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Robust Statistics Evidence Based Secure 
Cooperative Spectrum Sensing for Cognitive Radio 

Networks 

Abstract—Cognitive radio networks (CRNs), an assemble of 
smart schemes intended for permitting secondary users (SUs) to 
opportunistically access spectral bands vacant by primary user 
(PU), has been deliberated as a solution to improve spectrum 
utilization. Cooperative spectrum sensing (CSS) is a vital 
technology of CRN systems used to enhance the PU detection 
performance by exploiting SUs' spatial diversity, however CSS 
leads to spectrum sensing data falsification (SSDF), a new 
security threat in CR system. The SSDF by malicious users can 
lead to a decrease in CSS performance. In this work, we propose 
a CSS scheme in which the presence and absence hypotheses 
distribution of PU signal is estimated based on past sensing 
received energy data incorporating robust statistics, and the 
data fusion are performed according to an evidence based 
approach. Simulation results show that the proposed scheme 
can achieve a significant malicious user reduction due to the 
abnormality of the distribution of malicious users compared 
with that of other legitimate users. Furthermore, the 
performance of our data fusion scheme is improved by 
supplemented nodes' credibility weight. 

Keywords—Security, Robust Statistics, Evidence, Cooperative 
Spectrum Sensing, Cognitive Radio 

I. INTRODUCTION  

ognitive Radio Networks (CRNs) provides a 
promising solution to reliable and time-efficient 
spectrum utilization by mitigating the spectrum 

scarcity issues created by the requirement for wireless 
bandwidth growing significantly due to the explosive growth 
of wireless devices [1]. It enables primary user (PU) networks 
to share their spectrum with the secondary users (SUs), on 
condition that that the SU’s transmission does not affect the 
PU’s performance adversely. Notwithstanding, CRNs have 
been found to be susceptible to external malicious threats, due 
to the broadcast nature of the PU-SU cooperation 
transmission techniques which may allow for a malicious 
eavesdropper to acquire the transmission information of Pus 
[1]. The ability to sense accurately the presence of PU is of 
the absolute importance of CRNs. In situations where 
individual SU sensing is shadowed by severe multipath 
fading and shadowing effects, the SU may not reliably detect 
the PU signal and access the channel when there is a PU 
signal present leading to interference of the licensed PU [1, 
2].  To overcome this hidden terminal problem and increase 
the spectrum sensing credibility, cooperative spectrum 
sensing (CSS) has been studied in [1, 3]. In CSS, each sensing 
result from multiple SU are sent and fused at a data fusion 
centre (FC). 

On the other hand, the flexibility of CRNs system 
brings about susceptibilities that may allow an attacker to 
masquerade as a SU leading to a spectrum sensing data 

falsification (SSDF) attack [4]. In SSDF attacks, malicious 
SUs forward falsify local sensing results to the FC to mislead 
the universal decision. The SSDF attack may knowingly 
impair the CSS process and may lead to either reduction in 
the spectrum utilization or extreme interference on the PU 
network. Conversely, some authentic SUs may appear like 
attackers because of their bad sensing performance caused by 
either the hiding terminal problem, a noisy reporting channel, 
or a faulty sensor. 

In recent research [2, 5], cooperative SU techniques 
did not consider the SU's sensing credibility. Malicious SUs 
therefore maybe selected for cooperation in these schemes, 
which degrades the detection performance and the system 
performance. Some SSDF attack detection algorithms have 
been proposed to detect malicious SUs in CSS [6], however, 
the  problem in the CRN with SSDF attack is still an open 
issue. In [4], SSDF in CSS was solved via a trust-based 
system; however, this technique required prior knowledge of 
the PU signal. These requirements are incongruous when 
applying to high mobile CRN, and to such systems in which 
the information of the PU is not entirely known. In [6], an 
algorithm to detect and isolate outliers was proposed. The 
SUs were tested for normality in this algorithm by comparing 
their sensing results. If the sensing results of a SU was too far 
from the reports of other SUs they are considered malicious. 
The limitations of this work were that some of the reports 
from legitimate unintentionally misbehaving SUs would be 
secluded if they were not near the sensing results from 
neighboring SUs.  

