.32	1.25 ± 0.27	0.02
$177 - 1^{\dagger}$	COUP 625		3.28 ± 0.07	0.19 ± 0.15				
184	GMR H		0.71 ± 0.28	-1.71 ± 0.91				
198 [†]	COUP 647	ORBS	-12.05 ± 0.21	-5.67 ± 0.43				
211	GMR D		-0.76 ± 0.63	-3.76 ± 1.24				
241	V1501 Ori	K4-M1	1.70 ± 0.12	1.46 ± 0.09	1.3 ± 0.2	1.22 ± 0.13	1.53 ± 0.11	
250	θ^1 Ori E	B5-B8, G0-G5	1.31 ± 0.05	1.11 ± 0.14	1.0 ± 0.2	1.61 ± 0.12	1.23 ± 0.11	
254	θ^1 Ori A ₂	B1.5	4.87 ± 0.07	-2.56 ± 0.12	183.8 ± 0.2	1.54 ± 0.16	0.12 ± 0.14	5.6
319	V1279 Ori	K2-K6	-0.31 ± 0.12	1.66 ± 0.13	12.7 ± 0.4	1.92 ± 0.52	2.61 ± 0.43	0.12
350	COUP 874		2.23 ± 0.36	-0.20 ± 0.15				
378	GMR G	G-K3	3.54 ± 0.08	2.38 ± 0.21	1.0 ± 0.2	3.77 ± 0.10	2.34 ± 0.08	
382^{\dagger}	COUP 942	G-M2	3.46 ± 0.08	-1.88 ± 0.21	1.6 ± 0.8^b			
400	GMR F	G8-M2	2.38 ± 0.13	0.70 ± 0.08	1.1 ± 0.1	2.13 ± 0.10	0.78 ± 0.08	
414-1			2.05 ± 0.08	-0.93 ± 0.11				
$414-2^{\dagger}$	COUP 985	F8-K4	1.38 ± 0.15	0.64 ± 0.25	11.6 ± 1.2	-1.45 ± 0.52	-1.31 ± 0.43	
480^{\dagger}	V1230 Ori	B1	-2.74 ± 0.07	1.81 ± 0.14	36.1 ± 0.4	2.60 ± 0.11	-1.72 ± 0.10	2.4
485	GMR V	G8-K5	0.74 ± 0.24	1.07 ± 0.52	0.4 ± 0.2	0.05 ± 0.12	-1.01 ± 0.11	
557†	COUP 672	K5-M2	2.85 ± 0.20	-1.48 ± 0.55	15.1 ± 0.8	0.86 ± 0.37	0.55 ± 0.30	0.2

NOTE—Columns are (left to right): Source number from Forbrich et al. (2016), identification names from other surveys, spectral types from Hillenbrand et al. (2013), proper motions in right ascension and declination, both with uncertainties, total angular separation from *Gaia* DR2 sources, as given in Table 2, and their corresponding proper motions, and the mass lower limit estimated from the differences between VLBA and *Gaia* DR2 proper motions, as discussed in the text.

[†]Source detected only in two epochs. The errors may be underestimated.

^{*a*} Spectral types as reported by Hillenbrand et al. (2013), for multiple systems these do not necessarily represent the counterparts of the radio sources.

^b Source in *Gaia* DR2 catalog, no proper motion and parallaxes are given. The angular separations from the radio source are estimated using the positions in epoch 2015.5 as given in the *Gaia* DR2 archive.

4.1. Comparison with Gaia DR2 results: Positions

We searched the *Gaia* DR2 catalog (Gaia Collaboration et al. 2018) for optical sources within 0."2 of the position of radio sources and found 34 such cases. The search radius was chosen considering the possibility of tight multiple components, unidentified in previous observations with lower angular resolution. In order to determine the number of chance alignments between both catalogs within this separation, first we consider that the primary beam of the VLBA observations covers an area of ~ $10^5 \operatorname{arcsec}^2$, in which we have detected 126 radio sources. The total solid angle covered by our counterpart search is $126 \times (0.2)^2 \times \pi \simeq 15.8 \operatorname{arcsec}^2$. In the area covered by the VLBA primary beam there are 608 optical sources in the *Gaia* DR2 catalog. Thus, the number of *Gaia* DR2 sources projected onto our search area by chance is $608 \times (15.8/10^5) \simeq 0.1$. The positions from *Gaia* DR2 catalog are determined for epoch 2015.50 (Gaia Collaboration et al. 2018). For a comparison with our VLBA data, the *Gaia* DR2 source positions and their errors have been extrapolated to the epoch of first detection of the corresponding radio source, including the effects of parallax. In the case of the VLBA detections related to source [FRM2016] 2 which are separated 20.6 mas, we do the extrapolation of the *Gaia* source to both detected epochs and compared the positions. The position difference with the source detected in epoch 4 is significantly smaller than for the source detected in epoch 4, is related to the Gaia source. We will discuss source FRM2016] 2 in more detail in Section 4.5. The separations of the radio from the *Gaia* DR2 sources are listed in Table 2.

