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ABSTRACT

BACKGROUND: The symptoms of obsessive-compulsive disorder (OCD) have been postulated to result from
impaired executive functioning and excessive habit formation at the expense of goal-directed control and have
been objectively demonstrated using neuropsychological tests in such patients. This study tested whether there is
functional hypoactivation as well as dysconnectivity of discrete frontostriatal pathways during goal-directed
planning in patients with OCD and in their unaffected first-degree relatives.

METHODS: In total, 21 comorbidity-free patients with OCD, 19 clinically asymptomatic first-degree relatives of these
patients, and 20 control participants were tested on a functional magnetic resonance optimized version of the Tower
of London task. Group differences in brain activation during goal-directed planning were measured together with
associated frontostriatal functional connectivity.

RESULTS: Patients with OCD and their clinically asymptomatic relatives manifested hypoactivation of the right
dorsolateral prefrontal cortex during goal-directed planning coupled with reduced functional connectivity between
this cortical region and the basal ganglia (putamen).

CONCLUSIONS: Hypoactivation of cortical regions associated with goal-directed planning and associated
frontostriatal dysconnectivity represent a candidate endophenotype for OCD. These findings accord with
abnormalities in neural networks supporting the balance between goal-directed and habitual behavior, with
implications for recent neuropsychological theories of OCD and the major neurobiological model for this disorder.
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The major neurobiological model for obsessive-compulsive
disorder (OCD) implies functional abnormalities within fron-
tostriatal circuits (1). These circuits are crucial for enabling the
successful implementation of flexible, goal-directed behavior
(2). Accordingly, deficits in executive functions have been
demonstrated in OCD [for a review, see (3)]. In addition,
exaggerated appetitive (4) and aversive (5) habit learning in
OCD has been shown, also compatible with abnormal activity
of corticostriatal circuits affecting the balance between goal-
directed and habitual behavior (6,7). This neuropsychological
signature is congruent with the clinical phenotype of patients
with OCD, characterized by recurrent intrusive thoughts (ob-
sessions) and/or repetitive behaviors (compulsions) performed
at the expense of goal-directed purposeful actions.

In this study, we tested whether abnormalities of the goal-
directed system are directly related to state (i.e., symptoms
or confounds such as chronic disease and treatments) or

whether they are state independent (manifest in an individual
whether or not the iliness is active) (8). To this end, we used a
familial study design that recruited not only patients with OCD
but also their first-degree unaffected relatives together with
healthy comparison subjects without a family history of the
condition. OCD runs in families, with first-degree relatives
showing increased risk for the disorder compared with the
normal population. There is strong evidence that OCD has a
genetic basis, accounting for 40% of the phenotypic variance
according to twin studies (9). However, a lack of clear genetic
findings has led to the search for candidate endophenotypes,
here operationalized as behavioral, cognitive, or neural
markers of the disorder detected in clinically unaffected first-
degree relatives of patients (8). These endophenotype
markers represent stable phenotypes that might reflect a ge-
netic effect and be more closely related to the causes of a
disorder than to its symptoms (8).
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To investigate the neural basis of the goal-directed system,
we used functional magnetic resonance imaging in conjunc-
tion with a well-validated goal-directed planning task testing
the ability to select the correct sequence of subgoals by
anticipating the consequences of one course of action for
another. Our investigation was based on substantial overlap
between the neural circuitry typically recruited during the
execution of goal-directed planning and the frontostriatal
circuitry implicated in OCD according to the prevailing
neurobiological model (1).

Accordingly, there is evidence of impaired performance
with lengthened response times (10-12) and impaired accu-
racy under more difficult task conditions (13,14) in patients
with OCD. Such impaired performance persisted despite
successful pharmacological treatment (15) and was also found
in unaffected relatives of patients with OCD compared with
healthy subjects (16), highlighting planning performance as a
potential endophenotype for OCD. In spite of a few negative
findings (11,12), several meta-analyses have provided evi-
dence for a considerable impairment in planning abilities in
patients with OCD (17,18). Such impairment was independent
from depression, medication, and symptom severity (18) and
was evident when analyzing accuracy and response times
either as a composite measure or separately. Here, we
included only the easy trials to avoid brain activation’s being
confounded by differences in performance. Therefore, we did
not expect reduced accuracy in patients, in line with previous
studies for which such impairment was found only at the most
difficult levels of the task (3). Because previous studies have
found evidence of lengthened response times (10-12), we
expected increased response times in patients and hypothe-
sized that such abnormalities would extend to their relatives
as well.

