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Design and implementation of a re-configurable arbitrary signal generator and radio frequency 
spectrum analyser 

Abstract 

 

This research is focused on the design, simulation and implementation of a 

reconfigurable arbitrary signal generator and the design, simulation and 

implementation of a radio frequency spectrum analyser based on digital signal 

processing.  

 

Until recently, Application Specific Integrated Circuits (ASICs) were used to produce 

high performance re-configurable function and arbitrary waveform generators with 

comprehensive modulation capabilities. However, that situation is now changing with 

the availability of advanced but low cost Field Programmable Gate Arrays (FPGAs), 

which could be used as an alternative to ASICs in these applications. The availability 

of high performance FPGA families opens up the opportunity to compete with ASIC 

solutions at a fraction of the development cost of an ASIC solution. A fast digital 

signal processing algorithm for digital waveform generation, using primarily but not 

limited to Direct Digital Synthesis (DDS) technologies, developed and implemented in 

a field-configurable logic, with control provided by an embedded microprocessor 

replacing a high cost ASIC design appeared to be a very attractive concept. This 

research demonstrates that such a concept is feasible in its entirety. 

 

A fully functional, low-complexity, low cost, pulse, Gaussian white noise and DDS 

based function and arbitrary waveform generator, capable of being amplitude, 

frequency and phase modulated by an internally generated or external modulating 

signal was implemented in a low-cost FPGA. The FPGA also included the 

capabilities to perform pulse width modulation and pulse delay modulation on pulse 

waveforms. Algorithms to up-convert the sampling rate of the external modulating 

signal using Cascaded Integrator Comb (CIC) filters and using interpolation method 

were analysed. Both solutions were implemented to compare their hardware 

complexities. Analysis of generating noise with user-defined distribution is presented. 

The ability of triggering the generator by an internally generated or an external event 

to generate a burst of waveforms where the time between the trigger signal and 

waveform output is fixed was also implemented in the FPGA. Finally, design of 

interface to a microprocessor to provide control of the versatile waveform generator 

was also included in the FPGA. This thesis summarises the literature, design 

considerations, simulation and implementation of the generator design.  
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The second part of the research is focused on radio frequency spectrum analysis 

based on digital signal processing. Most existing spectrum analysers are analogue in 

nature and their complexity increases with frequency. Therefore, the possibility of 

using digital techniques for spectrum analysis was considered. The aim was to come 

up with digital system architecture for spectrum analysis and to develop and 

implement the new approach on a suitable digital platform. 

 

This thesis analyses the current literature on shifting algorithms to remove spurious 

responses and highlights its drawbacks. This thesis also analyses existing literature 

on quadrature receivers and presents novel adaptation of the existing architectures 

for application in spectrum analysis. A wide band spectrum analyser receiver with 

compensation for gain and phase imbalances in the Radio Frequency (RF) input 

range, as well as compensation for gain and phase imbalances within the 

Intermediate Frequency (IF) pass band complete with Resolution Band Width (RBW) 

filtering, Video Band Width (VBW) filtering and amplitude detection was implemented 

in a low cost FPGA.  The ability to extract the modulating signal from a frequency or 

amplitude modulated RF signal was also implemented. The same family of FPGA 

used in the generator design was chosen to be the digital platform for this design. 

This research makes arguments for the new architecture and then summarises the 

literature, design considerations, simulation and implementation of the new digital 

algorithm for the radio frequency spectrum analyser. 
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1 Introduction 

 

Thurlby Thandar Instruments is a leading manufacturer of electronic test and 

measurement instruments. The aim and key objectives of this research was to 

replace the company’s existing low cost waveform generator and radio frequency 

spectrum analyser with a generator and a spectrum analyser which matches or 

exceeds the specifications of the company’s benchmark competitors. Comparison 

tables were prepared to analyse and compare the features and benefits of the 

existing products against market competition and subsequently target specifications 

were prepared for the new products. For the comparison table and target 

specification of the waveform generator, refer to Appendix A and Appendix B 

respectively. For the comparison table and target specification of the radio frequency 

spectrum analyser, refer to Appendix C and Appendix D respectively.  

 

It was evident that the new 50 MHz generator based on the principles of DDS will 

have to have comprehensive modulation capabilities together with the ability of 

generating waveforms not based on DDS to be competitive in the market. It was also 

quite clear from the comparison table that the existing spectrum analysers 

manufactured by the company although significantly cheaper than comparable 

competitors’ products and with decent Spurious Free Dynamic Range (SFDR) of     

60 dB, Displayed Average Noise Level (DANL) of -96 dBm with reference level of      

-20 dBm and Resolution Bandwidth of 15 kHz and phase noise performance of          

-90 dBc/Hz at carrier frequency of 500 MHz and 100 kHz offset, lacked many 

features and capabilities. It was concluded that the new product would have to meet 

many key requirements on top of the current performance in order to be competitive 

in the market.  

  

The architectures of the existing spectrum analysers were entirely analogue up to 

and including the detectors. Initial work on the architecture needed to extend the 

frequency range with sufficient performance showed it to be highly complex in 

analogue terms. The existing architecture would have required the Local Oscillator 

(LO) to generate frequencies much higher than 6 GHz. This is very difficult to 

implement in a transistor based Voltage Controlled Oscillator (VCO) design.  

 

Therefore, the possibility of using digital techniques was considered and it was the 

requirement of this project to carry out detailed theoretical analysis of the digital 
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techniques for implementing spectrum analysers. This is summarised in this thesis. 

The aim of this analysis was to come up with a proposed RF and digital system 

architecture and to make recommendations on the direction of progress and 

ultimately to develop and implement the agreed approach on a suitable digital 

platform. 

 

This chapter contains a brief introduction of direct digital synthesis and the reasons 

for choosing digital spectrum analysis techniques followed by a description of the key 

aspects of the project. 

 

1.1 Background 

 

1.1.1 Direct Digital Synthesis 

 

DDS first proposed by Tierney et al in 1976 is a popular method that is used to 

generate waveforms of any shape that has a linear and periodic phase [1]. Figure 1.1 

below is a simplified block diagram of a DDS architecture. FCW is the frequency 

control word input to the phase accumulator. The frequency, amplitude and phase of 

waveforms generated using DDS can be precisely controlled since it is essentially a 

digital system [2]. It is also possible to achieve very high frequency resolution and 

fast frequency switching using DDS. It is very easy to introduce modulation in DDS 

because the signal is in digital form [3]. 

 

DDS is fast replacing traditional analogue circuit functions. With recent performance 

and complexity increases in FPGA and microprocessor technologies, a low cost user 

configurable waveform generator based on DDS can be efficiently realised. 

 

 

Figure 1.1. Simplified block diagram of a DDS 

 

FCW WAVEFORM 
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The advantages of using FPGAs as opposed to ASICs are very obvious. Designs 

implemented in a FPGA are less risky as they can easily be re-configured and the 

design cycle is much smaller compared to other types of semiconductors. FPGAs 

configure themselves upon every power up and therefore, changes in the design can 

simply be made by downloading a new configuration into the device. Competing 

ASICs have fixed functionality that can’t be changed without great cost and time [4].  

 

Very high-speed integrated circuits Hardware Description Language (VHDL) was 

predominantly used to model the signal generator system which makes the design 

even more versatile as it can be easily moved to any new FPGA platform. 

 

This thesis charts the development of a versatile user re-configurable waveform 

generator, primarily based on but not limited to direct digital synthesis with 

comprehensive modulation capabilities built on a configurable logic. 

 

1.1.2 Image Rejection in Spectrum Analysers 

 

The main challenge presented in the development of the spectrum analyser was to 

remove images associated with the down conversion of RF input frequency to some 

intermediate frequency for further processing. Most existing spectrum analysers are 

based on conventional super heterodyne architecture as shown in Figure 1.2 below.  

 

 

Figure 1.2. Block diagram of a classic super heterodyne spectrum 

analyser [5] 

 

Super heterodyne architecture is well known in the art where the IF is chosen to be 

higher than the frequency-range of interest [5]. This ensures that the image is also 
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greater than the frequency range and greater than the chosen IF as well. A fixed low-

pass filter is then placed in front of the mixer to remove this image. This filter also 

rejects the effect of any harmonics of the LO frequency [5]. 

 

In order to apply the same architecture to the new product covering the frequency 

range of 10 MHz to 6 GHz, the IF would have had to be greater than 6 GHz and the 

LO frequency would have had to be tuned from 6 GHz to 12 GHz potentially. Dividing 

the input range could have shortened the tuning range of the LO and different fixed 

low-pass filter could then have been used for each range [6] [7]. Nevertheless, the 

LO frequency for at least one range would have had to be greater than 6 GHz. This is 

very difficult to achieve. 

 

A lower IF could have been chosen where the IF falls in the frequency range of 

interest. This would have eased the LO requirement. However, removing the image 

frequency in this case could be quite difficult and a tuneable low-pass filter would 

have had to be used tuneable over the complete input frequency range [7]. The 

problem of IF feed through when the IF falls in the frequency range of interest also 

needs to be accounted.  

 

In a quadrature architecture (also known as image rejection mixer architecture shown 

in Figure 1.3 below), the images are removed by adding the down converted In-

Phase and Quadrature (IQ) signals, one of which is phase shifted by 90 degrees [54]. 

RF frequencies are directly converted to base-band (zero IF). However, this 

introduces Direct Current (DC) offset problems [55]. Therefore, low IF is preferred. 

However, gain and phase imbalances in the I and Q channels means the image 

rejection achieved by a quadrature receiver is limited to 40 dB [56]. This is improved 

by applying compensation for gain and phase imbalances. 

 

This thesis will focus on using In-phase and Quadrature image reject receiver 

architecture for removing images associated with low IF and will present ways of 

overcoming the limitations of IQ image rejection. 
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Figure 1.3. Image rejection mixer [57] 

 

1.2 Research Scope and Objectives 

 

Although DDS is a popular topic for research with lots of published materials, the 

focus has seldom been on a low complexity low cost multi-function DDS signal 

generator with interfacing technology implemented in a low cost FPGA.  

 

Apart from modulation functionalities, the generator also includes an arbitrary 

waveform generator, pulse generator and a white noise generator with user defined 

distribution implemented in the same FPGA.  

 

The research also analyses implementation of the interpolation of external 

modulating signal and presents advantages and drawbacks of two very different 

solutions. 

 

Similarly, IQ receivers and imbalance compensation in quadrature receivers is quite 

popular among researchers, but this research focuses on the implementation of a 

complete spectrum analyser receiver based on IQ architecture with a novel scheme 

to remove image frequencies, complete with resolution bandwidth filtering and 

amplitude detection.  

 

The research also implements frequency dependent IF gain and phase error 

compensation in the same design and therefore presents a complete solution for 

swept spectrum analysis. 
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1.3 Original Contributions 

 

 Implementation of a fully functional DDS waveform generator with 

comprehensive modulation facilities complete with interfacing technologies in 

a low cost FPGA.  

 

 Implementation of arbitrary waveform generator, pulse generator and white 

noise generator capabilities in the same FPGA making it a unique multi-

function signal generator capable of providing solutions to many user 

applications. 

 

 Analysis of interpolation of external modulating signal, by simple interpolation 

techniques and by using CIC filters [8] and comparisons thereof. 

 

 Design and implementation of IQ image rejection using Weaver base band 

architecture. 

 

 Design and implementation of frequency dependant IF gain and phase error 

compensation.  

 

1.4 Structure of Thesis 

 

Chapter 2 provides an overview of re-configurable arbitrary waveform generation. 

The chapter briefly covers the principle of direct digital synthesis and its modulation 

capability, arbitrary waveform, pulse and Gaussian white noise generation. It also 

covers simulation of a DDS system using Matlab Simulink. Simulation of modulated 

DDS and modulation using an external source both by interpolation and using CIC 

filters are also discussed. 

 

Chapter 3 details the new design analysis of various waveform generation 

architectures and interpolation of external modulating signal and FPGA design, 

simulation and synthesis of the waveform generator.  

 

Chapter 4 provides an overview of digital signal processing based radio frequency 

spectrum analysis. The chapter briefly explains low IF based digital spectrum 

analyser architectures, IQ image reject receiver architecture, IQ imbalance 
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compensation using digital techniques and IQ imbalance compensation within the IF 

pass-band. The chapter also presents the simulation of direct imbalance computation 

method, gain and phase imbalance correction, demonstration of the drawbacks of the 

correlation method of imbalance compensation, simulation of direct imbalance 

computation using Weaver base band architecture and simulation of gain and phase 

imbalance variations and corrections within the IF pass-band.  

 

Chapter 5 details the new design analysis of digital spectrum analyser architecture 

with image rejection using Weaver base band architecture and FPGA design, 

simulation and synthesis of the new method. 

 

Chapter 6 concludes the research and possible future work is discussed. 
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2 Re-Configurable Arbitrary Waveform Function Generator 

 

2.1 Introduction 

 

This chapter provides an overview of re-configurable arbitrary waveform generation 

technologies and simultaneously discusses contributions of new methods and new 

algorithms wherever applicable. The new and existing design ideas were simulated 

and are analysed in the latter sections of this chapter.  

 

2.2 Direct Digital Synthesis 

 

Figure 2.1 below is a simplified block diagram of a DDS [2]. The input to the phase 

accumulator is a frequency control word, which is accumulated at every clock cycle 

to produce a linearly varying phase control word output. When the phase 

accumulator reaches its maximum value, it overflows and starts accumulating again. 

The rate of overflow is the frequency of the DDS output. 

 

The frequency control word input is stored in a register and its width along with 

clocking frequency determines the frequency resolution of the system. The phase 

control word output is also stored in a register. The registered frequency control word 

is added to the registered phase control word and is stored in the phase control word 

register on every clock cycle.  

 

 

Figure 2.1. Block diagram of DDS phase accumulator 
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As explained in Vanka et al [3], if FCW is the frequency control word, Fclk is the clock 

frequency and N is the number of bits in the frequency control word (and therefore 

the number of bits in the adder and phase control word respectively) then the output 

frequency is given by 

  

 Fout = FCW * Fclk / 2 N                 (2.1) 

  

Frequency resolution of the system therefore is given by 

 

 Fres = Fclk / 2 N                 (2.2) 

 

The clock frequency is generally fixed. Hence, the number of bits in the frequency 

control word is made very large (40~48 bits) to achieve very fine frequency 

resolution. For a clock frequency of 125 MHz, a 48-bit frequency control word would 

achieve frequency resolution of less than 1 uHz which is sufficient for most 

applications.  

 

The phase to amplitude converter is in essence a look-up table, a Read Only 

Memory (ROM) or a Random Access Memory (RAM), which stores the amplitude 

values of one complete cycle of the waveform. The phase control word output is the 

read address to this memory, which then outputs the waveform in its digital form. 

Each sequential address change corresponds to a phase increment of the waveform. 

 

Not all the bits of the phase control word can be used to address the memory. This 

would require a prohibitively large amount of memory. Therefore, only a few most 

significant bits (14~16 bits) of the phase control word are used. This truncation of 

phase causes introduction of spurious harmonic components in DDS [3] [81].  

 

Owing to the high power consumption of memory, a lot of literature has been devoted 

to the optimization of the phase to amplitude converter especially for a sinusoidal 

waveform [2] [3] [9]. As explained by Goldberg and also referenced by Soudris et al, 

the memory size could be reduced by 75 % exploring the quarter wave symmetry of 

the sine wave. Further memory reductions could be achieved by partitioning the RAM 

using Hutchinson algorithm [11]. Alternative methods such as CORDIC (COordinate 

Rotation DIgital Computer) can also be used to reduce the memory size [12].   
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This research uses the principle of DDS not only to generate sinusoidal waveform but 

a variety of other functional waveforms such as square, triangle, ramps with positive, 

negative or user defined symmetry, sinc (sin(x)/(x)), exponential rise and fall with 

user defined time constant, logarithmic rise and fall with user defined time constant, 

haversine, Gaussian with user defined shape, Lorentz and derivative of Lorentz with 

user defined shape and Cardiac. 

 

Therefore, the phase to amplitude converter is implemented as a RAM as shown in 

Figure 2.2 below. Any waveform shape can be stored in this memory by the 

controlling processor. 

 

Figure 2.2. Block diagram of DDS phase to amplitude converter (RAM) 

   

The Digital to Analogue Converter (DAC) converts the digital waveform output from 

the RAM to its equivalent analogue output. The resolution of the DAC directly affects 

the spectral purity of the output waveform.  

 

2.3 DDS Modulation Capability  

 

Figure 2.3 below shows how modulation can be achieved in a DDS system [3] [13] 

[14]. The DDS waveform can be frequency modulated by adding the modulating input 

to the frequency control word input of the phase accumulator. Adding the modulating 

input to the phase control word output of the phase accumulator before it addresses 

the phase to amplitude converter results in phase modulation. Multiplying the digital 
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waveform with the modulating signal before it is converted to its analogue form 

modulates the amplitude of the DDS waveform. 

 

 

Figure 2.3. Simplified DDS architecture with modulation capability 

 

Frequency sweeping is just another form of frequency modulation where the 

frequency input to the phase accumulator is varied linearly (by having a ramp 

waveform as the modulating input) or logarithmically (by having an exponential 

waveform as the modulating input). 

 

Frequency Shift Keying (FSK) can be achieved by having two frequency control word 

where the phase accumulator accepts one of them (or hops between them) 

alternatively at a pre-defined rate.  

 

A DDS system can output a specified number of waveforms (known as burst) by 

counting the number of times an overflow occurs in the phase accumulator. The 

accumulator is turned off when the count becomes equal to the specified number of 

cycles.  

 

Other types of modulations such as Quadrature Amplitude Modulation (QAM) are 

also possible, but they are out of the scope of this research. 

 

FCW WAVEFORM 
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The principle of DDS can be used to generate the internal modulating waveform. 

Only phase accumulator and phase to amplitude converter blocks are required. The 

output from the phase to amplitude converter is the modulating waveform in its digital 

avatar. This is then multiplied by a factor (amplitude depth in case of Amplitude 

Modulation (AM), frequency deviation in case of Frequency Modulation (FM), phase 

deviation in case of Phase Modulation (PM), frequency span in case of frequency 

sweep, etcetera) to have better modulation control. The scaled digital waveform is 

then transferred to different parts of the main DDS to perform various modulations. 

 

2.4 DDS Trigger Uncertainty 

 

As mentioned above, a DDS system can output a specified number of waveforms. 

This normally happens after a trigger event (internal or external). In case of an 

external trigger event, the generation of waveforms begins on the next DDS clock 

after the event, which introduces a time uncertainty of up to 1 clock period. This 

might not be acceptable in user application. 

 

If the time between the start of the trigger and the start of the subsequent DDS clock 

could be measured, then this information could be used to adjust the start phase of 

the phase accumulator (by pre-setting the phase control word) and therefore 

compensate for the time uncertainty [16]. The FPGA implementation of the particular 

method described henceforth to use in a DDS architecture is an original contribution 

of this research.  

 

 

Figure 2.4. Delay line for trigger uncertainty compensation 

 

A tapped delay line shown in Figure 2.4 above could be used to measure the time 

between the start of the trigger and the next DDS clock rising or falling edge [17]. The 

D6 D7 
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input to the delay line is the trigger input and the output from each delay tap is 

clocked by the DDS clock. 

During static condition, all output bits are low. When the trigger arrives, some of the 

output bits will change its state from ‘low to high until the delay is long enough for the 

rising edge of the trigger signal to move beyond the rising edge of the clock signal 

after which point the outputs will remain low. The number of output bits that has 

changed state is an indication of the time between the trigger and the clock edge.  

 

As the trigger is delayed, it gets closer to the clock edge and registering it might 

suffer from violation of set up times resulting in meta-stability. Therefore, two or more 

synchronous register stages should be used instead of one to ensure that the output 

is stable and that the probability of an unstable output due to meta-stability is 

infinitesimally small.  

 

 

Figure 2.5. FPGA carry chain implemented as a delay line    

 

In many low cost FPGAs available today, there exist chain structures (carry chain) 

that the vendors design for general purpose applications [18] [19]. These chain 

structures provide short and predefined routes between identical logic elements. 

They are ideal for time to digital converter delay chain implementation [20]. Figure 
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2.5 above shows how the carry-in and carry-out chain available in most low-cost 

FPGAs could be used to implement a delay line for measuring the time between the 

start of the trigger and the next DDS clock.  

   

There are certain things to consider here. The logic elements used for the delay 

chain and the corresponding register array structure must be placed and routed by 

the FPGA compiler in a predictable manner to assure uniformity and short term 

stability [20]. The delay of the carry chain is subjected to variation due to temperature 

and power supply voltage and therefore needs compensation. The delay of the carry 

chain between two logic elements in the same Logic Array Block (LAB) is different 

from the delay of the carry chain between two logic elements in two adjacent LABs. 

Therefore, if the delay line exceeds beyond a LAB, then the effect of this variation 

also needs accounting for. Addressing of the above considerations is discussed in 

the next chapter. 

 

2.5 DDS Modulation Using an External Signal 

 

For external modulation, the external modulating waveform is first converted to digital 

form by using an Analogue to Digital Converter (ADC). It would be possible to drive 

the external modulation ADC with the DDS Clock and have enough bits of resolution 

such that the ADC output can directly be used for modulation. However, this is not a 

cost effective solution.  

 

The ADC is sampled at a lower rate with fewer bits and therefore some sampling rate 

conversion and/or interpolation is required. The Tampere University Paper describes 

an interpolation method which could be used in this circumstance [21]. If the ADC 

sampling rate is chosen to be some binary division of the DDS clock, then the 

difference between two consecutive A/D output samples could be divided by the 

same binary factor (a binary factor is chosen so that division just becomes a shifting 

operation) and then added to the previous sample at every DDS clock until a new 

sample is available. 

 

CIC filters devised by Hogenauer [8] are widely used in communication systems for 

efficient sample rate conversions and could also be used to up convert the sampling 

rate of the ADC samples to the DDS clock. The key advantage of CIC filters is that 

they use only adders and registers, and do not require multipliers to implement in 

hardware for handling large rate changes [22].  
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The performance and hardware complexity of the CIC filter method and the normal 

interpolation method to up convert the sampling rate of the external modulating signal 

samples are discussed in the simulation section of this chapter and in the 

implementation section of the next chapter and is an original contribution of this 

research.  

 

2.6 Arbitrary Waveform Generation 

 

A DDS system can output waveform of any shape [82]. However, as the frequency of 

the waveform is increased, all the memory samples are not addressed and some are 

skipped. Hence the waveform becomes slightly deformed. This is most apparent in 

case of user defined arbitrary waveforms.   

 

As described in the Tektronix application note [23], this limitation can be avoided by 

using true variable clock architecture as shown in Figure 2.6 below.  

 

Figure 2.6. Variable clock architecture for arbitrary waveform generator 

 

The architecture produces output at every clock. The frequency of the waveform is 

changed by changing the clock frequency and the frequency control word input and 

hence every sample stored in the memory is used. Therefore, no distortion occurs. 

 

2.7 Pulse Generation 

 

The DDS system could be used to generate pulse output at various frequencies. In 

its simplest form, the most significant bit of the phase control word output from the 

phase accumulator is a pulse waveform with equal mark to space ratio at the 

frequency of the DDS [3]. However, it is jitter prone. As long as the frequency control 

word input to the phase accumulator divides into 2 ^ n where n is the number of bits 

FCW WAVEFORM 
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in the phase accumulator, the output is periodic and smooth, but all other cases will 

create jitter [3]. The jitter can vary up to 1 clock period, is fully deterministic and could 

be reduced using a delay generator [3]. But a delay generator requires a lot of 

hardware and would have been difficult to implement for a single bit pulse output and 

even more difficult for multiple bits.  

 

DDS pulse generator architecture has also been proposed by Sullivan et al [24], 

which generates multi-bit pulse with independent rise and fall times. But the issue of 

jitter has not been dealt with. 

 

It has been proposed in [25] to use a higher frequency clock when the accumulator 

overflows to output pulse with less jitter. However, in order to keep the jitter very low, 

a very high clock frequency would be required which makes this architecture very 

expensive.  

 

It is also possible to generate pulse waveform by counting clock cycles [26]. The 

clock used could be a DDS generated clock (DDS sine output generated by the 

FPGA, DAC and the re-construction filter and then converted into square waveform 

clock using a comparator outside the FPGA) in order to have the ability to slightly 

vary the clock frequency to increase pulse period resolution. Clock cycles are 

counted to determine period and pulse width. Edge times could be controlled by a 

pulse edge shaping circuit in the analogue domain. The drawback of this method is 

that the resolution of the pulse width is limited to the clock period.  

 

The focus of this research has been to achieve an entirely digital DDS-based pulse 

generator.  Generally, the output of the phase accumulator is used to address a RAM 

which contains the desired waveform shape. Doing this in a pulse generator would 

mean it is not possible to output pulses continuously while parameters are being 

changed because it would require re-loading of the RAM. It would also mean that it is 

not possible to realise a pulse with very long period and very short width or edge time 

due to the limited RAM size [24].  

 

The output of the phase accumulator is a ramp waveform. It is possible to convert 

this into a pulse which is essentially a waveform made of four ramp waveforms of 

varying slope using mathematical means. Four comparators could be used to convert 

the phase accumulator output to different sections of the pulse using a state 
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machine, a subtractor and a multiplier. The truncated output of the multiplier would 

be the desired pulse.  

As long as the minimum edge time has enough points to be fully defined, the 

waveform would be jitter free. For example, for a 5 ns edge time, in order to have 5 

points on the edge, the DDS clock frequency needs to be 800 MHz. Pulse period, 

width and delay modulation, is achieved by simply adding the modulating waveform 

value to the content of the various comparator control words.  

 

The method described above for digital pulse generation using mathematical means 

and its FPGA implementation discussed in the next chapter is an original contribution 

of this research work. 

 

2.8 White Noise Generation 

 

Linear Feedback Shift Registers (LFSRs) are generally used to generate pseudo 

random noise. Multiple bits can be obtained from LFSRs by using the method 

described in [27]. One way to generate white noise using LFSRs has been proposed 

in [28] which multiplexes several registers with different initial states to produce 

pseudo random numbers. However, the output does not follow a Gaussian 

distribution.  