Since the position errors from both catalogs are below 1 mas, we expect the direct optical counterparts of radio sources to have radio versus optical separations of this magnitude. Only 11 of the 34 sources have separations less than 1.6 mas, while the remaining 23 sources have $\Delta \theta \ge 4.5$ mas. At the distance of the ONC, the radio emission from stellar coronae is expected to be unresolved by our VLBA observations. Even coronal flares and interactions between stellar coronae which can reach distances of tens of stellar radii (e.g., Güdel 2002; Massi et al. 2008) would still be unresolved with our observations. Thus, separations $\Delta \theta >$ 4.5 mas (or 1.8 AU at the distance of the ONC) may be an indication that these 23 radio sources trace a stellar companion to the star seen at optical wavelengths. A clear example is θ^1 Ori A. Here the primary component, a B0.5-type star, dominates the optical emission and the strong radio source is a companion star, θ^1 Ori A₂ (Petr et al. 1998; Petr-Gotzens & Massi 2008; Gravity Collaboration et al. 2018). Gravity Collaboration et al. (2018) recently measured the separation between both components in three epochs spanning over 1.13 years. A simple linear extrapolation of their measured relative positions to the epoch 2015.80 yields a total separation of 183.85 ± 0.12 mas, which is consistent with the estimated separation between the radio and the Gaia DR2 source of $\Delta \theta = 183.8 \pm 0.2$ mas (see also Table 2 and Sect. 4.5 for a further discussion of this system).

The 11 radio sources with separations less than 1.6 mas could correspond to the true counterparts of the optical sources or to companions with separation ≤ 0.6 AU (1 mas \equiv 0.4 AU). In Figure 2, we plot the distribution of the separations of radio and optical sources in both coordinates. We find that the weighted average of the separations in right ascension and declination are $\overline{\Delta \alpha} = -0.32 \pm 0.15(\text{stat.}) \pm 0.16(\text{sys.})$ mas and $\overline{\Delta \delta} = 0.99 \pm 0.10(\text{stat.}) \pm 0.16(\text{sys.})$ mas, where the systematic uncertainty is associated with potential uncompensated ionospheric delays at the observing frequency of 7 GHz discussed

in Section 2. The statistical errors were estimated using the formalism of the standard errors of mean. Thus, while the mean difference between the radio and optical positions in right ascension is consistent with no shift between the two catalogs, the declination difference is statistically significant at the 5σ level.

In order to examine reference frame differences, we compile a list of quasars within a radius of 5° of the ONC that have accurate positions determined by Gaia DR2 and the VLBA (see Appendix A). We find that the mean position differences in right ascension and declination are -0.6 ± 0.7 mas and 0.0 ± 0.6 mas, respectively. The observed systematic shift of 1.03 ± 0.16 mas for the ONC stars in declination is larger than that seen for the quasars; however, the uncertainty in the quasar positions precludes a decisive test at this time. Similar studies, comparing VLBI and Gaia results, have been carried out for stellar parallaxes and proper motions (e.g., Xu et al. 2019), also finding differences between both catalogs. To our knowledge this has not yet been done for stellar positions. We conclude that the origin of the stellar position difference in declination between both catalogs remains uncertain.

Figure 2. Comparison between VLBA and *Gaia* positions for the nine sources with total position separation < 1.6 mas. The pink ellipse is centered in mean separations and its size correspond to two times the error values.

4.2. Comparison with Gaia DR2 results: Proper Motions

Of the 23 radio sources for which we have determined proper motions, 11 have a *Gaia* DR2 source within 0."2, and

with estimated proper motions. The *Gaia* DR2 proper motions and the separation between the radio source and the nearest optical counterpart are listed in Table 3 columns (6) to (8). In some cases, the radio sources and their nearest optical counterparts may not be directly associated as their separations are larger than 1.6 mas (see previous section).

In Fig. 3 we plot the *Gaia* DR2 proper motion of the nearest optical source against the VLBA proper motions. In this plot, black squares represent the sources for which $\Delta \theta \leq 1.6$ mas, and in red squares sources with $\Delta \theta > 1.6$ mas. There are six sources with radio minus optical position differences which are larger than 1.6 mas, and for these we find that the proper motions are also inconsistent in both coordinates (see Table 3 and Figure 3). In these cases, the radio source may trace a stellar companion to the star seen at optical wavelengths, rather than its direct counterpart.

Assuming that these seven pairs of radio-optical sources are binary systems and that relative motion between both components is dominated by the orbital motion, we may estimate a lower limit on the total mass of the system. Since the proper motions from *Gaia* DR2 and VLBA are not measured simultaneously, this analysis also implies that we are assuming that the orbital period of these candidate binaries is \gg 3 years, the time separation between the epoch of reported parameters for *Gaia* DR2 and our last radio observation. The total difference in proper motion,

$$\mu = \sqrt{(\mu_{\alpha,VLBA}^* - \mu_{\alpha,Gaia}^*)^2 + (\mu_{\delta,VLBA} - \mu_{\delta,Gaia})^2}$$

in these plausible binaries, can be used to estimate a lower limit on the mass of the system. The orbital velocity, for a circular orbit, is given by

$$V = \sqrt{G \cdot M/a},$$

where G is the gravitational constant, M is the total mass of the system and a is the distance between binary components. The lower limit on mass is obtained assuming the orbit in the plane of the sky, then

$$M \ge a \cdot V^2/G$$

Lower limits for V and a can be obtained from the proper motion and the angular separation. At the ONC distance, these parameters are $V[\text{km s}^1]=1.9 \cdot \mu[\text{mas yr}^{-1}]$, and $a[km] = 6 \times 10^7 \cdot \Delta \theta[\text{mas}]$. The lower limits in the system masses are listed in Table 3 column (9). Comparing these lower limits with the spectral type, we see that systems with early spectral types require larger lower limits, as would be expected for the binary system hypothesis.

From Fig. 3 and Table 3, we find that for four of five stars with $\Delta\theta \leq 1.6$ mas, the differences of the radio and optical proper motions are smaller than three times the quadrature sum of their errors. (the one outlier is source

[FRM2016] 485 (also known as GMR V; Garay et al. 1987), whose VLBA and *Gaia* DR2 positions agrees within 0.4 \pm 0.2 mas, but the difference in proper motion in declination is larger than five times the quadrature sum of errors). The weighted average differences for these four stars are -0.025 ± 0.080 mas yr⁻¹ and -0.070 ± 0.090 mas yr⁻¹. Adopting three times the errors for limits, these results indicate upper limits of ~0.3 mas yr⁻¹ for the differences in proper motions measured with VLBA and *Gaia* DR2. These limits will improve when more proper motions of radio sources can be determined.

