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Abstract

It is intended that this text will lay the foundation for a more approachable path to my
work and bears no resemblance to the similarly titled work by Professor S.W. Hawking at
Cambridge [8] (although it remains my intention that my own work may be equally as
approachable). I intend to introduce the ideas behind three process algebras in such a way
as to encourage more people to understand my current research interests and ideas. Rather
than launch into a deep philosophical discussion regarding a particular problem I prefer
the introductory approach. A first glance at the topic will have a gentler pace. Future
material will go into more depth and build upon the ideas presented here.

To set the scene surrounding my own research interests I propose to briefly
discuss the motivation behind three process algebras, namely CCS (Milner [13]), CSP
(Hoare [9]) and LOTOS (ISO [10]) and highlight the principles upon which they are built.
I intend to weave my way through such diverse issues as founding principles, language
semantics, application areas, process communication, synchronisation (bi-process and
multi-process) and the similarities and differences between the three process algebras.
General discussion will centre on modularisation, recursion, action restriction, hidden
actions, non-determinism and models of equivalence.

Due to the increased activity in the area of both object-oriented design and
programming we can start to foster the idea of modelling object-oriented concepts in the
process algebras of CCS/CSP and LOTOS. All three notations pre-date the ideas
introduced in object-oriented design so the challenge is to see if these new ideas can be
captured. I ask the question, is it possible to provide an abstract specification which is
closer to an object-oriented design and implementation than was possible in the past when
specifications did not consider either objects or inheritance?

My main focus is on inheritance and the modification and extension of a system.
I am particularly concerned with maintaining the integrity of a system whilst allowing
changes to take place, both internal to a process and external to the environment as a
whole. Problems arising due to nondeterministic processes and synchronising
communications will be raised towards the end of the text.

If all goes as planned then the result of this text will be to shed some light on the
shady world of processes, synchronising communication and objects. Having lit the way
with this first collection of notes on the subject one can proceed further by discussing
finer points in future material.
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Introduction

The intentions behind this study are to give you, the reader, some idea as to where process
algebras fit into our view of the world when it comes to modelling the ‘real world’ formally.
Often we visualise many components of a system but fail to see how those components rely on
each other to perform their tasks correctly. We may concentrate on a particular problem area and
focus our thoughts on solving a single problem.

With this text I hope to build up a picture of how different process algebras interrelate
and how they can be applied to the growth area of object-oriented specification and design.
Without some form of formal representation of an object or its communication with other
components of a system it is difficult to see how we might progress nearer to some form of
implementation of the design.

I will begin from first principles, asking the simplest of questions so that I can be sure
that the view of the world that we all share is uniform and consistent. Indeed, if I can explain

~ something in the most basic of terms then I really should understand whatever it is I am talking

about. One popular quote from lecturers is that “you never really understand something until
you have taught it!”. I intend this text to be just that, a platform from which to teach and at the
same time learn more about the way that process algebras fit into the scheme of things (in the
context of objects and their environments).

I said that we’d start at the beginning (which seems logical) so here goes with the most
basic of questions.

Part I

1 What is a Process Algebra?

The reader should be under no illusion at this point (right at the start of the journey), a process
algebra is a mathematical language. It allows the specification of ordered sequences of actions
(assigned to an entity called a process or agent) which can then be used to communicate with
similarly specified processes in a system (known as the environment). Each process algebra has
a formal set of semantics explaining how each of the terms of the language is supposed to act.
Process algebras are employed in the specification of concurrent, communicating systems.
Although the idea of true concurrency in a single processor environment is perhaps a misnomer
as each process interleaves rather than progresses at the same instance in time. Only during
communication does a process synchronise with some other entity, otherwise all processes
progress together. A process algebra can also be described as a formal reasoning system where
variables are used to represent processes. These variables are assigned behaviour which is then
executed, one action at a time.

The semantics of a process algebra explain what events occur for each function in the
formal language. The communication that processes engage in, either with each other or with the
environment, is known as a synchronisation, hence two processes will synchronise with each
other. We can visualise this as inter-process communication.