At the neural level, hypoactivity of the dorsolateral pre-
frontal cortex (DLPFC) and striatal regions has been identified
during goal-directed planning in patients with OCD (19), and
high levels of obsessive-compulsive symptoms were associ-
ated with hypoactivation of the DLPFC during planning
(20,21). To date, no studies have investigated the neural
correlates of goal-directed planning in unaffected first-degree
relatives of OCD, which were tested here with the hypothesis
of decreased responsiveness in both patients and their
relatives.

Moreover, extending the frontostriatal model for OCD (1),
dysfunctional interactions between cortical and subcortical
nodes, rather than damage to individual brain regions, have
been hypothesized as a potential determinant of OCD (22).
Recent research has documented a double dissociation for
specific frontostriatal circuits, whereby weakened caudate-
ventrolateral PFC and putamen-DLPFC resting state
connectivity accounted for impaired cognitive flexibility and
goal-directed planning in patients with OCD, respectively (14).
Here, we probed task-dependent online functional connec-
tivity (FC) during goal-directed planning and tested the a priori
hypothesis of reduced frontostriatal connectivity between
frontal and subcortical brain regions during the implementa-
tion of goal-directed sequences in OCD patients. In addition,
leveraging a familial study design, we tested whether reduced
frontostriatal connectivity represented a candidate endo-
phenotype for OCD.

Frontostriatal Alterations as an Endophenotype for OCD

METHODS AND MATERIALS

Participants

In total, 21 comorbidity-free patients with OCD, 19 of their
clinically unaffected first-degree relatives, and 22 control sub-
jects participated in the study. Groups were matched for age
and verbal 1Q. All participants were right handed, and each
group included a similar proportion of female participants (see
Supplement). Patients reported higher levels of depressive
symptoms as assessed with the Montgomery-Asberg Depres-
sion Rating Scale (23), albeit well below the clinical threshold
(Table 1), and the majority of these (n = 17; Supplement) were
receiving selective serotonin reuptake inhibitors.

Experimental Design

We used the One-Touch Spatial Planning task (24) to test goal-
directed planning and the ability to achieve a goal through
intermediate steps (Figure 1A). The task represents a functional
magnetic resonance imaging variant of the corresponding
Cambridge Neuropsychological Test Automated Battery
paradigm (Supplement; see imaging parameters and pre-
processing), whereby in addition to planning trials, a counting
condition controls for visual, attentional, and motor demands.
Problems with 2, 3, or 4 correct moves were included. Planning
and counting problems were displayed alternately. The
experimental paradigm lasted for approximately 10 minutes
(Supplement).

Data Analysis

Behavior. Behavioral data were analyzed with a standard
statistical package (SPSS version 23.0, IBM Corp., Armonk,
NY). Behavioral performance was assessed by the percentage
of problems attempted that were responded to correctly
(accuracy) and the associated mean response times. For each
of these measures, a2 X 3 X 3 repeated-measures analysis of
variance (ANOVA) compared performance between groups.
The within-subject factors were trial type (planning or counting)
and difficulty level (2, 3, or 4), and the between-subject factor
was group (controls, relatives, or patients). Appropriate cor-
rections were applied in case of violation of the assumption of
sphericity. When significant differences were found with
ANOVA, post hoc protected least significant difference tests
were conducted. The relationship between behavioral mea-
sures (accuracy and mean response times) and disease
severity (Yale-Brown Obsessive Compulsive Scale [Y-BOCS])
was investigated in patients with OCD.

