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ABSTRACT 

This paper is tackling the issue that stem from the coexistence of diverse technologies, such as emerging 

OFDMA-PON and WiMAX/LTE, within the same infrastructure. It outlines the key requirements that need to be 

fulfilled for the backhauling links supporting next generation wireless standards. These links should provide long 

reach as well as low-cost remote radio base stations coupled with centralised processing. To that extent, the 

industrial standard simulation platforms were used to evaluate the key network features from the PHY 

perspective gained by the convergence. The network modelling results confirm the transmission of 16 CPRI 

signals up to 100km OFDMA-PON infrastructures achieving 40 Gbit/s total aggregate data rates.   
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1. INTRODUCTION 

With the developments in broadband wireless networks, driven primarily by WiMAX [1] and LTE [2], data rates 

in the range of hundreds of Mbits are expected to be supported over next generation radio cells. This will 

unavoidably lead to the deployment of densely populated base stations with high spectral efficiency. In addition 

inter-site distances will be significantly reduced while the number of remote radio nodes increased. High 

bandwidth, cost-effective backhauling links would be required as a result to connect each of these base stations 

to a common central office (CO). Since the application of current solutions, such as SDH and IP is anticipated 

expensive to both deploy and operate, lower-cost optical infrastructures have been suggested, required also to 

allow sharing of network resources among different operators. 

In addition, the common public radio interface (CPRI) specifications are standardised [3] to provide a cost 

effective solution for service providers to support emerging broadband wireless topologies since simple remote 

radio base stations could be located at environmentally challenging locations and controlled centrally from the 

head office. As the aggregate data rates conveyed over these links are expected to be in the range of 2.5 Gbit/s, 

or more, for 20 MHz LTE channels per base-station (BS), high bandwidth optical backhauling links need to be 

developed to meet the required demand at converged ONU/BSs. Orthogonal frequency division multiple access 

passive optical networks (OFDMA-PONs) are emerging as high bandwidth, long-reach solutions for the 

aggregation of various services on a single platform [4, 5]. To that extent, this paper presents a VPI/MATLAB 

network model demonstrating the transmission of 16 CPRI wireless signal formats over an OFDMA-PON 

infrastructure [4], exhibiting 40 Gbit/s aggregate data rates and up to 100 km fiber spans. 

2. REQUIREMENTS FOR WIRELESS BACKHAULING   

Concerning the requirements on fixed access networks originating from mobile radio networks the main trend 

that could be observed is the evolution towards more powerful mobile radio network technologies based on 

current – or enhanced – network concepts in particular maintaining the role of base stations in the radio access 

network (RAN). The outcome of this evolution is higher transmission capacities with the target to provide bit 

rates in order to be able to meet forecasted future mobile radio traffic demands. To that extent, for the emerging 

LTE standard [6] the estimated peak data rates for the backhaul link are summarized in Table 1 for time division 

duplex (TDD) frame. This is expected to be increased with the developments of LTE-Advance (LTE-A) 

requiring backhauling links in the range of 1 Gbit/s [7]. 

 

Table 1. Peak rates for E-UTRA TDD [6]. 

 Downlink Uplink 

Assumptions 64 QAM Single TX UE, 64 QAM 

Unit Mbps in 20 MHz b/s/Hz Mbps in 20 MHz b/s/Hz 

Requirement 100 5.0 50 2.5 

2x2 MIMO in DL 142 7.1 
62.7 3.1 

4x4 MIMO in DL 270 13.5 

 

Another trend which can be observed in mobile radio networks, targets at dividing the conventional base 

stations into central base stations (CBS) and simple remote antenna units (RAU). The base station is separated 

into one or several Radio Frequency (RF) transceiver and power amplifier parts (often referred to as remote radio 



units) and one radio controller/baseband part. Benefits for an architecture with centralized processing are 

expected to be manifold: Compact remote radio head solutions and as a result sites that are simpler to house, 

install and operate and prospective lower energy consumption. Also the central resource administration and 

allocation is expected to be beneficial for traffic control. 