The most common forms of process algebra are:

i) Communicating Sequential Processes (CSP — Hoare 1985 [9])

ii) Calculus of Communicating Systems (CCS — Milner 1989 [13])

iii) Language of Temporal Ordering Specification (LOTOS — ISO 1989 [10])
iv) Algebra of Communicating Processes (ACP — Bergstra/Klop 1984 [2])

For the purposes of this text I shall be introducing the first three languages CSP, CCS
and LOTOS. I do not intend to give a complete tutorial as other works are more than capable of
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doing so [3,4,9,13]. Various application areas exist for each language. These areas include the
specification and design of distributed systems (where each node in the system can be
considered an object). Other areas include the specification of network layer protocols, the
original purpose of LOTOS [10]. One further area of application is rapid prototyping for
numerous communicating systems, from hardware simulation to interface design and
implementation.

2 A Brief History of Process Algebras

To put the development of each of the listed process algebras into some chronological
perspective consider the following diagram which shows a related pictorial history [7].

1978 CSP

1979

1980 CCS
1981
iggg LOTOS occam
1984
1985 CSP ACP
1986

1987 ' '

1988
1989 process LOTOS

1990 calculus

1991 v

1992
1993 occam3

figure 2.1

occam?2

The further development of each language can be clearly seen from figure 2.1. If we
consider the years between either language (specification and programming) we can determine
that only a few years separates each new development. At the time of the introduction of CSP a
need for some form of formal notation to allow the modelling of communication between
interacting process was recognised. Note that LOTOS arrived on the scene after both CSP and
CCS. The next section shows the relationship between CSP, CCS and LOTOS.

3 Influences Between the Process Algebras

The origins of LOTOS can be found via a closer examination of both CSP and CCS. Despite the
comparatively youthful age of LOTOS it has received ISO (International Standardization
Organisation) accreditation and carries the mark of an internationally recognised standard.
LOTOS is based on the communication semantics of CSP and elements of CCS to form its own
semantics. Figure 3.1 [7] shows how each language borrows elements from the two grand old
men of process algebras, CSP and CCS.

CSPp-=a—e=CCS

OCCAM LOTOS ACP
figure 3.1
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The concepts of the two founding languages consequently reach far and wide as we
explore the different process algebras at our disposal. One important question that we might ask
is which language should be chosen for a particular job? A possible answer to this question is to
suggest the language which best fits the problem. What if don’t know how to use either
language? Starting from first principles could be an advantage as no preconceived ideas as to the
operation and application of the chosen language exist. Consider the next section.

4 What Uses Do They Have?

By “they” I am, of course, referring to process algebras. An important application of process
algebras is their ability to model real world objects. What do I mean when I say real world? In
my opinion I think of the real world as a physical entity, containing numerous physical entities;
that which surrounds us during our every waking moment (what happens when we’re asleep is
not decidable!) Objects that we can see, touch and hold could be considered real world objects.

Think of an object. What behaviour does it exhibit? If you thought of an animate object,
like a bird then you can imagine it flying, swooping and doing the everyday actions that birds
engage in. If you thought of an orange then it probably just sat there in you mind and didn’t do
much until you thought about doing something with it, like eating it. Despite your choice of
object it still had attributes. Whether it was animate or inanimate makes little difference, a
process algebra can still capture its behaviour and model the communications (interactions) that
your object has with its environment.

Now that the discussion has moved on to object interaction let us consider the kinds of
interaction that are possible. For an animate object, like the bird, it can instigate an interaction
with another object simply because the bird steps through a series of actions; some of which
involve other objects, like Mr Worm! If we can model interaction (an inanimate object waiting
for some animate object to talk to it) then we can surely reason about the communication going
on in our chosen system. So, we can reason about a communicating system, yet another use for
process algebras. We can plot an execution path through a series of actions (choosing some
action where a choice exists) and observe the outcome. During any progression through a
system we regard ourselves as The Almighty, observing all that goes on concerning the external
view that each object portrays. '

I have briefly discussed the notion of a process and given some hints as to the
identification of potential processes around us. Let us now ask the question explicitly.

S What is a Process?

The originator of CSP, Professor of Computation at Oxford University C.A.R. Hoare,
introduces processes in such a way that I cannot find a better way of expressing the same
sentiments myself [9]. Here’s what Tony Hoare had to say about processes:

“Forget for a while about computers and computer programming and think instead about
objects in the world around us, which act and interact with us and with each other in
accordance with some characteristic pattern of behaviour. Think of clocks and counters and
telephones and board games and vending machines.

To describe their patterns of behaviour first decide what kinds of event or action will be of
interest and choose a different name for each kind.”