Functional Magnetic Resonance Imaging. For imaging
data analysis, SPM was used. The hemodynamic response
was modeled to the onsets and durations of planning and
counting problems. Onsets were the time of appearance of the
stimuli on the screen, and durations were measured to the time
of response. For each individual, the following contrasts of
interest were estimated: planning activation relative to rest for
2, 3, and 4 moves; planning activation relative to counting for
2, 3, and 4 moves, respectively; planning high minus planning
low; planning minus counting; and counting minus planning
(Supplement). Whole-brain maps depicting these contrast es-
timates were collated for second-level (group) random-effects
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Table 1. Demographic, Clinical, and Behavioral Characteristics of Patients With OCD, Their First-Degree Unaffected
Relatives, and Healthy Comparison Subjects

Control Subjects Relatives Patients
(n =20) (n=19 (n=21) Statistic df P
Demographic Measures
Gender, n (male:female) 5:15 5:14 3:18 %2=1.047 2 592
Age, years 36.45 (8.54) 41.11 (10.63) 37.90 (14.31) F =0.835 2,57 439
Estimated verbal IQ 115.80 (6.07) 114.57 (7.04) 115.55 (5.13) F =0.220 2,57 .803
Handedness 61.50 (48.15) 61.58 (44.38) 65.71 (46.86) F =0.055 2,57 .947
Clinical Measures
MADRS 1.35 (3.38) 2.32 (3.20) 7.33 (7.34) F=8.178 2,57 .001
Y-BOCS obsessions 0 0 11.43 (2.82)
Y-BOCS compulsions 0 0 12.05 (2.71)
Y-BOCS total 0 0 23.00 (5.65)
Behavioral Measures
Planning accuracy, overall % 85.36 (3.15) 82.01 (3.23) 84.68 (3.07) F =0.623 2,57 .540°
Accuracy, p2 % 88.69 (15.98) 85.66 (19.89) 87.86 (11.19)
Accuracy, p3 % 87.74 (14.15) 83.09 (18.27) 85.47 (17.65)
Accuracy, p4 % 79.64 (21.92) 77.28 (21.82) 80.71 (21.88)
Planning response times, overall seconds 6.58 (0.66) 8.47 (0.68) 8.81 (0.65) F =4.236 2,57 019°
Response time, p2 seconds 5.97 (1.96) 7.25 (2.05) 6.96 (2.05)
Response time, p3 seconds 5.98 (1.51) 8.52 (2.79) 8.47 (4.93)
Response time, p4 seconds 7.79 (2.64) 9.64 (2.85) 11.00 (6.29)

Values are presented as mean (SD). Estimated verbal IQ was measured with the National Adult Reading Test. Handedness was measured with

the Edinburgh Handedness Inventory.

MADRS, Montgomery—Asberg Depression Rating Scale; OCD, obsessive-compulsive disorder; p2, planning 2 moves; p3, planning 3 moves;
p4, planning 4 moves; Y-BOCS, Yale-Brown Obsessive Compulsive Scale.

?Repeated-measures analysis of variance; there was not a main effect of group for accuracy.

PRepeated-measures analysis of variance; there was a main effect of group on response times, with patients and relatives being slower than
controls irrespective of trial type (counting or planning) and difficulty level (2, 3, or 4 moves).

analyses as specified in the Supplement for each contrast.
Activation was deemed significant at p < .05, familywise error
(FWE) corrected at the voxel level, or p < .001 uncorrected.

Previous studies have demonstrated caudate activation in
association with planning (25-27) and reduced activation in
caudate and putamen during planning in patients with OCD
(19). Thus, regions of interest (ROls) in those regions were
defined in both hemispheres as 3.5-mm radial spheres using
the MarsBaR toolbox at Montreal Neurological Institute (MNI)
coordinates x = 11, y = 7, z = 9 for the caudate and at MNI
coordinates x = 24, y = 0, z = 3 for the putamen (Supplement).
Average intensity value from all voxels within an ROI was
calculated to carry out ROI analyses. Neural responses were
correlated with behavioral measures and, to explore their
relationship with symptom severity, with Y-BOCS values and
depression scores.

