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Abstract— This paper describes various mechanisms for
adding stochasticity to a dynamic hierarchical neural clus-
terer. Such a network grows a tree-structured neural clas-
sifier dynamically in response to the unlabelled data with
which it is presented. Experiments are undertaken to eval-
uate the effects of this addition of stochasticity. These tests
were carried out using two sets of internal parameters, that
define the characteristics of the neural clusterer. A Genetic
Algorithm using appropriate cluster criterion measures in
its fitness function was used to search the parameter space
for these instantiations. It was found that the addition of
non-determinism produced more reliable clustering perfor-
mances especially on unseen real world data.
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I. INTRODUCTION

The standard Neural Network Competitive Learning al-
gorithm [7] may be modified by the addition of dynamic
node creation and the imposition of a tree structure on the
classificatory ordering of the nodes. This brings two main
advantages: the number of clusters that the neural network
will identify does not need to be predefined, and the hier-
archical tree structure improves the interpretability of the
results. In addition, the use of a tree structure allows a
more efficient search for the classifying node so increasing
the speed of the model. A basic neural network hierarchical
clusterer has been introduced in [1,2,3]. The latest version
of which is called CENT II.

In this paper, we introduce stochasticity to the basic
competitive hierarchical clusterer. The main goal of this
addition is to make the performance of the basic model
more robust to internal parameter settings and able to pro-
duce a suitable classification over a large variety of data
sets. The basic competitive evolutionary neural tree model
is described in Section 2. Three different forms of stochas-
ticity that can be added to the CENT II model are in-
troduced in Section 3. The experiments performed are
described in Section 4, and the results are reported and
illustrated in Section 5. Finally, some discussion and con-
clusions are given.

I1I. COMPETITIVE EVOLUTIONARY NEURAL TREE
(CENT 1I)

In CENT I1I, the tree structure is created dynamically
in response to structure in the data set. The neural tree
starts with a root node with its tolerance (the radius of
its classificatory hypersphere) set to the standard devia-
tion of input vectors and its position is set to the mean
of input vectors. It has 2 randomly positioned children.
FEach node has two counters, called inner and outer, which

count the number of occasions that a classified input vector
is within or outside tolerance, respectively. These counters
are used to determine whether the tree should grow chil-
dren or siblings once it has been determined that growth
is to be allowed.

A. Top-Level of Algorithm

At each input presentation, a recursive search through
the tree is made for a winning branch of the tree. Each
node on this branch is moved towards the input using the
standard competitive neural network update rule.

Any winning node is allowed to grow if it satisfies 2 con-
ditions. It should be mature (have existed for an epoch),
and the number of times it has won compared to the num-
ber of times its parent has won needs to exceed a threshold.
A finite limit is put on the number of times a node attempts
growth.

When a node is allowed to grow, if it represents a dense
cluster, then its inner counter will be greater than its outer
counter and it creates two children. Otherwise, it produces
a sibling node. The process of growth is illustrated in Fig-
ure 1.
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Figure 1. Process of growing a tree
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Figure 2. Pruning process

To improve the tree two pruning algorithms, short and
long term, are applied to delete the insufficiently useful
nodes. The short-term pruning procedure deletes nodes
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early in their life, if their existence does not improve the
classificatory error. The long-term pruning procedure re-
moves a leal when its activity is not greater than a thresh-
old. See Figure 2 for the pruning process.

B. Parameter Settings

The behaviour of CENT 1II is determined by a set of
parameters, that specily for example the growth/pruning
thresholds. In order to measure the effects of adding
stochasticity to the basic model, a good instantiation of
the parameters is needed. A Genetic Algorithm (GA) was
used to search for such a set of parameters[9]. Figure 3
illustrates this process; fitness is assigned using two specific
criteria which are described in Section 4.
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Figure 3. Process of finding parameter values using GA

In order to investigate the robustness of the model to its
parameter settings, we found a second instantiation of the
parameters deliberately designed to be non-optimal. This
was achieved by modifying the fitness function of the GA
so that it had a strong preference for small trees.

I1I. StocHASTICITY AND CENT II

We anticipated that the addition of randomness to
CENT 1II could have some benefit in helping the model
avoid local minima in its implicit cost function. This ap-
proach is well known in the field of optimisation.

There are two diflerent ways in which stochasticity can
be added to the model. Firstly the deterministic decisions
relating to growth and pruning can be made probabilistic,
we call this Decision Based Stochasticity (DB). Secondly
the attributes inherited by nodes when they are created
can be calculated with a stochastic element, we call this
Generative Stochasticity (G). To both of these approaches
a simulated annealing process can be added to mediate the
amount of non-determinism in a controlled way, so that a
decreasing temperature allows for less randomness later in
the life of the network.