To illustrate what Professor Hoare says in his opening remarks in the book describing
the language of CSP [9] let us think of a object. Let that object be a marker pen that lecturers use
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to relay knowledge from their minds to those of their students. In the case of a marker pen there
are three kinds of event that we might attribute with such an object. These events are:

i) pickup — the raising of the pen from the podium in the hand of the lecturer
ii) write — the writing of symbols on the board
iii) putdown — the replacing of the pen back on the podium

Using CSP the behaviour of the marker pen can be described formally thus:

(CSP) E5. 1
Pen = (pickUp — (write — (putDown — STOPaPen)))

To increase the complexity of the behaviour of the pen we may include additional events
that extend the expression in E5. 1. This extension is shown below in each of the languages that
I shall be using throughout this text.

(CSP) E5.2
Pen = (pickUp — (capOff — (write — (capOn — (putDown — STOP o p,n))))

where the alphabet of Pen (the set of valid events that Pen can engage in) is defined as:
(CSP) «Pen = {pickUp,capOff,write,capOn,putDown} E5.2.1
The language of CCS would describe the pen as follows:

(CCS) Pen“f pickUp . capOff . write . capOn . putDown . E5.3

where the sort of Pen (CCS equivalent to the CSP alphabet) is defined as:
(CCS) Pen : {pickUp,capOff,write,capOn,putDown} E5.3.1
LOTOS would use the following behaviour definition to describe the pen:

(LOTOS) process Pen[g] : exit := E54
pickUp; capOff:write;capOn;putDown;STOP
end

where the gate list of Pen (LOTOS equivalent to the CCS sort) is defined as:
(LOTOS) g = {pickUp,capOff,write,capOn,putDown} E54.1

Note that each of the actions defining the events that Pen can carry out are visible to us,
the observer. Later we shall discuss hiding events from the observer so that they cannot be
influenced by external forces. The reasons behind external influence will become clear as we
work through the sections. For now, let us accept that each action of Pen is observable from the
environment (which is where we are placed as an observer!).

Although we can observe the events of Pen we cannot be sure how these events are
represented behind the scenes. From the audience’s point of view we do not witness in what
way the pen is lifted off the podium, only that it is lifted off the podium. A process is like a
black box which we cannot see inside. The environment cannot penetrate the process and
consequently has no knowledge about its internal structure. We do not know what the lecturer is
thinking or what the pen will write (courtesy of the lecturer) when it gets to the board.

The interface between a process and its environment is defined through a series of ports
(in CCS terminology), alternatively known as gates in LOTOS and channels in CSP. We can
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represent the Pen process pictorially in the following way:

pickUp

putDown capOff

write
capOn

figure 5.1

Inside a process there may be other processes comprising the structure that we are
capable of observing. The internal sub-processes will only reveal themselves in the form of
ports that are available at the highest level of the structure (the level which is visible to the
environment). An entire system is made up of communicating processes (which are discussed in
detail in later sections). Consider the following example in our real world. It illustrates the
hiding of processes from the environment (namely hidden from us).

In a restaurant you interact (communicate) with the waiter when you place your order,
After a short time (or a long time in the case of an expensive restaurant — the waiting
time being proportional to the cost of the meal coupled with the intensity of the lighting)
the meal arrives. Now consider the activities that are taking place behind the scenes whilst
the meal is being prepared. As the observer you are unaware of the full range of activities
which you have initiated. The interface that you interact with is the waiter, who in turn
communicates with the chef and so on.

Now you can see the architecture of sub-processes and hidden communications that exist
within the confines of the black box that is the restaurant kitchen. Moving on, let’s think about
what the process algebras aim to achieve.

5.1 What are Their Goals?

A simple break down of each process algebra will show the intentions of the languages under
review. For CSP we are provided with a simple model which provides us with an elegant
mechanism for defining new operators.

The language of CCS offers a minimal set of operators and a simple model of
communication (using complementary named ports). The central concept of CCS is its model of
communication which has certain restrictions when compared to CSP and LOTOS (which share
a common view of communication). For example, CCS cannot cope with multi-process
synchronisation. Only one co-agent can communicate at any one time in CCS. Regardless of
this restriction CCS offers a flexible platform from which to build communicating systems.

The main aim of LOTOS, as defined by the ISO ODP (ISO Open Distributed
Processing) document is the formal specification of communication protocols to aid in the
development of distributed systems and computer networks. These systems would use the
standard seven layered organisation model, common throughout the networking community.
LOTOS is described as an FDT (Formal Description Technique) as it imposes strict rules in the
layout and structure of specifications written using its notation. A LOTOS specification closely
resembles program source code in its layout and structure.
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5.2 Who are Their Rivals?