 

Napier [29] also proposed a novel architecture for white noise generation using a 

circuit comprising of pseudo random sequence generators, plural delay circuits, 

plural finite impulse response filters and a summing network. However, this method is 

too complex to be implemented in a small FPGA.  

 

Brian et al [30] first proposed a method to convert the pseudo random sequence into 

Gaussian white noise by using a ROM which has stored values of any kind of desired 

distribution. Ghazel et al [31] [32] proposed the development of a Gaussian white 

noise generator by combining the Box-Muller method and Central-Limit theorem. The 

pseudo random sequence is generated by multi bit LFSRs, Box-Muller method is 

implemented using ROMs and Central-Limit theorem is implemented by means of an 

accumulator. This method produces a high accuracy, fast, low complexity white noise 

generator. A similar architecture has also been proposed in [33]. Fung et al [34] 

proposed an ASIC implementation of the architecture proposed in [31] and [32].  
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In this project white noise generator was implemented based on [31], [32] & [33]. 

Results obtained were verified using SCILAB [35]. 

Figure 2.7 below shows the distribution of samples of this white noise generator. 

These were plotted in a histogram using SCILAB. The figure shows 25500 samples 

of the 16 bit output placed in 300 equally spaced bins. The ‘red’ curve is the actual 

Gaussian distribution obtained from the theoretical mathematical equations and the 

‘blue’ curve is the samples obtained from white noise generator. The output follows a 

Gaussian distribution. The output curve deviates from the theoretical curve at the top 

by 16.66 %. The mismatch is attributed to approximations made in the calculation 

and could be further improved as explained in the next chapter.  

 

 

Figure 2.7. PDF of the generated noise 

 

2.9 Simulation of DDS Systems 

 

The following sections of this chapter will concentrate on modelling the generator 

design in Simulink [36] and subsequent analysis of the simulation results. For DDS 

simulations various word lengths, clock frequencies and look up table sizes were 

experimented with.  The aim was to gather an in-depth understanding of direct digital 

synthesis and to simulate the consequence of changing its core parameters. 

 

The basic direct digital synthesis block modelled in Simulink [36] is shown Figure 2.8 

below. The sampling rate is 125 MHz and the number of bits in the phase 

accumulator is 16. The calculation of frequency control word from a desired 

frequency value is also included in the simulation. The frequency control word is 
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converted to an unsigned 16-bit value and all subsequent blocks operate on 16-bit 

integer arithmetic. 
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Figure 2.8. Simulation of 16 bit un-modulated direct digital synthesis    
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              Time Offset 

Figure 2.9. Phase accumulator output 
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Figure 2.9 above is the phase accumulator output for an input frequency of 1 MHz. 

The output is a ramp which increments by frequency control word value at the clock 

rate. When the output reaches its maximum value of 65535, it overflows and starts 

accumulating again. The rate of overflow is 1 MHz, which is the desired frequency. 

 

The phase to amplitude converter, converts the ramp output to waveform output as 

shown in Figure 2.10 below. For a sinusoidal waveform output, two methods were 

used to simulate the phase to amplitude converter. In the first method, the 

accumulator output is truncated to 10 bits (dividing by 64 and then rounding it down) 

and is then used to address a 1024-point sine look-up table. In the other method, 

there is no truncation. The accumulator output is normalised, then converted to 

radians and used as an input to sine function. The sine output is then scaled back to 

16-bit output (it was not possible to implement a 65536-point sine look-up table in the 

available Simulink version). 
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           Time Offset 
Figure 2.10. Phase to amplitude converter output in the time domain 
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Figure 2.11. Frequency spectrum of the DDS output where accumulator output is truncated to 10 bits 
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Figure 2.12. Frequency spectrum of the DDS output where accumulator output is not truncated 
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The frequency spectrum of the two phase to amplitude converters addressed with 

truncated and un-truncated accumulator outputs are shown in Figure 2.11 and Figure 

2.12 above respectively. When the accumulator outputs are truncated they 

introduces spurs at the DDS output.  

 

The carrier frequency is 1 MHz. The carrier level is 118 dBm. In Figure 2.11, the 

accumulator output is truncated to 10 bits. The harmonic spurs are visible at 7 MHz, 

9 MHz, 14 MHz, 17 MHz, 23 MHz and 24 MHz respectively. The harmonic spurs 

above 20 MHz are worse than those below 20 MHz and are approximately 78 dB 

below carrier level. Non-harmonic spurs are approximately 110 dB below carrier 

level. In Figure 2.12, the accumulator output is not truncated. No visible harmonic 

spurs are present in the spectrum output. Non-harmonic spurs are approximately   

120 dB below carrier level.  

 

In order to achieve fine frequency resolution, a large DDS word length is required. 

For a clock frequency of 125 MHz, a 48-bit accumulator provides a frequency 

resolution of 0.44 uHz. 

 

The resolution of the DAC directly affects the spectral purity of the waveform output. 

Simulation of a 32-bit DDS system with 200 MHz clock frequency and a pre-

calculated frequency control word to output a 25 MHz signal is shown in Figure 2.13 

below.  
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Figure 2.13. Simulation of 32 bit direct digital synthesis 
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Figure 2.14. Frequency spectrum for 16-bit output 
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Figure 2.15. Frequency spectrum for 14-bit output 
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The frequency spectrums of 16-bit system and 14-bit system derived from the same 

32-bit DDS accumulators are shown in Figure 2.14 and Figure 2.15 above 

respectively. The spurious free dynamic range for a 16-bit output is 96 dB 

approximately. The spurious free dynamic range for a 14-bit output is 78 dB 

approximately. 

 

2.10 Simulation of modulated DDS 

 

For modulation, a second DDS is simulated to provide the modulating waveform. The 

output from the modulating phase to amplitude converter is multiplied by a factor 

which controls the modulation depth or deviation. This is then added to the frequency 

control word input of the first DDS to perform frequency modulation. The calculation 

for a particular frequency deviation is also included in the simulation. The simulation 

is shown in Figure 2.16 below.  

 

For a carrier frequency of 10 MHz, modulation frequency of 100 kHz and a frequency 

deviation of 1 MHz, the frequency spectrum output is as shown in Figure 2.17 below. 

 

Simulink scope settings are as follows: 

 

Start Frequency   0 Hz 

Stop Frequency   25 MHz 

Window Length   4096 

FFT Length    4096 

Window    Hanning Window 

Equivalent Noise Band-width  1.5 

Trace     Normal Trace 

Units     dBm 
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Figure 2.16. Simulation of frequency modulation in a DDS system 
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Figure 2.17. Frequency spectrum of a frequency modulated DDS output 
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For phase modulation, the appropriately scaled output from the second DDS is 

added to the output of the phase accumulator of the second DDS as shown in Figure 

2.18 below. The calculation for a particular phase deviation is included in the 

simulation.  

 

For a carrier frequency of 10 MHz, modulation frequency of 100 kHz and a phase 

deviation of 180 degrees, the frequency spectrum output is shown in Figure 2.19 

below. 

 

The phase shifted oscilloscope waveform output in the time domain is shown in 

Figure 2.20 below. 
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Figure 2.18. Simulation of phase modulation in a DDS system 
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Figure 2.19. Frequency spectrum of a phase modulated DDS output 
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                        Time Offset 
Figure 2.20. Phase modulated waveform output in the time domain 
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For amplitude modulation, the appropriately scaled output from the second DDS is 

multiplied with the output of the phase to amplitude converter of the first DDS. This 

could be done in one of two ways. Half of the modulation waveform could be added 

to half of the amplitude and the result multiplied with the carrier waveform or the 

modulating waveform could be directly multiplied with the carrier waveform thereby 

controlling its amplitude (suppressed carrier). Both methods were simulated as 

shown in Figure 2.21 and Figure 2.24 below respectively.  

 

Figure 2.22 below shows the frequency spectrum of a normal amplitude modulated 

sinusoidal waveform, where the carrier frequency is 10 MHz. The frequency of the 

modulating sinusoidal waveform is 1 MHz. Amplitude depth is set to 100 %. The two 

side-bands and the carrier are present in the output spectrum.  

 

Figure 2.23 below shows the modulating and modulated waveforms for normal 

amplitude modulation in the time domain. The modulating frequency is changed from 

1 MHz to 100 kHz. The instantaneous voltage of the modulating waveform is added 

or subtracted to the user specified amplitude value before being multiplied to the 

waveform output. When modulation waveform amplitude is at its minimum, the output 

is zero.  
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Figure 2.21. Simulation of amplitude modulation in a DDS system  
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Figure 2.22. Frequency spectrum of an amplitude modulated DDS output (carrier is not suppressed) 
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               Time Offset 

Figure 2.23. Modulation waveform and amplitude modulated carrier in the time domain 
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Figure 2.25 below shows the frequency spectrum of a suppressed carrier amplitude 

modulated sinusoidal waveform, where the carrier frequency is 10 MHz. The 

frequency of the modulating sinusoidal waveform is 1 MHz. Amplitude depth is set to 

100 %. The frequency spectrum shows the two sidebands but the carrier is 

suppressed. The carrier is suppressed by approximately 96 dB. The carrier could be 

further suppressed by increasing the number of bits in the phase accumulator.  

 

Figure 2.26 below shows the modulating and modulated waveforms for suppressed 

carrier amplitude modulation in the time domain. The modulating frequency is 

changed from 1 MHz to 100 kHz. The instantaneous voltage of the modulating 

waveform directly controls the amplitude of the waveform output. When modulation 

waveform amplitude is zero, the output is zero.  



Re-configurable arbitrary waveform function generator – an overview   42 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency spectrum analyser 

 

Figure 2.24. Simulation of suppressed carrier amplitude modulation in a DDS system 
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Figure 2.25. Frequency spectrum of an amplitude modulated DDS output (carrier is suppressed)  
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             Time Offset 
Figure 2.26. Suppressed carrier amplitude modulation in the time domain 
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2.11 Simulation of DDS modulation using an external signal 

 

Up-conversion of the sampling rate of the external modulating signal was simulated 

using two ways, by interpolation and by using CIC filters.  

 

The sampling rate of the 12-bit ADC is chosen to be 7.8125 MHz such that it is a 

binary multiple of the DDS clock frequency which is 125 MHz. This is done to make 

the division that is necessary in the interpolation method to be just an exercise of 

shifting bits to the left. The ADC output is delayed by one clock cycle. It is then 

subtracted from the new sample. This result is then added to the previous sample 16 

times unless a new sample arrives and the whole process starts again. The result is 

an interpolated version of the original waveform output from the ADC at the DDS 

clock frequency. The simulation is shown in Figure 2.27 below. 

 

 

Figure 2.27. Simulation of sample rate conversion using interpolation 

method 

 

The frequency spectrum of a 100 kHz sine waveform sampled at 7.8125 MHz and 

then up converted to 125 MHz using interpolation method is shown in Figure 2.28 

below. 
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Figure 2.28. Frequency spectrum of interpolated waveform output 
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The interpolation itself does not introduce any spurs. Therefore, as long as the 

conversion factor remains binary, interpolation method is a viable method for sample 

rate conversion of external modulating signals. 

 

However, a non-binary conversion factor increases the hardware complexity of this 

method. A division by a non-binary number is not trivial and adds significantly to the 

hardware resource requirements.  

 

CIC filters on the other hand only uses adders and registers for any rate change. A 

third order CIC filter with differential delay of one was simulated to achieve the same 

result of up converting the sampling rate from 7.8125 MHz to 125 MHz. The 

simulation in Figure 2.29 clearly shows the comb and integrator sections of the CIC 

filter. For a differential delay of two, the samples would have had to be delayed by 

two clock cycles before being subtracted from the non-delayed sample in each of the 

comb stages. 

 

 

Figure 2.29. Simulation of sample rate conversion using CIC filter 

 

The frequency spectrum of a 100 kHz sine waveform sampled at 7.8125 MHz and 

then up converted to 125 MHz using third order CIC filter is shown in Figure 2.30 

below. The spectrum is more or less the same as the interpolation method. The main 

advantage of the CIC filter method is its simplicity. Any rate is allowed. However, as 

the rate increases, the bit growth in the CIC filter increases as well. For a third order 

CIC filter with differential delay of one, a rate conversion of 16 adds 12 bits to the 

output. 
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Figure 2.30. Frequency spectrum of CIC filter output 
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2.12 Conclusion 

 

This chapter demonstrates the feasibility and functional verification of the generator 

design. Principles of direct digital synthesis and its modulation capability, arbitrary 

waveform, pulse and white noise generation have been discussed and novel ideas 

have been presented. The design is simulated in Matlab / Simulink environment and 

principles of the design is validated.  

 

The next chapter details the new design analysis of various waveform generation 

architectures and interpolation of external modulating signal and FPGA design, 

simulation and synthesis of the waveform generator.    
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3 Waveform Generator – FPGA Design Simulation and 

Synthesis 

 

3.1 Introduction 

 

The research achieved a complete prototype advanced waveform generator within 

the timescale allocated for the waveform generator project. Figure 3.1 below is a 

block diagram representation of the waveform generator design. The design was 

complete with control section and analogue input and output hardware. The 

discussion in this chapter will be limited to the digital aspect of the design. Results 

presented in this chapter are screen shots of the actual outputs from the waveform 

generator measured in an oscilloscope.  

 

This chapter will uniquely demonstrate implementation of a fully functional DDS 

arbitrary waveform generator, pulse generator and white noise generator with 

comprehensive modulation facilities complete with interfacing technologies in a low 

cost FPGA making the implementation an original contribution of this research.  

  

 

Figure 3.1. FPGA block diagram - input/output connections 
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3.2 Evaluation of FPGA Technologies 

 

FPGA was chosen as the suitable platform to implement the digital design. The aim 

was to use a low cost FPGA. FPGAs from different manufacturers and of different 

families were evaluated. This is summarised here as follows. The information on the 

FPGAs provided here were true when the evaluation was carried out. The 

specification of the FPGAs may have changed since then. The costs of the FPGAs 

were obtained from their respective suppliers in the region. The price quoted is for 

each unit if a thousand is purchased in a year.  

 

XC3S250E from Xilinx Spartan III series [37], ECP2-20 from Lattice [38] and EP3C16 

from Altera Cyclone III series [39] were identified to closely meet the requirements for 

the development of this product. Table 3.1 below presents a rough comparison of 

these three FPGAs. 

 

 

 

 

Xilinx Spartan III 

XC3S250E [37] 

Lattice ECP2-20 

[38] 

 

Altera Cyclone III 

EP3C16 [39] 

Logic Elements 5508 21000 15408 

Total RAM 216 Kbits 276 Kbits 504 Kbits 

Embedded Multipliers 

(18x18) 

12 28 56 

PLL/DLL/DCM 4 4 4 

Cost $13 (obtained from 

Xilinx website) 

£10.236 

(Supplier’s quote) 

£6.82 (Supplier’s 

quote) 

Table 3.1. Comparison of FPGAs 

 

Clearly, the Altera part provided more embedded multipliers and more memory which 

were very important for this product. It was also very cheap and hence became more 

favourable for this cost sensitive development.  

 

Another FPGA from the Xilinx Spartan III family, 3A-DSP [40] provided more 

embedded multipliers but they were more expensive and hence not considered. 

Xilinx FPGA XC3S1200E [41] closely resembled Altera FPGA EP3C16 in terms of 

the number of logic elements (They provided 19512 logic cells against 15408, 8 

Digital Clock Managers (DCMs) against 4 Phase Lock Loops (PLLs) and 28 
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multipliers against 56 provided by EP3C16). But the price of this FPGA was £21.40 

(supplier’s quote) and hence not suitable for this product. Spartan 3E family are 

based on 90 nm technology.  

 

The Lattice part had more logic elements than the Altera part and also provided 

embedded accumulators (not present in Xilinx or Altera part. However, can be easily 

designed using the Mega Function Wizard in Quartus or using CoreGen in Xilinx 

ISE). However, they provided less memory and multipliers than the Altera part. They 

were also more expensive. ECP2-20 is also based on 90 nm technology.  

 

Hence the Altera Cyclone III EP3C16 FPGA was chosen for this design. Cyclone III 

is based on 65 nm technology. Choosing an Altera FPGA made the Altera Quartus II 

design software [42] the most obvious choice for FPGA design. Altera also provided 

ModelSim [43], a comprehensive simulation and debug environment for FPGA 

designs. VHDL was predominantly used to model the signal generator system. The 

Mega Function Wizard of Quartus II was also used for some specific designs. 

 

Design analysis and implementations of waveform generator sub-systems will be 

discussed in this chapter. 

 

3.3 DDS Carrier Generator 

 

Figure 3.2 below represents the Register Transfer Level (RTL) view of the carrier 

generator. The carrier generator comprises of a ‘carrier phase accumulator’ the 

length of which is 48 bits in order to provide a frequency resolution of 1 µHz in the 

system. The clock frequency is 125 MHz. 
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Figure 3.2. RTL view of the carrier generator 
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The input 48-bit frequency control word to the frequency control word register of the 

phase accumulator is provided by the ‘frequency adder block’. The frequency adder 

block adds the output of the ‘FSK block’ and the frequency modulation output of the 

‘modulation generator’ block at every clock cycle. When frequency modulation is 

disabled, the frequency modulation output from the modulation generator block is 

zero and the frequency adder block passes the output of the FSK block at every 

clock cycle.  

The carrier frequency control word and the hop frequency control word are inputs to 

the FSK block which when FSK is enabled hops between the two frequency inputs at 

the trigger rate at every clock cycle. The trigger input is the synchronous trigger input. 

When FSK is disabled, the FSK block outputs the carrier frequency control word at 

every clock cycle. 

 

As mentioned earlier, a DDS system can output a specified number of waveforms. 

This normally happens after a trigger event (internal or external). A state machine is 

designed to generate a synchronous reset signal to the phase accumulator. When 

the trigger event happens, the synchronous reset is de-asserted. The accumulator 

starts running. The carry-out from the phase accumulator adder indicates the 

completion of a waveform cycle. A counter is incremented on every carry-out. When 

the count becomes equal to N-1, where N is the number of specified cycles, the 

synchronous reset is asserted and the accumulator stops and then waits for the next 

trigger event to start a new burst. Trigger uncertainty compensation is discussed later 

in this chapter. 

The 16 Most Significant Bits (MSBs) of the phase accumulator output is added with 

phase modulation output of the modulation generator, the phase of the carrier 

waveform and trigger uncertainty compensation phase factor is subtracted from the 

phase accumulator output at every clock cycle in the ‘phase adder’ block. A few 

pipeline stages are introduced to process the various additions and subtractions.   

 

The output of the phase adder is the read address input to the ‘waveform RAM 

block’. The chosen FPGA for this project provides embedded dual port RAM which is 

directly instantiated as the waveform RAM block. The write address and data is 

loaded in the RAM by the controlling processor. The output of the RAM is the 

waveform output.   
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The ‘output block’ multiplies the waveform output and the amplitude control word at 

every clock cycle. When amplitude modulation is enabled, the amplitude control word 

could either be the amplitude modulation output of the modulation generator or could 

be the sum of half of the modulation generator output and half of the specified 

amplitude of the waveform. The former results in suppressed carrier amplitude 

modulation and the latter method results in normal double sideband amplitude 

modulation respectively. When amplitude modulation is disabled, the amplitude 

control word is the specified amplitude of the waveform.  

 

The DAC converts the digital waveform output from the output block to its equivalent 

analogue output. Figure 3.3 below shows the FPGA and DAC connection of the 

hardware. The DAC fitted on the board is a communication DAC AD9744 from 

Analog Devices [44]. 

 

  

Figure 3.3. FPGA DAC connections 

 

3.4 DDS Modulation Generator 

 

The modulation generator provides inputs for modulation operations. Figure 3.4 

below is the RTL view of the modulation generator. 

External High-Speed 
Synchronous RAM 

                 FPGA 

Control Processor 

Digital to Analogue 
Converter 
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Figure 3.4. RTL view of the modulation generator 
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It generates an internal modulating waveform using the principles of DDS. The 

‘modulation source select’ block selects between internally generated waveform, 

external modulation input and noise to be used as modulating input. 

 

The output of this block is then multiplied by a factor to control amplitude depth, 

frequency deviation or phase deviation. This multiplication is not trivial. For a 48 bit 

accumulator, the output from the source select block which is 16 bit has to be 

multiplied by a 48 bit control word resulting in a 64 bit output which is then truncated 

to 48 bits resulting in modulation frequency control word. A solution to large 

multiplication is presented by J W Lewis [45] where the first stage performs partial 

multiplications, the outputs of which are shifted and added in pipeline stages. The 48 

bit control word is divided in three 16 bit control words and each is multiplied with the 

16 bit modulating waveform. The results from each multiplication is shifted and then 

added together to produce the final result.   

 

The control word for phase and amplitude modulation is only 16 bits as they are 

added to the truncated 16 bit phase accumulator output or multiplied with the 16 bit 

carrier waveform output respectively. Therefore, the multiplication could be 

performed in one clock cycle.  

 

The output of the deviation-depth multiplier is passed on to various registers. Each 

type of modulation has its own synchronous reset signal to control the output from its 

corresponding register. When a particular modulation is enabled, its register outputs 

the multiplier output. When disabled, output from the register is zero. 

 

3.5 White Noise Generator 

 

Figure 3.5 below is the block diagram of the white noise generator which combines 

Box-Muller [46] method and the central limit theorem to produce white noise. White 

noise generator implementation is based on [31], [32] & [33]. 

 

Linear feedback shift registers are used to produce pseudo random binary variable to 

be used to perform the Box-Muller algorithm. A total of 7 LFSRs are used. 6 of them 

are used to calculate function F(x) and 1 is used to calculate the function G(x). Table 

3.2 below outlines the number of shift registers, characteristic polynomial and initial 

seed value of each of the seven LFSRs used in the white noise generator. 
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LFSR Number of Shift Registers Characteristic Polynomial Seed Value 

1 31 1+(x)28+(x)31 2147483647 

2 19 1+(x)2+(x)6+(x)19 524287 

3 13 1+(x)3+(x)4+(x)13 8191 

4 7 1+(x)6+(x)7 127 

5 5 1+(x)2+(x)5 31 

6 7 1+(x)6+(x)7 127 

7 17 1+(x)14+(x)17 131071 

Table 3.2. LFSR configurations in the white noise generator 

 

LFSRs 1, 2, 3, 4, 5 & 6 are used to produce a 4-bit output to be used to compute the 

function F(x) and LFSR 7 is used to produce an 8-bit output to be used to compute 

the function G(x).  

  

Multiple bits are produced using the ‘Leap-Forward’ [27] techniques. The leap 

forward LFSR method utilizes one LFSR and shifts out several bits. This method is 

based on the observation that LFSR is a linear system and the register state can be 

written in the vector format: 

 

)()1( iQAiQ                    (3.1) 

 

)1( iQ  and )(iQ  are the content of the shift registers at thi )1(   and thi)(  steps 

and A  is the transition matrix.  

 

After the LFSR advances n  cycles, the equation becomes: 

 

Q(i + n) = An × Q(i)                   (3.2) 

 

Hence for a 4 bit output, calculation of A4 is required and for an 8 bit output, 

calculation of A8 is necessary for each LFSR. After the matrix calculation, Xor 

structure for each LFSR is determined accordingly. 
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Figure 3.5. Block diagram of white noise generator 

 

Box-Muller method [46]: 

 

Given two realizations x1 and x2 of a uniform random variable over the interval (0,1) 

and a set of intermediate functions F(x) and G(x) such that: 

 

F(x1) = √ (-ln(x1))                  (3.3)  

G(x2) = √2 * (Cos (2 * pi * x2))                (3.4) 

 

Then the product of F(x1) and G(x2) provides samples of a Gaussian distribution 

[46].  
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The greatest non-linearities of the function F(x) lies in the region close to 0 and 1 

[33]. The segment (0, 1) is divided and pre-computed values are stored in ROM1. 

LFSR1 is used to provide the address values to this ROM. The first sub segment 

near zero is further divided and its pre-computed values are stored in ROM2. This 

process is repeated 5 times to get enough resolutions for the region close to zero. 

The last sub segment close to one is also divided to account for non linearities in the 

region close to one.  

 

The function G(x) is relatively straight-forward. LFSR7 is used to provide the address 

values for this ROM. Pre-computed values of the Cos function are stored in the 

ROM. Owing to the symmetric properties of Cos function only quarter of the points 

are stored thereby reducing the ROM size by 75 %. Multiplication by √2 is dropped 

from the equation. The reasons are explained below. The Cos ROM is also used to 

produce a sign bit for the multiplier.  

 

The outputs from the two functions are multiplied to obtain the final result.  The result 

is presented in 2’s complement form when the sign is 1.  

 

Central limit theorem states that given a sequence of realizations of independent and 

identically distributed random variables x1, x2, to xn with unit variance and zero 

mean, the distribution of: (x1 + x2 + ... + xn) / √n tends to be normally distributed as n 

→ ∞ [33]. If n is equal to two, then the central limit theorem will require division by √2, 

which is not easy to implement in hardware. Fortunately, since computation of G(x) 

involves a multiplication by √2, this multiplication is in effect cancelled by the 

subsequent division, so it can be removed from both places in the implementation 

[33]. 
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Figure 3.6. RTL view of the noise generator 
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Figure 3.6 above shows the RTL view of the white noise generator implemented in 

the FPGA. The probability density function of the generated noise is shown in Figure 

2.7 in the previous chapter. The ‘mismatch’ between the samples near zero can be 

minimized by having more resolutions in the Log ROM and/or Cos ROM. The results 

can also be improved by accumulating more samples in the accumulator block (by 

increasing ‘n’ in the central limit theorem). 

 

The output from the linear feedback shift registers are random in nature and are 

uniformly distributed. The Box-Muller method converts this uniformly distributed noise 

to a normal distributed noise with mean zero and standard deviation one. Therefore, 

this method can only produce Gaussian white noise. If a different distribution is 

required, then this method is not ideal.  

 

It is possible to replace this architecture by one multi-bit LFSR with large number of 

shift registers addressing a RAM the memory content of which determines the 

distribution of the output signal [47]. The advantage of this method is that any 

distribution is possible. The user defined distribution can be stored in this memory by 

the controlling processor. For Gaussian distribution, the RAM is filled by the inverse 

of the normal cumulative distribution for mean zero and standard deviation one.  