4.3. Comparison with previous VLBA results

Previous VLBA proper motion results for young stars in the ONC were obtained by Menten et al. (2007) and Kounkel et al. (2017). Menten et al. (2007) observed four young stars at four epochs spanning 1.5 yr, while Kounkel et al. (2017) obtained astrometric results for six young stars. These results are listed in Table 4. In order to compare the results of these studies with ours, we compute the weighted mean of absolute differences of proper motions ($\overline{|\Delta \mu_{\alpha}|}, \overline{|\Delta \mu_{\delta}|}$). The differences between the results of Menten et al. (2007) and ours are (0.3 ± 0.1, 0.7 ± 0.1) mas yr⁻¹, and a similar comparison for Kounkel et al. (2017) yields (0.2 ± 0.1, 0.2 ± 0.1) mas yr⁻¹. For the last value, we have omitted the proper motions derived for [FRM2016] 184, since the position changes are not consistent with a linear motion (see subsection 4.5).

The results from the comparisons indicate that there are no significant differences with the measurements by Kounkel et al. (2017). On the other hand the differences with Menten et al. (2007), are significant at levels of 3.0 and 7.0 times the errors. [FRM2016] 254 and [FRM2016] 378 are known to be part of binary systems (Petr et al. 1998; Petr-Gotzens & Massi 2008; Duchêne et al. 2018), and orbital motions will contribute to their final motions. The time separation between the observations reported by Menten et al. (2007) and ours is more than a decade, thus the difference between the proper motions of these sources, assumed lineal in both works, can be due to the effects of orbital motions. To our knowledge, neither [FRM2016] 400 or [FRM2016] 66 have been reported to be binary stars. However, the discrepancies of measured proper motions for [FRM2016] 66 may suggest that it could also be part of a binary or multiple system.

4.4. Trapezium region kinematics

Proper motions of radio emitting YSOs in the core of the ONC and the BN/KL region have been used to study the global motions and internal kinematics of these regions (Gómez et al. 2005; Dzib et al. 2017). These results used VLA observations spanning \sim 30 years and were mainly limited by the angular resolution of the VLA observations. With the higher angular resolution afforded by the VLBA, these results can be tested and significantly improved.

Figure 3. Comparison between VLBA and Gaia astrometry. Left: Proper motion in right ascension. Right: Proper motions in declination. Black symbols indicate sources where the difference in positions between VLBA and Gaia DR2 is less than 1.6 mas, otherwise the symbols are red.

Table 4. Previous stellar proper motion (in mas yr^{-1}) measurements in the ONC with VLBA.

	Other	This work		Menten et	al. (2007)	Kounkel et al. (2017		
RM2016]	name	μ^*_{lpha}	μ_{δ}	μ^*_{lpha}	μ_{δ}	μ^*_{lpha}	μ_{δ}	
66	CMD A	1.29 ± 0.10	1.21 ± 0.07	1.92 ± 0.00	2.05 ± 0.19	1.01 ± 0.11	1.60	

[FRM2016]	name	μ^*_{lpha}	μ_{δ}	μ^*_{lpha}	μ_{δ}	μ^*_{lpha}	μ_{δ}
66	GMR A	1.38 ± 0.10	-1.21 ± 0.07	1.82 ± 0.09	-2.05 ± 0.18	1.81 ± 0.11	-1.60 ± 0.10
184	GMR H	0.71 ± 0.28	-1.71 ± 0.91			2.22 ± 0.18	-3.80 ± 0.55
250	θ^1 Ori E	1.31 ± 0.05	1.11 ± 0.14			1.45 ± 0.03	1.02 ± 0.08
254	θ^1 Ori A ₂	4.87 ± 0.07	-2.56 ± 0.12	4.82 ± 0.09	-1.54 ± 0.18	4.81 ± 0.10	-2.53 ± 0.12
378	GMR G	3.54 ± 0.08	2.38 ± 0.21	4.29 ± 0.17	3.33 ± 0.37	3.82 ± 0.10	1.60 ± 0.17
400	GMR F	2.38 ± 0.13	0.70 ± 0.08	2.24 ± 0.09	0.66 ± 0.18	2.38 ± 0.08	0.55 ± 0.14

NOTE—Columns are (left to right): Source number from Forbrich et al. (2016), identification names from other surveys, proper motions in right ascension and declination, both with uncertainties, from this work (see Table 3), Menten et al. (2007), and Kounkel et al. (2017).

Using the VLBA proper motion values from Table 3, excluding sources [FRM2016] 18, 137, and 198 whose proper motions are significantly higher than the rest of the stars, we estimate the mean value of the proper motion $(\overline{\mu})$. In order to estimate the true proper motion dispersion (σ_{μ}), we correct the observed dispersion for measurement uncertainty as suggested by Jones & Walker (1988), i.e. σ_{μ} = $\sigma_{\mu,Obs.} - \frac{1}{n} \sum_{i=1}^{n} \mu_{\text{err,i}}^2$. For comparison, we have also estimated these parameters for stars in the Gaia DR2 catalog. Restricting our analysis to stars located in the coverage of our radio observations, with a parallax in the range from 2.4 to 2.6 mas (i.e., distances between 380 to 420 pc), and with Renormalised Unit Weight Error (RUWE³) values smaller than 1.4, we used 12 stars for the calculations (see Figure 4). Finally, as the astrometric precision from VLBA observations and the Gaia mission are comparable we estimated $\overline{\mu}$ and σ_{μ} combining these data sets. The results are shown in Table 5, together with those obtained by Dzib et al. (2017).