Within the realms of formally specifying concurrent systems CSP, CCS and LOTOS have the
specification of concurrent systems pretty much to themselves. However, neither language
should rest on its laurels. Together with the rivalry between each process algebra other notations
do provide some modelling capabilities which could substitute or complement the capabilities of
our three review languages [7]. These alternate notations are:

1) Z and VDM — Both of these notations are abstract and non-constructive, which
implies that any events specified within the confines of either notation has no temporal
ordering. Any event can be called in any order, consequently we could not use either Z or
VDM to enforce a model of a strict sequence of events.

ii) Petri-Nets — This particular notation has one main advantage over either CSP, CCS
or LOTOS. Petri-Nets can model true concurrency and causality (the ordering of events)
whereas neither of our reviewed process algebras offer true concurrency. Despite the
obvious advantage when trying to model real world concurrency Petri-Nets have no strict
algebraic theory supporting them. Therefore we consider them to be primitive and open to
abuse when used for anything but the simplest of system.

iii) Regular Expressions and Finite State Automata — Both of these notations are simple
and should be familiar to the reader. We will not illustrate the syntax except to say that
FSA are derived from corresponding Regular Expressions. A FSA can provide another
medium for representing the actions taken by a process, given some behaviour for that
process. Again, there are advantages towards incorporating them into a larger model of the
systems we might attempt to specify but due to their simplistic language we find that
concepts such as non-determinism (unpredictability given a choice of events) cannot be
modelled and is best left to other more capable languages.

Despite some challenges to our three choice process algebras we find that no one single
alternative can threaten the completeness offered by the formalism of either CSP, CCS or
LOTOS. With this justification for their use in mind we shall continue.

6 Language Similarities

The founding principle of each of the languages CSP, CCS and LOTOS is the concept of an
-atomic action (known in CSP as an event). At any one time the execution of a process by way of
an action cannot be interrupted by another process or by the environment. The action will be
allowed to complete before any interruption occurs. Each language obeys this principle and
communications rely upon it to ensure that they can synchronise before another process takes
control of the system. It may help the reader at this point to think of the environment where the
processes execute as some single processor system where each process can take it in turns to
execute.

CSP, CCS and LOTOS also view a process as a collection of actions. That is, processes
are constructed from sequences of actions. Indeed, the behaviour of a process is determined by
the actions contained within it. ‘

The various operators that our languages provide enable us to construct more complex
processes. A simple process which contains four discrete actions is enhanced by adding some
form of choice operator into its temporal behaviour (action sequence). By applying the choice
operator we can define new behaviour from the original process.
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6.0.1 ILanguage Differences

Together with language similarities we find that care must be taken to identify the differences
between the languages. Fundamental to the idea of CSP and LOTOS is the idea of visible
communications that can be determined by the environment. Without this principle no multi-way
synchronisations would be possible as interactions between processes could not be observed by
the environment.

- CCS is different as it internalises communications so that the environment cannot tell

what interactions took place. The tau action () represents some form of internal communication
but does not give any hints as to what explicit actions actually synchronised. If we restrict a -
CCS process’s action then the environment cannot interfere with that action. However, if no
internal communication occurs based upon that restricted action then the process itself will be in
a state of deadlock because no communications will be able to occur with any action within the
process, causing deadlock. CSP (and LOTOS) assume that some internal communication will
force the action to progress and therefore they do not deadlock when their actions are restricted
in the same way. Consequently, CSP and LOTOS can distinguish between the interaction and
restriction of process actions whereas CCS cannot. These issues underlie the model of
communications that each language adheres to. Without the observability of synchronising
actions CSP and LOTOS would not be able to offer further communications to multiple
processes and therefore engage in multiple synchronisation.

Between the syntax of CSP, CCS and LOTOS certain common operators appear. Despite
the syntax appearing to be the same the semantics of the operators can be radically different.
Consider the internal action. In CSP it does not appear at all in the sequence of observable
actions (the fraces) of a process, but in CCS and LOTOS the internalised actions are evident as
place holders in the sequence.

Similar concepts may also be expressed differently so again we must be aware of
subtleties between the semantics of the languages, regardless of their syntax.