 

3.6 Pulse Generator  

 

For a pulse generator shown in Figure 3.7 below, the waveform is generated by 

mathematical means. The output of the phase accumulator is not truncated. The 

ramp waveform output of the phase accumulator is converted to a pulse by using 

comparators, multipliers and a state machine.  

 

A pulse waveform has four transition points, low level to rising edge, rising edge to 

high level, high level to falling edge and falling edge to low level. These transition 

points correspond to four different values on the phase accumulator output slope. 

Four comparators are used to compare the output of the phase accumulators with 

the four transition points. A state machine then uses the output of the comparators to 

output a pulse waveform and a multiplying factor. 
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Figure 3.7. RTL view of the pulse generator 
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State machine conditions: 

 If the phase accumulator output is less than the first transition point, then 

output is low and multiplying factor is equal to zero.  

 If the phase accumulator output is more than the first transition point and less 

than the second transition point, then output is the difference between the 

phase accumulator output and the second transition point and multiplying 

factor is equal to the rise-time control word.  

 If the phase accumulator output is more than the second transition point and 

less than the third transition point, then output is high and multiplying factor is 

equal to one.  

 If the phase accumulator output is more than the third transition point and less 

than the fourth transition point, then output is the inverse of the difference 

between the phase accumulator output and the third transition point and 

multiplying factor is equal to the fall-time control word.  

 If the phase accumulator output is more than the fourth transition point, then 

output is low and multiplying factor is equal to zero.         

 

The resultant pulse output has fixed slope. This is then multiplied with the multiplying 

factor to give pulse with user defined rise and fall time. 

 

Pulse period is defined by the frequency control word. All other pulse parameters, 

delay, width, rise time and fall time is controlled by defining the four transition points 

and the rise time and fall time control words all of which is set by the controlling 

processor.  

 

It is also very easy to introduce pulse related modulation in this architecture. Pulse 

width modulation is achieved by adding the modulation generator output (pulse width 

deviation is set in the modulation multiplier) to the third and fourth transition points.  

Pulse delay modulation is achieved by adding the modulation generator output (pulse 

delay deviation is set in the modulation multiplier) to all four transition points. 

Amplitude, frequency and phase modulation is still performed in the same way as in 

a conventional DDS architecture. 

 

The pulse generator is still essentially a DDS system and therefore the issue of jitter 

needs to be dealt with. Tektronix application note [48] explains the effects of 

sampling on edge detection as shown in Figure 3.8. The same principle applies here. 
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The edge time of the pulse waveform needs to be long enough to have a few 

samples of the waveform. If the edge contains five samples of the waveform, the 

edge time is accurately reconstructed by the filter. The reconstruction filter will join 

the samples in a linear fashion provided that the bandwidth of the filter is greater than 

the maximum pulse frequency and less than half the sampling rate of the clock 

frequency. 

 

For a minimum edge time of 5 ns, the DDS clock frequency should be 800 MHz to 

provide five samples of the waveform on the pulse edge. It is not possible to run the 

FPGA core at this frequency. However multiple DDSs could be implemented running 

at a lower frequency and then their output could be multiplexed to produce the 

samples at the higher frequency before being sent to the DAC. The Low Voltage 

Differential Signal (LVDS) multiplexing transmitter could run at 840 MHz in a low cost 

FPGA and therefore this is an entirely feasible low-cost FPGA solution.  

  

 

Figure 3.8. Effect of sampling on edge detection [48] 

 

3.7 Arbitrary Waveform Generator 

 

As mentioned earlier, in a true variable clock architecture, where every stored sample 

in the memory is generated at clock rate, there is no jitter. The drawback of this 
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method is that for a complex arbitrary waveform which is defined by lots of points, the 

maximum frequency that is achievable is limited. For an arbitrary waveform defined 

by 256 points, the clock frequency would need to be 12.8 GHz to achieve a 

maximum frequency of 50 MHz. This is prohibitively large. The maximum realistic 

clock frequency for a low-cost FPGA design using lots of multipliers and a fair 

amount of memory is 250 MHz. 

 

It could be argued that if a DDS arbitrary waveform generator distorts the waveform 

at higher frequencies as a result of skipped points, a true arbitrary generator 

implemented in a low-cost FPGA cannot output a fairly complex arbitrary waveform 

for any more than 1 MHz output frequency. Moreover, in a true arbitrary generator, it 

is not easy to introduce modulation. The clock itself would be required to be 

generated by DDS means to allow modulation.  

 

Therefore, it was decided to stick to the DDS principles for arbitrary waveform 

generation as well. The controlling processor simply loads the user defined arbitrary 

waveform in the phase to amplitude converter memory. Modulation is carried out in 

the normal fashion.  

 

3.8 External Modulation 

 

The external modulating signal is passed through an anti-alias filter before being 

digitised by the ADC. The sampling rate of the ADC is chosen to be much smaller 

than the DDS clock frequency to keep the cost of the ADC down. For a maximum 

modulation frequency of 100 kHz, ADC sampling rate of 7.8125 MHz provides 78 

samples for one cycle of the waveform which is sufficient for many fairly complex 

waveforms. 

 

Two ways of up-converting the sampling rate of the external modulating signal to the 

DDS clock frequency were simulated and their performance and hardware 

complexity were analysed.  

 

The CIC filter method was chosen for this research because of its simplicity. Figure 

3.9 below is the RTL view of the CIC filter based up-converter. The 7.8125 MHz clock 

for the ADC is derived from the 125 MHz DDS clock using a clock divider. Therefore, 

the ADC data is synchronous to the DDS clock frequency. The input data is passed 

through a CIC filter to provide samples at every DDS clock frequency. 
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Figure 3.9. RTL view of the CIC filter 

Clock Enable Generator used 

in Comb Section 

Comb Section Integrator Section 
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A third order CIC filter with differential delay of one, up-converting the sampling rate 

from 7.8125 MHz to 125 MHz for a pass-band frequency of 100 kHz would provide 

alias or image attenuation of more than 100 dB [8].  

 

For a CIC filter of order N, differential delay M, and rate change R, the number of 

output bits is equal to  

 

Bout = Bin + N * log 2 (R * M)                 (3.5)  

 

Where Bout is the number of output bits and Bin is the number of input bits. Therefore, 

the bit growth is 12 bits. For a 10-bit ADC this implies that all the additions and 

subtractions in the CIC filter should be carried out in 22 bits. The output of the CIC 

filter is truncated to 16 bits before being used as external source input in the 

‘modulation generator’. The number of bits in the CIC filter could have been reduced 

by pruning techniques documented in [8] but this was not necessary. The FPGA had 

no problem performing 22-bit arithmetic at 125 MHz. 

 

The CIC filter does not have a wide flat pass-band. But for a 100 kHz pass-band at 

7.8125 MHz sampling rate, the droop in amplitude is only 0.01 dB [8]. Therefore, 

there was no need for any compensation. 

 

3.9 Trigger Uncertainty Compensation 

 

When external signal is used to trigger the generation of waveform, the time between 

the start of the trigger and its registration on the next clock event is measured. 

 

The trigger signal is connected to the carry input of a logic element block in the 

FPGA. The carry out from the Logic Element (LE) is connected to the carry in of the 

following logic element and this process is continued for a number of logic elements 

to form a delay chain. Each of the logic elements is configured to perform addition of 

‘0’ and ‘1’ and the carry input. The result is registered. When the trigger is low, the 

register output is high. When the trigger is high, the output is low and the carry 

propagates through. The number of low register outputs on the next clock cycle is a 

measure of the time between trigger arrival and clock. 
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Figure 3.10. RTL view of the trigger uncertainty compensation block 

 

Figure 3.10 above is the RTL view of the delay chain implemented in the FPGA to 

measure trigger uncertainty. The carry-in-carry-out propagation delay for the chosen 

FPGA was 60 ps approximately. Therefore, trigger uncertainty could theoretically be 

reduced from 1 clock period to 60 ps.  

 

There are 16 logic elements in a LAB. The delay chain extends beyond many LABs. 

The propagation delay between logic elements within a LAB is different from 

propagation delay between LABs which could be as long as 180 ps. This difference 

is compensated by having two delay chains [15]. The trigger input to the second 
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delay chain is delayed slightly by passing through some combinational logic. This 

delay will make the trigger cross the LABS at different times in the two chains. This 

time difference is then used to actually measure and sub-divide LAB propagation 

delay in multiples of LE propagation delay.  

 

The carry chain propagation delay of each LE will vary with temperature and process 

variations. In order to compensate for this the delay line is made long enough to 

allow two clock edges to happen. The clock period is divided by the number of low 

register outputs between the two clock edges to give a measure of the delay of each 

LE. This is measured continuously and therefore account for temperature variations. 

256 logic elements in the delay chain were found to be enough to accommodate two 

clock edges for a clock frequency of 200 MHz. 

 

Instead of relying on the FPGA fitter tool to place the logic elements in the FPGA, the 

logic elements are placed manually next to each other in the FPGA chip planner as 

shown in Figure 3.11 below. This is done to make the behaviour of the delay line 

predictable and repeatable in a production environment. 

 

Once the trigger uncertainty is measured, it is multiplied by the frequency control 

word to convert it into a phase value. This is then subtracted from the output of the 

phase accumulator to provide uncertainty compensation of the trigger.  

 

The process of the calculation and compensation of trigger uncertainty introduces 

trigger latency, the time when the trigger arrives to the time when the trigger is 

actually used. This latency is several clock periods long. Trigger latency is not known 

to be a problem as long as it is fixed. 
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Figure 3.11. Trigger delay line placement in the FPGA 

Delay Line 1 

Delay Line 2 
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3.10 FPGA Microprocessor Interface 

 

A microcontroller communicates with the FPGA to set carrier frequency control word, 

modulation frequency control word, modulation depth or deviation control word, 

carrier amplitude control word, etcetera. The controlling processor is memory 

mapped to the FPGA. The communication does not have to be very fast. These 

control words do not have to be changed on the fly.  

 

Figure 3.12. FPGA microprocessor interface  

 

In this research, the selected processor had built in external memory interface which 

was ideal to communicate with the FPGA. Figure 3.12 above shows the connections 

between the processor and the FPGA. The FPGA had its own dedicated chip enable 

from the processor for exclusive communication. When chip enable and write enable 

is low, the processor writes the 16-bit data on the 16-bit bi-directional data bus at the 

address specified by the 8-bit address bus. When chip enable and output enable is 

low, the processor reads the 16-bit data on the 16-bit bi-directional data bus from the 

address specified by the 8-bit address bus.  

 

The 8-bit address bus allows reading and writing of 256 16-bit control words which is 

more than sufficient for this application. The processor reads and writes 

asynchronously to the FPGA. However, the read and write cycles are slow. 

Therefore, it is not difficult to synchronise the control words to the FPGA clock.  
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If the control word that the processor needs to write is more than 16-bit wide which is 

the case for a 48-bit frequency control word for example, the processor sends the 

control word in chunks. In this example, the processor will write to three locations to 

set the frequency control word.   

 

If the individual control words are used immediately, there is a potential of setting 

incorrect frequency momentarily while the processor is updating the frequency 

control word. This could be avoided by having two sets of registers in the FPGA, 

namely buffer registers and active registers. The processor updates the buffer 

registers and the active register is only updated when all buffer registers are updated. 

This allows for glitch-free frequency changes. 

 

When lots of control words define a waveform, which is the case for a pulse 

waveform where period, width, delay, rise and fall times needs to be defined, the 

active registers could be updated only when all the buffer registers update defining 

the waveform is completed. So the waveform would never glitch when any or all of its 

parameters are being changed. This is an advantage and necessary in some critical 

applications. 

 

The interface doesn’t necessarily have to be parallel. It could have been a Serial to 

Parallel Interface (SPI). It just means that the update of waveform parameters would 

have been slow and update of waveform RAM might have been prohibitively slow 

compared to a parallel interface.  

 

This concludes the discussion of various waveform generator sub-systems. 
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Figure 3.13. RTL view of the overall waveform generator  
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3.11 FPGA Synthesis 

 

The previous section charts the design considerations and implementation of the 

waveform generator design. Figure 3.13 above is the RTL view of the complete 

waveform generator. Once the design was verified, it was synthesized using Quartus 

II in a Cyclone III FPGA (EP3C16F484C7). The summary of synthesis is presented in 

Table 3.3 below. 

 

Flow Status Successful - Mon Jan 05 13:59:08 2014 

Quartus II Version 13.1 Build 163 10/23/2013 SJ Web 

Edition 

Revision Name  KTPFunction_Generator_TopLevel 

Top-level Entity Name   KTPFunction_Generator_TopLevel 

Family  Cyclone III 

Device EP3C16F484C7 

Timing Models Final 

Met timing requirements Yes 

Total logic elements 2,772 / 15,408 ( 18 % ) 

Total combinational functions 1,489 / 15,408 ( 10 % ) 

Dedicated logic registers 2,466 / 15,408 ( 16 % ) 

Total registers 2466 

Total pins 102 / 347 ( 29 % ) 

Total virtual pins 0 

Total memory bits 278,528 / 516,096 ( 54 % ) 

Embedded Multiplier 9-bit elements 15 / 112 ( 13 % ) 

Total PLLs 2 / 4 ( 50 % ) 

Table 3.3. Quartus flow summary for the generator project  

 

Following synthesis, the design was fitted in the FPGA. The design was analysed to 

check whether it meets the timing requirements or not.  Finally, programming files 

were generated to allow programming or configuring the device. All of these 

procedures were performed by the Quartus II software tool provided by Altera.  

 

The design was also analysed to find out how much power it will consume using 

‘Power Play Power Analyzer Tool’ in Quartus II. The results were then passed on to 

the analogue design engineer in the company for power supply designs.  
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A schematic was then prepared for the FPGA. Input and output signals were 

assigned to various pins in the FPGA. Synthesis was carried out again to check the 

validity of the assignments. Figure 3.14 below shows the pin assignment of the 

signals.  

 

 

Figure 3.14. FPGA pin assignment – top level view 

 

Schematic was prepared so that the FPGA can be configured in Joint Test Action 

Group (JTAG) programming mode using ‘Altera Universal Serial Bus (USB) Blaster’ 

during the development stages and in Passive Serial (PS) programming mode via the 

micro controller during production. The schematic was prepared using configuration 

application note [49] provided by Altera. Finally, FPGA interface to micro controller 

and other analogue hardware were finalised. 

 

After preparing the FPGA schematic for the instrument, all the different sections, 

namely the micro controller based control section, the analogue output hardware and 

the FPGA section were integrated to prepare the complete waveform generator 

schematic. The Printed Circuit Board (PCB) layout was then prepared and the 
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prototype was built, followed by the testing and validation of the functional prototype. 

The generator prototype board is shown in Figure 3.15 below. 

 

Figure 3.15. Waveform generator prototype board 

 

3.12 Results 

 

ModelSim provided by Altera was used to simulate and debug the VHDL design. The 

simulation results of some design are presented here. 

 

Figure 3.16 below shows the output waveform from the phase accumulator. It can be 

seen that for some arbitrary input value, the output of the phase accumulator 

increases linearly on the rising edge of every DDS clock (8 ns in this case). When the 

accumulator crosses its maximum value (the accumulator produces a carry output 

signal at this point), it overflows and starts increasing again from start.  
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Figure 3.17 below shows the output from the noise generator. It can be seen that for 

every clock input the white noise generator produces a random output. 

 

The simulation results for the pulse generator are shown in Figure 3.18 below. The 

frequency control word, four comparator control words and rise and fall edge control 

words were set to produce a pulse waveform of period 1 us, delay of 100 ns, width of 

400 ns, rise time of 100 ns and fall time of 150 ns. The output shown in the 

simulation results verify the settings. 

 

The overall design and all the generator sub system were verified in a similar fashion 

using ModelSim simulation and/or Quartus simulation tools. 
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Figure 3.16. Simulation results for the carrier phase accumulator 
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Figure 3.17. Simulation results for white noise generator 
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Figure 3.18. Simulation results for pulse generator 
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The output waveforms from the prototype board were analysed. Results are 

presented in this section. 

 

 

Figure 3.19. Spectrum of a 25.01 MHz un-modulated DDS sine waveform 

 

The spectrum of a 25.01 MHz sine wave generated by the design with 200 MHz DDS 

clock frequency and 32 bits in the phase accumulator and measured using an Anritsu 

MS2602A [87] spectrum analyser is shown in Figure 3.19 above. The result is 

presented to demonstrate spectral purity of the sine waveform output. It was 

observed that the amplitude of the output waveform affected the DDS spur levels. 

When the amplitude was at its maximum or near maximum the spur levels were 

higher. Reducing the amplitude by 3 dB reduces the spur levels by approximately   

10 dB. This could be attributed to the non-linear characteristic of the DAC.  

 

The following figures are measured output from a Tektronix MSO2012 [88] 

oscilloscope where the waveforms are generated by the prototype board. Figure 3.20 

below shows a 1 MHz DDS sine waveform in the time domain. This demonstrates 

that the instrument is capable of generating sinusoidal waveforms. The frequency of 

the sine wave can be set from 1 uHz to 50 MHz. 
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Figure 3.20. Scope measurement - DDS sine 

 

Figure 3.21 below shows a 1 MHz pulse waveform with 50 % duty cycle and rise and 

fall time set to 100 ns. The aim is to show that the generator can output high 

frequency pulse waveforms where the parameters of the pulse waveforms can be set 

independently. Pulse frequency can be as high as 50 MHz. All pulse timing 

parameter settings are glitch free. 

 

 

Figure 3.21. Scope measurement - DDS pulse 

 

Figure 3.22 below shows a 1 MHz sinc waveform. The number of zero crossings is 

set to 25. Sinc waveform is one of a number of built-in arbitrary waveforms that the 

generator can output immediately for the convenience of the user. 
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Figure 3.22. Scope measurement – DDS sinc 

 

Figure 3.23 below shows a 1 MHz cardiac waveform. This is to show that any 

waveform which has a linear and periodic phase can be stored in the phase to 

amplitude convertor RAM and played back using direct digital synthesis. The 

maximum frequency of an arbitrary waveform can be 10 MHz.  

 

 

Figure 3.23. Scope measurement - DDS cardiac 

 

Figure 3.24 below shows a 1 MHz sine waveform being amplitude modulated by a  

10 kHz sine waveform. Amplitude depth is set to 50 %. This result is a functional 

verification of amplitude modulation performance of the generator. Modulation 

frequency could be varied from 1 uHz to 1 MHz.  
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Figure 3.24. Scope measurement – amplitude modulation 

 

Figure 3.25 below shows a 1 MHz sine waveform being amplitude modulated by a  

10 kHz sine waveform. Amplitude depth is set to 50 %. Here the amplitude is entirely 

controlled by the modulating waveform. This result is a functional verification of 

suppressed carrier amplitude modulation performance of the generator.  

 

 

Figure 3.25. Scope measurement – suppressed carrier amplitude 

modulation  

 

Figure 3.26 below shows a 10 kHz sine waveform being frequency modulated by a   

1 kHz sine waveform. Frequency deviation is set to 5 kHz. Frequency modulation 

could be performed on a number of carrier waveforms included pulse. The user can 

set whether the pulse width varies or stays fixed when the frequency or period of the 

pulse waveform is modulated. 
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Figure 3.26. Scope measurement – frequency modulation 

 

Figure 3.27 below shows a 10 kHz sine waveform being phase modulated by a 1 kHz 

sine waveform. Phase deviation is set to 180 degrees. This result is a functional 

verification of phase modulation performance of the generator. 

 

 

Figure 3.27. Scope measurement – phase modulation 

 

Figure 3.28 below shows FSK modulated sine waveform. When the trigger signal is 

high, output is 20 kHz. When trigger is low, output is 1 MHz. Trigger rate is set to      

1 kHz. This result shows that the generator is capable of instantaneous frequency 

switching. The trigger for switching the frequency could be internally generated within 

the instrument or could be provided by the user at one of the generator inputs. 
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Figure 3.28. Scope measurement – frequency shift keying 

 

Figure 3.29 below shows a 1 MHz pulse being pulse width modulated by a 1 kHz 

sine waveform. Pulse width deviation is set to 100 ns. This demonstrates the pulse 

width modulation capabilities of the instrument. Pulse delay modulation is also 

possible. 

 

 

Figure 3.29. Scope measurement – pulse width modulation 

 

Figure 3.30 below shows a triggered 1 MHz pulse waveform. Pulse count is set to 

three. On every trigger event three pulses of period 1 us are generated. The output 

then remains low until the next trigger event which starts the waveform generation 

again. The trigger rate in this instance is set to 100 kHz. This result shows that the 

instrument is capable of controlling the start and stops of the generation of waveform 

precisely and can do so on a trigger event. The trigger uncertainty is also 

compensated for in the generator.  
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Figure 3.30. Scope measurement – triggered pulse 

 

Figure 3.31 below shows white noise output. The crest factor is approximately 3.1. 

This validates the noise generator specification of the instrument.  

 

 

Figure 3.31. Scope measurement – white noise 

 

3.13 Conclusion 

 

The aim of this research was to develop a versatile waveform generator with 

specification that matches or exceeds all competition. The research successfully 

provides a high-end generator with comprehensive modulation capabilities in the 

company’s product range.  

 

This chapter concludes the low-cost signal generator FPGA design. 
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4 Digital Signal Processing Based Radio Frequency Spectrum 

Analysis 

 

4.1 Introduction 

 

This chapter provides an overview of digital signal processing based radio frequency 

spectrum analysis. Most existing spectrum analysers are analogue in nature and their 

complexity increases with frequency. The aim of this research was to present a low 

cost digital solution and its subsequent implementation. 

 

One of the main challenges presented in the development of the spectrum analyser 

was to remove images associated with the down conversion of RF input frequency to 

some intermediate frequency for further processing. 

 

In the beginning, it was proposed that frequency down conversion from RF to some 

sensible intermediate frequency would be done using two mixing stages. The first 

mixing stage would be similar to a super heterodyne architecture [5] with (low IF) and 

the second mixing stage would be based on a quadrature receiver architecture with I 

and Q signals. Block diagram of the initially proposed architecture is shown in Figure 

4.1 below. 

 

 

Figure 4.1. Block diagram of the initially proposed RF architecture 

 

4.2 Literature review of shifting algorithms 

 

As mentioned earlier, removing images and spurious responses using filters 

associated with a low IF is not a trivial task. Therefore, digital techniques were 
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considered. It was proposed that by shifting LO frequencies the images can be 

distinguished from real signals and hence can be removed. A literature search was 

carried out to find relevant published articles based on this shifting algorithm. The 

findings of this review are briefly summarised here. 

 

The old edition of the Agilent application note on spectrum analysis [50] was found to 

be the first document to explain how shifting the LO frequency can distinguish 

between a wanted and an image response. If there is a response generated by a LO 

frequency, the actual signal could either be at LO – IF or LO + IF. If the LO frequency 

is now shifted higher in frequency by twice IF and the response is still there, then the 

actual signal is at LO + IF, otherwise, it is at LO – IF. Similarly, if the LO frequency is 

shifted lower in frequency by twice IF and the response is still there, then the actual 

signal is at LO – IF, otherwise, it is at LO + IF. 

 

The patent by Winter [51] is based on the principle that if the LO frequency is shifted 

by an amount (or in other words the IF is shifted by an amount), the actual response is 

also shifted by the same amount, whereas the image response will shift by a different 

amount and hence can be identified and removed. However, the drawback is that two 

IF channels are required. 

 

Koshuge [52] overcomes the two IF channels problem by shifting the LO frequency by 

twice IF. The same IF channel can then be used. For a signal at particular sweep 

span F1 to F2, the local oscillator is shifted from F1 + FI to F2 + FI (where FI is the 

intermediate frequency). The spectrum is generated for this condition. The local 

oscillator is then shifted from F1 – FI to F2 – FI and a second spectrum is generated. 

For these two spectrums, the IF is the same, but the images fall at different places. 

The two spectrums are then compared and for each frequency point, the minimum of 

the two data values is selected. 

 

For any shifting algorithm, if the shift is  and there are two real signals that are 

situated at 2 apart from each other, then the shifting algorithm will not be able to 

remove all the images. This is because the generated images fall at the same 

frequency point and hence cannot be distinguished. This problem was claimed to be 

overcome by Miyauchi [53]. 
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Miyauchi used more than one IF and for each IF two spectrums were generated. All 

the spectrums are then compared and for each frequency point in the spectrum, the 

lowest data value is selected [53]. 

 

This method reduces the possibility of failure of image detection and removal but does 

not completely eliminate it. If the two IFs used are IF1 and IF2 respectively, this 

method will not be able to get rid of image responses in the presence of four or more 

signals where the first and fourth signals are 4 x IF1 apart, the second and the third 

signals are 4 x IF2 apart and the first and the second signals and the third and fourth 

signals are 2 x (IF1 – IF2) apart. In complex digital modulation schemes, where there 

are lots of frequency components in a spectrum, a shifting algorithm will not provide 

the reliability of an image free spectrum response. Moreover, the sweep time 

increases by a factor of 2 for each IF which is not ideal.  

 

4.3 Quadrature image reject receiver architecture 

 

Apart from the drawbacks outlined above, in any shifting algorithm, multiple sweeps 

have to be carried out which makes it unsuitable for transient signals. Therefore, the 

initial proposed architecture was revised. It was suggested that instead of using two 

mixing stages, the input range could be divided. A similar architecture to what was 

proposed earlier could then be used for the lower range, but using a high IF instead of 

a low IF followed by quadrature down conversion. Image spurious associated with a 

high IF then could easily be removed using a fixed low-pass filter. For the higher 

range, quadrature down conversion could be directly used. Block diagram of the 

revised architecture is shown in Figure 4.2 below. 

 

 

Figure 4.2. Block diagram of the revised RF architecture 
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In a quadrature architecture (also known as image rejection mixer architecture), the 

images are removed by adding the down converted I and Q (In-phase and 

Quadrature-phase) signals one of which is phase shifted by 90 degrees [54]. RF 

frequencies are directly converted to base-band (zero IF). However, this introduces 

DC offset problems [55]. Therefore, low IF is preferred. However, gain and phase 

imbalances in the I and Q channels means the image rejection achieved by a 

quadrature receiver is limited to 40 dB [56]. This is improved by applying 

compensation for gain and phase imbalances. The novel scheme proposed in this 

chapter to remove image frequencies is an original contribution of this research. 