The averaged proper motions in the right ascension direction are consistent with a value of ~ 1.0 mas yr⁻¹ in the dif-

³ The RUWE parameter is a quality indicator of *Gaia* DR2 fits. A RUWE value of 1.0 is expected for sources whose motion is consistent with the motion of a single star. Larger values may suggest that the source does not have good fit solutions, i.e., the star may not be single. More information is given on the Gaia webpage: https://gea.esac.esa.int/archive/documentation/GDR2/Gaia archive/ chap_datamodel/sec_dm_main_tables/ssec_dm_ruwe.html

Table 5. Kinematics of the Trapezium.

	$\overline{\mu^*_{lpha}}$	$\overline{\mu_\delta}$	$\sigma_{\mu_{lpha}}$	$\sigma_{\mu_{\delta}}$	$\sigma_{v_{\alpha}}{}^{a}$	$\sigma_{v_{\delta}}{}^{a}$	$\overline{\mathbf{v}\cdot\hat{\mathbf{r}}}$	$\overline{\mathbf{v} \times \hat{\mathbf{r}}}$
Data set	(mas yr ⁻¹)	(mas yr ⁻¹)	(mas yr ⁻¹)	(mas yr ⁻¹)	(km s ⁻¹)	(km s ⁻¹)	(km s ⁻¹)	(km s ⁻¹)
VLA ^b	1.0 ± 0.1	-0.8 ± 0.2	1.1 ± 0.1	1.3 ± 0.2	2.1 ± 0.2	2.5 ± 0.4	0.7 ± 0.3	-0.1 ± 0.3
VLBA	1.6 ± 0.2	0.1 ± 0.2	1.4 ± 0.2	1.7 ± 0.2	2.7 ± 0.4	3.2 ± 0.4	-0.8 ± 1.1	0.5 ± 1.1
Gaia	1.1 ± 0.1	0.2 ± 0.1	0.7 ± 0.1	1.2 ± 0.1	1.3 ± 0.2	2.2 ± 0.2	0.2 ± 2.3	0.8 ± 1.9
VLBA+Gaia ^c	1.20 ± 0.09	0.18 ± 0.09	0.84 ± 0.09	1.30 ± 0.09	1.60 ± 0.17	2.47 ± 0.17	-0.61 ± 1.00	0.57 ± 0.95

NOTE—Columns are (left to right): Proper motions data set, mean of proper motions, proper motion dispersions, velocity dispersions (all these three parameter in right ascension and declination and with their uncertainties), mean of dot and cross products of the unit vector and velocity vectors, both with their uncertainties.

^{*a*} At a distance of 400 pc: 1.0 mas yr⁻¹ \equiv 1.9 km s⁻¹.

^bValues from Dzib et al. (2017).

^C Values are the variance weighted average from the indpendent results of VLBA and Gaia data sets.

Figure 4. Same as Fig. 1, but including in yellow arrows all the proper motions from Gaia DR2 catalog with RUWE \leq 1.4 in the same region of our study.

ferent data sets. For the declination direction both the VLBA and *Gaia* DR2 data sets show motions near 0.0 mas yr^{-1} , contrary to the larger value of $-0.8 \text{ mas } yr^{-1}$ obtained with the VLA.

The proper motion dispersions for the VLA and *Gaia* data sets are close to a value of 1.0 mas yr⁻¹ in both directions. Similar values were also found by Jones & Walker (1988) for optical stars covering a larger area of the ONC. Recent values of proper motion dispersions in the ONC have been estimated at optical and near infrared, to be $(\sigma_{\alpha}, \sigma_{\delta})=(0.73 \pm$

0.05, 1.12 \pm 0.10) mas yr⁻¹ using *Gaia* DR2 data (Kuhn et al. 2019); ($\sigma_{\alpha}, \sigma_{\delta}$)=(0.83 \pm 0.02, 1.12 \pm 0.03) mas yr⁻¹ using *HST* and Keck II NIRC2 data (Kim et al. 2019); ($\sigma_{\alpha}, \sigma_{\delta}$)=(0.89 \pm 0.03, 1.21 \pm 0.04) mas yr⁻¹ using *HST* data (Platais et al. 2020). In the case of the VLBA data set the proper motion dispersion values are slightly larger. The large dispersions of VLBA proper motions could reflect the multiplicity of systems related to detected radio sources. Because of its high angular resolution imaging capability, the observations with the VLBA can trace individual motions in these systems, while the observations at optical, infrared, and the low resolution observations at radio frequencies will trace some intensity-weighted motion of the system.

Finally, we have also searched for signatures of expansion and contraction in the cluster following the analysis techniques of Dzib et al. (2017) (see also Rivera et al. 2015). These authors used the mean values of the dot and cross products of a unit vector from the cluster center toward star positions ($\hat{\mathbf{r}} = \mathbf{r}/||\mathbf{r}||$) and the velocity vector (\mathbf{v}_*) of the individual stars. Large values in these products may indicate organized motion (see Rivera et al. 2015, for a discussion). For our analysis, the cluster center is defined as the average position of the stars with proper motion observed with the VLBA and the stars from Gaia with RUWE< 1.4; to be $(\alpha_0, \delta_0) = (5^h 35^m 16^s 3, -5^\circ 22' 58'')^4$. From Table 5 we noticed that in all the cases $\overline{\mathbf{v} \cdot \hat{\mathbf{r}}}$ and $\overline{\mathbf{v} \times \hat{\mathbf{r}}}$ are consistent with 0.0 km s⁻¹ within two times their uncertainties. Even with our higher-resolution astrometry data, we find no strong evidence of rotation, contraction or expansion of the cluster, in line with previous results.