Therefore, one of the possible options to achieve this target is relaying on recently standardised CPRI signal 

formats [3]. The CPRI variant is clearly allowing deployment of distributed base station antennas with high 

flexibility and low deployment cost. With a clear focus on layer 1 and layer 2 the scope of the CPRI specification 

is restricted to the link interface only, which is basically a point to point interface. Such a link shall have all the 

features necessary to enable a simple and robust usage of any topology, including a direct interconnection of 

multiport remote base stations. 

Significantly, the CPRI does not define the PHY topology between the central office and remote radio heads as 

long as certain conditions are satisfied. One of the critical conditions, considered in this investigation as well, is 

that the BER ratio should be in the range of 1E-12 at the remote antennas. The forward error correction is 

optional and could be applied if the signal quality cannot satisfy the specified requirements [3]. 

Following this trend however, the backhauling links must satisfy stringent latency requirements imposed on 

wireless link due to the centralised processing and long fibre distances. The Table 2 outlines some of the delay 

figures defined by the standard [6].  

 

Table 2. Latency requirements for E-UTRA [6]. 

Parameter Value 

Synchronous HARQ 8 ms 

User plane (unload condition) 5 ms 

Control plane 100 ms 

 

 Finally, the next section presents analysis of CPRI transmission over the next generation OFDMA-PON [4] in 

order to establish the maximum transmission distance and evaluate key network impairments. The latency 

requirements of the proposed architecture are out of the scope of this paper.  

3. CPRI OVER OFDMA-PON  

As demonstrated by the proposed architecture in Fig. 1, the 2.5 Gbit/s CPRI data stream [3], assuming 20 MHz 

of LTE bandwidth, is generated at the central office (CO) and mapped to the optical OFDMA subcarriers. 

Several BSs could be multiplexed on a single PON depending on the total data rate on the PON and maximum 

number of supported subcarriers. In order to ensure reliable communication for wireless users, dedicated 

subcarriers need to be allocated for each BS since the CPRI link requires constant data stream. A significant 

challenge with this approach is non-linearity of the optical modulators and fibre chromatic dispersion that can 

significantly degrade the received signal quality at the remote base stations. In addition, the choice of digital to 

analog and analog to digital converters (DAC and ADC) resolution largely influence the performance of the 

proposed system and it usually constrains practical implementation. 

According to the deployed scenario shown in Fig. 1, 16-QAM modulation for each subcarrier was assumed 

with 8, 9 and 10 bits ADC/DAC resolution. Therefore, with 40 Gbit/s total aggregate data rate and 256 

subcarriers the maximum rate per subcarrier is 156.25 Mbit/s. With 16 split the maximum of 16 subcarriers will 

then be needed for each BS (i.e. 2.5G/156.25 Mbit/s). The 256 FFT size in both transmitter and receiver are 

assumed taking into consideration practical implementation constrains analysed in [4]. 

 
 

*LO – Local Oscillator; EQ – Equalisation; CP – Cyclic Prefix; VOA: Variable Optical Attenuator 

 

Figure 1. CPRI over OFDMA-PON. 



Table 3. Optical parameters. 

Parameter  Value 

OFDMA subcarriers (FFT size) 256 

Laser linewidth 1 MHz 

Attenuation coefficient on fibre 0.25 dB/km 

Dispersion parameter 17 ps/nm*km 

MZM ER 20 

MZM Chirp factor -0.176 

PIN responsitivity 0.8 

PIN noise (50 GHz) 21 pA/Hz^1/2 

Cyclic Prefix (CP) 20% 

VOA (16 split) 14 dB 

FEC  Not applied 

 

Consequently, after the IFFT, cyclic prefix addition and digital to analog conversion, the resulting signal is first 

up-converted to 30 GHz, using an RF-IQ modulator of Fig. 1, and applied to the RF input port of the Mach 

Zehnder Modulator (MZM) for external laser modulation. The 30 GHz RF frequency was selected in order to 

introduce a gap between the carrier and desired signal after the photo-detector. In addition, in order to reduce an 

effect of the chromatic dispersion the optical band pass filter is then applied to filter out a single sideband 

resulting in an output power of +3 dBm on the fibre. Finally, the output signal is then transmitted over 20, 40 and 

100 km OFDMA-PON links assuming 16 split in the distribution field and the parameters given in Table 3. 