Functional Connectivity. Because caudate and putamen
were hypothesized to mediate executive performance via task-
related FC modulation with the PFC (2,28), we conducted a
psychophysiological interaction (PPI) analysis to interrogate
frontostriatal connectivity during goal-directed planning. In
accordance with previous research with this paradigm (24), an
ROl was derived from the main effect of planning minus
counting across all subjects thresholded at p < .05, FWE
corrected, and corresponding to the peak coordinate of the
cluster including the right superior and middle frontal gyri (MNI
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coordinates x = 24, y = 20, z = 52). PPI analysis was conducted
as described in the Supplement. We generated our hypothesis
of reduced frontostriatal FC in patients with OCD and their
first-degree unaffected relatives on the basis of previous
findings showing DLPFC hypoactivation in patients with OCD
during goal-directed planning (19) and on findings of reduced
resting-state connectivity between the DLPFC and the puta-
men accounting for impoverished performance on goal-
directed planning in patients with OCD (14). Therefore, we
expected hypoactivation of DLPFC to be reflected in reduced
interaction with associated striatal structures during goal-
directed planning, both in patients with OCD and in their
first-degree relatives, as tested by nonparametric permutation
testing (one tailed, Monte Carlo pairwise permutation testing
conducted in SPSS; see Supplement). Significance was set at
p < .05. FC parameters were correlated with behavioral
measures and with Y-BOCS and depression values to inves-
tigate the relationship between symptoms and frontostriatal
connectivity.

RESULTS

Behavioral Results

Accuracy did not differ across groups (F,,57 = 0.623, p = .540).
All participants achieved a lower number of correct responses
during planning trials versus counting trials (F;s7 = 23.033,
p < .001). The proportion of correct responses decreased with
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problem difficulty (F2 57 = 9.377, p < .001), with no significant
trial type and difficulty interaction (F1s7106.4s8 = 0.430, p =
.638). There was no significant interaction between group and
trial type (F2 57 = 0.632, p = .40) or between group and difficulty
(F4,114 = 0.380, p = .822) (Supplemental Figure S1A, B and
Table 1). Repeated-measures ANOVA revealed a main effect of
group for response times (F, 57 = 4.236, p = .019), with patients
(p = .009) and relatives (p = .027) being slower than control
subjects irrespective of trial type and difficulty. Across all
groups, response times were significantly longer in the plan-
ning condition (Fy 57 = 348.897, p < .001). A main effect of
difficulty (F1.63.03.06 = 24.178, p < .001) indexed significantly
prolonged response times across trial type and groups for the
most difficult problems. The interaction between trial type and
dlfflCUlty (F1.98,112.84 = 26.627, p < 001) indicated that
response times during planning were significantly lengthened
as the difficulty of the problems increased across groups.
There was no significant interaction between group and trial
type (Fo57 = 0.270, p = .765) or between group and difficulty
(Fa114 = 1.462, p = .218) (Supplemental Figure S1C, D). There
were no significant correlations between Y-BOCS scores and
accuracy (all ps > .286) or reaction times (all ps > .057) in
patients with OCD. In summary, both patients and relatives
had intact accuracy but slower responding compared with
control subjects.

Brain Regions Activated During Goal-Directed
Planning

Planning Minus Counting. A robust effect of planning
minus counting was found in the expected dorsal fronto-
parietal network across all participants (p < .05, FWE)
(Figure 1B and Supplemental Table S1). This network was

ﬁ

Frontostriatal Alterations as an Endophenotype for OCD

Figure 1. Experimental design and associated
brain network for goal-directed planning. (A) Display
screen of the One-Touch Spatial Planning task used
in the current study. Participants were presented
with a cue screen displaying the word “Planning”
(planning trials) or “Counting” (counting trials) before
each new problem to disambiguate between trials. In
the planning condition, participants indicated by
pressing the corresponding button on a functional
magnetic resonance imaging compatible button box
the minimum possible number of moves needed to
rearrange the balls in the upper half of the screen so
that they were in the same configuration as those in
the lower half of the screen. Participants were
instructed that the balls needed to move in and out
of the top of the tubes, could be moved only one at a
time, and could not be moved past each other in the
tubes. In the counting condition, participants needed
to subtract the number of balls in the top array from
the number of balls in the bottom array. Feedback for
correct and incorrect answers was provided at the
end of each trial. Difficulty varied from 2 to 4 moves.
Event duration was measured from the time of
appearance of the stimulus until the time of a
response on the button box. (B) Main effect of
planning (planning minus counting) across all par-
ticipants (n = 60). Voxelwise familywise error
correction for the whole-brain volume; p < .05.
Significant brain activation was identified in the
expected frontoparietal network during planning.

different from the one identified on the opposite contrast,
counting minus planning (Supplemental Figure S2 and
Supplemental Table S2).