In this work, in order to deal with the SSDF attack 
and incent SUs to increase their sensing credibility a robust 
statistics evidence based CSS technique that incorporates 
statistical approximation of the distributions for both the 
hypotheses of all SUs based on their previous sensing data is 
proposed. The main contributions of this paper are listed as 
follows: 

 Firstly, realized parameters are used for the testing 
of malicious users as well as the calculation of 
necessary information for data fusion by means of 
an improved evidence based D-S theory taking into 
consideration the unintentionally misbehaving SUs. 

 Secondly, the proposed scheme takes advantage of 
an appropriate method of data fusion as well as 
benefit of robust statistics for outlier testing based 
on two separately estimated distribution, can operate 
without prior knowledge of the primary systems, 
even in the case of a very bad circumstance where 
numerous attacks from malicious users occur. 
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 Thirdly, a credibility evaluation stage from the past 
performance of each node by a counting rule is 
added to our scheme to improve cooperative gain of 
data fusion and the efficiency of malicious user 
detection. 

The proposed scheme is evaluated by simulation. 
Simulation results presented demonstrate that the robustness 
of the CSS CRN with SSDF attack can be enriched. 
Explicitly, malicious SUs with small sensing credibility are 
allocated with few resources and fewer opportunities to take 
part in CSS. 

This paper is organized as follows: Section II presents 
the system model. Section III presents the robust statistics 
evidence based secure CSS for CRNs. Critical parameters 
which simultaneously enable both the powerful malicious 
user resistance and the high gain for the data fusion scheme 
are presented in section IV. In Section V, the eavesdropper 
user detection algorithm is presented. Section VI, presents the 
simulation results with detailed analysis and finally Section 
VII, provides concluding remarks. 

 

II. SYSTEM MODEL  

The system model scheme considered for a robust statistics 
evidence based secure CSS for CRNs is shown in Figure 1. 
Each SU performs a local sensing process under different 
channel conditions such as shadowing and multi-path fading 
and subsequently reports the sensing data to the FC. The 
universal decision based on the occupation of the PU signal 
is made at the FC. It is assumed that the CSS CRN is in an 
adversarial environment which means that a malicious SU 
known as an eavesdropper user (EU) can carry out an SSDF 
attack. 
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Figure 1. Cooperative spectrum sensing system model: 

A. Spectrum Sensing at Primary Users 

Single SUs carry out local spectrum sensing in a cooperative 
manner for detecting the PU signal. Local sensing is 
effectively a binary hypotheses testing predicament. 
Comparing the various algorithms for spectrum sensing, 
energy detection has been established to be the least complex 
detection scheme that decreases overhead, and is rapidly able 
to detect the PU signal, even without prior knowledge of the 

PU signal [7]. For local spectrum sensing we consider energy 
detection, To measure the value of a received power in a 
practical frequency band in time domain, a band pass filter 
(BPF) is applied to the received PU signal at the SUs and the 
power of the signal samples is subsequently measured. The 
decision statistic is an estimation of the received signal power 
which is given at each SU by the sensing matrix: 
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where yi is the i-th sample of received signal and N = 2TW, 
where T and W are correspondent to detection time and signal 
bandwidth in Hz, respectively. It was proved in [8] that the 
probability density function (PDF) of the received PUs signal 
energy at an SU Ey , is a Chi-square distribution such that 
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where H0 and H1 are the hypotheses of indicating a vacant 
channel and occupied channel of the PU’s signal, 
respectively, 2

N  is the central Chi-square distribution with N 
degree of freedom, and 2 ( )N N   is a non-central Chi-square 
distribution with N degree of freedom and a non-centrality 
parameter N .   is the SNR of the PU signal at the SUs. In 
the absence of knowledge of the PU signal, when the number 
of required samples N is relatively large, Ey  can be 
approximated as a Gaussian random variable under both 
hypotheses H0 and H1, with mean 1 , 0  and variance 2

1 , 
2
0 , respectively, such that [7]: 
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where the   is a constant in a non-fading additive white 
Gaussian noise (AWGN) environment. Though, in a fading 
channel scenario, the SNR   is a random variable [7].  
 