 

4.4 IQ imbalance compensation literature review 

 

A literature search was carried out to find relevant published articles based on IQ 

imbalance compensation using digital techniques. Lauder also reviewed some 

published articles on image rejection mixers and algorithms for adjusting IQ imbalance 

[73]. 

 

The algorithms could roughly be divided in two broad categories. In one category, the 

gain and phase correction parameters are calculated by using a test signals and then 

applied to the real signal, the gain and phase parameters being calibrated periodically 

to account for their drifts [67]. This can be described as the calibration method. In the 

other category, the parameters are adjusted ‘on the fly’ by correlating the two 

channels and converging it to zero [68]. This method is also described as ‘blind 

compensation’ method [69]. In the calibration method, an external signal source is 

required.  

 

As Lauder mentioned in his review, most of the compensation algorithm concentrate 

on a single frequency (or on a very narrow frequency band) [73]. The requirement for 

a spectrum analyser is somewhat different. For a spectrum analyser, it will probably 

be necessary to divide the frequency range into a large number of sub-bands 

(possibly hundreds), not necessarily of equal width. Each sub-band would need its 

own parameters for gain mismatch and especially phase mismatch. These parameters 

probably need to be stored and some default values may need to set during 

manufacture. These parameters can then be periodically updated to account for any 

variations in the gain and phase imbalances. 
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Lerstaveesin’s [60] method is very attractive where the gain and phase imbalance are 

estimated by cross-correlation of I and Q and subtracting the auto-correlation of Q 

from the auto-correlation of I respectively. However, the calculated imbalance is just 

an estimate and therefore the process is repeated iteratively. The converging nature 

of the algorithm ensures that the errors get smaller in each successive step. In order 

to achieve image rejection of the order of 60 dB this iterative process has to be carried 

for a very long time. In a spectrum analyser situation, the process has to be repeated 

for a large number of sub-bands and then repeated periodically to account for 

temperature drifts. The long computation time cannot be justifiable. The process also 

assumes that the imbalances are small and therefore the errors will not converge if 

they are large. 

 

Instead of estimating the imbalances using an iterative process, it should be possible 

to calculate it directly.  The direct method fails to work in the presence of noise. The 

effect of noise can be minimised by averaging process. However, the number of 

samples that is needed for averaging increases exponentially as the signal to noise 

ratio deteriorates, which makes this an impractical solution.  

 

Glas [67] presents an alternative solution to digitally measure gain and phase 

imbalances and compensate for them. This method utilises Weaver architecture. A 

particular advantage of this method is that the base-band signals used for calculating 

imbalances could be filtered easily using low-pass filters. This addresses the issue of 

noise and improves the accuracy of the calculation.  

 

4.5 IQ imbalance compensation within the IF pass-band 

 

Any compensation method assumes that the differential phase error and / or 

differential gain error of the two filters is constant with frequency across the pass-band 

of the filters and well into the stop-band. In practice it varies with IF frequency and 

compensation only achieves maximum image rejection at one point in the IF filter 

pass-band. Hence some sort of algorithm is required to compensate for the variation 

of gain and phase error in the IF pass-band. 

 

Xing et al [70] proposed the use of digital Finite Impulse Response (FIR) filters to 

compensate for minor I/Q mismatch in direct-conversion receivers. A similar structure 

could be applied in a spectrum analyser application. The variation of gain and phase 

error variations within the IF pass-band is only of concern for wider resolution band-
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widths where the noise floor is quite high (the image only needs to be rejected down 

to the noise floor). A first order FIR filter compensation should be adequate.  

 

The aim is to make the gain and phase imbalance at all frequencies across the IF 

pass-band to be equal to the gain and phase imbalance at IF. The gain and phase 

imbalance is measured at equally spaced frequencies across the IF pass-band.  This 

is then normalised with respect to the gain and phase imbalance at IF and then used 

to compute inverse Fast Fourier Transform (FFT) which provides the coefficients of 

the FIR filter [71].  

 

Using this method, the frequency response over the entire IF pass band is deliberated 

by performing interpolation of the sampled frequency response [71]. The ripple error in 

between the sampled frequencies is smoothed out by using window functions.    

 

4.6 Modeling of IQ imbalance 

 

In a conventional quadrature receiver shown in Figure 4.3 below, the RF input is 

multiplied by two sinusoidal LO input signals with equal amplitude and with a 90 

degree phase difference. 

 

 

Figure 4.3. Quadrature frequency down conversion model 

 

Let the RF input be defined as ARFsin(RFt+RF), where A is the amplitude,  is the 

frequency and is the initial phase. Similarly, the two sinusoidal LO input signals can 

be defined as ALOsin(LOt+LO) and ALOcos(LOt+LO) respectively. This is only true in 
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ideal situation. In reality there always exist an imbalance in the amplitudes and phase 

of the two LO input signals.   

 

The output of the mixers will be ARFsin(RFt+RF) x ALOsin(LOt+LO)  and 

ARFsin(RFt+RF) x ALOcos(LOt+LO). Let these outputs be defined as IIDEAL and QIDEAL 

respectively. Therefore,  

 

IIDEAL = ARFsin(RFt+RF) x ALOsin(LOt+LO)      (4.1)   
 

QIDEAL = ARFsin(RFt+RF) x ALOcos(LOt+LO)                                                           (4.2)        
 

Let be the amplitude imbalance and  be the phase imbalance in the LO input 

signals. Therefore the LO signals will be ALOsin(LOt+LO) and 

ALO(1+)cos(LOt+LO+) respectively.  

 

The output of the mixers will now be  

 

IIDEAL = ARFsin(RFt+RF) x ALOsin(LOt+LO)      (4.3)  
 

QREAL = ARFsin(RFt+RF) x ALO(1+)cos(LOt+LO+)     (4.4) 
 

In this model, imbalances are placed in the Q channel as shown in Figure 4.4 below. 

So any compensation applied to this model will try to match the gain and phase of Q 

channel to that of the I channel. 

 

 

Figure 4.4. Quadrature frequency down conversion model with all 

gain/phase imbalances placed in the Q channel 
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From trigonometric identities it is known that 

 

cos(x+y) = cos(x)cos(y) - sin(x)sin(y)       (4.5)  

 

Hence, QREAL can be expressed as  

 

QREAL = ARFsin(RFt+RF) x ALO(1+){cos(LOt+LO)cos()-sin(LOt+LO)sin()} (4.6) 



 QREAL = ARFsin(RFt+RF) x (1+) {ALOcos(LOt+LO)cos() -     

     ALOsin(LOt+LO)sin()}   (4.7) 
 

 QREAL = (1+){ARFsin(RFt+RF)x ALOcos(LOt+LO)cos() –  

  ARFsin(RFt+RF) x ALOsin(LOt+LO)sin()}    (4.8) 
 

ARFsin(RFt+RF) x ALOcos(LOt+LO)  and ARFsin(RFt+RF) x ALOsin(LOt+LO) can be 

replaced by QIDEAL and IIDEAL respectively. 

 

 QREAL = (1+){QIDEALcos() - IIDEALsin()}      (4.9) 
 

QIDEAL = QREAL / ( cos() (1+) ) + IIDEAL sin() / cos()              (4.10) 
 

Therefore as shown in Figure 4.5 below, gain and phase imbalance could be 

compensated by multiplying Q channel with 1/(cos()(1-)) and I channel with 

sin()/cos() respectively.  

 

 

Figure 4.5. Compensation model for gain and phase imbalances 
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4.7 Modeling of imbalance computation by correlation method 

 

QREAL = (1+){QIDEALcos() - IIDEALsin()}                (4.11) 

 

Auto-correlation is performed on both sides of the equation (* means correlation)  

 

QREAL * QREAL = (1+){QIDEALcos() - IIDEALsin()} *      

  (1+){QIDEALcos() - IIDEALsin()}               (4.12) 

 

QREAL * QREAL = (1+)2{(QIDEAL * QIDEAL)cos2() + (IIDEAL * IIDEAL)sin2() -   

  2(IIDEAL * QIDEAL) sin()cos()}                (4.13)  

 

I and Q are equal orthogonal signals. Therefore, cross-correlation of IIDEAL and QIDEAL 

is equal to zero and auto-correlation of IIDEAL is equal to the auto-correlation of QIDEAL 

and is equal to the total power in each of the channel [60].  

 

QIDEAL * QIDEAL is replaced by IIDEAL * IIDEAL and IIDEAL * QIDEAL is replaced by 0. 
 

QREAL * QREAL = (1+)2{(IIDEAL * IIDEAL)(cos2() + sin2())}              (4.14) 
 

From trigonometric identities, it is known that  

 

cos2() + sin2() = 1                   (4.15) 
 

Therefore,  

 

QREAL * QREAL = (1+)2(IIDEAL * IIDEAL)                (4.16) 
 

1+ = [QREAL * QREAL) / (IIDEAL * IIDEAL)]1/2                (4.17) 
 

Cross-correlation of IIDEAL and QREAL produces the following equation 

 

IIDEAL * QREAL = IIDEAL * [(1+){QIDEALcos() - IIDEALsin()}]              (4.18) 
 

IIDEAL * QREAL = (1+)cos()(IIDEAL * QIDEAL) - (1+)sin()(IIDEAL * IIDEAL)            (4.19) 
 

Cross-correlation of IIDEAL and QIDEAL is equal to zero. Therefore, 

 

IIDEAL * QREAL = -(1+)sin()(IIDEAL * IIDEAL)                (4.20) 
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(1+)sin() = -(IIDEAL * QREAL) / (IIDEAL * IIDEAL)               (4.21) 
 

From equations 4.17 and 4.21, it can be easily proved that  

 

1 / (cos()(1+)) =  y / (xy-zz)1/2                  (4.22) 
 

and  

 

sin() / cos() = z / (xy-zz)1/2                   (4.23) 
 

where x is equal to (IIDEAL * IIDEAL), y is equal to QREAL * QREAL) and z is equal to (IIDEAL * 

QREAL). 

 

4.8 Modeling of Weaver architecture 

 

 

Figure 4.6. Block diagram of the Weaver architecture 

 

Once the errors in the I and Q channels are compensated for, image rejection is 

achieved by shifting one of the channel by 90 degrees and adding them together. This 

is in effect the Hartley architecture [57]. The 90-degree phase shift would need to be 

very accurate and frequency independent. This is quite difficult to achieve in the digital 

domain.  
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Another possible solution is to use a second mixing stage to achieve the 90-degree 

phase shift. The intermediate frequency is further down-converted to a lower IF (or 

down to base-band). This is described as Weaver architecture [61], shown in Figure 

4.6 above. There are several advantages of using Weaver architecture over Hartley in 

a FPGA implementation. The down conversion is achieved by using multipliers which 

are readily available in FPGAs. The digital filters would also make use of the 

embedded multipliers and additions in the filters could be performed using logic 

resources.  

 

Assuming that the I and Q signals going into the Weaver architecture are ideal signals 

IIDEAL and QIDEAL are defined in equations 4.1 and 4.2 respectively. Equations 4.1 and 

4.2 could be re-written as follows. 



 IIDEAL = (ARFxALO)x{cos(RFt+RF-LOt-LO) - cos(RFt+RF+LOt+LO)}/2            (4.24) 



 QIDEAL = (ARFxALO)x{sin(RFt+RF+LOt+LO) + sin(RFt+RF-LOt-LO)}/2            (4.25) 
 

The anti-alias filter before the ADC will remove the sum frequency component. 

Therefore,  

 

IIDEAL = (ARFxALO)xcos(RFt+RF-LOt-LO)/2      (4.26) 
 

QIDEAL = (ARFxALO)xsin(RFt+RF-LOt-LO)/2                                                             (4.27)      
 

 IIDEAL = (ARFxALO)xcos((RF-LO)t +(RF-LO))/2               (4.28) 



 QIDEAL = (ARFxALO)xsin((RF-LO)t +(RF-LO))/2                                                   (4.29) 
 

When the local oscillator is tuned to (RF-LO), a response is generated. A response is 

also generated when the local oscillator is tuned to (LO-RF). Therefore, for a signal 

present at RF, the tuning of the local oscillator generates two responses. One of 

these two responses is an image and should be removed. It is assumed that the 

response generated at (RF-LO) is the wanted response and the one generated at 

(LO-RF) is the image response. 

 

Let us define (RF-LO) as IF, (RF-LO) as IF, and (ARFxALO)/2 as AIF respectively.  

 

Then, for wanted response, 
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IWANTED = AIF x cos(IFt+IF)                  (4.30) 
 

QWANTED = AIF x sin(IFt+IF)                                                                                     (4.31) 
 

And for image response,  

 

IIMAGE = AIF x cos(-IFt-IF)                  (4.32) 
 

QIMAGE = AIF x sin(-IFt-IF)                                                                                       (4.33) 
 

From trigonometric identities, it is known that  

 

cos(-a) = cos(a)                                                                                                       (4.34)  
 

and  

 

sin(-a) = -sin(a).                                                                                                       (4.35)  
 

Therefore, 

 

IIMAGE = AIF x cos(IFt+IF)                 (4.36) 
 

QIMAGE = AIF x -sin(IFt+IF)                                                                                     (4.37) 
 

The outputs from the four mixers in the Weaver architecture for wanted response are 

as follows. 

 

II = AIF x cos(IFt+IF) x sin(LO2t)                                                                           (4.38) 
 

IQ = AIF x cos(IFt+IF) x cos(LO2t)                                                                        (4.39) 
 

QI = AIF x sin(IFt+IF) x sin(LO2t)                                                                          (4.40) 
 

QQ = AIF x sin(IFt+IF) x cos(LO2t)                                                                       (4.41) 
 

From trigonometric identities, it is known that 

 

cos(a)sin(b) = (sin(a+b) – sin(a-b)) / 2                                                                    (4.42) 
 
cos(a)cos(b) = (cos(a+b) + cos(a-b)) / 2                                                                 (4.43) 
 
sin(a)sin(b) = (cos(a-b) – cos(a+b)) / 2                                                                   (4.44) 
 
sin(a)sin(b) = (sin(a+b) + sin(a-b)) / 2                                                                     (4.45) 
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Therefore, 

 

 II = AIF x {sin(IFt+IF+LO2t) - sin(IFt+IF-LO2t)} / 2                                          (4.46) 



 IQ = AIF x {cos(IFt+IF+LO2t) + cos(IFt+IF-LO2t)} / 2                                     (4.47) 



 QI = AIF x {cos(IFt+IF-LO2t) - cos(IFt+IF+LO2t)} / 2                                      (4.48) 



 QQ = AIF x {sin(IFt+IF+LO2t) + sin(IFt+IF-LO2t)} / 2                                      (4.49) 
 

The low-pass filters after the mixers remove the sum frequency component. 

Therefore, 

 

II = AIF x {-sin(IFt+IF-LO2t)} / 2                                                                             (4.50) 
 

IQ = AIF x {cos(IFt+IF-LO2t)} / 2                                                                            (4.51) 
 

QI = AIF x {cos(IFt+IF-LO2t)} / 2                                                                            (4.52) 
 

QQ = AIF x {sin(IFt+IF-LO2t)} / 2                                                                           (4.53) 
 

Let us define (LO2-IF) as IF2. Therefore, the four outputs can be written as 

 

II = AIF x {sin(IF2t-IF)} / 2                                                                                       (4.54) 
 

IQ = AIF x {cos(IF2t-IF)} / 2                                                                                    (4.55) 
 

QI = AIF x {cos(IF2t-IF)} / 2                                                                                    (4.56) 
 

QQ = AIF x {-sin(IF2t-IF)} / 2                                                                                  (4.57) 
 

It should be noted here that if IF is equal to LO2+IF2, then also it produces the 

correct second IF. Therefore, the two low-pass filters are required before the mixers to 

provide rejection of this second image.  

 

II is subtracted from QQ to produce IWANTED and IQ and QI are added to produce 

QWANTED 

 

IWANTED = AIF x sin(IF2t-IF)                                                                                     (4.58)  
 

QWANTED = AIF x cos(IF2t-IF)                                                                                  (4.59) 
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4.9 Modeling of image rejection in Weaver architecture 

 

The outputs from the four mixers in the Weaver architecture for image response are 

as follows. 

 

II = AIF x cos(IFt+IF) x sin(LO2t)                                                                           (4.60) 
 

IQ = AIF x cos(IFt+IF) x cos(LO2t)                                                                        (4.61) 
 

QI = AIF x -sin(IFt+IF) x sin(LO2t)                                                                         (4.62) 
 

QQ = AIF x -sin(IFt+IF) x cos(LO2t)                                                                      (4.63) 
 

Applying equations 4.42, 4.43, 4.44 and 4.45, equations 4.60, 4.61, 4.62 and 4.63 can 

be re-written as follows.  

 

 II = AIF x {sin(IFt+IF+LO2t) - sin(IFt+IF-LO2t)} / 2                                          (4.64) 



 IQ = AIF x {cos(IFt+IF+LO2t) + cos(IFt+IF-LO2t)} / 2                                     (4.65) 



 QI = AIF x {cos(IFt+IF+LO2t) - cos(IFt+IF-LO2t)} / 2                                      (4.66) 



 QQ = AIF x {-sin(IFt+IF+LO2t) - sin(IFt+IF-LO2t)} / 2                                     (4.67) 
 

The low-pass filters after the mixers remove the sum frequency component. 

Therefore, 

 

II = AIF x {-sin(IFt+IF-LO2t)} / 2                                                                             (4.68)  
 

IQ = AIF x {cos(IFt+IF-LO2t)} / 2                                                                            (4.69) 
 

QI = AIF x {-cos(IFt+IF-LO2t)} / 2                                                                          (4.70) 
 

QQ = AIF x {-sin(IFt+IF-LO2t)} / 2                                                                          (4.71) 
 

II is subtracted from QQ to produce IWANTED and IQ and QI are added to produce 

QWANTED 

 

IWANTED = II – QQ                                                                                                     (4.72) 
 
QWANTED = IQ + QI                                                                                                   (4.73) 
 

 IWANTED = 0                                                                                                          (4.74)  



 QWANTED = 0                                                                                                        (4.75)  
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Therefore, the Weaver architecture rejects the image response. 

 

4.10 Modeling of Weaver base-band architecture  

 

The wanted I and Q signal outputs from the Weaver architecture could be converted 

down to base-band using a Digital Down Conversion (DDC) architecture for further 

processing [17]. Resolution band width filters can then be implemented using low-

pass filters. However, it is also possible to convert the I and Q signals directly down to 

base-band in the Weaver architecture itself. Doing this has several advantages. The 

two low-pass filters before the mixers are no longer required as there is no second 

image. The four low-pass filters after the mixers also functions as RBW filters and 

therefore there is no need for any additional filtering thereby reducing design 

complexity. Weaver base-band architecture is shown in Figure 4.7 below. 

 

 

Figure 4.7. Block diagram of the Weaver base-band architecture 

 

4.11 Modeling of imbalance computation using Weaver base-band 

architecture 

 

The correlation method of direct computation of gain and phase imbalances does not 

work well in the presence of noise.  The effect of noise can be minimised by averaging 

process. However, the number of samples that is needed would have to increase 

exponentially as the signal to noise ratio deteriorates, which makes this an impractical 

solution.   
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An alternative solution is to calculate imbalances using Weaver base-band 

architecture. For imbalance calculation, uncompensated I and Q signals are inputs to 

the Weaver base-band architecture.  

 

IIDEAL = AIFcos(IFt+IF)                  (4.76) 
 

QREAL = AIF(1+)sin(IFt+IF+)                (4.77) 
 

The four outputs from the mixers are 

 

II = AIFcos(IFt+IF) x sin(IFt)                 (4.78) 
 

IQ = AIFcos(IFt+IF) x cos(IFt)                (4.79) 
 

QI = AIF(1+)sin(IFt+IF+) x sin(IFt)                (4.80) 
 

QQ = AIF(1+)sin(IFt+IF+) x cos(IFt)               (4.81) 
 

Applying equations 4.42, 4.43, 4.44 and 4.45, equations 4.78, 4.79, 4.80 and 4.81 can 

be re-written as follows.  

 

 II = AIF{sin(IFt+IF+IFt) + sin(IFt-IFt-IF)}/2              (4.82) 



 IQ = AIF{cos(IFt+IF+IFt) + cos(IFt+IF-IFt)}/2              (4.83) 



 QI = AIF(1+){cos(IFt+IF+-IFt) - cos(IFt+IF++IFt)}/2             (4.84) 



 QQ = AIF(1+) {sin(IFt+IF+IFt) + sin(IFt+IF+IFt)}/2            (4.85) 
 

The low-pass filters will reject the sum frequency components. Therefore,  

 

II = AIFsin(IF)/2                  (4.86) 
 

IQ = AIFcos(IF)/2                  (4.87) 
 

QI = AIF(1+)cos(IF+)/2                  (4.88) 
 

QQ = AIF(1+)sin(IF+)/2                 (4.89) 
 

The four outputs still retain the amplitude and phase imbalance information. The aim 

is to calculate 1/(cos()(1+)) and sin()/cos(). Solving equations 4.86, 4.87, 4.88 

and 4.89, it can be proved that  

 

1/(cos()(1+)) =  - ((II x II) + (IQ x IQ)) / ((IQ x QI) – (II x QQ))            (4.90) 
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and 
  

sin()/cos() = ((II x QI) + (IQ x QQ)) / ((IQ x QI) – (II x QQ))            (4.91) 
 

The main advantage of using this algorithm is that the four mixer outputs are base-

band signals and hence the low-pass filters can be implemented as very narrow filters. 

Therefore, noise can be filtered out and the compensation parameters can be 

calculated with great accuracy. Figure 4.8 below is a block diagram representation of 

imbalance computation and correction in Weaver base-band architecture. This 

proposed method of image suppression is unique and original. 

 

 

Figure 4.8. Imbalance computation method using Weaver base-band 

architecture 

 

4.12 Simulation of imbalance computation by correlation method 

 

The auto correlation of P is equal to (P1*P1+P2*P2+……PN*PN) / N and the cross-

correlation of P and Q is equal to (P1*Q1+P2*Q2+…PN*QN) / N where N is the number 

of samples. For the equations derived in the previous section to be true, the cross 

correlation of the ideal I and Q channels should be equal to zero (orthogonal property 

of I and Q) and the auto correlation of the ideal I channel should be equal to the auto 

correlation of the ideal Q channel (and should be equal to the total power in each 

channel). These conditions are only satisfied when the numbers of samples used to 

calculate the correlations represent exact number of complete waveform cycles of I 

and Q. 

 

The error detection block modelled in Simulink is shown in Figure 4.9 below. The 

sampling rate is 10 ns and the frequency of the calibration signal used for error 
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calculation is equal to 18.75 MHz. Therefore 16 samples will represent exactly 3 

cycles of the I and Q waveforms. The ‘Sine wave’ block provides the two calibration 

signals (amplitude = 32767, frequency = 18.75 MHz), which are separated by the 

‘Select Columns’ block. The phase difference between the two signals is not exactly 

90 degrees. A phase error of -0.1 (5.7296 degrees) radians has been introduced. The 

two ‘Gain’ blocks multiply the signals by 1 and 0.76143 respectively to introduce a 

gain error of 0.23857 (23.857 %). The ‘Dbl to Int16’ and ‘Shift right-2’ blocks are there 

to simulate the effects of ADC truncation to 14 bits. The ‘Product’, ‘Cumulative sum’ 

and ‘Shift right-4’ blocks calculates the correlations (shifting right can be used instead 

of division as dividing by 16 is equal to shifting right by 4 bits).  
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Figure 4.9. Simulation of imbalance computation by correlation method 
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The outputs of the two ‘Divider’ blocks is equal to (1-)2 and (1-)(-sin) respectively. 

The display blocks display (1-gain error) and (–phase error) in radians respectively.  

 

The calculated gain and phase errors as shown in the figure come out to be 0.23858 

and –0.0999969. The difference in the actual gain error and computed gain error is 

0.00001 (0.001 %). The difference in the actual phase error and computed phase 

error is 0.0000031 radians (0.0001776 degrees). A range of gain and phase errors 

were introduced in the I and Q signals. The accuracy of the computed errors was 

always better than 0.001 % gain and 0.0001 degrees. This is 100 times better than 

what is required to achieve 60 dB of image rejection. 

 

Obviously, this is only true if the calibration signal is ideal. In reality, the calibration 

signal will have some phase noise, harmonics of 18.75 MHz frequency and 

uncorrelated noise added to it. All this will introduce errors.  

 

The phase noise estimated in the calibration signal source is –80 dBc/Hz at 100 kHz 

offset, fairly constant down to DC and rolling off by 20 dB per decade at frequencies 

above 100 kHz. The effect of phase noise can be simulated as noise (with a Gaussian 

distribution) with zero mean and standard deviation equal to the Root Mean Square 

(RMS) phase error added to the phase of the signal source. The uncorrelated noise 

added to the signal source has been estimated to be at worst 50 dB down the signal 

source. 

 

In order to simulate the effects of these variables, the error detection block has been 

slightly modified as shown in Figure 4.10 below. The ‘sine wave’ and the column 

select’ block has been replaced by two functional blocks. The outputs of these 

functional blocks are Asin(t) and Acos(t) respectively. Phase noise can be 

simulated by changing the functions slightly to Asin(t+) and Acos(t+). ‘’ is the 

phase error that will originate from a noise source with zero mean and standard 

deviation equal to the RMS phase error in radians (or variance equal to RMS phase 

error squared). 

 

The RMS phase error for a phase noise of –80 dBc/Hz at 100 kHz offset, fairly 

constant down to DC and rolling off by 20 dB per decade above 100 kHz up to          

40 MHz is calculated to be 0.06321 radians (or 3.62143 degrees). 
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Figure 4.10. Simulation of error detection block with phase noise 
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For no gain and phase error, the error detection block shows the gain error to be 

0.0071341 (or 0.71341 %) and the phase error to be 0.004371 radians (or        

0.25044 degrees). This will achieve an image rejection of about 47.6 dB. This is 

clearly not enough. 

 

The calculation is then carried over 1024 samples representing exactly 192 cycles of 

the I and Q waveforms. The ‘Shift right’ block now shifts by 10 bits (as dividing by 

1024 is equal to shifting right by 10 bits). The gain error reduces to 0.000569023 (or 

0.0569023 %) and phase error to 0.00037917 radians (or 0.021725 degrees). The 

gain error is approximately two times and the phase error five times better than what 

is required to achieve 60 dB of image rejection. Therefore, it is concluded that the 

effect of phase noise can be minimised by averaging the gain and phase errors over a 

large number of waveform cycles. 