Although we did not observe significant striatal activation in
association with the planning component, ROI analysis was
conducted for the right putamen and right caudate for the
contrast planning minus counting. Parameter estimate signal
change was explored separately in each group by means of
one-sample t test. Significant deactivation of the right putamen
was found in control subjects (t;g = —4.76, p < .001) and in
relatives of patients with OCD (tig = —2.479, p = .023), but not
in patients (t,o = —0.837, p = .412). This analysis indicated
insufficient hypoactivation of the putamen during planning in
patients with OCD, as confirmed by significant differences in
patients compared with control subjects (U = 109.000,
Z = —2.634, p = .007, Monte Carlo pairwise permutation
testing, Bonferroni corrected, SPSS). There was no difference
between relatives and control subjects (U = 139.000,

= —1.433, p = .158) (Supplemental Figure S3A). No signifi-
cant involvement of the right caudate was found in control
subjects (t19 = —0.152, p = 0.880), relatives of patients with OCD
(t1g = 0.311, p = .760), or patients (oo = 1.549, p = .137)
(Supplemental Figure S3B) (but see the Supplement for evidence
of caudate involvement on the contrast planning minus resting).

Between-Group Effects on Goal-Directed Plan-
ning. During goal-directed planning, we detected a main ef-
fect of group on neural activation in the right precentral gyrus
(Brodmann area 6 [BA 6]) and in the middle frontal gyrus
entailing BA 9 and BA 9/46 (Table 2) (Supplement; planning
minus resting, between-group differences). Post hoc compar-
isons revealed significant frontal hypoactivation in patients and

658 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging November 2017; 2:655-663 www.sobp.org/BPCNNI


http://www.sobp.org/BPCNNI

Frontostriatal Alterations as an Endophenotype for OCD

Biological
Psychiatry:
CNNI

Table 2. Group Differences in Brain Activation During Goal-Directed Planning

MNI Coordinates

Contrast Region BA X y z ke Z Peak prwe
Main Effect of Group
R Precentral gyrus 6 44 2 44 16 4.67 .012
R Middle frontal gyrus 9 38 22 28 8 4.51 .023
R Middle frontal gyrus 9/46 46 28 30 4.36 .041
Post Hoc Comparisons
Controls > patients R Middle frontal gyrus 9/46 46 28 30 10 4.51 .019
R Middle frontal gyrus 6/9 44 2 44 10 4.58 .021
Controls > relatives R Middle frontal gyrus 6/9 36 22 26 14 4.56 .015
R Precuneus 19 28 -72 26 18 4.52 .018
R Middle frontal gyrus 6/9 42 0 44 12 4.47 .022
R Middle frontal gyrus 9 30 0 48 7 4.39 .044
Relatives > patients - - - - - - - - -
Patients > relatives - - - - - - - - -
Controls > both R Middle frontal gyrus 6 44 2 44 86 5.16 .001
R Middle frontal gyrus 9 38 22 28 93 5.01 .002
R Middle frontal gyrus 9/46 46 28 30 4.79 .006
R Precuneus 28 -72 28 27 4.56 .015
R Middle occipital gyrus 19/18 30 —82 8 1 4.33 .037

Coordinates in MNI space. ppwe = p value with familywise error correction for the whole-brain volume (p < .05).
BA, Brodmann area; FWE, familywise error; kg, cluster size; MNI, Montreal Neurological Institute; R, right; Z, Z score.

in their unaffected first-degree relatives compared with control
subjects with no evidence of a significant difference between
relatives and patients (Table 2). In fact, at all levels of planning
complexity, the DLPFC (BA 9 and BA 9/46) was hypoactive in
patients and their relatives when compared with control sub-
jects (Table 2 and Figure 2). Covariation for depression scores
or response times did not significantly affect the results.
Similarly, there was no significant correlation between brain
activity at the different levels of planning complexity and
response times or accuracy (all ps > .360) either when
collapsing all participants together or for each group sepa-
rately. There was no significant correlation with Y-BOCS and
depression scores (all ps > .331). Similar frontal hypoactivation
was identified in patients and relatives (MNI coordinates x = 38,
y =22, z = 26; cluster size = 13, Z = 4.39, p = .027, FWE) even
when analyzing whole-brain between-group differences via a
one-way ANOVA on the contrast planning versus resting.
There were no differences between patients and relatives.