To improve detection credibility of a CRN, a CSS scheme is 
considered as an alternative of a single SU as shown in Figure 
1. Each SUs conduct local spectrum sensing by applying an 
energy detector to measure the PU’s signal energy in each 
sensing frame. Subsequently after the spectrum sensing 
process, each SU computes its own local detection and the 
decision along with a corresponding credibility denoted by 
crd are then forwarded to the FC, where a universal decision 
is made. The whole CSS process can be grouped into two 
stages: 

 SUs local sensing 
 FC universal decision. 

III. EVIDENCE BASED COPERATIVE SPECTRUM SENSING  

 Individual SUs forward their received signal power 
measurement to a FC where the universal sensing decision is 
computed. A robust statistics evidence based secure CSS 
scheme as shown in figure 2 is considered for increasing 
security and CSS gain. 



A. Basic Probability Assignment (BPA) Estimation in CSS 

In be able to apply the DS theory of evidence to make a 
universal decision, a frame of discernment denoted by   is 
defined as 1 0{ , , }H H  , where   denotes either hypotheses 

is true. Once each sensing period is completed, each SU will 
estimate its self-assessed decision, which is equivalent to the 
basic probability assignment (BPA) assignment for the two 
hypotheses H0 and H1, respectively. The DS fusion rule is 
commutative and associative hence, an appropriate BPA 
function is a cumulative distribution function (CDF) 
represented as [9, 10]: 
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where (.)m  is equivalent to (.)Crd   0ii Em y H  and 

 1ii Em y H  are the BPAs of hypothesis H0 and H1 of the i-th 

SU, respectively. By means of these functions, the BPA of 
hypotheses H0 and H1 are distinctive for each test statistics 
value 

iEy and differ in such a way that the bigger 
iEy  is the 

bigger  1ii Em y H  and the reduced  0ii Em y H are and vice 

versa [9]. The credibility from individual SUs and uncertainty 
are subject to the following constraint [11]: 

1 0( ) ( ) ( ) 1i i im H m H m                                         (6) 

 

B. BPA Modification 

To modify the BPA using the credibility association 
calculation, the weight iw  of the i-th SU is evaluated by 

normalizing the SU credibility ( )icrd n : 
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C. DS Rule of Combination: Universal Decision  

According to DS theory of evidence, the combination of the 
averaged BPA can be obtained by [12]: 

1 2 0... 1

0 1 2 0

( )

( ) ... ( )
1

n

n

i i
A A A H i

n

m A

m H m m m H
K

       


 
    (8) 

              

1 2 1... 1

1 1 2 1

( )

( ) ... ( )
1

n

n

i i
A A A H i

n

m A

m H m m m H
K

       


 
       (9) 

where  

1 2 ... 1

( )
n

n

i i
A A A i

k m A
   

                                                    (10) 

The universal decision calculated at the FC is given by: 

1 1 0: ( ) ( )H m H m H                                                          (11) 

0 0 1: ( ) ( )H m H m H ,                                                        (12) 

IV. ROBUST STATISTICS EVIDENCE BASED SECURE CSS: 
CRITEON UPDATE 

For a secure and non-complexity CSS CRN, the proposed 
combination scheme only requires the energy detection data 
from the SUs. No prior knowledge about the PU signal is 
necessary. The proposed algorithm can take advantage of 
combination of the “D-S theory fusion rule” as well as the use 
of outlier resistance of robust statistical analysis. Hence, the 
criterion updating process plays a significant role in the 
proposed algorithm. This process is responsible for obtaining 
critical specifications which concurrently enable both the 
powerful malicious EU counteraction and the improved gain 
at the FC. 

A.  Source Evaluation  

In comparison with the local decision, the universal 
decision at the FC is consistently more credible in CSS. 
Hence, the universal decision can be employed as an overseer 
for the estimation of the SUs by means of a weight factor.  