 

Obviously, if the phase noise is further reduced, the error detection block becomes 

more accurate. The RMS phase error for a phase noise of –110 dBc/Hz at 1 MHz 

offset, rolling off by 20 dB per decade as the frequency is increased up to 40 MHz or 

down in frequency to DC is 0.00511534 radians (or 0.2931 degrees). For this phase 

noise and the calculation carried over 1024 samples, the gain error reduces to 

0.00026622 (or 0.026622 %) and phase error to 0.00002435 radians (or            

0.00139 degrees). So, there is some advantage in keeping the phase noise as low as 

possible. 

 

The effect of uncorrelated noise on the error detection block is simulated next as 

shown in Figure 4.11 below. The outputs of the functional blocks is changed to 

[Asin(t)+N] and [Acos(t)+N] respectively. ‘N’ is random noise with maximum 

amplitude equal to A / 316.228 (50 dB down). The simulation is carried over 1024 

samples. For no gain and phase error, the computed gain error is -0.0002161 (or 

0.02161 %) and the phase error is 0.0002123 radians (or 0.01216 degrees). Hence, 

effect of uncorrelated noise is also minimised when averaging of gain/phase errors are 

performed. 
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Figure 4.11. Simulation of error detection block with uncorrelated noise 
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The division and square root operations shown in the error detection block are there to 

calculate and display gain and phase errors. These operations don’t need to be 

performed in the actual hardware implementation. The main aim is to calculate the 

multiplying factors 1/(cos()(1-)) and sin()/cos(). It is proved earlier in this chapter 

that, 1/(cos()(1-)) is equal to x/(xy-zz)1/2 and sin()/cos() is equal to z/(xy-zz)1/2, 

where x, y and z are the three correlation outputs. Therefore, subtraction, inverse 

square root and multiplication (or subtraction, square root and division) operations are 

needed to be implemented in hardware to calculate the multiplying factors from the 

correlation outputs. The actual outputs from the error detection block are shown in 

Figure 4.12 below. 
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Figure 4.12. Error detection block with multiplying factors as output 
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The error compensation block is shown in Figure 4.13 below. Channel Q is multiplied 

with 1/(cos()(1-)) (Mult1) and channel I is multiplied with sin()/cos() (Mult2). The 

outputs of the multipliers are added together to give QIDEAL. I channel has been 

assumed to be ideal. The multiplication and addition operations however will delay 

QIDEAL with respect to IIDEAL. Therefore I is multiplied with ‘1’ and Q with ‘0’ and added 

together to give IIDEAL. This is purely done to avoid any delays. In the actual design, I 

channel will be delayed by the number of clock cycles it takes to perform the 

multiplication and addition operations to get QIDEAL. 

 

 

Figure 4.13. Error compensation block 

 

As mentioned earlier, effect of uncorrelated noise can be minimised by averaging. The 

signal to noise ratio was assumed to be 50 dB in which case averaging 1024 samples 

was enough to achieve more than 60 dB of image rejection. However, in practice, for 

a signal to noise ratio of 36.1 dB, averaging 1024 samples did not achieve the desired 

image rejection. Hence further simulations were carried out to evaluate this further. 

 

For signal to noise ration of 36.1 dB, averaging 1024 samples only achieved 54.2 dB 

of image rejection. Increasing the number of averaged samples to 2048 did not 

improve the image rejection. Averaging 4096 samples improved the image rejection to 

56.68 dB. Then as the number of averaged samples are increased there is no 
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improvement unless the average samples is increased to 65536 samples where the 

image rejection is 57.43 dB. 

 

From this simulation, it was concluded that as the signal to noise ratio deteriorates, 

the number of samples that is needed to average will have to increase exponentially in 

order to achieve the desired image rejection.  

 

4.13 Simulation of Weaver Architecture 

 

Simulink model of the Weaver architecture is shown in Figure 4.14 below. The      

18.75 MHz In-phase and Quadrature inputs are mixed with 25 MHz In-phase and 

Quadrature inputs from the local oscillator to produce four different outputs as shown 

in the figure. The mixers down converts the 18.75 MHz IF to 6.25 MHz second IF for 

further processing. 
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Figure 4.14. Simulation of Weaver architecture 
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         Time Offset 

Figure 4.15. 25 MHz signals sampled at 100 MHz 
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The LO frequency is equal to Fs / 4 where Fs is the sampling rate (100 MHz). The 

signal can then be simply generated by repeating the sequence [0, 1, 0, -1]. The 90-

degree phase shifted version is [1, 0, -1, 0] (original sequence delayed by one clock 

cycle). The local oscillator waveforms are shown in Figure 4.15 above. The four low-

pass filters are there to remove the 43.25 MHz sum frequency component (25 MHz + 

18.25 MHz). Magnitude response of the low-pass filter is shown in Figure 4.16 below. 

The filter attenuates the sum (and higher) frequency component by 70 dB. 

 

 

Figure 4.16. Magnitude response of the filters in the Weaver architecture 

 

The low-pass filter outputs are added and subtracted together to get wanted and 

unwanted sidebands. The design was first simulated without any gain or phase error 

(simulation time 400 us). The wanted and unwanted I and Q signals are shown in 

Figure 4.17 below. The image rejection is about 62.7 dB down. 

 

Then a gain imbalance of 2 % and phase imbalance of 0.1 radians is introduced. The 

wanted and unwanted I and Q signals are shown in Figure 4.18 below. In the 

presence of imbalances, the image rejection deteriorates to about 26 dB. Therefore, 

inputs to the Weaver architecture should be compensated I and Q signals. 
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 Time Offset 

Figure 4.17. Output waveforms without gain or phase error  
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 Time Offset 

Figure 4.18. Output waveforms (gain error 2 %, phase error 0.1 radians)   
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4.14 Simulation of Weaver base-band architecture 

  

Simulink model of the Weaver base-band architecture is shown in Figure 4.19 below. 

The 18.75 MHz In-phase and Quadrature inputs are mixed directly down to base-band 

with 18.75 MHz In-phase and Quadrature inputs from the local oscillator. The cut-off 

frequency of the anti-alias filter for 18.75 MHz IF and 100 MHz sampling rate would 

approximately be equal to 40 MHz. A chirp signal source is used to simulate this effect 

in the simulation. The frequency is swept from 1 MHz to 41 MHz in 400 us. 

 

The LO frequency is equal to 3 Fs / 16 where Fs is the sampling rate (100 MHz). The 

signal can then be simply generated by repeating the sequence [0, 0.9239, 0.7071, -

0.3827, -1, -0.3827, 0.7071, 0.9239, 0, -0.9239, -0.7071, 0.3827, 1, 0.3827, -0.7071 

and -0.9239]. The 90-degree phase shifted version is [-1, -0.3827, 0.7071, 0.9239, 0, -

0.9239, -0.7071, 0.3827, 1, 0.3827, -0.7071, -0.9239, 0 0.9239 0.7071 and -0.3827] 

(original sequence delayed by four clock cycles). 
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Figure 4.19. Simulation of Weaver base-band architecture  
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The four low-pass filters are narrow-band RBW filters. Magnitude response of the low-

pass filter is shown in Figure 4.20 below. 

 

 

Figure 4.20. Magnitude response of the resolution bandwidth filters 

 

Amplitude detection is performed on the Upper Side Band (USB) and Lower Side 

Band (LSB) signals. The wanted sideband is passed and the unwanted sideband is 

attenuated as shown in Figure 4.21 below.  
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Figure 4.21. Wanted and image outputs  

 

4.15 Simulation of imbalance computation using Weaver base-band 

architecture 

 

It has been proved that the gain and phase imbalance compensation parameters 

could be calculated using equations 4.90 and 4.91 as follows.  

 

1/(cos()(1+)) =  - ((II x II) + (IQ x IQ)) / ((IQ x QI) – (II x QQ))            (4.90) 
  

sin()/cos() = ((II x QI) + (IQ x QQ)) / ((IQ x QI) – (II x QQ))            (4.91) 
 

where II, IQ, QI and QQ are the four filter outputs in the Weaver base-band 

architecture.  

 

This is verified in the simulation shown in Figure 4.22 below. 
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Figure 4.22. Simulation of imbalance computation using Weaver base-band architecture 
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A gain imbalance of -0.2 and phase imbalance of 22.5 degrees was introduced in one 

of the channel of the 18.75 MHz IF. This gives  

 

1/(cos()(1+)) = 1.35299                 (4.92) 
 

sin()/cos() = 0.414213                 (4.93) 
 

The measured parameters from the simulation were 1.39864 and 0.414952 

respectively which closely matches the theoretical result. 

 

4.16 Simulation of IQ imbalance compensation within the IF pass-band 

 

In order to calculate the filter co-efficents of the FIR compensation filter, the gain and 

phase imbalance across the IF pass-band is measured. The measured results are 

shown in Table 4.1 below. The gain and phase imbalance is only measured up to half 

the clock frequency and for the other half the readings are duplicated to form a 

conjugate symmetric. 

 

Gain 
Imbalance 

(ratio) 

Phase 
Imbalance 
(radians) 

Normalised 
Gain 

Normalised 
Phase 

Real Imaginary 

-1.1493 -0.2718 1.0000 0.0000 1.0000 0.0000 

-1.0879 -0.2089 1.0564 -0.0629 1.0543 -0.0664 

-1.1076 -0.1823 1.0376 -0.0895 1.0335 -0.0927 

-1.1628 -0.2017 0.9884 -0.0701 0.9860 -0.0692 

-1.1493 -0.2718 1.0000 0.0000 1.0000 0.0000 

-1.0724 -0.2763 1.0717 0.0045 1.0717 0.0048 

-1.0567 -0.2329 1.0876 -0.0389 1.0868 -0.0423 

-1.0718 -0.2753 1.0723 0.0035 1.0723 0.0038 

-1.1493 -0.2718 1.0000 0.0000 1.0000 0.0000 

-1.0718 -0.2753 1.0723 0.0035 1.0723 -0.0038 

-1.0567 -0.2329 1.0876 -0.0389 1.0868 +0.0423 

-1.0724 -0.2763 1.0717 0.0045 1.0717 -0.0048 

-1.1493 -0.2718 1.0000 0.0000 1.0000 -0.0000 

-1.1628 -0.2017 0.9884 -0.0701 0.9860 0.0692 

-1.1076 -0.1823 1.0376 -0.0895 1.0335 0.0927 

-1.0879 -0.2089 1.0564 -0.0629 1.0543 0.0664 

Table 4.1. Measured gain and phase imbalance across IF pass-band 

 

The gain and phase imbalance is then normalised with respect to the gain and phase 

imbalance at the IF frequency (the filter should provide no compensation at IF 

frequency as the compensation that is applied at this frequency is correct).  
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If G is the normalised gain and P is the normalised phase at the particular frequency , 

then the input to the inverse FFT for that frequency is Xreal + jYreal where 

 

Xreal = ((G x G) / (1 + tan(P) * tan(P)))1/2               (4.94) 
 
and  
 
Yreal = Xreal x tan(P)                  (4.95) 
 

Inverse FFT is calculated using the ‘ifft’ function in Matlab. The output of the inverse 

FFT is shifted to remove the sharp edges and then used as co-efficients of the FIR 

filter defined in Matlab. A window function such as Blackman-Harris window could be 

used for further smoothing of the response of the filter. The magnitude and phase 

response of the FIR filter are shown in Figure 4.23 and Figure 4.24 below 

respectively.  

 

The measured gain and phase imbalance at different frequencies matches the gain 

and phase imbalance compensation for the same frequencies provided by the filter. 
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Figure 4.23. Magnitude response of the FIR filter 
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Figure 4.24. Phase response of the FIR filter 
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4.17 Conclusion 

 

This chapter demonstrates the feasibility and functional verification of the spectrum 

analyser design. It provided an overview of low IF based image reject architectures 

and presented new methods of compensation of imbalances in the RF and IF bands. 

The design is simulated in Matlab / Simulink environment and the principles of the 

design is validated.  

 

The next chapter details the new design analysis of digital spectrum analyser 

architecture with image rejection using Weaver base band architecture and FPGA 

design, simulation and synthesis of the new method. 
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5 Spectrum Analyser – FPGA Design Simulation and 

Synthesis 

 

5.1 Introduction 

 

Certain aspects of the RF architecture outlined in the earlier chapter such as the 

frequency limits for the lower and upper RF frequency bands and the final IF for 

further digital processing were revised. The block diagram of the final analogue 

section is shown in Figure 5.1 below. 

 

 

Figure 5.1. Analogue section of the RF architecture 

 

The sampling clock frequency was revised down to 40 MHz and the final IF going 

into the digital section was chosen to be 10 MHz. The low-pass filters before the ADC 

removes the aliasing frequency. The filters attenuate frequencies above 28 MHz by 

more than 80 dB. A dual 16-bit ADC digitises the IQ signals for further processing in 

the digital domain.  

     

It was initially assumed that a DSP processor would be used for the digital section of 

the design. However, it later became clear that it would be quite a challenge to 
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implement all the parallel multipliers and filters in a DSP. FPGAs are 

characteristically ideal to perform multiple bits multiplication and addition operations 

at very high speed and therefore became an obvious choice for implementing the 

digital section. 

 

The same family of FPGA used in the generator design was chosen because of 

familiarity. The particular FPGA used was Altera Cyclone IV EP4CE40F23C9L.  

 

Choosing an Altera FPGA made the Altera Quartus II design software the most 

obvious choice for FPGA design. Altera also provided ModelSim, a comprehensive 

simulation and debug environment for FPGA designs. VHDL was predominantly used 

to design the spectrum analyser. The Mega Function Wizard of Quartus II was also 

used for some specific designs.  Filter design software from Matlab were used to 

calculate the coefficients of the FIR filter used in the RBW and Video Band Width 

(VBW) filter section. 

 

Design analysis and implementations of spectrum analyser sub-systems will be 

discussed in this chapter. FPGA implementation of IQ based spectrum analyser 

receiver with a novel scheme for image suppression both in the RF and IF pass-band 

complete with filtering and detection is an original contribution of this research.  

 

5.2 LVDS Receiver 

 

The outputs from the ADC LTC2191 [74] are serial LVDS. The sampling frequency of 

the ADC is 40 MHz. The ADC is configured to output two bits at a time per channel at 

320 MHz clock frequency. LVDS receiver shown in Figure 5.2 below is instantiated 

using Mega Function Wizard in Quartus to convert the serial LVDS data to parallel. 

The ADC also provides the clock to the FPGA. 

 

The input data are in offset binary format and are converted to two’s complement 

data by inverting the MSBs of the data inputs in the LVDS decoder block shown in 

Figure 5.3 below. 
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Figure 5.2. RTL view of the LVDS receiver 
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Figure 5.3. RTL view of the LVDS decoder 

 

5.3 IF pass-band imbalance compensation 

 

In order to compensate for imbalance variation within the IF pass-band, a FIR filter is 

implemented in one of the channel. The FIR filter is realised in simple direct form as 

shown in Figure 5.4 below [72].  

 

 

Figure 5.4. Direct form realisation of FIR filter 
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The number of coefficients in the filter is 32. Therefore, the filter requires 31 delay 

registers for each of it input bits, 31 additions, and 32 multiplications. The coefficients 

are set by the controlling processor and are stored in the FPGA RAM. The process of 

calculating the coefficients has been outlined in the previous chapter. 

 

The other channel is simply delayed by the number of cycles that the filter operation 

requires to maintain the phase relationship of the IQ signals.  

 

5.4 RF imbalance compensation 

 

The RF imbalance compensation block is shown in Figure 5.5 below. Channel Q is 

multiplied with 1/(cos()(1-)) and channel I is multiplied with sin()/cos(). The 

outputs of the multipliers are added together to give QIDEAL. Channel I is simply 

delayed by the number of cycles required for the multiplication and addition process. 

The parameters 1/(cos()(1-)) and sin()/cos() are computed by the Weaver base-

band method for various frequency bands and stored in the FPGA RAM. The 

computation process is explained later in this chapter. 
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Figure 5.5. RTL view of RF imbalance compensation 
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5.5 Weaver mixers  

 

The I and Q signals free from any imbalances are now converted down to base-band 

in the Weaver mixer stage as shown in Figure 5.6 below. The 10 MHz In-phase and 

Quadrature Local Oscillator signals are generated in the FPGA using DDS 

techniques. The LO frequency is equal to Fs / 4 (10 MHz) where Fs is the sampling 

rate (40 MHz). Therefore, it was possible to generate the IQ LOs by simply repeating 

the four values [0, 1, 0, -1] and [1, 0, -1, 0] respectively.  

 

However, DDS techniques were used to allow for fine frequency tuning of the LO. 

The RF LO step resolution was limited to 1 MHz. The digital LOs provides fine 

frequency stepping resolution required for narrow band RBW filters. 

 

The lengths of the accumulators were chosen to be 24 bits which gives 2 uHz 

resolution (for 40 MHz clock frequency). 12 MSBs of the accumulators were used to 

address the Sin and Cos ROM to generate the quadrature oscillator signals. 

 

The compensated I and Q inputs are multiplied by the I and Q LO outputs to provide 

four outputs from the Weaver mixers. 
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Figure 5.6. RTL view of Weaver mixers 
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5.6 Resolution bandwidth filters 

 

The four identical low-pass filters that follow the mixers remove the sum frequency 

components from the mixer outputs. These low-pass filters also function as resolution 

band-width filters. The requirement was to implement a wide range of RBW filters 

(300 Hz to 3 MHz in 1 – 3 steps). It is not possible to design a digital low-pass filter 

with cut-off frequency 150 Hz to get 300 Hz band-width running at 40 MHz.  The 

resource requirement would have been prohibitively large.  

 

The above problem could be resolved by using CIC filters [8] for decimations, 

followed by a FIR filter to provide the filter shape as shown in Figure 5.7 below [75]. 

 

 

Figure 5.7. RTL view of RBW filters 

 

The solution was to use CIC filters for decimations, followed by a FIR filter to provide 

the filter shape at each of the mixer outputs. The low-pass FIR filter was designed 

with cut-off frequency 1.5 MHz for 3 MHz bandwidth at 40 MHz clock frequency. The 

other bandwidths were simply achieved by decimating the clock frequency using CIC 

filters. A fifth order CIC filter of differential delay two was found to be sufficient for all 

the required decimation rates. The bit growth for the narrowest RBW is 72 bits. The 

mixer outputs are 16 bits long. Therefore, the additions and subtractions in the CIC 

filters are carried out in 88 bits. Owing to the large number of bits, the additions and 

subtractions operations are pipelined. The output of the CIC filters are truncated to 

16 bits before being used as inputs to the FIR filters.  

 

Table 5.1 below provides clock frequency, rate change and bit growth for various 

RBW filters used in the design. 
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RBW Fpass              

(-3 dB) 

Fstop                    

(-60 dB) 

Fs Rate 

change 

CIC bit growth 

3 MHz 1.5 MHz   6.6 MHz 40 MHz 1 5 

1 MHz 500 kHz 2.2 MHz 13.33 MHz 3 12.925 

300 kHz 150 kHz 660 kHz 4 MHz 10 21.61 

100 kHz 50 kHz 220 kHz 1.33 MHz 30 29.534 

30 kHz 15 kHz 66 kHz 400 kHz 100 38.219 

10 kHz 5 kHz 22 kHz 133.33 kHz 300 46.144 

3 kHz 1.5 kHz 6.6 kHz 40 kHz 1000 54.829 

1 kHz 500 Hz 2.2 kHz 13.33 kHz 3000 62.754 

300 Hz 150 Hz 660 Hz 4 kHz 10000 71.439 

Table 5.1. RBW filters – decimation rate and CIC bit growth 

    

The FIR filters were designed using filter design software from Matlab. The filters 

were designed as direct form symmetric FIR filters as shown in Figure 5.8 below. The 

length of the filter is 49. However only 25 coefficients are required as the filter is 

symmetric in nature. Each filter requires 49 delay registers for each of it input bits, 49 

additions and 25 multiplications. 

 

 

Figure 5.8. Realisation of a symmetric FIR filter [76] 

 

A Gaussian filter shape with bandwidth selectivity 5:1 was selected. The coefficients 

of the filter were stored in the FPGA ROM. The magnitude response of the filter is 

shown in Figure 5.9 below.  
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Figure 5.9. Magnitude response of the RBW FIR filter 

 

5.7 Weaver adders 

 

The filtered I and Q signals are then added and subtracted together to get the wanted 

and unwanted sideband I and Q signals as shown in the RTL view of the Weaver 

adders in Figure 5.10 below. 
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Figure 5.10. RTL view of the Weaver adders  
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5.8 Amplitude detector 

 

After resolution bandwidth filtering, the I and Q signals are squared and added and 

the square root of the results gives the amplitude of the signal [77].  Dedicated 

multipliers embedded in the FPGA are used to perform squaring of I and Q signals. It 

was also possible to perform 32-bit addition in one 40 MHz clock cycle.  

 

Implementing square root function in FPGA is not straight forward and requires a lot 

of hardware [79]. The I and Q signals are 16 bits long where the signal value only 

occupies 15 bits as the Weaver adder blocks halves the signal. The multiplication 

output is 32 bits long. The addition should add one more bit. However, as the signal 

value was only 15 bits to start with, there is no need to add a bit. The square root 

operation results in a 16-bit output. Square root implementation is based on non-

restoring square root algorithm [89].  Starting from the MSB, a count of one is 

subtracted from every pair of bits. The sign of the result determines the quotient bit 

and the remainder is added or subtracted to the next pair of bits based on the sign of 

the previous result. This process is repeated for every pair of bits down to LSB. The 

quotient is the desired result. For calculating the square root of a 32-bit number, 16 

iterations are required which results in 32 pipeline stages.    

 

5.9 Video bandwidth filters 

 

A VBW filter is a low-pass filter that comes after amplitude detection that determines 

the bandwidth of the video signal [5]. 

 

A similar structure to the RBW filter is used to implement the wide range of VBW 

filters as well. A fifth order CIC filter is used to provide all the required decimation 

rates and a FIR filter designed using Matlab filter design software is used to provide 

low-pass filtering. 

 

5.10 Demodulation 

 

The availability of I and Q base-band signals makes signal demodulation analysis 

quite straight forward [78].  
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Amplitude modulation can be extracted from I and Q by taking the square root of the 

sum of the squares of I and Q [78]. In other words, the output from the amplitude 

detector is the AM demodulated output as well. 

 

The instantaneous phase of the modulated signal is the result of the derivative of the 

arctangent of Q divided by I [78]. Division requires a lot of hardware. Inverse 

operation could be performed by storing the values of the inverse of a signal in a 

ROM. The rate of change of phase will result in FM modulating signal. The rate of 

change is simply the subtraction of two consecutive phase samples. If subtraction is 

performed after inverse operation, then two ROMs are required. This is not ideal. 

Therefore, instead of dividing Q by I, (IcurrentQnext - QcurrentInext) is divided by (QcurrentQnext 

- IcurrentInext) which gives tangent of the difference of two consecutive phase samples. 

The inverse will result in FM demodulated output.   

 

Dedicated embedded multipliers are used for the multiplication of Icurrent and Qnext, 

Qcurrent and Inext, Qcurrent and Qnext, and Icurrent and Inext. The results are 32-bit long. It was 

possible to perform 32 bit subtractions in one 40 MHz clock cycle. The ROM holds 

1024 samples of the inverse function. Therefore, the divider needs to output 10-bit 

result which is used as an address to the ROM. Division of a 32-bit number, by a 32-

bit number to output 10 bits requires a lot of hardware. The divider implementation is 

based on non-restoring division algorithm [90]. The denominator is subtracted from 

the numerator. The sign of the result determines the quotient bit and the denominator 

is added or subtracted to the result based on the sign of the previous result. This 

process is repeated for the number of desired bits in the result. For a 10-bit result, 10 

pipeline stages are necessary. 

 

5.11 RF Imbalance computation block  

 

This imbalance compensation block shown in Figure 5.11 below calculates the gain 

and phase imbalance compensation parameters used in the RF compensation block 

using equations 4.90 and 4.91 as follows.  

 

1/(cos()(1+)) =  - ((II x II) + (IQ x IQ)) / ((IQ x QI) – (II x QQ))           (4.90) 
  

sin()/cos() = ((II x QI) + (IQ x QQ)) / ((IQ x QI) – (II x QQ))                                (4.91)   4.91 
 

where II, IQ, QI and QQ are the four resolution bandwidth filter outputs.  
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As mentioned before, the division functions require a lot of hardware to be 

implemented in the FPGA. 

 

During the computation process, normal acquisition is halted and an internal 

calibration signal is routed to the FPGA. The input level of the calibration signal is 

very close to the maximum input amplitude to the ADC to achieve maximum image 

rejection. No digital compensation is applied to this input signal and is passed to the 

Weaver architecture where compensation parameters are computed. Some 

averaging is performed before the calculation to further reduce the noise for more 

accurate results. The computed values are stored in the FPGA RAM for future use.  

 

Since the imbalance is not the same for all input frequencies, the entire frequency 

band is sub-divided and calibration is performed for each sub-band. The process is 

repeated periodically to account for the drifts in the gain and phase imbalance with 

temperature and therefore maximum image rejection is maintained at all times. 
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Figure 5.11. RTL view of the imbalance computation block 



Spectrum analyser – FPGA        147 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency 
spectrum analyser 

5.12 FPGA Synthesis 

 

The previous section charts the design considerations and implementation of the 

spectrum analyser design. Once the design was verified, it was synthesized using 

Quartus II in a Cyclone IV FPGA (EP4CE40F23C9L). The summary of synthesis is 

presented in Table 5.2 below. 

 

Following synthesis, the design was fitted in the FPGA. The design was analysed to 

check whether it meets the timing requirements.  Finally, programming files were 

generated to allow programming or configuration of the device. All of these 

procedures were performed by the Quartus II software tool provided by Altera. 