To investigate between-group differences for processes
exclusively involved in planning, we compared brain activation
across groups on planning versus counting (Supplement;
planning minus counting, between-group differences). Hypo-
activation was identified in patients and relatives compared
with control subjects in the right middle frontal gyrus (BA 6/8)
(MNI coordinates x = 32, y = 8, z = 48; cluster size = 14, Z =
3.32, p < .001, uncorrected). There were no differences be-
tween relatives and patients. Covariation of depression scores
or response times did not significantly affect the results, and
there was no correlation with clinical or behavioral scores.
These results suggest that hypoactivation of the DLPFC rep-
resents a trait marker of the disorder. To investigate the effect
of planning load, we compared groups on high difficulty minus
low difficulty of planning (Supplement). Finally, there were no
between-group differences for counting trials (Supplement).

Frontostriatal Connectivity During Goal-Directed
Planning. In control subjects, significant frontal connectiv-
ity was found with the putamen (t;g = 5.931, p < .001, Bon-
ferroni corrected for multiple comparisons) but not with the
caudate (t;g = 1.866, p = .078). This suggested frontoputaminal
connectivity to be implicated during planning and therefore
was further explored in patients and relatives. While strong PPI
connectivity between the frontal seed and the putamen was
observed in control subjects, there was no such significant
connectivity in relatives (t;7 = 0.738, p = .471) or in patients
(too = 0.922, p = .367).

When comparing cross-group differences in the frontoputa-
minal PPl parameter estimates (Figure 3A), patients with OCD
showed reduced FC between the seed region and right putamen
compared with control subjects (U = 127.000, Z = —1.964,
p = .025; Monte Carlo pairwise permutation testing, Bonferroni
corrected, SPSS). Similarly, reduced frontoputaminal connec-
tivity was found in relatives when compared with healthy vol-
unteers (U =102.000,Z = —2.097, p =.019, Monte Carlo pairwise
permutation testing, Bonferroni corrected, SPSS) (Figure 3B).
PPI FC between the right DLPFC and the right putamen did
not correlate with Y-BOCS scores or depression scores. Neither
for all participants collapsed together nor for each group sepa-
rately was there a significant association between brain con-
nectivity and response times or accuracy (all ps > .252).

For both the right putamen and right caudate, significant
beta weights were found for the physiological predictor for
each group separately (all ps < .001), and there were no dif-
ferences across groups.

DISCUSSION

This study found hypoactivation of the DLPFC during goal-
directed planning, not only in patients with OCD but also in
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Figure 2. Brain areas of hypoactivation in patients with obsessive-compulsive disorder and their first-degree unaffected relatives during goal-directed
planning. (A) At all levels of planning complexity, patients with obsessive-compulsive disorder and their first-degree relatives showed hypoactivation in an
extensive cluster in the right middle frontal gyrus, including Brodmann areas 6, 9, and 9/46. Brain activation rendered at p < .01 corrected for false discovery
rate, with 4592 voxels extent threshold for display purposes. (B) Parameter estimate in arbitrary units in the dorsolateral prefrontal cortex at peak coordinates
x =38,y =22, z=28 (significant at p < .05; familywise error, corrected for the whole-brain mass). Error bars denote SEM. p2, planning 2 moves; p3, planning 3

moves; p4, planning 4 moves.

their unaffected first-degree relatives when compared with
control subjects without a family history of OCD. In addition,
the profile of task-dependent frontostriatal interaction during
goal-directed behavior was reduced in patients and was
indistinguishable from that of their relatives. Therefore, goal-
directed planning hypoactivation of the DLPFC and associ-
ated frontostriatal connectivity were identified as a hitherto
undiscovered candidate endophenotype for OCD.

Reduced activation of the DLPFC in patients with OCD
during goal-directed planning is highly consistent with

previous findings (19). Here, we independently replicated
those findings and provided new evidence that the same
pattern of hypoactivation in the DLPFC characterizes pa-
tients with OCD and their relatives alike, suggesting a
common weak frontal neural recruitment during goal-
directed planning. Because patients with OCD and their
relatives were matched on all demographic variables, this
difference might reflect a genetic or familial susceptibility to
OCD. This also rules out the potential confounding effects of
medication and symptom duration, indicating that the