⁴ The independent cluster center values for the used stars from the Gaia and VLBA catalog are 9" away from this position.

4.5. Individual sources

While most of the stars show proper motions within 2σ of the mean motion components, four sources have motions well outside this range: [FRM2016] 18, 137, 198 and 211.

Formally sources [FRM2016] 18, 137 and 198 exhibit the largest proper motions in our sample. Their proper motions are equivalent to velocities of 30, 80 and 25 km s⁻¹). Previous radio proper motions of source [FRM2016] 198 were estimated by Dzib et al. (2017),⁵ to be $(-2.1 \pm 3.0,$ -0.9 ± 1.4) mas yr⁻¹, which are considerably lower than our values. Even with the lower resolution of the VLA Dzib et al. (2017) would have detected such large proper motions. Since the VLBA proper motions are based on detections in only two epochs, and allowing for the highly variable nature of the emission, it is likely that [FRM2016] 198 is a binary system with a separation of ~ 10 mas, and the detections in the two epochs correspond to different stars. The large proper motion measured for sources [FRM2016] 18 and 137 are intriguing, since they are well above the proper motions exhibited for most of the stars in the ONC. However, with only two detections there is still the open possibility that they correspond to different stellar components in multiple systems. Future multi-epoch and deep VLBA observations, as those presented in this work, will help to clarify the nature of the measured motions from the present observations.

[FRM2016] 211 was detected as a single source in the four observations. In order to obtain a reduced $\chi^2 = 1.0$ in the proper motion fitting, we needed to add in quadrature values 1.2 and 2.4 mas to the right ascension and declination position errors. These values are much larger than the expected systematic errors for VLBA observations, and, indeed, no other ONC star shows such large uncertainties. We suggest two explanations: (1) the motion of [FRM2016] 211 is non-linear, or (2) we are detecting different stars among the observations. Both explanations point to a binary nature of this system.

In our images we identify two compact radio sources in the direction of sources [FRM2016] 414 and [FRM2016] 177, which have not been reported as binaries before. Both sources show X-ray emission (see Paper I), and the spectral type of [FRM2016] 414 is F8–K4 (Hillenbrand et al. 2013). The separation between the radio emission from stars in these system are 0."22 and 0."023 for [FRM2016] 414 and [FRM2016] 177, respectively. With the current data it is not possible to constrain if they form a gravitationally bound binaries, but further astrometric studies of these objects can determine this. At high resolution, such a study will only be possible with VLBI techniques, as they are not detected at optical or NIR wavelengths.

In the direction of the VLA source [FRM2016] 2, we have single detections in epochs 3 and 4; i.e. with a time baseline one year. The separation between the radio sources is 20.6 mas. Assuming that both radio sources are the same star would imply a large proper motion of 20.6 mas yr⁻¹ $(\simeq 39 \text{ km s}^{-1})$. However, the Gaia source associated with this source has a proper motion of $(\mu_{\alpha} *, \mu_{\delta}) = (1.64 \pm 0.08, 0.07 \pm$ (0.07) mas yr⁻¹, inconsistent with a source with fast motion. Furthermore, extrapolating the 2015.5 position of the Gaia source to epochs 3 (2017.8) and 4 (2018.8), find it to be separated 22.6 \pm 0.3 mas and 1.6 \pm 0.3 mas from the radio sources detected in epochs 3 and 4, respectively, suggesting that only the source detected in epoch 4 is probably directly related to the optical source. Our conclusion for [FRM2016] 2 is that the two radio sources detected in the two different epochs are not the same.

Toward the VLA source [FRM2016] 184, we detected single sources in all four epochs. The proper motion using the four epochs is $(\mu_{\alpha}*,\mu_{\delta})=(0.71\pm0.28,-1.71\pm$ (0.91) mas yr⁻¹, where we have added in quadrature additional values of 0.33 and 1.66 mas in right ascension and declination, respectively, to the position errors to obtain a $\chi^2 = 1$ in our fit. The detections in epochs 2 and 3 are consistent within errors as expected since the separation between the epochs is only one day, suggesting that the source in these epochs is the same. The measured proper motion between epochs 1 and 2+3 is $(\mu_{\alpha}*, \mu_{\delta})=(0.34\pm0.19, -2.95\pm0.19)$ (0.26) mas yr⁻¹, while the proper motion from epochs 2+3 and 4 is $(\mu_{\alpha} *, \mu_{\delta}) = (1.46 \pm 0.20, 1.11 \pm 0.18)$ mas yr⁻¹. Furthermore, these motions are different from the proper motions reported by Kounkel et al. (2017), who also used VLBA observations. The motion related to [FRM2016] 184 deserves further investigation to clarify its unusual motion.

 θ^1 Ori A is a hierarchical triple system known to have a total mass of $\sim 20 \text{ M}_{\odot}$. At optical wavelengths, the brightest component is θ^1 Ori A₁, which is a tight binary itself (P=65.433 days, Lloyd & Stickland 1999; Bondar' et al. 2000), composed of a $\approx 15 \text{ M}_{\odot}$, massive star, (Weigelt et al. 1999; Schertl et al. 2003; Simón-Díaz et al. 2006; Nieva & Przybilla 2014) and a T-Tauri star of $\approx 2.5 \text{ M}_{\odot}$ (Bossi et al. 1989). At an angular distance of 0."18 from the tight binary, there is the 4 M_{\odot} star θ^1 Ori A₂ (Petr et al. 1998). NIR interferometry data taken from 1994 to 2010 and analyzed by Grellmann et al. (2013) indicated linear movement of A_2 relative to A_1 suggesting unbound motion. However, adding new NIR interferometry data taken between 2016 and 2018, the relative motions determined by Gravity Collaboration et al. (2018) strongly suggest that θ^1 Ori A₂ is gravitationally bound to the tight binary θ^1 Ori A₁. As discussed before, the optical source seen by Gaia DR2 is related to component A₁, and the radio source is related to component A₂. The total differences between the VLBA and *Gaia* DR2

⁵ Source named as VLA J053514.66–052211.2 by these authors.

proper motions is 4.3 ± 0.2 mas yr⁻¹, which at the distance of the ONC is equivalent to a velocity of 8.2 ± 0.4 km s⁻¹. Assuming, in a simplifying estimate, a circular orbit for the system, the escape velocity of A₂ from A₁, with a total mass of 18 M_{\odot}, is 21 km s⁻¹. This would indicate indeed that the system is bound, as the relative velocity between the components would be significantly smaller than the escape velocity.