In the case that the local decision does not contradicts the 
universal decision, it is assumed that the local decision is 
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Figure 2. Robust statistics evidence based secure CSS for CRNs scheme.  



accurate. Alternatively, in the case the local decision and the 
universal decision do not match, the local decision is incorrect. 
By computing the local and universal decisions the SUs can 
be exactly estimate. For the i-th SU at the d-th time, where the 
present decision state is represented by ( )iC d , which occurs 
in the states presented in Table I: 

TABLE I 

 
State Universal decision Local Decision 

00C  0H  0H  

01C  0H  1H  

10C  1H  0H  

11C  1H  1H  

 

The accumulative state ( )iP n of n detection time slot is given 
by: 
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times that state 00C , 01C , 10C  and 11C have occurred over n 

time slot, respectively. A static window length over the 
observed data is considered.  
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where Q is the window length of the observation.  
 
The credibility of an SU ought to have increased when it has 
robust performance. Subliminally, such an increased SU 
performance is the terminal that concurrently has together a 
low false alarm rate and a low missed detection rate. 
Accordingly, the credibility of each SU is given by the 
product of the complementary missed detection rate and 
complementary false alarm rate, as follow: 
 

(1 )(1 )i md fcrd P P            (15) 

where mdP  and fP  represent the missed detection rate and 

false alarm rate, respectively. From (16) and (15) the 
credibility of the SUs as can be estimated by: 
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From (17), the credibility of SUs can be realised by a non  
complex computing rule from their previous performance. 
 

B. Hypothesis distribution criterion estimation 

Hypotheses 0H  and 1H  can be estimated from the PU 

received signal at the SU, as presented in section II. 
Nevertheless, in such a situation, as with our system model 
where there can be various SSDF attacks by malicious EUs, 
to improve security the hypothesis distribution criterion is 
estimated based on previous SU sensing results. To exploit 
the advantages of the evidence based scheme and to 
concurrently enhance robust security sensing capability 

without any prior PU signal knowledge, the mean and 
variance estimation of 0H  and 1H  are made from existing 

sensing results using robust statistics. It is vital to accurate 
estimate the distribution of 0H  and 1H , improved accuracy 

permits increased performance and malicious EU 
counteraction for the proposed evidence based scheme. 
 
In comparison with the local decision, the universal decision 
at the FC is consistently more credible in CSS. Therefore, the 
measured energy result at individual SUs after one 

combination interval will be allocated to data sets  0|
iEy H

or  1|
iEy H corresponding to 0H and 1H of the universal 

decision. 
 

C. Hubber’s Robust Statistical Process  

The next stage is the estimation of the criterion of 0H and 1H

by Hubber’s robust statistics [13], which uses the SUs data 
for precisely estimating the mean   and variance   of the 

distribution. At this step, we progressively transform the data 
by a repetitive process called winsorization as shown in the 
following stages. 
 
Stage I: Fix initial parameter   and   
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where ( )MED X is the sample median, ( )MAD X represents 

the median of n distances and R is a constant factor (1.4826) 
modifying the resulting robust value to the corresponding 
normal distribution. 
 
Stage II: Test and modify outlier information  
Unlike in [4] where uncertain data is removed robust statics 
is used: 
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where 1.7 is the multiplier for the winsorization. 
 
Stage III: Compute an improved estimation of the mean as: 

(1) ( )imean X               (19) 

Compute an improved estimation of the standard deviation 
as: 

(1) 1.14 ( )istdev X              (20) 

where the factor 1.14 is calculated from the normal 
distribution. 
 
Stage IV: reiterate stage II and III, after i iterations, the 
algorithm converges to an acceptable degree of precision 
when the results are not modified in stage II.  The resulting 
values are the robust statistical estimates mean ( )i  and 

standard deviation ( )i . 
 



Furthermore, as in our system model, a fixed length window 
Q of observation sensing results for estimating distribution 
parameters is considered.  Therefore, the criterion  0 0ˆ ˆ,i i 

and  1 1ˆ ˆ,i i  are estimated from 

 1(1 ),..., ( )
i iE Ey L Q y L H   and

 0(1 ),..., ( )
i iE Ey L G y G H  , respectively, where L is the 

length of  0|
iEy H and G is the length of  1|

iEy H . 

 
Therefore, 0H and 1H  of individual SUs can be estimated 

with regards to its previous sensing data and also its previous 
performance evaluation.  
 