Figure 3. Reduced frontostriatal coupling in
o patients with obsessive-compulsive disorder and
their first-degree unaffected relatives during goal-
directed planning. (A) Schematic rendering of the
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analysis in the right superior frontal gyrus (Brod-
mann area 6) derived from the main effect of
° planning minus counting across all subjects
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z = 52). Significant group differences were tested
for connectivity between the right superior frontal
gyrus and the right putamen (spherical region of
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addressing functional connectivity during goal-
directed planning between the right dorsolateral
prefrontal cortex (R DLPFC) and the right putamen
(R putamen). Compared with control subjects,
patients with obsessive-compulsive disorder

]

Controls

Relatives

(p = .025, one-tailed Monte Carlo pairwise per-
mutation testing) and first-degree relatives

Patients

(p = .019, one-tailed Monte Carlo pairwise permutation testing) showed reduced functional coupling between the R DLPFC and the R putamen during
goal-directed planning. Error bars show SEM. *p < .05, Monte Carlo pairwise permutation testing, Bonferroni corrected.
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observed pattern of hypoactivation is a trait marker of OCD.
Further pointing to the state-independent nature of these
functional abnormalities, as a necessary criterion for an
endophenotype (8), there was no association between the
neuroimaging findings and iliness severity in patients.

Frontal and parietal anomalies have been previously shown
in patients with OCD and their first-degree relatives. There is
evidence of shared structural abnormalities (29,30) and, at the
functional level, hypoactivation related to reversal learning
(31) and hyperactivation during response inhibition (32) and
working memory performance (33). Together with these
studies, our results suggest that endophenotype abnormal-
ities extend across multiple executive domains distributed in
specific frontal regions. Our results further demonstrate that
while OCD pathophysiology is traditionally linked to the
orbitofrontal circuit (6), it is likely associated with a more
distributed network (34).

All groups showed significant activation within the caudate
during goal-directed planning; in addition, relative to counting,
there was a prominent hypoactivation of the putamen in
healthy volunteers that was not observed in patients. This
finding points to a relative lack of putaminal hypoactivation, an
area usually associated with habitual behavior, during a goal-
directed task in patients with OCD. We hypothesize that
enhanced functioning of the putamen might be linked to an
exaggerated habitual tendency observed in OCD (4,5).

We also observed reduced functional coupling between the
DLPFC and the putamen during goal-directed planning in pa-
tients with OCD compared with control subjects and, consis-
tent with an endophenotype pattern, in relatives of patients
compared with control subjects. Evidence of significant in-
teractions between the DLPFC and putamen is provided by
studies in a healthy population showing dense structural in-
terconnections (35) and functional cross-talk as measured
during task (28) and at rest (36).

Parallel frontostriatal circuits (2) and nonreciprocal con-
nections (37) between the PFC and the basal ganglia are
pivotal for enabling learning and flexibility. These cognitive
domains are frequently impaired in OCD, as shown by studies
demonstrating deficits in response inhibition (29,38), reversal
learning (31), and extradimensional set shifting (39).

In a sample of patients with OCD different from those used
in this study, a direct relationship was recently demonstrated
between reduced DLPFC-putamen resting-state connectivity
and impaired performance in goal-directed planning tested
outside the scanner (14). Here, we have extended those find-
ings by showing, remarkably, that exactly the same pattern of
neural dysfunctional interaction can be discerned during the
implementation of goal-directed planning and that it might
represent a neurocognitive trait for the disorder.

A limitation of our analysis is that it does not allow us to
draw conclusions on directionality; however, a plausible
mechanism might be a failure of top-down control over
subcortical brain regions. Overall, insufficient DLPFC top-
down recruitment in patients and relatives might result in
weak frontostriatal interaction and lack of top-down control of
the putamen, potentially contributing to impairments in the
ability of assembling novel sequences of behavior over
potentially disruptive habitual tendencies inherent in the task.
Thus, this may contribute to the inability of patients with OCD
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to suppress automatic behavior in favor of flexible, goal-
oriented behavior.

Frontostriatal abnormalities are also found on tasks
assessing implicit learning (40-42). The task used here allowed
only the investigation of the goal-directed system; however,
further studies are needed to understand the relationship be-
tween the goal-directed system and systems allocated for skill
learning implicating, for example, the cerebellum.