6.1 Formal Definitions

For each language we find that certain issues are fundamental to their structure. With either
CSP, CCS or LOTOS the idea of an atomic action is central to the notion of process behaviour.
The term atomic is used to give the idea that the action cannot be further subdivided into sub-
actions. Each action must complete before some other process action can execute.

6.1.1 Actions

Together with the concept of atomic actions each algebra insists that actions are uniquely named
s0 as not to cause confusion within the confines of the same process and system. Imagine the
consequences of dual naming within a process. For example, how is a process to know which
version of action a is to be executed and synchronised upon?

Although atomic actions and unique naming is common to all three notations CCS uses a
different approach to ensure process interaction (via synchronisation). CCS uses complementary

naming to enforce synchronisation where the actions a and a will synchronise when agents A I
and A2 are composed together; expressed as (A1 1 A2).
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6.1.2 Distinguished Actions

Special actions are resident in each process algebra. These actions have meanings other than
simple process behaviour and progression of that behaviour.

(CSP) v [5, p.23] E612.1
Successful Process Termination
if P1; P2 and ¢ ¢ traces(Pl) then
P2 cannot start execution.

(CCS) T (tau action) [13, p.39] E612.2
representing internal communication,
synchronisation and nondeterministic choice when
T is an initial action in a choice expression

(LOTOS) i (hidden action) [3, p.31] E612.3
used to show some hidden action within a process trace

0 (exit symbol)
defined as exit— 6 — STOP which signifies successful process termination.

6.1.3 Processes (CCS Agents)

From the discussion so far we can determine that processes are constructed from actions and
references to other processes. Processes interact with their environment and where necessary
can pass and receive values as dynamic data storage. With the inclusion of data a process can be
envisaged as a single encapsulated entity containing behaviour (its actions) and state (the
dynamic storage continually being passed through the system or back to itself) which makes the
process a close relative of an object in the object-oriented sense. The interface ports to the
process are through its available (visible) actions.

6.1.4 Environment

The environment of a process, or indeed a system, is one of the places where we, the system’s
users reside. Also a process’s environment may include other processes or real world entities.
The environment can only see processes via their observable actions (unrestricted behaviour).
Any process composed with its environment forms another process; forming an infinite number
of potential processes as we encapsulate more and more processes to make larger, more
complex processes in turn. To view the system we would have to remove ourselves to a higher
level, above the current encapsulation so as to see the boundary of the system. It is only from
the boundary that we, as observers, would be able to interact with all visible process actions
within the system.

6.2 Which language is Best?

For each language we can list many attributes, some of which support the particular language
and others which do not. Consider this simple list [7, p.55] of for and against points that cover
the broad areas of each notation.
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(CSP - For) * + Simple language semantics and verification semantics
* + Can be implemented in OCCAM without too much translation

(CSP - Against) e - Are the laws of CSP complete and/or consistent?

(CCS - For) * + Elegant
° + Minimal Language

(CCS - Against) ° - Minimal Language
» - Equivalence versus Congruence (similarity versus substitution)

(LOTOS - For) * + Tool Support (syntax can be executed)
° + *Allows constraint style specification

(LOTOS - Against) ° - Some verbose syntax (akin to programming language syntax)

* Constraint Style Specification is where behavioural constraints are represented as processes.
Composition is used to impose constraints on interaction points between processes. It is the most
abstract approach and is implementation dependent.

7 Basic Concepts

I now move on to discuss the notation for each language and the semantics behind the notation.
My journey through each of the next few sections will try to introduce you, the reader, to each
language in parallel so that a grounding in CSP, CCS and LOTOS can be gained. Like the
previous sections, we’ll start from the absolute basics and build up the knowledge-base from
there.

7.1 Event Notation

Regardless of whether we talk about events, actions or gates we are still talking about the same
concept. The progression of a process is through the execution of actions that define a process’s
behaviour. We model events (the actions of a process), processes (collections of actions to form
complete behaviour), alphabets (valid actions pertaining to a process) and process interfaces (the
entry point into a process) in each language accordingly [7, p.6]:

Event Notation:

(CSP) events (el,...,en) E71.1
(CCS) actions (al,...,an) E71.2
(LOTOS) gates (gl,...,.gn) E71.3
Process Notation:

(CSP) process (P1,...,Pn) E71.4
(CCS) agent (Al,...,An) E71.5
(LOTOS) behaviour expression (B1,...,Bn) E71.6
Alphabet Notation:

(CSP) alphabet (o.P) E71.7
(CCS) sort (L(A)) E71.8
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(LOTOS) events or actions? E71.9

Interface Notation:

(CSP) channels (cl,...,cn) E71.10
(CCS) ports (pl,....pn) E71.11
(LOTOS) gates (gl,...,gn) E71.12

With these basic components we are in a position to model simple actions for a process
by prefixing that action onto a process expression.