 

Flow Status Successful - Wed May 07 15:23:44 2014 

Quartus II Version 13.1 Build 163 10/23/2013 SJ Web 

Edition 

Revision Name  PSA6005_Spectrum_Analyser_Top_Level 

Top-level Entity Name   PSA6005_Spectrum_Analyser_Top_Level 

Family  Cyclone IV E 

Device EP4CE40F23C9L 

Timing Models Final 

Met timing requirements Yes 

Total logic elements 39,126 / 39,600 ( 99 % ) 

Total combinational functions 31,270 / 39,600 ( 79 % ) 

Dedicated logic registers 26,660 / 39,600 ( 67 % ) 

Total registers 26668 

Total pins 74 / 329 ( 22 % ) 

Total virtual pins 0 

Total memory bits 896,672 / 1,161,216 ( 77 % ) 

Embedded Multiplier 9-bit elements 232 / 232 ( 100 % ) 

Total PLLs 1 / 4 ( 25 % ) 

Table 5.2. Quartus flow summary for the spectrum analyser project  

 

The design was also analysed to find out how much power it will consume using 

‘Power Play Power Analyzer Tool’ in Quartus II. The results were then passed on to 

the analogue design engineer in the company for power supply designs.  
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A schematic was then prepared for the FPGA. Input and output signals were 

assigned to various pins in the FPGA as shown in Figure 5.12 below. Synthesis was 

carried out again to check the validity of the assignments.  

 

 

Figure 5.12. FPGA pin assignment – top level view 

 

Schematic was prepared so that the FPGA can be configured in JTAG programming 

mode using ‘Altera USB Blaster’ during the development stages and in Active Serial 

(AS) programming mode using serial configuration device during production. The 

schematic was prepared using configuration application note [80] provided by Altera. 

Finally, FPGA interface to ADC, micro controller, and other analogue hardware were 

finalised. Figure 5.13 below shows the interface between the FPGA and the ADC.  
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Figure 5.13. FPGA ADC connections 

 

After preparing the FPGA schematic for the instrument, it was integrated with the RF 

section and the display interface to prepare the complete spectrum analyser 

schematic. The PCB layout was then prepared and the prototype was built, followed 

by the testing and validation of the functional prototype. The analyser prototype 

control board as well as the RF board is shown in Figure 5.14 below. 

 

 

Figure 5.14. Spectrum analyser prototype board 

Analogue to Digital 
Converter 

FPGA 
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5.13 Results 

 

The spectrum analyser is in itself a measurement receiver. Therefore, the displayed 

output provides functional verification of the design. The results presented in this 

section are screen shots of the actual finished and working spectrum analyser. In the 

complete unit, measurement sweep is controlled by the controlling processor 

whereas measurement and sweep detection is done by the FPGA receiver. The 

control processor then passes on the sweep data to the display processor via 

Universal Asynchronous Receiver Transmitter (UART) interface. The display 

processor then displays the measurement on a Thin Film Transistor (TFT) Liquid 

Crystal Display (LCD). An RF generator was used to provide signal input to the 

analyser.  

  

The signal input frequency was chosen to be 1 GHz. The spectrum analyser was 

programmed to perform a sweep with centre frequency 1 GHz and frequency span of 

5 MHz. The frequency range falls in the lower RF frequency band of the architecture. 

The first RF LO is swept from 4405 MHz to 4415 MHz. The sum frequency is filtered 

out and the difference frequency is passed to the second RF LO which is fixed at 

3410 MHz. The second RF LO down converts the frequency to 10 MHz final 

analogue IF which is then digitised for further processing.  
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Figure 5.15. Spectrum of 1 GHz signal input 

 

The RF LO is stepped in 1 MHz steps. The digital LO is stepped in finer resolution. 

The stepping resolution is RBW dependent. For 100 kHz RBW, the digital LO is 

stepped in 33 kHz steps. 

 

Figure 5.15 above shows the spectrum result. The result shows that the analyser is 

capable of displaying the input waveform. The result validates the amplitude 

accuracy, resolution bandwidth selectivity and noise floor performance specification 

of the analyser. RBW and VBW filters were set to 100 kHz. The Gaussian shape of 

the RBW filter can be clearly seen in the spectrum. 
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Figure 5.16. Spectrum of 1 GHz signal input for wide RBW setting 

 

Figure 5.16 above shows the spectrum result for a wider RBW filter setting of 1 MHz. 

Span is increased to 20 MHz to show the full filter shape. The signal to noise ratio is 

approximately 10 dB worse than it was for a 100 kHz RBW which is expected. A 

wider filter will allow more noise to pass through. The filter shape hasn’t changed 

because it uses the same FIR filter. This result is presented to show that the RBW is 

a selectable parameter. RBW can be changed from 10 MHz to 300 Hz in 1 – 3 steps.  

 

Figure 5.17 below shows the spectrum result for a narrower RBW filter setting of     

10 kHz. Span is decreased to 1 MHz to present a clear spectrum. The noise floor has 

gone down as expected. But the noise on the skirts of the filter has increased. This is 

due to the limited phase noise performance of the RF local oscillators. The phase 

noise of the local oscillators is specified as -83.5 dBc/Hz at 10 kHz offset which is not 

very good. The filter follows the Gaussian shape down to about 50 dB from reference 

before it hits the noise floor of the oscillators. The shape then becomes horizontal up 

to the cut-off frequency of the PLL loop filter bandwidth when it starts to decrease 

again.   
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Figure 5.17. Spectrum of 1 GHz signal input for narrow RBW setting 

 

Figure 5.18 below shows the spectrum result for 100 kHz RBW and 1 kHz VBW. As 

expected, a narrow video bandwidth filter removes more noise from the spectrum 

output. The effect is similar to averaging. This result validates the functional 

verification of the video bandwidth filter performance of the analyser. The video 

bandwidth filter can be changed from 10 MHz to 300 Hz in 1 – 3 steps. 
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Figure 5.18. Spectrum of 1 GHz signal input for narrow VBW setting 

 

The signal input is then frequency modulated with 1 kHz sine wave and frequency 

deviation of 100 kHz. The spectrum result is shown in Figure 5.19 below. The 

following two results validate the frequency demodulation specification of the 

spectrum analyser. 
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Figure 5.19. Spectrum of FM modulated 1 GHz signal input 

 

Figure 5.20 below shows the demodulated waveform. The x-axis is time axis which 

clearly shows the modulation frequency to be 1 kHz. The y-axis is the deviation axis. 

The deviation is 100 kHz in either direction. The RBW setting has to be wider than 

the frequency of the modulating waveform and frequency deviation to perform 

demodulation.  
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Figure 5.20. FM Demodulated waveform 

 

The signal input is then amplitude modulated with 1 kHz sine wave with depth set to 

50 %. Figure 5.21 below shows the demodulated waveform. This result validates the 

amplitude demodulation specification of the spectrum analyser. The x-axis is time 

axis which clearly shows the modulation frequency to be 1 kHz. The y-axis is the 

depth axis. The depth is 50 % in either direction. The RBW setting has to be wider 

than the frequency of the modulating waveform to perform demodulation. 
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Figure 5.21. AM Demodulated waveform 

 

Image rejection is analysed next. For an input signal frequency of 1 GHz, the image 

falls at 980 MHz. As it is evident from Figure 5.22 below, when imbalance 

compensation is not applied, the inherent image rejection is only about 20 dB which 

is not acceptable. The peculiar shape of the image is attributed to the coarse and fine 

stepping sweep method that is used in the instrument. The span is increased to      

50 MHz to show both the wanted and image response. 
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Figure 5.22. Image rejection when compensation is not applied  

 

When the gain and phase imbalance is compensated, the image rejection improves 

drastically as shown in Figure 5.23 below. For the same setting, the image is 

suppressed down to the noise floor when compensation is applied. It is possible to 

achieve 60 dB of image rejection over the entire input frequency range using the 

compensation method. 
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Figure 5.23. Image rejection when compensation is applied 

 

The RF compensation only achieves maximum image rejection at one point in the IF 

filter pass-band. Therefore, compensation is required for imbalance variation within 

the IF pass-band. This is demonstrated in Figure 5.24 and Figure 5.25 below.  

 

Span is reduced to only concentrate on the image response. A wider RBW is used as 

the effect is more evident for wide RBWs. Figure 5.24 below shows the image 

response when IF pass-band compensation is not applied.   
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Figure 5.24. Image rejection when IF pass-band compensation is not 

applied 

 

The image rejection is maximum at IF. However away from the IF, the image 

rejection deteriorates.  

 

Figure 5.25 below shows the image rejection when IF pass-band compensation is 

applied.  
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Figure 5.25. Image rejection when IF pass-band compensation is applied 

 

When IF pass-band compensation is applied, the image disappears.  

 

5.14 Conclusion 

 

This chapter concludes the FPGA design for the digital spectrum analyser. Results 

presented validate the specifications of the spectrum analyser design.  

 

 

 



Conclusions          162 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency 
spectrum analyser 

6 Conclusions and Future Work 

 

Signal generators and spectrum analysers or signal receivers are probably the two 

most important instruments used in test and measurement applications. Recent 

availability of high performance and low cost FPGAs opens up the possibilities to 

design customised solutions for these instruments in a single chip.  

 

This research has demonstrated the implementation of an entirely digital and 

modular, system on chip design of a versatile signal waveform generator in a generic 

FPGA. This thesis has provided a detailed overview of the principles behind the 

designs as well as simulation, functional verification and implementation of the 

concepts. The end result is a high-end generator with comprehensive modulation 

capabilities. This research has also developed a complete system on chip radio 

frequency spectrum analyser based on digital signal processing. IQ image reject 

mixers were tailored for application in a wide band system using novel techniques. 

The result presented in the previous chapter validates the new design. The two 

designs are completely portable and therefore find use in any generic digital platform. 

 

The objectives of the two designs were met and exceeded. The performances were 

assessed, and the specification enhanced, as the project proceeded. The final 

instruments comfortably exceeded the original target specification and outclassed the 

major competitors at its price-point. The benefit of the better specification was that it 

was also possible to offer lower cost products with a lower specification limited in 

software in order to cover a broader section of the market than originally proposed.  

 

Waveform frequency specification of 50 MHz was achieved. The generator included 

16 standard waveforms in addition to pulse, noise and user-defined arbitrary 

waveforms. Minimum edge time of 5 ns was achieved in pulse waveforms with pulse 

timing parameters resolution of 100 ps. The generator achieved low jitter 

asynchronous operation for externally triggered pulses. The design also incorporated 

comprehensive modulation capabilities including AM, FM, PM, FSK, BPSK, SUM, 

PWM and PDM.  

 

The spectrum analyser achieved wide frequency range from 10 MHz to 6000 MHz 

to 100 Hz resolution. A wide range of RBW and VBW filters between 300 Hz and 

10 MHz were implemented. The instrument achieved a dynamic range of 84 dB, 
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displayed average noise floor less than -120 dB with -40 dB reference level and a 

typical specification of 60 dB of image rejection over the entire frequency range. 

Amplitude accuracy and linearity specification was better than +/- 1 dB. 

 

As with any design, further optimisations are possible. Modern modulation schemes 

such as Quadrature Amplitude Modulation, Orthogonal Frequency Division 

Multiplexing, Quadrature Phase Shift Keying and IQ modulation are all possible in a 

DDS system but were not included in this research. Future works could include the 

possibility of adding digital modulation schemes to the generator. The possibility of 

modifying the white noise generator to output noise with user defined distribution was 

briefly discussed in chapter 3. The RAM in the FPGA holds the user defined 

distribution. The development of memory algorithms to produce various standard 

distributions used in test and measurement applications will require some effort. The 

drawbacks of using DDS techniques to generate arbitrary waveforms were 

highlighted in chapter 2 and 3. It should be possible to overcome some of these 

limitations. The idea of an arbitrary waveform generator is to repeat the same points 

stored in the RAM on every cycle of the waveform. The accumulator overflow error in 

the DDS prohibits it from doing so. However, this error is completely deterministic. It 

should be possible to use this information to possibly delay the RAM address by 

using some sort of a fractional delay FIR filter. If this solution is feasible then it would 

be possible to develop an arbitrary waveform generator which does not suffer from 

DDS distortions. Additionally, since the solution will still essentially be DDS based, it 

would be very easy to add frequency and phase modulation which is not possible, or 

very difficult to implement in a conventional arbitrary waveform generator. Further 

development time could be invested to determine the feasibility of such a solution.  

 

The clock frequency of the DDS based generator limits the maximum output 

frequency. The maximum clock frequency of a fairly complex digital generator design 

in a low cost FPGA is 200 MHz. This limits the output frequency to about 80 MHz for 

a sinusoidal waveform. The limits for an arbitrary waveform is even less. However, 

most low-cost FPGAs feature IO interfaces that could run at four times the maximum 

clock frequency. Therefore, it should be possible to implement a four generator 

solution. Each of the generators could run at the clock frequency where their initial 

phases are shifted with respect to one another. The outputs of the four generators 

could then be multiplexed and sent to the DAC at four times the clock rate. The 

maximum frequency of the resultant waveform could then be 320 MHz. There are a 
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lot of things to consider here. The resource usage in the FPGA would increase 

considerably and the design might not fit in the same FPGA and a bigger FPGA 

might be required. If modulation capabilities are required in such a design, then four 

such modulation generators would be needed. More research is needed to prove 

whether this solution would work. 

 

The analyser project used two DDS based generators in its receiver architecture and 

therefore proved another application for the generator design. The model could also 

be used in a modulator rather than a demodulator where generator could produce the 

In-phase and Quadrature signals with great amplitude and phase accuracy. It is also 

possible to use the generator design concept in a RF generator application where the 

DDS based generator could be used to generate the reference frequency used in the 

RF PLL. Analogue and digital FM could be achieved by modulating the DDS 

reference. AM could be achieved with a PIN diode circuit in the RF path. In order to 

frequency modulate the reference, the PLL loop bandwidth needs to be quite wide 

which might make the delta sigma noise quite excessive. Further investigation is 

needed. 

 

Having successfully designed a low-cost spectrum analyser, the next obvious step 

forward is to boost its performance by developing and including in it real-time 

spectrum analysis capabilities. Most of the research on real time spectrum analysers 

is focussed on real time signal processing using FFT. It is assumed that images or 

spurious responses are removed by preceding hardware filters. The need of tuneable 

low-pass image reject filters makes the design quite bulky and therefore makes it 

difficult to develop a portable hand-held solution.  

 

The linear nature of the image rejection suppression algorithm developed for the 

analyser design makes it suitable for transient signal analysis. However regular 

internal alignment is needed which interrupts the normal sweep operation which 

might not be acceptable in a real time operation. Future research could concentrate 

in applying modifications to the existing design such that imbalances are computed 

using the input signal rather than a separate calibration signal source [73] [85]. In the 

absence of sufficient input signal, the algorithm would stop and would continue to use 

the current value until a sufficiently large is detected. If there is no input or a small 

input, then the image rejection does not need to be good anyway. The compensated 

I and Q signals could then be used for further FFT processing. Future work is needed 
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in this area to determine the portability of the spectrum analyser design for a real 

time application.  

 

Last but not least, the spectrum analyser design could be used in a modulator design 

in a RF generator application where the base band I and Q signals are mixed with RF 

I and Q LO signals and then added together to generate the RF output.  The 

modulator enables the possibility of implementing complex modulation schemes in 

the RF generator. However, the base band I and Q needs to be free of gain and 

phase imbalance over the entire RF output range to achieve sufficient side bands 

suppression. The digital I and Q signals are ideal and imbalances are introduced at 

the mixer stages. A feedback from the output of the mixer is needed to calculate and 

compensate for the imbalances. The same theory of imbalance computation and 

correction could still be used, but the application of compensation will have to be 

done retrospectively [92]. Future work could concentrate on the feasibility of this 

design. 

 

This chapter concludes the research and road map ahead has been briefly 

presented.   
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Appendices 

 

Appendix A: Comparison table of the waveform generator 

 

The information provided here was true when the analysis was carried out. The specification of the waveform generators may have changed 

since then. 

 

Comparison Table (Version 08/10/2009) 

 Agilent 33220A  Agilent 33250A  
Tektronix 

AFG3021B  
Rigol DG2041A  

Pico-test 

G5100A  
TTI TG1010A  TTI TG4001   

Waveforms 

Standard:                                

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                  

Built-in:                

Exponential 

Rise, 

Exponential 

Fall, Negative 

Ramp, Sinc & 

Standard:                                

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                  

Built-in:                

Exponential 

Rise, 

Exponential 

Fall, Negative 

Ramp, Sinc & 

Standard:                            

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                    

Built-in:                

Exponential 

Rise, 

Exponential 

Decay, 

Sin(x)/x, 

Standard:                       

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                  

Built-in:                

Exponential 

Rise, 

Exponential 

Fall, Negative 

Ramp, Sinc & 

Standard:                       

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                   

Built-in:                 

Exponential 

Rise, 

Exponential 

Fall, Negative 

Ramp, Sinc & 

Standard:                        

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb                                                                                         

Built-in: 

Multilevel 

Square wave 

Standard:                       

Sine, Square, 

Ramp, Pulse, 

Noise, DC & 

Arb 

Built-in:  

Haversine, 

Havercosine, 

Pulse Train & 

Sinc 
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Cardiac Cardiac Gaussian, 

Lorentz & 

Haversine 

Cardiac Cardiac 

Frequencies 

Sine: 1 µHz - 

20 MHz 

Square: 1 µHz 

- 20 MHz 

Ramp: 1 µHz – 

200 kHz Pulse: 

500 µHz –        

5 MHz     

Noise: 10 MHz 

Bandwidth        

Built-in & 

Arbitrary:         

1 µHz – 6 MHz                        

Min Resolution: 

1 µHz 

Sine: 1 µHz - 

80 MHz 

Square: 1 µHz 

- 80 MHz 

Ramp: 1 µHz - 

1MHz   Pulse: 

500 µHz –     

50 MHz     

Noise: 50 MHz 

Bandwidth        

Built-in & 

Arbitrary:         

1 µHz –         

25 MHz                     

Min Resolution: 

1 µHz 

Sine: 1 µHz - 

25 MHz 

Square: 1 µHz 

- 12.5 MHz 

Ramp: 1 µHz – 

250 kHz      

Pulse: 1 mHz - 

12.5 MHz     

Noise: 25 MHz 

Bandwidth         

Built-in: 1 µHz 

– 250 kHz 

Arbitrary:         

1 mHz -      

12.5 MHz                       

Min Resolution: 

1 µHz 

Sine: 1 µHz - 

40 MHz 

Square: 1 µHz 

- 40 MHz 

Ramp: 1 µHz – 

400 kHz Pulse: 

500 µHz –     

16 MHz     

Noise: 20 MHz 

Bandwidth       

Built-in & 

Arbitrary:         

1 µHz –         

12 MHz                

Min Resolution: 

1 µHz 

Sine: 1 µHz - 

50 MHz 

Square: 1 µHz 

- 25 MHz 

Ramp: 1 µHz – 

200 kHz Pulse: 

500 µHz –     

10 MHz     

Noise: 20 MHz 

Bandwidth       

Built-in & 

Arbitrary:         

1 µHz –         

10 MHz                        

Min Resolution: 

1 µHz 

Sine: 0.1 mHz - 

10 MHz 

Square:        

0.1 mHz -      

10 MHz Ramp: 

0.1 mHz –   

100 kHz                     

Pulse: 0.1 mHz 

- 10 MHz     

Noise: 0.03 Hz 

- 700 kHz Built-

in & Arbitrary:          

0.1 mHz -      

10 MHz                   

Min Resolution: 

0.1 mHz 

Sine: 0.1 mHz - 

40 MHz 

Square: 1 mHz 

- 50 MHz 

Ramp: 0.1 mHz 

– 500 kHz                    

Pulse: 0.1 mHz 

- 10 MHz 

Noise: User-

defined 

Bandwidth             

Arbitrary:     

100 mHz -    

100 MHz                                

Min Resolution: 

0.1 mHz 

Amplitude 20 mVpp –    20 mVpp –    20 mVpp –    40 mVpp –    20 mVpp –    5 mVpp –      5 mVpp –      
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20 Vpp (into 

high 

impedance). 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

20 Vpp (into 

high 

impedance) 

Can be 

specified in 

Vpp, Vrms or 

dBm 

Square 

Waveform 

 Rise/Fall Time: 

< 13 ns   Duty: 

20 % - 80 % (to 

10 MHz) 40 % -

60 % (to         

20 MHz) 

 Rise/Fall Time: 

< 8 ns   Duty: 

20 % - 80 % (to 

25 MHz) 40 % - 

60 % (to        

50 MHz) 50 % 

fixed (to         

80 MHz) 

Rise/Fall Time: 

<= 18 ns     

Duty: Fixed 

 Rise/Fall Time: 

< 13 ns   Duty: 

20 % - 80 % (to 

8 MHz) 40 % -

60 % (to        

16 MHz) 50 % 

fixed (to         

40 MHz) 

 Rise/Fall Time: 

< 10 ns   Duty: 

20 % - 80 % (to 

10 MHz) 40 % -

60 % (to        

25 MHz) 

 Rise/Fall Time: 

< 22 ns   Duty: 

1 % - 99 % (to 

30 kHz) 20 % -

80 %(to         

10 MHz) 

Rise/Fall Time: 

< 8 ns     Duty: 

Fixed 

Ramp 

Waveform 

Symmetry:      

0 % - 100 % 

Symmetry:      

0 % - 100 % 

Symmetry:      

0 % - 100 %      

Plus Positive 

Ramp (100 %), 

Negative Ramp 

(0 %) and 

Symmetry:      

0 % - 100 % 

Symmetry:      

0 % - 100 % 

Symmetry:       

0 % - 99 %                          

Plus Positive 

Ramp, 

Negative Ramp 

and Triangle  

Positive Ramp, 

Negative Ramp 

and Triangle  
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Triangle (50 %)  

Pulse 

Waveform 

Rise/Fall Time:                      

<13 ns to     

100 ns   

Width: 20 ns to 

2000 s                        

No Delay 

Rise/Fall Time:                         

<5 ns to 1 ms               

Width: 8 ns to 

1999.9 s                         

No Delay 

Rise/Fall Time: 

<= 18 ns to 

0.625 * period 

(independently 

variable)  

Width: 30 ns to 

999.99 s                 

Delay: 0 ps to 

999.99 s 

Rise/Fall Time:                 

<5 ns to 1 ms               

Width: 12 ns to 

2000 s                        

No Delay 

Rise/Fall Time:               

<10 ns to     

100 ns          

Width: 20 ns to 

2000 s                        

No Delay 

Rise/Fall Time: 

<22 ns        

Width: 1 % -   

99 % (to        

30 kHz) 20 % - 

80 % (to        

10 MHz) No 

Delay 

Rise/Fall Time: 

< 8ns         

Width: 10 ns to 

99.99 s                 

Delay: -99.99 s 

to +99.99 s 

Arbitrary 

Waveform 

Length: 2 –     

64 K points 

Resolution:    

14 bits       

Sample Rate: 

50 MSa/s             

No. of 

Waveforms: 4 

Length: 2 –     

64 K points 

Resolution:    

12 bits       

Sample Rate: 

200 MSa/s   

No. of 

Waveforms: 4 

Length: 2 –   

128 K points 

Resolution:    

14 bits       

Sample Rate: 

250 MSa/s    

No. of 

Waveforms: 4 

Length: 2 –  

512 K points 

Resolution:    

14 bits       

Sample Rate: 

100 MSa/s    

No. of 

Waveforms: 4 

Length: 2 –  

256 K points 

Resolution:    

14 bits       

Sample Rate: 

125 MSa/s   

No. of 

Waveforms: 4 

Length: 1 K 

points 

Resolution:    

10 bits       

Sample Rate: 

27.48 Msa/s 

No. of 

Waveforms: 5 

Length: 4 -    

64 K points 

Resolution:    

12 bits       

Sample Rate: 

100 MSa/s   

No. of 

Waveforms: 4 

Noise 

Waveform 

Bandwidth:    

10 MHz          

Can be used 

Bandwidth:    

50 MHz 

(Gaussian) 

Bandwidth:    

25 MHz                

Can be used 

Bandwidth:    

20 MHz               

Can be used 

Bandwidth:    

20 MHz          

Can be used 

Bandwidth: 

0.03 Hz –    

700 kHz          

Noise: 35 bit 

LFSR clocked 

at 100 MHz                       



Appendices          180 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency spectrum analyser 

as modulating 

waveform                           

Noise-Add 

feature not 

available        

Can be used 

as modulating 

waveform                           

Noise-Add 

feature not 

available        

as modulating 

waveform                           

Noise-Add:                     

Noise level:     

0 % - 50 % of 

amplitude.              