A.  Decision Based Stochasticity (DB)

There are two crucial decision making points in the
model: selection for growth and selection for pruning.
These decisions are made deterministically in the basic
model, a relevant scalar value is calculated and compared to
the appropriate threshold. This is generalised in the normal
way to a stochastic decision, with the heaviside threshold
function softened to a sigmoid, as shown in Figure 4.
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Figure 4. Decision Based Stochasticity

B. Generative Stochasticity (G)

The key property of a newly created node, calculated
from its parent, is its tolerance size. Here, some random-
ness is added to this calculation. To achieve this, a Gaus-
sian centred on the deterministic value gives the probabil-
ity distribution of the new value. Figure 5 illustrates this
process.
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Figure 5. Generative Stochasticity

C. Integration of Stochastic Decision Based and Simulated
Annealing (DB+SA)

The degree of randomness in the decision making pro-
cess (DB) can be varied by changing the steepness of the
sigmoid, parameterising it with a temperature, as in the
standard Simulated Annealing approach. A high tempera-
ture corresponds to a large amount of randomness, and this
is reduced over time. When the temperature is reduced to
zero, the decision will become deterministic.



IV. EXPERIMENTS
A. Data Sets

The data sets used in this investigation have been cho-
sen to test many different aspects of the performance of the
CENT II model. Three 2-dimensional and two higher di-
mensional artificial data sets are used, these have a variety
of numbers of clusters (2 to 27) and hierarchical structure
(1 to 4/5 levels). In addition, three real-world data sets
are used: the well known TRIS data set which consists of
150 instances of 4 attributes describing sepal length, sepal
width, petal length and petal width of the iris flower. The
WINE data set contains 178 instances describing the re-
sults of a chemical analysis of wines grown in the same
region in Italy in terms of 13 attributes. The ZOO data
contains 59 instances of animals in terms of 18 attributes:
a naming label, 15 boolean attributes, the number of legs
and a type label.

B. Measurement of clustering performances

The general goal in many clustering applications is to
arrive at clusters of objects that show small within-cluster
variation relative to the between-cluster variation [6]. Clus-
tering is difficult as many reasonable classifications may
exist for a given data set, moreover it is easy for a clusterer
to identify too few or too many clusters. Suitable cluster
criterion measures are therefore needed [4].

There are two types of clustering measures, ones that
grade the flat clustering performance of the leaf nodes and
ones that grade the hierarchical structure.

An initial investigation concentrated on 10 non-
hierarchical clustering methods from Milligan and Cooper
[8] and another 2 hierarchical methods from Gordon [5].
As a result of this study, the best method of each type
was chosen: the Gamma method [8], which measures the
flat partitioning performance, and the Hierarchical Corre-
lation method [5], that assesses the hierarchy structure in
a network. The methods are as follows:

Gamma: s(+) is the number of times when two points
not clustered together are further apart than two points
which are in the same cluster and s(—) is the number of
times when two point not clustered together are closer than
two points which are in the cluster.

in calculating Gamma

In Figure 6, if D1 is less than D2 then s(+) is incre-
mented, otherwise s(—) is incremented. Gamma is calcu-
lated from these two values using the following formula.

T = s(4)—s(—
s(+)+s(-)

This gives a value between -1 and +1, where +1 is op-
timal. For comparison with the second measure we rescale
this to the range 0 to +1.

Hierarchical Correlation (HC): measures the correlation
between the dissimilarity matrix (d;;) and hierarchical sep-
aration matrix (h;;). A measure of the quality of the hier-
archy structure in the tree is then given by:

HC — E (dsj—d)(hsj—h)
VD (dig=d)? > (hi;—h)?]

d;; is a dissimilarity between ¢ and j objects. In this
study, the dissimilarity is computed using the Fuclidean
distance.

hi; is the relative height, which is the number of steps in
the tree to the closest node that has 7 and j as descendants.

Figure 7 shows two examples of computing this relative
height. The relative height of the node that classifies the
2nd input and the node that classifies the 5th input is 2.
However, the relative height of the node that classifies the
1st input and the node that classifies the 6th input is 3.
HC gives a value between 0 and +1, where +1 is optimal.
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Figure 7. Examples of calculating the relative height

V. RESULTS

In this section, we present the comparative results for
the deterministic version of our model (CENT 1II) and a
variety of non-deterministic versions over eight data sets
using two different sets of parameters. The two different
forms of stochasticity, decision based (DB) and generative
(G) can be added separately or together.

In addition, Simulated Annealing was added to the de-
cision based method to give five different versions of non-
determinism. The results are divided into two sections,
corresponding to the two parameter settings described ear-
lier in Section 2. All test results are obtained by running
the model for thirty epochs.

A. Optimal parameters

Table 1 represents the average and standard deviation
of the two different clustering measures, over all eight data
sets, tested for the deterministic version, and five different
stochastic versions of the model, using the first set of pa-
rameter values. This set of parameters is designed to be
optimal for deterministic CENT II. Unsurprisingly Table
1 clearly shows that deterministic version performed well,
and that non-determinism was of limited value.