The behavioral data showed longer response times in
patients with OCD and their relatives, whereas accuracy
scores were not significantly affected. A potential limitation is
that the measure of accuracy was based only on the pre-
dicted number of moves required to solve the problems. Even
if participants took longer to solve more complicated prob-
lems, they might have simply ruled out that solutions with
lower numbers of moves were not possible. However, our
findings agree with previous studies identifying significantly
reduced accuracy only at the most difficult levels of planning,
which were intentionally not included in this study. The most
parsimonious interpretation of our results is that the same
level of accuracy in patients and relatives as in control sub-
jects was obtained at the cost of their lengthened response
times. Alternatively, because the degree of certainty that a
decision is correct is also indexed by the decision time
(43,44), it is possible that longer response times reflected
increased uncertainty. Slowing was found not only on plan-
ning trials but also on counting trials. However, between-
group differences for goal-directed planning were not due
to different response times, and there were no significant
group differences in the counting condition. It is striking that
the same pattern was found not only in patients but also in
their first-degree unaffected relatives. Our main approach,
consistent with earlier studies (45), did not make use of a
control condition that included all visuomotor and cognitive
processes other than those implicated specifically in plan-
ning. An obvious limitation of this approach is that, although
it captures primarily planning-related activation, it may also
tap into secondary nonspecific aspects of attention and vi-
suospatial perception. However, even when using a suitable
contrast (i.e., counting), we obtained similar results for
between-group differences, albeit at a lower statistical level of
significance. Moreover, a more stringent contrast was used in
the FC analysis, thereby isolating planning components such
as working memory and response sequencing in goal-
directed behavior. Brain imaging activation did not differ for
counting trials across groups, indicating no obvious group
differences for those processes merely involved in the
counting task, including visuospatial attention.

In keeping with previous imaging studies, the frontoparietal
network was found to be selectively activated during planning
minus the attentional and visuomotor control condition (25).
Lateralization toward the right side is consistent with previous
studies emphasizing the role of the right hemisphere when the
task requires manipulation of task-related information (46)
rather than reproduction of the appropriate motor sequence
for which the left hemisphere is more heavily involved and
minimized by our experimental design (25,47).

Similar to previous studies (24-26,45), we did not detect
caudate activation when planning trials were compared with a
control condition. However, modulation of subcortical brain
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regions was found in association with planning load in control
subjects, also consistent with previous findings (25,26).

The fact that most patients were medicated with selective
serotonin reuptake inhibitors, which could affect connectivity
measures in OCD (48), poses a potential limitation for this
study. We did not have sufficient power to make a direct
comparison between medicated and unmedicated patients.
Similarities between patients and completely unmedicated
relatives of patients with OCD, however, militate against the
notion that findings were significantly mediated by a medica-
tion effect. Nevertheless, in subsequent studies, an appro-
priate unmedicated group of patients with OCD should be
included to definitively determine the effect of medication.

Finally, although we carefully excluded any participants with
anxiety disorders and any other comorbidity, we did not record
subclinical anxiety scores. Previous studies tested brain cor-
relates of planning performance transdiagnostically, revealing
only subtle differences between patients with OCD and pa-
tients affected by panic disorder or hypochondriasis and
suggesting that frontostriatal and limbic abnormalities during
planning might be independently implicated across these
disorders (49). A key question not directly investigated here
therefore pertains to whether the observed hypoactivation is
specific to OCD. Because the same pattern of hypoactivation
is found in unaffected first-degree relatives, our results rule out
the hypothesis that state components (i.e., symptoms or
confounds such as chronic disease and treatments) directly
contribute to the observed neural readout.

Even if endophenotypic traits might be relatively less com-
plex genetically than disease phenotypes, it is nevertheless
plausible that they may reflect the operation of many different
genes. Endophenotypic traits might also predate signs or
symptoms of illness. However, the first-degree unaffected
relatives included in this study were beyond the typical age of
onset for OCD. Therefore, even if the identified neural and
behavioral markers might predispose to the development of
OCD, they do not seem sufficient in themselves to lead to the
full-blown manifestation of the condition. It remains to be un-
derstood how this familial vulnerability trait, which could also
result from environmental factors such as stress, results in
OCD symptoms.

In conclusion, we have identified hypoactivation in the
DLPFC as a candidate neurocognitive endophenotype for
OCD. Associated aberrant coupling with the putamen might
predispose toward excessive habit formation and suboptimal
goal-directed performance.
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