Waveform 

level: 50 %      

as modulating 

waveform                           

Noise-Add 

feature not 

available        

as modulating 

waveform                           

Noise-Add 

feature not 

available        

Cannot be 

used as 

modulating 

waveform                           

Noise-Add 

feature not 

available        

Cannot be 

used as 

modulating 

waveform                           

Noise-Add 

feature not 

available  

 Amplitude 

Modulation 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, Noise, 

Arb                           

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz Depth: 

Carrier 

Waveform: All 

except Pulse, 

Noise & DC 

Modulation 

Waveform: 

Sine, Square, 

Ramp, Noise, 

Arb                                 

Internal: 2 mHz 

to 50 kHz 

External: DC to 

25 kHz   Depth: 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, Noise, 

Arb                          

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz Depth: 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

Carrier 

Waveform: All 

Modulation 

Waveform: 

Sine, Square                 

Internal: 1 kHz 

Sine or     

0.005 Hz -     

50 kHz Square                   

External: DC to 

100 kHz   

Depth: 0 % to 

100 % 

Can only 

perform 

External AM 



Appendices          181 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency spectrum analyser 

20 kHz Depth: 

0 % to 120 % 

0 % to 120 % 0 % to 120 % 0 % to 120 % 20 kHz Depth: 

0 % to 120 % 

Frequency 

Modulation 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: DC 

to 10 MHz 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: DC 

to 80 MHz 

Carrier 

Waveform: All 

except Pulse, 

Noise & DC 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 50 kHz                  

External: DC to 

25 kHz            

Deviation: DC 

to 5 MHz 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: DC 

to 20 MHz 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: DC 

to 25 MHz 

Cannot perform 

FM 

Cannot perform 

FM 

Phase 

Modulation 

Carrier 

Waveform: 

Sine, Square, 

Cannot perform 

PM 

Carrier 

Waveform: All 

except Pulse, 

Carrier 

Waveform: 

Sine, Square, 

Carrier 

Waveform: 

Sine, Square, 

Cannot perform 

PM 

Cannot perform 

PM 
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Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

360 degrees 

Noise & DC 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 50 kHz                  

External: DC to 

25 kHz            

Deviation:0 to 

180 degrees 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

360 degrees 

Ramp, Arb 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

360 degrees 

Pulse Width 

Modulation 

Carrier 

Waveform: 

Pulse 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Cannot perform 

PWM 

Carrier 

Waveform: 

Pulse 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Carrier 

Waveform: 

Pulse 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Carrier 

Waveform: 

Pulse 

Modulation 

Waveform: 

Sine, Square, 

Ramp, 

Triangle, 

Cannot perform 

PWM 

Cannot perform 

PWM 
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Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

100 % 

Noise, Arb 

Internal: 2 mHz 

to 50 kHz                  

External: DC to 

25 kHz            

Deviation:0 to 

50 % 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

100 % 

Noise, Arb 

Internal: 2 mHz 

to 20 kHz 

External: DC to 

20 kHz 

Deviation: 0 to 

100 % 

Frequency 

Shift Keying 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb    

Source: 

Internal/Extern

al Internal 

Modulation:       

50 % duty 

cycle Square   

(2 mHz to     

100 kHz) 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb    

Source: 

Internal/Extern

al Internal 

Modulation:        

50 % duty 

cycle Square  

(2 mHz to    

100 kHz) 

Carrier 

Waveform: All 

except Pulse, 

Noise & DC   

Source: 

Internal/Extern

al Internal 

Modulation:               

2 mHz to         

1 MHz 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb    

Source: 

Internal/Extern

al Internal 

Modulation:         

50 % duty 

cycle Square   

(2 mHz to    

100 kHz) 

Carrier 

Waveform: 

Sine, Square, 

Ramp, Arb    

Source: 

Internal/Extern

al Internal 

Modulation:          

50 % duty 

cycle Square  

(2 mHz to    

100 kHz) 

Carrier 

Waveform: All 

Source: 

Internal/Extern

al/Manual 

Internal 

Modulation:           

DC - 50 kHz 

Carrier 

Waveform: All 

except Pulse 

and Pulse 

Train Source: 

Internal/Extern

al/Manual 

Internal 

Modulation:          

DC - 50 kHz 

Sweep 
Waveforms: 

Sine, Square, 

Waveforms: 

Sine, Square, 

Waveforms: All 

except Pulse, 

Waveforms: 

Sine, Square, 

Waveforms: 

Sine, Square, 

Waveforms: All           

Type: 

Waveforms: All 

except Pulse                                 
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Ramp, Arb                     

Type: 

Linear/Logarith

mic Mode: 

Continuous or 

Externally/Man

ually Triggered                

Direction: 

Up/Down                       

Sweep Time:   

1 ms – 500 s 

Programmable 

Marker 

Ramp, Arb                     

Type: 

Linear/Logarith

mic Mode: 

Continuous or 

Externally/Man

ually Triggered                 

Direction: 

Up/Down                       

Sweep Time:   

1 ms – 500 s 

Programmable 

Marker 

Noise & DC        

Type: 

Linear/Logarith

mic   Mode: 

Continuous or 

Internally/Exter

nally Triggered                 

Direction: 

Up/Down     

Sweep Time:   

1 ms – 300 s 

Marker not 

provided 

Ramp, Arb                     

Type: 

Linear/Logarith

mic Mode: 

Continuous or 

Externally/Man

ually Triggered                  

Direction: 

Up/Down                       

Sweep Time:   

1 ms – 500 s 

Programmable 

Marker 

Ramp, Arb                     

Type: 

Linear/Logarith

mic Mode: 

Continuous or 

Externally/Man

ually Triggered                  

Direction: 

Up/Down                       

Sweep Time:   

1 ms – 500 s 

Programmable 

Marker 

Linear/Logarith

mic Mode: 

Continuous or 

Single or 

Manually/Exter

nally Triggered                        

Direction: 

Up/Down                     

Sweep Time: 

10 ms – 999 s 

Programmable 

Marker 

Type: 

Linear/Logarith

mic Mode: 

Continuous or 

Single or 

Manually/Exter

nally Triggered                        

Direction: 

Up/Down/Up-

Down/Down-

Up                     

Sweep Time:   

1 ms – 999 s 

Programmable 

Marker 

Burst 

Waveforms: 

Sine, Square, 

Ramp, Pulse, 

Noise, Arb                               

Type: Counted 

(1 to 50000 

Waveforms: 

Sine, Square, 

Ramp, Pulse, 

Noise, Arb                               

Type: Counted 

(1 to 1000000 

Waveforms: All 

except Noise 

and DC                               

Type: Counted 

(1 to 1000000 

cycles), Infinite, 

Waveforms: 

Sine, Square, 

Ramp, Pulse, 

Noise, Arb                               

Type: Counted 

(1 to 50000 

Waveforms: 

Sine, Square, 

Ramp, Pulse, 

Noise, Arb                               

Type: Counted 

(1 to 50000 

Waveforms: All 

standard and 

arbitrary                               

Type: Counted 

(1 to 1023 

cycles), Gated         

Waveforms: All 

standard and 

arbitrary                               

Type: Counted 

(1 to 1048575 

cycles), Gated 
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cycles), Infinite, 

Gated 

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 1 µs to 

500 s     N-

cycle Trigger 

Source: 

Internal/Extern

al/Manual 

Gated Trigger 

Source: 

External                        

Trigger Delay:                        

Not available 

cycles), Infinite, 

Gated                     

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 1 ms to 

500 s     N-

cycle Trigger 

Source: 

Internal/Extern

al/Manual 

Gated Trigger 

Source: 

External                        

Trigger Delay: 

0 ns – 85 sec 

Gated                     

Start/Stop 

Phase:                        

-180 to +180 

degrees              

Period: 1 µs to 

500 s     N-

cycle Trigger 

Source: 

Internal/Extern

al/Manual 

Gated Trigger 

Source: 

Internal / 

External                        

Trigger Delay: 

0 ns – 85 sec 

cycles), Infinite, 

Gated 

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 1 µs to 

500 s     N-

cycle Trigger 

Source: 

Internal / 

External / 

Manual Gated 

Trigger Source: 

External                        

Trigger Delay:                        

Not available 

cycles), Infinite, 

Gated 

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 1 µs to 

500 s     N-

cycle Trigger 

Source: 

Internal / 

External / 

Manual Gated 

Trigger Source: 

External                        

Trigger Delay:                      

Not available 

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 20 µs 

to 200 s     N-

cycle Trigger 

Source: 

Internal / 

External / 

Manual Gated 

Trigger Source: 

Internal / 

External / 

Manual                        

Trigger Delay:                        

Not available 

Start/Stop 

Phase:                        

-360 to +360 

degrees              

Period: 10 µs 

to 200 s     N-

cycle Trigger 

Source: 

Internal / 

External / 

Manual Gated 

Trigger Source: 

Internal / 

External / 

Manual                        

Trigger Delay:                         

Not available 

Internal 

Frequency 

Reference 

Accuracy:                  

±10 ppm in 90 

days            

±20 ppm in 1 

Accuracy:                      

±2 ppm in 1 

year    

Accuracy:                      

±1 ppm in 1 

year    

Accuracy:                  

±50 ppm in 90 

days          

±100 ppm in 1 

Accuracy:                  

±10 ppm in 90 

days            

±20 ppm in 1 

Accuracy:                      

±10 ppm in 1 

year    

Accuracy:                      

±10 ppm in 1 

year    
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year    year    year    

Interfaces 

GPIB, USB and 

LAN 

Standard/LXI 

GPIB and RS 

232 

GPIB, USB and 

LAN 

GPIB, RS232, 

USB and LAN 

GPIB, USB and 

LAN 
RS 232, GPIB 

RS 232, GPIB, 

USB 

Display 

Black and 

White LCD 

Display                          

Graph Mode 

available for 

visual 

verification 

Colour 

Graphical 

Display   Graph 

Mode available 

for visual 

verification  

5.6 inch Colour 

Display which 

shows graphs 

and 

parameters all 

the time 

Black and 

White LCD 

Screen                                          

256 X 64                                

Graph Mode 

available for 

visual 

verification  

Black and 

White LCD 

Display                          

Graph Mode 

available for 

visual 

verification 

20 X 4 

Alphanumeric 

Display 

20 X 4 

Alphanumeric 

Display 

Dimensions 

Bench Top 

(cubic mm):                                         

261.1 x 103.8 x 

303.2      Rack 

Mount (cubic 

mm):      212.8 

x 88.3 x 272.3 

Bench Top 

(cubic mm):                                         

254 x 104 x 

374                

Rack Mount 

(cubic mm):      

213 x 89 x 348 

Bench Top 

(cubic mm):                                         

329.6 x 156.3 x 

154.4                

Fits in RM3100 

Rackmount 

Bench Top 

(cubic mm):                                         

261.1 x 103.8 x 

303.2      Rack 

Mount:             

Dimensions not 

specified 

Bench Top 

(cubic mm):                                         

224 x 107 x 

380               

Rack Mount:             

Dimensions not 

specified 

Bench Top 

(cubic mm):                                         

130 x 212 x 

330                           

3U half-rack 

mountable 

Bench Top 

(cubic mm):                                         

130 x 212 x 

335                           

3U half-rack 

mountable 

Cost £1,083 £2,947 US$1780 US$995 US$ 1200 £700 £995 

Table 8.1 Comparison of function arbitrary waveform generators 
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Appendix B: Target specification of the waveform generator 

Issue 8: 27 October 2009 

Specifications apply at 18  28 ºC after 30 minutes warmup, at maximum output into 50 Ω 

 

Waveforms 

 
Standard Waveforms 

 

Sine, Square, Ramp (Variable Symmetry), Triangle, Negative Ramp, Pulse, Noise (Gaussian), DC, 

Sin(x)/x, Exponential Rise, Exponential Fall, Logarithmic Rise, Logarithmic Fall and 4 User Defined 

Arbitrary Waveforms. 

 

Sine 

Frequency Range: 1 µHz to 50 MHz 

Frequency Resolution: 1 µHz, 14 digits 

Output Level: 10 mVp-p to 10 Vpp into 50 Ω 

Amplitude Flatness: 

                  

(Relative to 1 kHz) 

<100kHz            0.1 dB 

<5MHz       0.15 dB 

<20MHz       0.3 dB 

<50MHz  0.5 dB 

Harmonic Distortion:  <1 Vp-p ≥ 1 Vp-p 

DC to 20 kHz -70 dBc -70 dBc 

20 kHz to 100 kHz -65 dBc -60 dBc 

100 kHz to 1 MHz -50 dBc -45 dBc 

1 MHz to 20 MHz -40 dBc -35 dBc 

20 MHz to 50 MHz -35 dBc -30 dBc 

NonHarmonic Spurii: <–60 dBc to 1 MHz, <–60 dBc + 6 dB/octave 1 MHz to 50 MHz  

Phase Noise (10 kHz offset): -115 dBc/Hz, typical (TBA) 

 

Square 

Frequency Range: 1 µHz to 50 MHz 

Frequency Resolution: 1 µHz, 14 digits 
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Output Level: 10 mVp-p to 10 Vpp into 50 Ω 

Rise and Fall Times: <8 ns 

Overshoot: <5 % 

Variable Duty Cycle: 20 % to 80 % to 10 MHz, 0.1 % resolution 

40 % to 60 % to 25 MHz, 0.1 % resolution 

50 % (fixed) above 25 MHz 

Asymmetry (@ 50 % duty): 1 % of period + 5 ns 

Jitter (RMS) 0.5 ns + 100 ppm of period (TBA) 

 

Ramp 

Frequency Range: 1 µHz to 500 kHz 

Frequency Resolution: 1 µHz, 12 digits 

Output Level: 10 mVp-p to 10 Vpp into 50 Ω 

Linearity Error: <0.1 % to 30 kHz 

Variable Symmetry: 0.0 % to 100.0 %, 0.1 % resolution 

 

Pulse 

Frequency Range: 500 µHz to 12.5 MHz 

Frequency Resolution: 1 µHz , 14 digits 

Output Level: 10 mVp-p to 10 Vpp into 50 Ω 

Overshoot: <5 % 

Jitter: 300 ps + 0.01 % of period (TBA) 

Rise/Fall Times: Rise and Fall times can be independently varied or can be varied 

together simultaneously. 

          Range: <10 ns to 40 µs 

          Resolution: 0.1 ns (for rise and fall time ≤100 ns) 

1 ns (for rise and fall time >100 ns and ≤ 2 µs) 

10 ns (for rise and fall time > 2 µs and ≤ 40 µs) 

Width Range: 20 ns to 2000 s (20 ns min for period ≤ 40 s) 

                       (200 ns min for period > 40 s and ≤ 400 s) 

                       (2 µs min for period > 400 s) 

Width Resolution: 10 ns (for period ≤ 40 s) 

100 ns (for period > 40 s and ≤ 400 s) 

1 µs (for period > 400 s) 

Delay Range: 0 ns to 2000 s 
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Delay Resolution: 10 ns (for period ≤ 40 s) 

100 ns (for period > 40 s and ≤ 400 s) 

1 µs (for period > 400 s) 

 

Arbitrary 

In built arbitrary waveforms (Sinc, Exponential Rise, Logarithmic Rise and DC). Up to 4 user defined 

waveforms may be stored in non-volatile memory.  Waveforms can be defined by downloading of 

waveform data via remote interfaces or from the instrument’s front panel. 

Waveform Memory Size: 4 waveforms – 4 waveforms of maximum size 65536 points or  

3 waveforms – 1 waveform of maximum size 131072 points and 2 

waveforms of maximum size 65536 points or 

2 waveforms – 2 waveforms of maximum size 131072 points. 

Minimum waveform size is 2 points. 

Vertical Resolution: 14 bits 

Frequency Range: 1 µHz to 10 MHz 

Frequency Resolution: 1 µHz , 14 digits 

Output Level: 10 mVp-p to 10V pp into 50 Ω 

Sampling rate: 125 MS/s 

 

Output Filter 

Selects between 50 MHz Elliptic or 20 MHz Bessel filter depending on the waveform. 

 

Noise 

Gaussian White Noise: Noise can be added to any carrier waveform (except pulse and square and 

noise itself). The amount of noise added can be specified as 0 % to 50 % of the amplitude of the 

carrier waveform. Noise can also be used as modulating waveform. 

Bandwidth (-3 dB): 20 MHz typical.  

Noise crest factor (Vp/Vrms): 5.27 

Output Level: 10 mVp-p to 10 Vpp into 50 Ω 

  

Internal Frequency Reference 

Oscillator Ageing Rate: 1 ppm first year 

Temperature Stability: < 1 ppm over the specified temperature range 
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Modulation 

 
AM 

Carrier Waveforms: Sine, Square, Ramp, Arb 

Modulation Source: Internal/External 

Internal Modulating 

Waveforms: 

Sine, Square, Up Ramp, Down Ramp, Triangle, Noise, DC, Sinc, 

Exponential Rise, Logarithmic Rise and User Defined Arbs 

Internal Modulating 

Frequency: 

1 µHz to 20 kHz, 1 µHz resolution 

Amplitude Depth: 0.0 % to 120.0 %, 0.1 % resolution 

 

FM  

Carrier Waveforms: Sine, Square, Ramp, Arb 

Modulation Source: Internal/External 

Internal Modulating 

Waveforms: 

Sine, Square, Up Ramp, Down Ramp, Triangle, Noise, DC, Sinc, 

Exponential Rise, Logarithmic Rise and User Defined Arbs 

Internal Modulating 

Frequency: 

1 µHz to 20 kHz, 1 µHz resolution 

Frequency Deviation: DC to Fmax/2, 1 µHz resolution 

 

PM 

Carrier Waveforms: Sine, Square, Ramp, Arb 

Modulation Source: Internal/External 

Internal Modulating 

Waveforms: 

Sine, Square, Up Ramp, Down Ramp, Triangle, Noise, DC, Sinc, 

Exponential Rise, Logarithmic Rise and User Defined Arbs 

Internal Modulating 

Frequency: 

1 µHz to 20 kHz, 1 µHz resolution 

Phase Deviation: -360.0 to +360.0 degrees, 0.1 degree resolution 

 

PWM 

Carrier Waveforms: Pulse 

Modulation Source: Internal/External 

Internal Modulating 

Waveforms: 

Sine, Square, Up Ramp, Down Ramp, Triangle, Noise, DC, Sinc, 

Exponential Rise, Logarithmic Rise and User Defined Arbs 

Internal Modulating 

Frequency: 

1 µHz to 20 kHz, 1 µHz resolution 

Pulse Width Deviation: 0 % to 100 % of pulse width, resolution same as of pulse width 



Appendices          191 
 
 

Design and implementation of a re-configurable arbitrary signal generator and radio frequency spectrum 
analyser 

 

FSK 

Carrier Waveforms: Sine, Square, Ramp, Arb 

Source: Internal/External (via TRIG IN) 

Internal Modulation: 50 % duty cycle square (2 mHz to 100 kHz) 

 

Triggered Burst 

Each active edge of the trigger signal will produce one burst of the waveform.   

Carrier Waveforms: Sine, Square, Ramp, Arb, Pulse 

Maximum Carrier Frequency: 10 MHz (finite cycles), 50 MHz (infinite), subject to carrier 

waveform. 

Number of Cycles: 1 to 1,048,575 and infinite. 

Trigger Repetition Rate: 2 mHz to 1 MHz internal  

dc to 1 MHz external. 

Trigger Signal Source: Internal from keyboard or trigger generator. 

External from TRIG IN or remote interface. 

Trigger Start/Stop Phase: -360.0 to +360.0 degrees, 0.1 degree resolution, subject to carrier 

waveform 

 

Gated 

Waveform will run while the Gate signal is true and stop while false. 

Carrier Waveforms: Sine, Square, Ramp, Arb, Pulse, Noise 

Maximum Carrier Frequency: 10 MHz, subject to carrier waveform 

Trigger Repetition Rate: 2 mHz to 1 MHz internal 

dc to 1MHz external. 

Gate Signal Source: Internal from keyboard or trigger generator. 

External from TRIG IN or remote interface. 

Gate Start/Stop Phase: -360.0 to +360.0 degrees, 0.1 degree resolution, subject to carrier 

waveform 

 

Sweep 

Frequency sweep capability is provided for both standard and arbitrary waveforms.   

Carrier Waveforms: All standard and arbitrary except pulse. 

Sweep Mode: Linear or logarithmic, triggered or continuous. 

Sweep Direction: Up, down, up/down or down/up. 

Sweep Range: From 1 µHz to 50 MHz, subject to carrier waveform. Phase 
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continuous. Independent setting of the start and stop frequency. 

Sweep Time: 1 ms to 500 s (6 digit resolution). 

Marker: Variable during sweep. 

Sweep Trigger Source:  The sweep may be free run or triggered from the following sources: 

Internal from keyboard or trigger generator.  Externally from TRIG IN 

input or remote interface. 

 

Trigger Generator 

Internal source 2 mHz to 1 MHz square wave adjustable in 1 us steps, 9 digit resolution. Available for 

external use from the SYNC OUT socket. 

 

Outputs 

 

Main Output  

Output Impedance: 50 Ω 

Amplitude: 20 mV to 20 Vpp open circuit (10 mV to 10 Vpp into 50 Ω). Amplitude 

can be specified open circuit (hi Z) or into an assumed load of 1 Ω to  

10 kΩ in Vpkpk, Vrms or dBm. 

Amplitude Accuracy: 2 %  ± 1 mV at 1 kHz into 50 Ω. 

DC Offset Range: ±10 V. DC offset plus signal peak limited to ±10 V from 50 Ω. 

DC Offset Accuracy: Typically 3 % ± 10 mV. 

Resolution: 3 digits or 1 mV for both Amplitude and DC Offset. 

 

Sync Out  

Multifunction output user definable or automatically selected to be any of the following: 

Carrier Waveform Sync: 

                        

 

                                             

                                                                                                                                                                                   

Sine/Ramp/

Pulse                                                                           

A square wave with 50 % duty cycle at the waveform 

frequency. 

Square A square wave with same duty cycle as the main output 

at the waveform frequency. 

Arbs A square wave with 50 % duty cycle at the waveform 

frequency. The sync is a TTL high when the first point of 

the waveform is output. 

Noise No sync associated with noise. 
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Modulation Sync: AM/FM/PM/

PWM 

A square wave with 50 % duty cycle referenced to the 

internal modulation waveform when modulation source is 

internal, or a square wave referenced to the carrier 

waveform when modulation source is external. No sync 

is associated with noise as the modulation source. 

FSK A square wave referenced to the trigger rate. The sync is 

a TTL high when hop frequency is the output frequency 

and TTL low when carrier frequency is the output 

frequency for positive slope and vice versa for negative 

slope. 

Burst Sync: A square wave that is a TTL high when the burst begins and a TTL low 

when burst is completed. 

Trigger: Selects the current trigger signal. Useful for synchronizing burst or 

gated signals. 

Sweep Sync: Marker Off A square wave that is a TTL low from the midpoint of the 

sweep and a TTL high from the end of the sweep.   

Marker On A square wave that is a TTL low from the marker 

frequency and a TTL high from the end of the sweep. 

Output Signal Level: Logic level nominally 3 V. 

 

Ref Clock Output 

Buffered version of the 10 MHz clock currently in use (internal or external) 

Output Level: Nominally 3 V logic level from 50 Ω 

 

Inputs 

 

Trig In 

Frequency Range: DC  1 MHz. 

Signal Range: Threshold nominally TTL level; maximum input ±10 V. 

Minimum Pulse Width: 50 ns 

Polarity: Selectable as high/rising edge or low/falling edge. 

Input Impedance: 10 kΩ 

 

External Modulation Input (for AM, FM, PM, PWM) 

Voltage Range: ± 5 V full scale 

Input Impedance: 5 kΩ typical 

Bandwidh: DC to 20 kHz 
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Ref Clock Input 

Input for an external 10 MHz reference clock 

Voltage Range: 1 Vpp – 5 Vpp 

Maximum Voltage: +5 V 

Minimum Voltage: -1 V 

 

Phase synchronising two generators 

Two generators can be synchronised together to provide outputs at the same frequency (or 

harmonics) and with a phase difference. The amplitude and phase of these outputs can also be 

modulated providing the capability to perform QAM and QPSK respectively.  It is also possible to 

synchronise more than two generators but results are not guaranteed. 

Carrier Waveforms: Sine, Square, Ramp, Arb 

Phase: Range -360.0 to +360.0 degrees 

Resolution 0.1 degree 

Accuracy < ±5 ns 

 

Interfaces 

Full digital remote control facilities are available through LAN and USB interfaces.  

LAN Interface Ethernet 100/10 base – T hardware connection.  

LXI V1.2, Class C compliant. 

USB Interface Standard USB 2.0 hardware connection. Implemented as virtual-COM 

port. 

USB Flash Drive For waveform and setup storage/recall. 

 

General 

Display:  Type:  Monochrome Graphics Display 

Pixel format:  112 COM X 256 SEG Matrix 

Data Entry: Keyboard selection of mode, waveform etc.; value entry direct by 

numeric keys or by rotary control. 

Stored Settings: 

(TBA) 

Up to 9 complete instrument setups may be stored and recalled from 

non-volatile memory. 

Size: Bench Top: 97 mm height; 250 mm width; 270 mm long 

Rack mount: 86.5 mm (2U) height; 213.5 mm (½rack) width; 244 mm 

long 

Weight: 2.55 kg 

Power: 110-240 VAC ±10 % 50 / 60 Hz; 100 - 120 VAC ±10 % 400 Hz; 60 VA 

max. Installation Category II. 
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Operating Range: +5 °C to 40 °C, 20  80 % RH. 

Storage Range: 20 °C to + 60 °C. 

Environmental: Indoor use at altitudes up to 2000m, Pollution Degree 2. 

Options: 19 inch rack mounting kit. 

Safety: Complies with EN610101. 

EMC: Complies with EN61326 
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Appendix C: Comparison table of the digital spectrum analyser 
 

The information provided here was true when the analysis was carried out. The specification of the spectrum analysers may have changed 

since then.  