V. EAVESDROPPER USER DETECTION  

Two types of malicious EU are considered. Firstly, a 
“consistent malicious” user which is characterized into two 
modes as follows: 

 Mode I: “constantly-yes” EU  
 Mode II “constantly-no” EU. 

A “constantly-yes” EU will continually inform the presence 
of a PU and a “constantly-no” EU will continuously report 
the absence of the PU signal.  A “constantly-yes” EU 
improves the probability of false alarm fP  while the 

“constantly-no” EU reduces the probability of detection dP .  

 
Secondly, an attack type termed as the “constantly-inverse” 
EU attacker is considered. The foremost tenacity of this EU 
is to fatally break down the CSS CRN process by reporting 
the reverse of the SU local spectrum sensing results. In this 
case, the EC may produce sporadic dangerous false results 
that will significantly disturb the performance of the CSS 
CRN in the course of those specific sensing intervals, on the 
other hand will give accurate results the rest of the time. This 
type is designated as the “extreme false” malicious node.  
 

A. Consistent malicious node test 

A consistent malicious EU can be detected by the following 
conditions:  
Condition 1: 1 1 0ˆ ˆi i     

Condition 2: 1 0ˆ ˆi i   

Condition 3: 2 1 2 0ˆ ˆ or  i i      

Condition 4: 3 0ˆ i N    

where 1 , 2 and 3 are detection thresholds.  

 
Condition 1 is used for detecting “consistent malicious” EC 
that generate false sensing results from either 0H or 1H . A 

“constantly-yes” or “constantly-no” EU will contain a very 
insignificant difference between the two hypotheses means 

and deviations since their data sets  0|
iEy H and 1|

iEy H  

are calculated from 0H or 1H distribution or conceivably even 

from a constant value. If an SU has a distance which when 

compared to a minimum tolerable value between two mean 
values of two hypotheses is smaller, it will be classified as a 
“consistent malicious” EU. The hypothetical lowest distance 
of two mean values is given as 1  and can be calculated from 

(3) as 

1 1 0 min min( ) N               (21) 

 
Condition 2 is employed for removing the “constantly-
inverse” EU attacker, which has a mean result estimation of 
hypothesis of 1H that is lesser than that of 0H because its 

results are reversed to the local spectrum sensing values. 
 
Condition 3 is used for quick testing and for identifying a 
“consistent malicious” EC that produces wrong constant 
values. 2 measures the least allowable result of estimated 

variance for 0H or 1H . Subliminally, it is fixed to twenty 

times smaller than the theoretical 0 value in (3) and 

therefore 2  is given as: 

0
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20 20

N
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Condition 4 is used to detect the “constantly-yes” EU 
attacker that produces a huge result for 0H or 1H . It also have 

a fast computation time when compared to condition 1 is 
because all SUs have the same detection time and signal 
bandwidth meaning they have equal mean value for 0H  The 

3 is the maximum acceptable range around the theoretical 

result of estimation mean for 0H . The EU attacker will be 

detached from data fusion at the test sensing interval if it goes 
above one of the earlier conditions. 

B. Extreme malicious test 

To test for “extreme malicious” EU, As a substitute of 
discounting the results in making the final decision, for the 
“extreme false” cases, a simple test condition is employed to 
modify as follows: 
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The EC result will far within the interval 

 0 0 1 1ˆ ˆ ˆ ˆ3 , 3i i i i     . The sensing results not inside the 

interval will pushed to the boundary, and used for the BPA 
evaluation. To accurately minimize the negative effect, the 
risky false results will be modified so the smaller value 
becomes the larger BPA and vice versa. Thus, the weight in 
subsection III.B, the BPA of 

iEy is weighted via 
iEw , and 

given by: 
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VI. SIMULATION RESULTSAND ANLAYSIS 

 
Figure 3. Probability of detection vs. number of “constantly-
yes” malicious EU. 

 
Figure 4. Probability of detection vs. number of “constantly-
no” malicious EU. 
 