TABLE I
CLUSTERING MEASURES OF 8 DATA SETS USING THE OPTIMAL PARAMETER SETTINGS; AVERAGE VALUES RANGE FROM (-1 WHERE | REPRESENTS

THE BEST RESULTS

Gamma measure

Hierarchical correlation

Modes Average

Standard Deviation

Standard Deviation

Average

Determanistic 0.891

0.091

0.652

0.069

Stochastic-DB
Stochastic-DB+G
Stochastic-G
Stochastic-DB-+SA
Stochastic-DB+SA+G

0.865
0.890
0.898
0.891
0.903

0.091
0.094
0.090
0.108
0.067

0.693
0.657
0.674
0.687
0.636

0.035
0.078
0.063
0.035
0.092

1.24
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Figure 8. Gamma measure of 8 data sets using the
optimal set of parameter values
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Figure 9. Hierarchical correlation of 8 data sets using the
optimal set of parameter values

Figure 8 and Figure 9 give the Gamma measure and
the Hierarchical Correlation respectively for each individ-
ual data set using CENT II and two of the best stochastic
variants. Further work is being undertaken to determine
the best combination of stochastic mechanisms.

The inter-version Hierarchical Correlation variability is
greater than for the Gamma Measure, which means that
there was considerable variation in tree structures pro-
duced. Interestingly Figure 9 shows the stochastic versions
of the model significantly out perform the deterministic
version for all the real world data sets. This can be il-
lustrated for the IRIS data set, where the Stochastic-DB
version produced the best tree which is shown in Figure 10.

Figure 10. Tree structure produced by Stochastic-DB
model with the IRIS data set

The true structure of the data consists of 3 different
classes, each of 50 inputs, where each class represents a
type of iris plant. One class is linearly separable from the
other two, and this division is made at the top level of the
tree. The other two classes are then immediately separated
in the left subtree.



TABLE II
CLUSTERING MEASURES OF 8 DATA SETS USING THE NON-OPTIMAL PARAMETER VALUES; AVERAGE VALUES RANGE FROM (-1 WHERE 1

REPRESENTS THE BEST RESULTS

Gamma measure Hierarchical correlation
Modes Average Standard Deviation | Average Standard Deviation
Deterministic 0.772 0.142 0.671 0.161
Stochastic-DB 0.849 0.148 0.703 0.063
Stochastic-DB+G 0.884 0.130 0.690 0.058
Stochastic-G 0.719 0.166 0.690 0.135
Stochastic-DB-+SA 0.881 0.138 0.708 0.063
Stochastic-DB+SA+G 0.867 0.128 0.677 0.086

B. Non-oplimal parameters

Table 2 gives the results using the second parameter set.
These parameters were obtained in the GA where the fit-
ness function deliberately restricted the size of the tree for
the CENT II model, which means that the trees produced
using this parameter set may be non-optimal for data with
many clusters. As expected the deterministic version did
not perform as well here, and the high standard deviation
of the Hierarchical Correlation measure shows that there
is large variation in performance over the data sets. On
the contrary, the stochastic model performed well in this
situation. In particular, it improved the performance over

the real world data. As an example of the improvement
the non-deterministic version offers consider Figures 11 and
12. They illustrate the performance of both versions of the
model, with non-optimal parameter settings, on a data set
of 27 clusters.

CENT 1I produced an inappropriate tree, with only 11
nodes for the 27 clusters and the nodes were not well dis-
tributed. However the stochastic model produced enough
nodes to represent the data. At least one leaf node appears
in each cluster position and the four main cluster areas were
separated by the second level of the tree. Admittedly there
is a slight overproduction of nodes but this is preferable to
not finding all the clusters.
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Figure 11. Positions of leaf nodes and a tree structure produced by CENT II with data 3 which contains 27 clusters
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Figure 12. Positions of leaf nodes and a tree structure produced by Stochastic-DB with data 3 which contains 27
clusters

VI. DiscussION AND CONCLUSION

This paper presents a method for adding stochasticity
to a dynamic hierarchical neural clusterer. We identified
five different combinations of non-deterministic behaviour
that can be added to the basic model. In order to investi-
gate the benefits or costs of these additions we created two
parameter sets for the deterministic model using a GA.

One set is optimal for deterministic CENT II and a par-
ticular collection of artificial data, and the other is deliber-
ately non-optimal. As expected the deterministic version
performed well on the artificial training sets for which its
parameters were optimised, and adding stochasticity had
little effect on performance.

However for unseen data sets with unpredictable struc-
ture the parameters would obviously not be optimal. The
variability inherent in the stochastic models allows the tree
growth to adapt to this new data producing reliably good
tree structures to represent the data. This can be seen
most clearly in the performance of deterministic CENT
IT with non-optimal parameter settings, compared to the
stochastic version with the same parameters, where the
non-determinism still allowed high quality trees to be pro-
duced.

The stochastic model has produced a consistently good
performance over all of the data set presented, has main-

tained the quality of performance shown by the CENT II
and has improved reliability. Further work is being carried
out to determine the best combination of mechanisms for
adding stochasticity to the basic model.
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