5. CONCLUSIONS

We have imaged 126 compact nonthermal radio sources near the Trapezium in the ONC using data acquired with VLBA observations over a three year period. The positions of 34 radio detected sources were found within 0."2 of a Gaia DR2 star. Most of the Gaia DR2 sources (23) are well separated (> 4 mas) from the associated radio source, indicating that the optical and the radio source are not the same star. We argue that the radio sources could be lowermass companions of the stars seen by Gaia. For the remaining 11 cases, the separation is < 1.6 mas and could indicate that both telescopes observe the same stellar sources. We find mean separations of $-0.32 \pm 0.15 \pm 0.16$ mas and $0.99 \pm 0.10 \pm 0.16$ mas in right ascension and declination, respectively. The stellar position difference in declination between both catalogs is significant at a level of 5σ . Its origin is still uncertain, but it could conceivably be due to unidentified binaries in the sample. For three targets, two separate components were identified in the images, further expanding the discovery space for previously unknown multiple systems in the ONC.

A. VLBA AND Gaia DR2 POSITIONS DIFFERENCES OF EXTRAGALACTIC SOURCES AROUND THE ONC

We searched for extragalactic sources in a radius of 5° around the ONC that have compact radio emission and that are also in the *Gaia* DR2 catalog. We found eight sources meeting these requirements and list them in Table 6. Their most recently determined radio positions and their uncertainties were taken from the AstroGeo catalog rfc_2020c^6 and are shown in Table 6. The difference between the position of each radio source and that of its *Gaia* DR2 counterpart is also shown in Table 6.

 $\overline{\Delta \alpha} = -0.32 \pm 0.15 (\text{stat.}) \pm 0.16 (\text{sys.}) \text{ mas} \text{ and } \overline{\Delta \delta} = 0.99 \pm 0.10 (\text{stat.}) \pm 0.16 (\text{sys.}) \text{ mas},$

Radio proper motions were estimated for 23 YSOs with accuracies of ≈ 0.1 mas yr⁻¹, similar to *Gaia* accuracy. Within 1.6 mas, five of them have a counterpart in the *Gaia* DR2 catalog, and by comparing their proper motions from both catalogs, we found differences of -0.025 ± 0.080 and -0.070 ± 0.090 mas yr⁻¹ in right ascension and declination, respectively.

By combining proper motions from *Gaia* DR2 and VLBA we have improved the values of the global motions and the kinematic of the ONC core. The global proper motion and velocity dispersion are $(\mu_{\alpha}^*, \mu_{\delta})=(1.20 \pm 0.09, 0.18 \pm 0.09)$ mas yr⁻¹ and $(\sigma_{\mu_{\alpha}^*}, \sigma_{\mu_{\delta}})=(0.84 \pm 0.09, 1.30 \pm 0.09)$ mas yr⁻¹, respectively. The search of ordered motion through vector products $\mathbf{v} \cdot \hat{\mathbf{r}}$ and $\mathbf{v} \times \hat{\mathbf{r}}$ show that the obtained values are consistent with a value of 0.0 km s⁻¹ within two times the errors. These results do not show indications of expansion/contraction or rotation of the young stellar cluster.

ACKNOWLEDGMENTS

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

This work has made use of data from the European Space Agency (ESA) mission *Gaia* (https://www.cosmos.esa.int/gaia), processed by the *Gaia* Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the *Gaia* Multilateral Agreement.

Facilities: VLBA

APPENDIX

Previous comparisons of the positions compact extragalactic objects based on data from Very Long Baseline Interferometry and the Gaia satellite of have found that around 10% of them have significant offsets between them (Petrov & Kovalev 2017; Petrov et al. 2019). These differences have a physical origin and are mainly due the spatially different appearance of optical and radio jets, which both evolve with time (see discussion by Petrov et al. 2019). Statistically, we expect that 0.8 sources from our sample are part of this group. In our sample, source J0552–0727 has a significant separation of 28.4 mas, and was thus omitted from our analysis.

The statistical analysis of the separation of the remaining sources yield mean separations of $(\Delta \alpha, \Delta \delta) = (-0.6 \pm 0.7, 0.0 \pm 0.6)$ mas that have standard deviations of $(\sigma_{\Delta \alpha}, \sigma_{\Delta \delta}) = (1.8, 1.4)$ mas. The mean separation of our sample is smaller than the median separation found by Petrov & Kovalev (2017) for VLBI and Gaia DR1 positions. However,

⁶ http://astrogeo.org/rfc/

the large dispersion in the values may suggest differences between the radio and *Gaia* DR2 reference frames.

B. STARS WITH GOOD ASTROMETRY IN *Gaia* DR2 AND INSIDE THE AREA OF OUR RADIO STUDY

In this appendix we give the list of the stars in the *Gaia* DR2 catalog used for the estimation of values in Table 5. The criteria used to compile this list were: to be in the same area as the primary beam of the VLBA observations, the measured parallax suggesting a distance between 380 and 420 pc, and to have a RUWE parameter ≤ 1.4 . These stars are listed in Table 7 with their positions and proper motions.