In this section we evaluate the performance of the proposed 
robust statistics evidence based secure CSS for CRNs. 
Simulation results are shown to compare the proposed 
approach with other related approaches based on the receiver 
operating characteristic (ROC) in relation to number of 
malicious EU. The effects of different parameters on the 
proposed algorithm were examined. For the simulation in this 
paper, the PU network is assumed to be a DVB-T2 signal 
[14], the bandwidth of the PU signal is 10 MHz and 
modulation type is 4-PSK. The average occupancy rate for 
the PU is set to 50%, i.e. the probability of presence and 
absence of the PU signal is fixed to an equal probability (0.5), 
respectively. The simulation is based on the Monte Carlo 
method in MATLAB. An AWGN channels is assumed.  
 
Figure 3 presents “constantly-yes” malicious EC in our 
proposed CSS scheme. Each “constantly-yes” EU arbitrarily 
creates a big value derived only from a high Signal to Noise 
Ratio (SNR) distribution of 1H . It can be seen that the 

malicious EC identification algorithm performs well. The dP

of the “Or rule” is one, implying that the “Or rule” is intensely 
affected by the “constantly-yes” malicious EU. For the “And 
rule”, the performance is improved when compared to that of 
the “Or rule”, the “And rule”, dP  is slightly higher. Taking  

 

 

 
Figure 5. Probability of detection vs. number of “constantly-
inverse” malicious EU. 
 

 
Figure 6. Probability of detection vs. number of “Extreme 
malicious” malicious EU. 
 
the “D-S theory combination rule” into account which the 
BPAs are acquired from both the theoretical hypotheses 
distribution, the dP  is constantly roughly one due to the 

effect of “constantly-yes” EU. The D-S theory combination 
rule” without malicious nodes is used as a comparison 
boundary of data fusion. In the proposed scheme, the results 
can achieve a combination boundary until 87% SUs are 
malicious nodes. 
 
Figure 4 presents the dP  vs the number of “constantly-no” 

malicious EU in in our proposed CSS scheme. With this 
mailicous EU, the data fusions, with no malicious EU 
identification capability, receives an inverse effect when 
compared to the constantly-yes” malicious EU.The dP  of  the 

“And rule” is equal to zero and  that of “D-S theory 
combination rule” decreases when the number of “constantly-
no” EUs increases. For “Or rule”, the dP performance is 

increased and improved upon as the number of malicious EU 
increases. As with the aforementioned case, when the number 
of EUs increased to roughly eight per ten users, the proposed 
algorithm’s dP for this case are also close to the boundary 

combination obtained by the “D-S theory combination rule” 
without the malicious EU. 
 



Figure 5 shows the dP  vs the number of “constantly-inverse” 

malicious EU in in our proposed CSS scheme. Comparable 
to preceding cases, other data fusions that have not identified 
malicious node capabilities show a decreased performance 
while the proposed algorithm with a technique of detection 
for malicious EU accomplish the same performance of data 
combination boundary of “D-S theory fusion rule” without 
malicious nodes, even when the number of EUs is increased 
up to nine per ten nodes. 
 
Figure 6 denotes the dP  vs the number of” Extreme 

malicious” malicious EU in in our proposed CSS scheme. 
The result of the EUs producing an extreme false value 
uninterruptedly for 10 times within each 100 sensing intervals 
is presented. The obtained results confirm that the proposed 
technique can not only efficiently detect but can moreover 
remove the effect of such malicious EUs and provide an 
improved performance even when compared to that of the 
“D-S theory combination rule” without malicious user. 
 

VII.  CONCLUSION  

A robust statistics evidence based secure CSS for CRNs was 
proposed, evaluated, simulated and analyzed in this paper. 
The algorithm is based on previous SUs sensing data. Prior 
knowledge of the PU signal is not required. The scheme can 
utilized both the advantage of the “D-S theory combination 
rule” alongside an enhanced weighting algorithm. A robust 
statistical algorithm is deployed for SSDF attacks, where 
malicious SUs forward falsify local sensing results to the FC 
to mislead the universal decision. Simulation results and 
analysis presented shown that the technique performs 
adequately even when 75 percent of users are malicious and 
even when the channel among the SUs and the PU is affected 
by multipath fading or deep shadowing environment 
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