7.2 Action Prefixing

Each process algebra incorporates action prefixing as a way of expressing one action occurring
before some other behaviour or choice of actions. In fact one action prefixing another (and so
on) is the recursive definition of a sequence of actions. An everyday example of action prefixing
is the order of events that you perform before you leave the house for work each day. One task
is completed, then another and then another. Only one task may be completed at any one time
and upon reflection these tasks, when listed together, form the sequence of actions that make up
your morning ritual.
Consider the action prefixing syntax for each language:

(CSP) e—P [9, §1.1.1] E72.1
(CCS) a.A [13,§1.3, p.27] E72.2
(LOTOS) ¢:B [3,82.2] E72.3

The action e, a or g occurs, followed by some behaviour. After an action has taken place
other processes in the system may proceed, holding up other processes whilst they do so.

7.3 Deterministic Choice

The term deterministic choice refers to the influence that the environment has over a possible
choice of distinct actions that a process offers. If a process is deterministic then we can
determine its behaviour. Processes that offer a deterministic choice of actions are considered to
be stable as their outcome is known (i.e: predictable). Consider the syntax for deterministic
choice that each language uses and also the graphical representation of that choice.

el e2

(CSP) (el > PIle2—P2)  [9§1.13] g73.1 Pl P2 pr31
a b

(CCS) (a.Al +b.A2) [13,§1.2, p.20] E73.2 Al A2 pr3s
a b

(LOTOS) (a;BI[]b;B2) [3,§2.2] E73.3 Bl B2 p733

Notice how the expressions are now starting to increase in complexity! Here we see how
each language copes with offering one of two choices to the environment. The diagrams P73.1

—> P73.3 show graphically the choice between the two actions. To use the diagrams (referred to

in CCS as derivation trees) we simply start at the root (top) and choose a branch to descend.
Each path down the tree denotes some action being taken by the process. With all three
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languages the choice of one action over another causes the non-chosen branch to disappear,
hence that particular choice is no longer available until the process starts from the root again. In
the examples above the first action choice determines the subsequent behaviour of the process.
This difference between available choices once a particular choice has been made helps to further
underline the subtleties between the semantics of the three languages, something which is not
apparent from the syntax alone.

7.4 Nondeterministic Choice

If we are offered choice by a process and the outcome cannot be predicted then we can assert
that the behaviour of the process is nondeterministic (i.e: unpredictable). The environment
cannot influence the outcome of some decision regarding choice within a nondeterministic
process. The mechanism which decides the outcome of the choice within the process is not
observable it just happens and the process proceeds down the path that it, itself, has chosen.
Note that if one choice is continually chosen over another then there is nothing that we, as
observers, can do about it. There is no concept of fairness in either CSP, CCS or LOTOS.

(CSP) PIn P2 [9,83.2] E74.1 Pl P2Npra1
T T

(CCS) T.Al + 1. A2 [13,§1.3 p29] E742 Al A2 p74o
1 1

(LOTOS) i BI[]i.B2 [3§22] E74.3 Bl B2 pr43

Notice how the CSP notation differs from both the CCS and LOTOS notation. In CSP

the operator N signifies the nondeterminism of a choice of actions for a process. However, CCS
and LOTOS continue to use the same choice operator as before (see section 7.3) but prefix their
sequence of actions on either side of the choice operator with a special action that dictates

internal choice (namely 7t or ). Again, neither choice can be influenced by the environment nor
can some sense of time be imposed by the environment. All that we know as observers is that
one of the actions (branches) will get chosen at sometime in the future. We’ll only know the
outcome of the nondeterministic choice when we observe the state of the process at sometime
after the choice has been made.

7.5 General Choice

General choice can be regarded as an option between one choice of behaviour over another for
which the environment can influence that choice. The environmental influence implied here must
be taken on the very first action of either process in the choice expression. Subsequent
behaviour of the system is determined once the first action has been taken. Here are the different
syntax expressions for each language.