REFERENCES

- Bondar', N. I., Vitrichenko, É. A., & Zakirov, M. M. 2000, Astronomy Letters, 26, 452
- Bossi, M., Gaspani, A., Scardia, M., & Tadini, M. 1989, A&A, 222, 117
- Churchwell, E., Felli, M., Wood, D. O. S., & Massi, M. 1987, ApJ, 321, 516
- Da Rio, N., Robberto, M., Hillenbrand, L. A., Henning, T., & Stassun, K. G. 2012, ApJ, 748, 14
- Deller, A. T., Brisken, W. F., Phillips, C. J., et al. 2011, PASP, 123, 275
- Duchêne, G., Lacour, S., Moraux, E., Goodwin, S., & Bouvier, J. 2018, MNRAS, 478, 1825
- Dzib, S. A., Rodríguez, L. F., Loinard, L., et al. 2017, ApJ, 834, 139
- Feigelson, E. D. & Montmerle, T. 1999, ARA&A, 37, 363
- Forbrich, J., Menten, K. M., & Reid, M. J. 2008, A&A, 477, 267
- Forbrich, J., Rivilla, V. M., Menten, K. M., et al. 2016, ApJ, 822, 93
- Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
- Garay, G., Moran, J. M., & Reid, M. J. 1987, ApJ, 314, 535
- Genzel, R. & Stutzki, J. 1989, ARA&A, 27, 41
- Getman, K. V., Feigelson, E. D., Grosso, N., et al. 2005, ApJS, 160, 353
- Gómez, L., Rodríguez, L. F., Loinard, L., et al. 2008, ApJ, 685, 333
- Gómez, L., RodrÍguez, L. F., Loinard, L., et al. 2005, ApJ, 635, 1166
- Gravity Collaboration, Karl, M., Pfuhl, O., et al. 2018, A&A, 620, A116
- Greisen, E. W. 2003, Information Handling in Astronomy -Historical Vistas, 285, 109
- Grellmann, R., Preibisch, T., Ratzka, T., et al. 2013, A&A, 550, A82
- Güdel, M. 2002, ARA&A, 40, 217
- Hillenbrand, L. A. 1997, AJ, 113, 1733
- Hillenbrand, L. A., Hoffer, A. S., & Herczeg, G. J. 2013, AJ, 146, 85
- Hirota, T., Bushimata, T., Choi, Y. K., et al. 2007, PASJ, 59, 897

- Jones, B. F. & Walker, M. F. 1988, AJ, 95, 1755
- Kim, D., Lu, J. R., Konopacky, Q., et al. 2019, AJ, 157, 109
- Kim, M. K., Hirota, T., Honma, M., et al. 2008, PASJ, 60, 991
- Kounkel, M., Hartmann, L., Loinard, L., et al. 2014, ApJ, 790, 49
- Kounkel, M., Hartmann, L., Loinard, L., et al. 2017, ApJ, 834, 142
- Kuhn, M. A., Hillenbrand, L. A., Sills, A., Feigelson, E. D., & Getman, K. V. 2019, ApJ, 870, 32
- Lloyd, C. & Stickland, D. J. 1999, Information Bulletin on Variable Stars, 4809, 1
- Massi, M., Ros, E., Menten, K. M., et al. 2008, A&A, 480, 489
- Meingast, S., Alves, J., Mardones, D., et al. 2016, A&A, 587, A153
- Menten, K. M. & Reid, M. J. 1995, ApJL, 445, L157
- Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515
- Muench, A., Getman, K., Hillenbrand, L., & Preibisch, T. 2008, Star Formation in the Orion Nebula I: Stellar Content, ed.B. Reipurth, Vol. 4, 483
- Nieva, M.-F. & Przybilla, N. 2014, A&A, 566, A7
- Petr, M. G., Coudé du Foresto, V., Beckwith, S. V. W., Richichi, A., & McCaughrean, M. J. 1998, ApJ, 500, 825
- Petr-Gotzens, M. G. & Massi, M. 2008, in Multiple Stars Across the H-R Diagram, ed. S. Hubrig, M. Petr-Gotzens, & A. Tokovinin, 281
- Petrov, L. & Kovalev, Y. Y. 2017, MNRAS, 467, L71
- Petrov, L., Kovalev, Y. Y., & Plavin, A. V. 2019, MNRAS, 482, 3023
- Platais, I., Robberto, M., Bellini, A., et al. 2020, AJ, 159, 272
- Reid, M. J., Brunthaler, A., Menten, K. M., et al. 2017, AJ, 154, 63
- Reid, M. J. & Honma, M. 2014, ARA&A, 52, 339
- Rivera, J. L., Loinard, L., Dzib, S. A., et al. 2015, ApJ, 807, 119
- Rodríguez, L. F., Dzib, S. A., Loinard, L., et al. 2017, ApJ, 834, 140
- Rodríguez, L. F., Dzib, S. A., Zapata, L., et al. 2020, ApJ, 892, 82
- Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., & Plambeck, R. L. 2007, ApJ, 667, 1161
- Schertl, D., Balega, Y. Y., Preibisch, T., & Weigelt, G. 2003, A&A, 402, 267

Table 6. Positions at radio frequencies of extragalactic sources around the ONC and their separations from Gaia DR2.