 

Comparison Table (Version 14/07/2010) 

  Anritsu 

MS2713E 

[MS2721B] 

Rohde & 

Schwarz FSH6 

Tektronix 

SA2600 

BK Precision 

2658 [2658A]                

(Micronix 

MSA358 

[MSA458] also 

has the same 

specification) 

Willtek 9103 Spectran 

HF6060V4 

[HF6080V4] 

Features / 

Measurement 

Capabilities 

Occupied 

bandwidth, 

Channel 

power, ACPR, 

C/I, 

Interference 

analyser, 

Spectrogram, 

Signal 

Spectrum 

analysis, Scalar 

network 

analysis, Vector 

network 

analysis, 

Receiver mode, 

Channel power, 

TDMA power, 

Spectrum 

management, 

Spectrum 

monitoring and 

surveillance, 

Interference 

detection and 

troubleshooting, 

Signal hunting, 

Channel power, 

Adjacent 

channel power, 

Occupied 

bandwidth, 

Electric field 

strength, 

Magnetic field 

strength, 

Spectrum 

analysis, 

Channel power, 

Adjacent 

channel power, 

Occupied 

bandwidth, AM 

and FM 

demodulation, 

Spectrum 

analysis, 

Analysis and 

measurement of 

WLAN, UMTS, 

Wi-Fi, active 

radar, GSM, 

mobile phones, 

blue-tooth, 
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strength, RSSI, 

Signal ID, 

Gated sweep, 

CW signal 

generator, 

Internal power 

meter, 

AM/FM/SSB 

demodulation, 

Emission 

mask, 

[Tracking 

generator] 

Occupied 

bandwidth, 

DTF, 3GPP 

code domain 

power, Isotropic 

antenna, C/N 

measurement, 

Power, 

Transducer 

factors, Limit 

lines, Display 

line, AM and FM 

audio 

demodulation, 

Tracking 

generator  

Signal 

identification, 

Signals 

intelligence, 

Homeland 

security, AM 

and FM 

demodulation, 

Signal strength 

indicator, 

Integrated GPS 

receiver 

Frequency 

counter, 

[Tracking 

generator] 

Signal 

generator, 

Transmission 

measurement, 

Reflection 

measurement, 

Distance to fault 

measurement, 

Cable loss 

measurement, 

EMC 

measurement 

microwave 

ovens, DECT 

phones, 

TETRA, radio 

stations and TV 

stations, AM, 

FM and PM 

demodulation    

Frequency 

Range 

100 kHz –       

6 GHz [9 kHz - 

7.1 GHz] 

100 kHz –         

6 GHz 

10 kHz –        

6.2 GHz 

50 kHz -         

8.5 GHz 

100 kHz -      

7.5 GHz 

10 MHz –          

6 GHz [10 MHz 

– 8 GHz] 

Maximum Span 6 GHz         

[7.1 GHz] 

6 GHz 6.2 GHz 8.5 GHz 7.5 GHz Not mentioned 

(presumably 
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5990 MHz 

[7990 MHz]) 

Minimum Span 10 Hz including 

zero span 

100 Hz 

including zero 

span 

10 kHz 200 kHz 

including zero 

span 

10 kHz 

including zero 

span 

Not mentioned 

(zero span 

available) 

Frequency 

Resolution 

1 Hz 1 Hz 1 Hz 100 kHz         

[20 kHz] 

1 kHz Not mentioned 

Frequency 

Reference 

Ageing:           

±1.0 ppm /      

10 years                  

Accuracy:        

± 1.5 [0.3] ppm 

(25 °C ± 25 °C) 

+ ageing 

Ageing:          

1.0 ppm / year                            

Accuracy:         

2 ppm (0 °C to 

+30 °C)             

+ 2 ppm / 10°C 

(+30 °C to     

+50 °C) 

Ageing:           

1.0 ppm / year                            

Accuracy:      

0.5 ppm (0 °C to 

+50 °C) 

Ageing: -

Accuracy: - 

Ageing:             

± 1.5 ppm                                                 

Temperature 

stability: ± 2ppm         

Frequency 

uncertainty: ± 

1.5ppm 

Ageing: - 

Accuracy: - 

Stability: - 

Resolution 

Bandwidth 

10 Hz [1 Hz] – 

3 MHz in 1 – 3  

sequence        

± 10 %, (1 MHz 

max in zero 

span) (-3 dB 

100 Hz – 1 MHz 

in 1 – 3  

sequence (plus 

200 kHz)  ±5 % 

(±10 % for        

1 MHz) (-3 dB 

10 Hz – 3 MHz 

(manual), 10 Hz 

– 1 MHz (auto), 

Settable in 1 Hz 

resolution 

3 kHz – 3 MHz 

in 1 – 3  

sequence and 

auto ± 20 %     

(-3 dB 

bandwidth) 

100 Hz – 1 MHz 

in 1 – 3  

sequence, 

manual or 

automatic,        

(-3dB 

Minimum: 3 kHz 

[1 kHz] 

Maximum:      

50 MHz 
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bandwidth)  bandwidth) bandwidth) 

Video Bandwidth 1 Hz – 3 MHz 

in 1 – 3  

sequence       

(-3dB 

bandwidth) 

10 Hz – 1 MHz 

in 1 – 3   

sequence 

- 100 Hz – 1 MHz 

in 1 – 3  

sequence and 

auto 

10 Hz – 1 MHz 

in 1 – 3  

sequence, 

manual or 

automatic,        

(-3dB 

bandwidth) 

- 

Amplitude 

Measurements  

Display range:  

1 – 15 dB/div in 

1 dB steps,10 

divisions 

displayed                      

Units: dBm, 

dBV, dBmV, 

dBuV, nV, uV, 

mV, V, kV, nW, 

uW, mW, W, 

kW 

Reference 

level:-130 dBm 

Display range: 

100 dB, 50 dB, 

20 dB, 10 dB, 

linear                                                

Units: dBm, 

dBmV, dBuV, 

dBuV/m, 

dBuA/m, uV, 

mV, V, V/m, 

mV/m, uV/m, 

nW, uW, mW, 

W, W/m ^ 2                                  

Reference level: 

Display range: - 

Units: - 

Reference level: 

–160 dBm to 

+20 dBm 

Display range: 

10 dB/div,        

[5 dB/div],         

2 dB/div,       

200 dots per       

10 div                        

[381 dots per   

10 div]                                             

Units: dBm, 

dBV, dBmV, 

dBuV, dBuV/m, 

dBuA/m                                  

Reference level: 

Display range: 

Average noise 

floor to 20dBm 

in automatic 

mode                                           

Units: dBm, 

dBV, dBmV, 

dBuV, dB, uV, 

mV, V, uW, mW                              

Reference level: 

-100 dBm to 

+30 dBm      

(0.1 dB 

Display range: 

100 dB                                             

Units: dBm, 

dBuV, V/m, 

mA/m, dBiV, 

W/m ^ 2                                                                                    

Reference level: 

- 
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[-120 dBm] to 

+30 dBm 

–80 dBm to   

+20 dBm in 

steps of 1 dB 

-60 dBm to    

+10 dBm in       

1 dB step 

resolution) 

Phase Noise -100 dBc/Hz, -

110 dBc/Hz     

[-100 dBc/Hz] 

typical @       

10 kHz offset,               

-105 dBc/Hz   

[-102 dBc/Hz] 

@ 100 kHz 

offset,                                                    

-115 dBc/Hz @ 

1 MHz offset                  

Carrier =         

1 GHz 

-85 dBc/Hz @ 

30 kHz offset,                                 

-100 dBc/Hz @ 

100 kHz offset,                                                    

-120 dBc/Hz @ 

1 MHz offset                 

Carrier =       

500 MHz 

-95 dBc/Hz @ 

10 kHz offset,                                        

-95 dBc/Hz @ 

20 kHz offset,                                        

-95 dBc/Hz @ 

30 kHz offset,                                                    

-97 dBc/Hz @ 

100 kHz offset,                                                                          

-110 dBc/Hz @ 

1 MHz offset                   

Carrier = Entire 

operating 

frequency range 

-90 dBc/Hz, 

typical, @     

100 kHz offset, 

RBW 3 kHz, 

VBW 100 Hz 

sweep time 1 s 

< -83 dBc/Hz, 

typical,            

<-80 dBc/Hz @ 

100 kHz offset 

(RBW 10 kHz, 

VBW 1 kHz) 

Carrier =        

5.7 GHz 

– 

Distortion and 

Spurious 

Responses 

Third order 

intercept:     

+33 dBm    

[+15 dBm], 

typical (worst 

Third order 

intercept:      

+13 dBm                 

Second 

harmonic 

Third order 

intercept:        

+7 dBm                 

Second 

harmonic 

Third order 

intercept: - 

Harmonics: 

Less than      -

40 dBc @          

Image rejection: 

> 60 dB (f =   

6.7 GHz) 

Spurious level: 

<-86 dBm    

Third order 

intercept: - 

Second 

harmonic 

distortion: - 
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case) 

Second 

harmonic 

distortion:         

-80 dBc           

[-70 dBc] 

(worst case) 

Residual 

Spurious 

Responses: -

90 dBm           

[-84 dBm] 

distortion:          

-60 dBc                           

Residual 

Spurious 

Responses:       

-80 dBc 

distortion:          

-60 dBc                           

Residual 

Spurious 

Responses:       

-90 dBc 

>= 100 MHz                                                                          

Spurious 

response: Less 

than -60 dBc 

(100 kHz to      

3 GHz),           

<-80 dBm        

(3 GHz to       

7.5 GHz, 0 dB 

attenuation) 

LO leakage:      

<-57 dBm (f = 

7.7 GHz, 10 dB 

attenuation) 

Residual 

Spurious 

Responses: - 

Displayed 

Average Noise 

Floor 

–131 dBm, 

typical             

(-20 dBm 

reference level, 

1 Hz RBW) 

–135 dBm, 

typical (-30 dBm 

reference level, 

100 Hz RBW) 

–145 dBm       

(5 GHz -        

6.2 GHz, 10 Hz 

RBW) 

–117 dBm       

[–127 dBm], 

typical, @         

1 GHz 

10 MHz to         

5 GHz               

–123 dBm, 

typical                                                      

5 GHz to        

7.5 GHz:            

-120 dBm, 

typical                                                          

(0 dBm 

–135 dBm       

[–145 dBm]      

(1 Hz RBW) 
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reference level, 

100 Hz RBW) 

Sweep Functions Sweep: Single, 

continuous, 

manual trigger, 

reset, 

detection, 

minimum 

sweep time, 

trigger type, 

gated sweep               

Detection: 

Peak, RMS, 

negative, 

sample, quasi 

peak                                

Triggers: Free 

run, external, 

video, change 

position, 

manual  

Sweep: Single, 

continuous, 

triggered              

Detection: Auto 

peak, RMS, 

sample, 

max/min peak                                                                        

Triggers: Free 

run, external, 

video 

Sweep: Single, 

continuous, IF 

level, external, 

internal trigger               

Detection: - 

Triggers: Free 

run, internal, 

external, IF 

level  

Sweep: Normal, 

maximum hold, 

minimum hold, 

average, 

overwrite, 

number of 

sweeps 2 to 

1024 (power of 

2) and infinite                                                        

Detection: 

Positive peak, 

negative peak, 

sample                                           

Triggers: 

Internal, 

[External] 

Sweep: Actual, 

average, 

maximum hold, 

minimum hold                                                       

Detection: 

Positive peak, 

negative peak, 

sample, RMS 

(optional) 

Triggers: Free 

run  

Sweep: 

Start/stop, 

centre/span                              

Detection: - 

Triggers: Free 

run 
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Sweep-Time 10 us to 600 s 

in zero span,  

100 ms 

minimum in 

non-zero span             

[auto set in 

non-zero span] 

1 ms to 100 s in 

zero span,                        

20 ms to 1000 s 

in non-zero 

span 

- 10 ms to 30 s   

(1 – 3  step, 

span 0 to          

2 GHz) and 

AUTO, 

30 ms to 30 s  

(1 – 3 step span 

5 GHz and full) 

and AUTO 

1 ms to 250 s in 

zero span, 

1 ms to 250 s 

for span          

>= 10 kHz 

- 

Marker / Limit 

Line / Trace 

Functions 

Markers: 1 – 6, 

delta markers, 

marker table, 

fixed/tracking 

marker, noise 

marker, 

frequency 

counter 

marker, on/off                                                    

Limit line: 

Upper/lower, 

on/off, edit, 

Markers: 1 – 6, 

delta marker, 

multi-marker, 

peak, next 

peak, centre 

frequency 

marker, 

reference level 

marker, normal, 

noise marker, 

frequency 

counter marker, 

Markers: - 

Limit line: - 

Trace: - 

Markers: 

Normal and 

delta markers, 

displays 

frequency, level, 

frequency 

difference and 

level difference                                                                     

Limit line: - 

Trace: - 

Markers: 6 

(maximum), 5 

delta markers, 

marker 

functions 

(maximum, 

peak, next 

peak), transfer 

functions 

(centre 

frequency, 

reference level, 

Markers: 1,2, or 

3, frequency 

marker, 

amplitude 

marker                                                                                                  

Limit line: -                                                                                           

Trace: - 
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move, 

envelope, 

advanced, limit 

alarm, default 

limit                                           

Trace: Up to 3, 

view/blank, 

write/hold, 

trace A/B/C 

operations 

on/off                                                    

Limit line: 

function 

available 

(details not 

provided in the 

specifications) 

Trace: 1 trace 

and 1 memory 

trace, A-B, B-A 

trace 

frequency step)       

Limit line: 

Upper, lower, 

upper and 

lower, 99 limit 

templates, 30 

limit segments                                                                                          

Trace: Up to 2, 

minimum hold, 

maximum hold 

at the same 

time, trace 

functions (A+B 

to A, A-B to A), 

trace offset, 

copy A>B, copy 

B>A                  

RF Input Type: Type N, 

female 50 ohm, 

Maximum 

input:+30 dBm, 

Type: Type N, 

female 50 ohm, 

Maximum input: 

-                                    

Type: Type N, 

female 50 ohm, 

Maximum input: 

+20 dBm                     

Type: Standard 

SMA connector 

[Type N, female 

50 ohm],                                    

Type: Type N, 

female 50 ohm, 

Maximum input: 

+30 dBm,     

Type: Standard 

SMA connector, 

50 ohm                                                   

Maximum input: 
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±50 VDC,   

VSWR:  2:1 

[2:1 max, 1.5:1] 

typical 

VSWR:  1.5:1, 

nominal 

VSWR:  - Maximum input: 

+27 dBm,     

+25 VDC                     

VSWR:  < 2.0 

±50 VDC,   

VSWR:  < 1.6, 

typical, <1.3 

(100 MHz to     

4 GHZ), < 2.0, 

typical, <1.6    

(4 GHz to          

6 GHz), <2.3, 

typical, < 2.0    

(6 GHz to       

7.5 GHz) 

+10 dBm                    

VSWR:  - 

Connectors / 

Interfaces 

Connectors: 

Power 

connector, 

headset jack, 

GPS, RF out 

[not present], 

external 

reference input 

[not present], 

external 

Connectors: 

Power 

connector, 

headset jack, 

trigger/external 

reference input, 

tracking 

generator 

output                              

Interfaces: RS-

Connectors: IF 

output, external 

reference input, 

integrated GPS 

receiver, Power 

connector, 

headset jack                                           

Interfaces: LAN 

Connectors: 

Power 

connector, 

[external trigger 

input], [external 

trigger output]                                                                                                                                                              

Interfaces: 

RS232C [not 

present], [Type 

A USB 

Connectors: 

Multi port 7 pin 

ODU, DC input, 

headset jack, 

external 

reference input                                                                                                       

Interfaces: LAN 

(TCP/IP) 

interface, serial 

interface 

Connectors: 

Power 

connector, 

audio connector                                                                             

Interfaces: Mini 

B USB interface 
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trigger/clock 

recovery 

[external 

trigger in]                                                 

Interfaces: 

Type A USB 

interface, mini 

B USB 

interface, [type 

I compact flash 

interface], [LAN 

connection] 

232-C optical 

interface, power 

sensor 

interface], [mini 

B USB 

interface] 

Memory Internal 

memory: 2000 

[>13000] traces 

and setups                                   

External 

memory: USB 

flash drive 

[USB flash 

drive, compact 

Internal 

memory: 256 

traces and 

setups (CMOS 

RAM)                                        

External 

memory: None                                                

Save/Recall: 

Setups, 

Internal 

memory: -                                    

External 

memory: -                                                  

Save/Recall: -  

Internal 

memory: 100 

[200] setups 

and spectrum 

measurements                                                             

External 

memory: None                                                

Save/Recall: 

Setups and 

Type: Flash disk                                                                       

Capacity: 257 

setups and 

traces                                                            

Save/Recall: 

Setups and 

measurements 

Internal 

memory: 64 K 

internal memory                                                                                     

External 

memory: None                                                 

Save/Recall: 

Setups, 

measurements 
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flash module]                                                 

Save/Recall: 

Setups, 

measurements, 

screen shots 

(save only) 

measurements, 

screen shots 

(save only) 

measurements 

Screen shots 

can be directly 

printed by 

connecting a 

printer 

Display Type: Resistive 

touch screen 

daylight 

viewable colour 

LCD                               

Size: 8.4 ''                                                 

Resolution: 

800 x 600 

Type: Trans-

reflective LC 

colour display                      

Size: 5.7 ''                                                 

Resolution: 320 

x 240 

Type: Trans-

reflective LCD                      

Size: 10.4 '' 

(diagonal)                                                 

Resolution: 640 

x 480 (VGA) 

Type: 

Monochrome 

LCD, CFL 

backlight [colour 

TFT LCD, LED 

backlight]                                                 

Size: 4.7 "      

[5.7 '']                                                 

Resolution: 320 

x 240 [640 x 

480] 

Type: TFT 

colour (256 

colours) 300 cd 

brightness                                                

Size: 6.5 "                                              

Resolution: 640 

x 480 

Type: LC 

display                                        

Size: 14 "                                             

Battery Type: Li-Ion                                  

Operation:        

3 hours            

[2.5 hours], 

Type: NiMH                                      

Operation:        

3 hours, typical                     

Power 

Type: Li-Ion                                  

Operation:         

5 hours, typical 

Type: NiMH [Li-

Ion] 

Type: Li-Ion                                     

Operation:         

2 hours, typical 

Type: Li-Po 

power battery                                       

Operation: -                                           

Power 
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typical Consumption:    

7 W, typical 

Consumption: 

7.2 V,         

1300 mAh 

Dimensions 273 mm x    

199 mm x      

91 mm                

[315 mm x    

211 mm x       

94 mm] 

170 mm x      

120 mm x      

270 mm 

255 mm x     

330 mm x     

125 mm 

162 mm x       

70 mm x       

260 mm           

[162 mm x      

71 mm x       

265 mm] 

355 mm x      

190 mm x     

104 mm 

260 mm x       

86 mm x 23 mm 

Weight 3.45 kg [3.1 kg] 2.5 kg 5.56 kg 1.7 kg [1.8 kg] 3.6 kg 0.420 kg 

Cost $11950 

[$13950] 

$13465 £17,400 $10395 

[$10995] 

$19092, $14552 

(refurbished) 

€999.95 [€1298] 

Table 8.2 Comparison of 6GHz hand-held radio frequency spectrum analysers 
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Appendix D: Target specification of the spectrum analyser 

 

Issue: 29 July 2010 

 

Specifications apply at 18  28 ºC after 30 minutes warmup. 

 

Frequency Measurement 

 
Frequency Span 

Frequency Range: 1 MHz to 6000 MHz in one range  

Setting Modes: Centre frequency plus Span, or Start frequency plus Stop frequency 

Maximum Span: 5999 MHz [1 MHz to 6000 MHz]  

Minimum Span: 27 kHz, or Zero Span with demodulation 

Setting Resolution: 100 Hz at any frequency 

Setting Accuracy: 
Reference Frequency Accuracy for Start, Stop & Centre (Zero-Span) 

frequencies 

 

Reference Frequency Accuracy 

Initial Accuracy: Better than ± 10 ppm at 20 oC 

Stability: Better than ± 10 ppm over 10 oC to 30 oC 

Ageing: 
Better than ± 3 ppm per year 

 

Phase Noise 

Phase Noise: Typically –115 dBc/Hz at 100 kHz offset at 500 MHz (TBA) 

 

Resolution Bandwidth 

RBW: 1 kHz – 3 MHz (selectable in 1 – 3 – 10 sequence) 

Video Filtering: 300 Hz – 3 MHz (selectable in 1 – 3 – 10 sequence) 

 

Amplitude Measurement 

 

Amplitude Range 

Max Display Range: 80 dB 
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Measurement Units: DBm or dBµV (dB milli-watts or dB micro volts) 

Reference Level: Selectable as –40 dBm, -20 dBm, 0 dBm or +20 dBm 

 

Amplitude Accuracy 

Ref. Level Accuracy: Better than ± 1 dB at 50 MHz at 10 dB below reference level (20 oC ± 5 oC) 

Level Flatness: Better than ± 1.5 dB relative to 50 MHz over 1 MHz to 6000 MHz 

Amplitude Linearity: Better than ± 1 dB over 50 dB range down from reference level 

 

Amplitude Offset/Compensation 

Offset: -40 dB to +40 dB, or None 

Setting Resolution: 0.1 dB 

User Defined Compensation: On, or Off. Enables or disables frequency dependent amplitude                

to be compensated by adding a compensation value to the            

displayed amplitude for the sweep.  

 

Noise Floor  

Noise Floor: Better than –110 dBm average displayed noise floor  

 (reference level = -40 dBm, RBW = 1 kHz) 

 

Distortion and Spurious Responses 

3rd Order Intermodulation: TBA 

Harmonic: < –60 dBc at 10 dB below reference level (100 MHz)  

1st Image: <– 50 dBc  

Residual Spurious: <3 dB above noise floor  

 

Markers  

Number of Markers: One, Two (with Delta Marker), or None 

Marker Resolution: Frequency 10 Hz at all frequencies 

Amplitude 0.1 dB 

Marker Accuracy: 1 / 270th of Frequency Span ± 10 Hz + Reference Frequency Accuracy 

Frequency Readout: Frequency Display of absolute and difference frequencies for both markers 
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Amplitude Display of absolute and difference amplitudes for both markers 

Marker Functions: Normal, Peak Track, Frequency Counter 

 

Limits 

Limit Functions: High Line, Low Line, Scroll, User Defined Pattern, or Off 

Line: Horizontal lines are created after comparing the amplitude of the active marker. Lines 

can be moved up or down using the Scroll function. 

Pattern: Pattern is created from a list of amplitude and frequency points. Straight lines               

are drawn between these points. 

Displayed Lines: One, two (or none) differentiated by colour. 

Displayed Patterns: One, two (or none) differentiated by colour. 

Storage: Any number of limit lines / patterns can be stored. 

 

Traces 

Live Trace: Dot-joined trace from current or held sweep.  Selectable on or off. 

Reference Trace: Stored trace either recalled from memory or copied directly from live trace.   

Selectable on or off. 

Trace Stores: Live only, Live + Ref, Ref Only, Store Live, Store Ref, Recall Ref. 

Trace Mode: Normal, Average (Maximum 128), Peak Hold, Minimum Hold, Overwrite, Reset, Freeze, 

Resume 

 

Sweep 

Sweep Method: 
Detection for 271 points per sweep.  The amplitude value (as determined by the 

detection method) from each sub-span is stored (sub-span = span / 270). 

Sweep Time: Set automatically by Span and RBW.   

Typically, 100 ms + 0.3 ms / MHz of span for RBW = 1 MHz                                     

Sweep times will be higher for lower RBWs (TBA)                             

Fast (uncalibrated) sweep mode manually selectable.  

Sweep Modes: Continuous – Free Run, Triggered Start, Triggered Stop, Gated Mode                      

Single – Free Run, Triggered Start  
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Sweep Detection: Normal, Positive Peak, Negative Peak, Average 

Sweep Control: Separate buttons for Run and Stop.  Peak Hold and Average are reset               

whenever Run is pressed. 

 

Signal Input 

Input Connector: Standard SMA /Type N connector (TBA), 50 Ω  

VSWR: 1.5:1 typical 

Absolute Maximum Input 

Level:  

 

+ 25 dBm or +132 dBµV  (4 Vrms) or 15 V-DC 

 

Demodulation (Zero Span mode) 

Modes: AM or FM 

Display: Swept trace with demodulation display. (TBA) 

Audio Out: 30 mW into 32 Ω mono or stereo headphones, adjustable volume, 3.5 mm              jack 

socket (marked   ) adjacent to the Signal Input. 

Audio Filter Selectable low-pass filter to attenuate high frequency interference. 

2 pole filter with turnover point at approximately 3 kHz. 

 

Display 

Display Type: Touchscreen Colour LCD 

Trace Area: 271 x 225 pixels (high resolution mode). 

Graticule: 8 x 10 divisions light grey graticule. Selectable as fully on, horizontal lines only,                              

or off. 

Displayed Points: 271 points per sweep. 

Resolution Modes: Selectable as High Resolution or Low Resolution * 

 

*In low resolution mode the trace area becomes 135 x 112 points where each point is a block of 

4 pixels.  Only 135 sweep points are displayed.  This mode is useful in situations where the 

display could otherwise be difficult to see - e.g. when the instrument cannot be viewed at an 

optimum distance. 
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Memory Storage 

Memory Type: Internal Non-volatile Flash memory, External USB  

Flash Drive  

Store Trace: Any number of traces can be stored under either default file       

names or user entered file names. Traces are stored as             

tables of amplitude versus frequency and can be imported             

into other programs, as well as being recalled to the screen. 

Recall Trace: Recalls any stored trace to the reference trace of the                

display. 

Store Set-up: 
Any number of instrument set-ups can be stored under                

either default file names or user entered file names.  All            

settings of the instrument are saved. 

Recall Set-up: Recalls any stored set-up, overwriting the existing settings                 

of the instrument. 

Store Screen: This function copies the whole screen area to memory as a      bit-

map.  Any number of screens can be stored under either            

default file names or user entered file names.  

Store/Recall Limit Lines: Any number of limit lines can be stored under either default             

file names or user entered file names, and recalled as             

required. 

Store/Recall Limit Patterns: Any number of limit patterns can be stored under either              

default file names or user entered file names, and recalled               

as required. 

Store/Recall Compensation Files: Any number of compensation files can be stored under               

either default file names or user entered file names, and           

recalled as required. 

 

Connectors 

RF Input Connector: Standard SMA / Type N connector (TBA) 

Power Connector: 1.3 mm (TBA) dc power socket (centre positive) for 5.2 V / 1 A (TBA)                                

external AC power adaptor/charger as supplied by TTi. 

USB Connector: Type A USB connector to connect Flash Drive for store/recall functions 
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Audio Connector: 3.5 mm jack socket for demodulated audio out                                                             

(accepts mono or stereo plugs).   

Trigger Input Connector: BNC connector for +5 V TTL Level Trigger Input Voltage 

 

Power Sources 

 

AC Line Operation/Charging 

The PSA6002 can be operated from mains power using the AC power adaptor provided by TTi.  

 

AC Adaptor/Charger 

Input Voltage Range: 100 V to 240 V nominal 50 Hz / 60 Hz.  Interchangeable plus for UK,  

Euro, USA and Australia are supplied. 

 

Battery Operation 

The PSA6002 contains an internal rechargeable battery pack.   

Battery Type: Ni-MH  

Battery Life: > 4 hours continuous operation 

Recharge Time: < 3 hours from fully discharged 

 

Auto Sleep Mode 

To conserve battery life, the system can be set to automatically switch into sleep mode after a 

defined time from the last key press.  This can be set between 5 mins and 60 mins (or never). 

 

Mechanical 

Size: 170 mm high x 97 mm wide x 47 mm deep (including feet) 

Weight: 495 grams total 

Tilt Stand: Built-in tilt stand for bench use which angles the unit at approximately               

25 degrees to the horizontal and can alternatively be used as a hook mount. 

 

Environmental and Safety 

Operating Range:  +5 oC to + 40 oC, 20 % to 80 % RH. 

Storage Range:  -10 oC to +50 oC 
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Environmental:  Indoor use at altitudes to 2000 m, Pollution Degree 2. 

Electrical Safety: Complies with EN61010-1. 

EMC:  Complies with EN61326. 

 

 