At the receiver side, the direct detection, utilising 50 GHz PIN diode, was implemented followed with an 

electrical RF-IQ down-conversion. Subsequent to the ADC and subcarriers selection for the specific base station, 

the frequency domain equalisation is then performed after the FFT to estimate amplitude and phase distortion 

imposed by the optical link on each subcarrier. The equaliser coefficients are estimated based on the four 

OFDMA training symbols transmitted at the link setup.  

4. RESULTS AND DISCUSSION 

A physical layer simulation test-bed was implemented using Virtual Photonics Inc. (VPI) enriched with 

MATLAB simulation functionalities to model 2.5 Gbit/s CPRI transmission over an OFDMA-PON in terms of 

bit error rates (BER) and ADC/DAC resolution impairments in downstream.    

To that extent, the BER versus received power at the PIN diode is plotted in Fig. 2 for various fibre distances 

and ADC/DAC resolutions. The BER estimation was based on Monte Carlo method (i.e. error counting). The 

target of 1E-4 was considered for the sensitivity measurements since at this error ratio the application of FEC, 

such as RS (255, 239), could increase the BER to 1E-12 [3]. In order to reduce the simulation time the 50 errors 

are only counted resulting in total of 2
19

 simulated bits.   

Consequently, the Fig. 2 (left) demonstrates that for 20 km fibre and 10 bits ADC/DAC resolution the obtained 

receiver sensitivity is -11.5 dBm. A small power penalty is observed for 9 bits resolution. The received 

constellation diagram, displayed as inset in Fig. 2 (left), demonstrates no phase rotation.  However, in case of 8 

bits resolution the noise floor is reached at BER of 1E-3 signifying that quantisation noise is very high therefore 

the equaliser at the receiver does not have any effect on the received signal.  

 

                
 

Figure 2. BER versus received power for different DAC/ADC resolutions at 20 and 40 (left) and 100 km (right). 



In addition, for 40 km fibre the measured receiver sensitivity for 10 bits resolution was around -10.5 dBm 

exhibiting only 1 dB penalty in comparison to 20 km transmission. This shows that with the OFDM transmission 

only simple equaliser is needed in order to compensate for fibre dispersion at long distances. Similarly to 20 km, 

further penalties were observed for 8 and 9 bits ADC/DAC.  

For 100 km link lengths, shown in Fig. 2 (right), same receiver sensitivity, as with 40 km, of -10.5 dBm was 

measured for 10 bits resolution. However, for 8 and 9 bits quantisation noise is significantly degrading the 

system performance in similar fashion as with 20 km and 40 km.  

Therefore, it can be concluded from the obtained results that the resolution of the ADC/DAC significantly 

impacts the BER at the receiver and should be carefully considered in practical implementations. 

Finally, with 16 split in the distribution field, corresponding to 14 dB attenuation, the minimum needed optical 

launch power from the OLT is thus +7.5 dBm and +12.5 dBm for 20 km and 40 km fibres respectively. These 

calculations are based on the receiver sensitivity figures of -11.5 dBm for 20 km and -10.5 dBm for 40 km fibres, 

taking also into consideration fibre losses. The 100 km links on the other hand will require an optical amplifier to 

reach these targets due to high attenuation on the fibre.  

It is important to note that the above performance figures were obtained with the low cost solution based on 

RF-IQ generation at the OLT and direct detection at an ONU. Other signal impairments such as local oscillator 

drifts, laser linewidth and optical amplifier noise were not considered and could further degrade the performance. 

Therefore, alternative solutions such as optical IQ generation and coherent detection could be applied instead.   

5. CONCLUSIONS 

This paper presented requirements for next generation wireless backhauling links outlining the key parameters, 

such as peak data rates and latency that need to be supported. In addition, a DoF converged network architecture 

is demonstrated featuring CPRI transmission of LTE signals by means of OFDMA techniques over long reach 

PONs. A low-cost electrical RF-IQ with direct detection approach is implemented. The obtained results 

demonstrate BER below 1E-4, complying with the CPRI standard with the application of FEC, over total 

aggregate data rates of 40 Gbit/s and 100 km fiber spans. Since the projected network could facilitate the support 

of multiple operators and multiple technologies within the same infrastructure, it is expected to provide a natural 

environment for healthy competition among European network and service providers that will revitalize the 

European market and reinforce its competitiveness. 
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