-							
		σ_{lpha}		σ_{δ}		$\Delta \alpha$	$\Delta\delta$
Name	$lpha_{ m J2000}$	μs	$\delta_{ m J2000}$	μ as	Gaia ID (DR2)	(mas)	(mas)
J0539-0514	05 ^h 39 ^m 59. ^s 937139	10	-05°14′41″30061	280	3023327569572290688	-0.4 ± 0.2	-0.2 ± 0.3
J0529-0519	05 ^h 29 ^m 53 ^s 533500	7	-05°19′41″61733	160	3209472860931863424	-2.0 ± 1.3	-0.9 ± 1.5
J0541-0541	05 ^h 41 ^m 38.083368	7	-05°41′49″.42846	110	3017106773301050240	$+0.8\pm1.5$	$+0.9\pm1.4$
J0532-0307	05 ^h 32 ^m 07. ^s 519331	8	-03°07′07″03649	190	3216726171637867136	$+0.7\pm1.0$	$+2.9\pm1.0$
J0545-0539	05 ^h 45 ^m 23. ^s 358039	17	-05°39′37″.83964	350	3022323749816621568	$-\!4.2 \pm 0.5$	-0.7 ± 0.8
J0522-0725	05 ^h 22 ^m 23. ^s 196758	52	-07°25′13″.48025	1180	3207290781323060096	$+1.0\pm0.8$	-1.5 ± 1.2
J0517-0520	05 ^h 17 ^m 28 ^s 110159	8	-05°20′40″.84120	190	3208721928848872576	-0.1 ± 0.3	$+0.2 \pm 0.3$
J0552-0727	05 ^h 52 ^m 11. ^s 376231	9	-07°27′22″51824	250	3018834797558565376	$+2.4\pm1.0$	-28.3 ± 1.1

NOTE—Columns are (left to right): Source name, J2000 positions in right ascension and declination, both with uncertainties, *Gaia* ID, and separations between the Gaia and VLBA positions in both coordinate directions. The separations are defined as: $\Delta \alpha = (\alpha_{\text{VLBA}} - \alpha_{\text{Gaia} \text{ DR2}}) \cdot \cos \delta$ and $\Delta \delta = (\delta_{\text{VLBA}} - \delta_{\text{Gaia} \text{ DR2}})$.

Table	7.	Stars	in th	ne Gaia	DR2	catal	og used	l for	the est	timatio	n of	values	in	Table	e 5.
-------	----	-------	-------	---------	-----	-------	---------	-------	---------	---------	------	--------	----	-------	------

	Sp.				σ_{lpha}		σ_{δ}	$\mu_{lpha}*$	μ_{δ}
Name	Туре	Gaia ID (DR2)	RUWE	$lpha_{ m J2015.5}$	μs	$\delta_{ m J2015.5}$	μ as	(mas yr ⁻¹)	$(mas yr^{-1})$
θ^1 Ori F	B8	3017364063331140224	1.0	5 ^h 35 ^m 16. ^s 732576	4	-5°23′25″22448	60	5.45 ± 0.11	-1.77 ± 0.10
θ^1 Ori B	B1V	3017364132049943680	1.0	5 ^h 35 ^m 16 ^s 135316	3	-5°23′06″.76466	49	1.46 ± 0.11	1.03 ± 0.10
V2325 Ori	M 0	3017364063330467072	1.4	5 ^h 35 ^m 18. ^s 208086	4	-5°23′35″.90580	52	1.32 ± 0.13	-0.00 ± 0.10
θ^1 Ori E	G2IV	3017364127743288704	1.2	5 ^h 35 ^m 15. ^s 773584	4	-5°23′09″.87097	72	1.61 ± 0.12	1.23 ± 0.11
V348 Ori	G8-K1	3017364127743288320	1.2	5 ^h 35 ^m 15. ^s 636427	3	-5°22′56″.43502	43	1.08 ± 0.12	1.45 ± 0.10
Brun 633	A4-A7	3017365880089961728	1.0	5 ^h 35 ^m 19. ^s 139597	2	-5°20′38″.72779	35	0.14 ± 0.08	1.20 ± 0.07
GMR G	K2	3017364127743299328	1.2	5 ^h 35 ^m 17. ^s 952386	3	-5°22′45″.4353	38	3.77 ± 0.10	2.34 ± 0.08
GMR F	K0	3017364162103039104	1.2	5 ^h 35 ^m 18. ^s 372793	3	-5°22′37″.42811	38	2.13 ± 0.10	0.78 ± 0.08
Brun 676	K3	3017365880089976064	1.0	5 ^h 35 ^m 22. ^s 265125	2	$-5^{\circ}20'29''.26229$	34	1.56 ± 0.07	-0.36 ± 0.07
MR Ori	A2:Vv	3017364372568073472	0.9	5 ^h 35 ^m 16 ^s 979192	2	-5°21′45″.31264	33	0.90 ± 0.07	1.56 ± 0.06
LV Ori	K1V	3017364028971010432	1.2	5 ^h 35 ^m 12. ^s 601447	2	-5°23′44″.13115	38	2.57 ± 0.08	-1.36 ± 0.08
V1326 Ori	K8	3017363994611276032	1.1	5 ^h 35 ^m 09. ^s 769407	3	-5°23′26″.89052	37	1.02 ± 0.12	0.56 ± 0.09

NOTE—Columns are (left to right): Source name, Spectral type, *Gaia* ID in the DR2 catalog, Gaia DR2 positions in right ascension and declination given in the epoch J2015.5, both with uncertainties, and proper motions in both coordinate directions.

Simón-Díaz, S., Herrero, A., Esteban, C., & Najarro, F. 2006, A&A, 448, 351

- Weigelt, G., Balega, Y., Preibisch, T., et al. 1999, A&A, 347, L15
- Xu, S., Zhang, B., Reid, M. J., Zheng, X., & Wang, G. 2019, ApJ, 875, 114

Zapata, L. A., Rodríguez, L. F., Kurtz, S. E., & O'Dell, C. R. 2004, AJ, 127, 2252

Zuckerman, B. 1973, ApJ, 183, 863