(CSP) PI[l P2 [9,§3.3] E75.1
(CCS) Al + A2 [13,§1.3, p29] E75.2
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(LOTOS) B1[] B2 [3,§2.2] E75.3

The CSP notation again provides us with a clue as to the difference between the
expression in E75.1 and that of E74.1. The choice between either process behaviour (PI or P2)
is ours, that is, the environment’s and will determine what the process does next. Again, note
the reuse of the CCS choice operator + and that of LOTOS []. These last two languages make
full use of their limited choice operators and consequently care must be taken to ensure that the

“context within which they are used is fully understood; is the process offering deterministic or
nondeterministic choice?

So far we have only illustrated the foundations of the three languages using very
simplistic processes which would not model anything but the simplest object in the real world. It
would be more interesting if we were to build more complex processes. For this task we need to
introduce more language constructs.

8 Building Complex Systems (Process Composition)

The behaviour of the Pen process that was specified earlier (E5.1 onwards) has no connection
with other processes. Only processes that are composed together can communicate. Each of our
target languages uses synchronisation in order to communicate. Similarly named actions come
together to communicate (i.e: synchronise). A simple example involves two processes (we’ll call
them Bonnie and Clyde).

Bonnie and Clyde turn to one another and shout “Oh no! It’s the cops. Looks like they’ve
rumbled us this time. I bet it was those darn kids who couldn’t keep a secret!”

Hence, Bonnie and Clyde engage in a synchronised event. Processes, like Bonnie and
Clyde synchronise together. From the previous discourse we get the impression that our
villainous couple shout together in unison. Indeed, this is what they did. The semantics of CSP,
CCS and LOTOS state that both processes simultaneously engage in the communication. Using
our gangster example both villains would have to turn to each other at the same time; using some
nefarious form of ESP perhaps. Here’s a simple diagram showing the act of synchronisation
that Bonnie and Clyde engaged in:

Synchronisation

“Oh no! It’s the cops. Looks like they’ve
rumbled us this time. I bet it was those
darn kids who couldn't keep a secret!”

figure 8.1

Bonnie

Different forms of synchronisation exist. Let us examine them next.

8.1 Independent Composition (Interleaving)

It is possible to compose processes together to form a complete system whilst still enforcing
strict divisions between the processes. Interleaving is the independent (concurrent) progression
of processes related by Ill. It might prove necessary to share some resource (cunningly disguised
as a process) between several processes so that no interaction occurs between the different
camps sharing the resource. In CSP and LOTOS the same symbol and semantics are used,
namely:

(CSP) Pl P2 [9,§3.6] E81.1
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( LOTOS) BI || B2 [3,§2.4, p.34] E81.2

The operational semantics of Ill enforce interleaving but lll actually states that P/ and P2
will progress concurrently. CCS requires an invariant to guarantee interleaving, namely that no
two processes should share complementary actions, if they do then they have a duty to
synchronise if those particular actions are restricted. Non-restricted actions can occur at any
time, singularly, or they can come together to form a synchronised communication between two
processes.

(CCS) (Al | A2) iff L(Al) NL(A2) = {} [7,pl0] E81.3

Note that the rules surrounding CCS communication are stricter than those for both CSP
and LOTOS. CCS requires the synchronisation of complementary ports between processes. In
E81.3 the way to specify interleaving is to ensure that no complementary port exists within the
sort of the other composed agents (remember, in the language of CCS an agent is a process). If
we call upon the services of a Venn diagram we can see the meaning of the rule introduced in

E81.3. For L(AI) use the sort {a,b,c} and L(A2) use the sort {d, e, f}.

figure 81.1

Provided that there are no actions common to both agents (no actions in the shaded area)
then the interleaving of both A/ and A2 is guaranteed as they will both continue separately.

8.2 Fully Dependent Composition (Full Synchronisation)

At the other end of the synchronisation scale we find full synchronisation. Each action in the
composed processes must be performed by each process simultaneously. The rules for this type
of composition are very strict and consequently CCS suffers from its own requirements
concerning complementary port synchronisation. Consider the CSP and LOTOS syntax and
semantics for full synchronisation.

(CSP) P P2 [9,§2.2] E82.1
(LOTOS) BI11I B2 [3,§2.4, p.34] E82.2

In CCS we find fully dependent composition difficult to model due to the way that CCS
conceals interactions between processes. In short, CCS interactions are not observable by the

environment, all that occurs is the T action which does not yield any information as to the cause
of the interaction only that some form of synchronisation has taken place.

8.3 General Composition

A more flexible form of synchronisation is provided via general composition which allows
processes to interact via a subset of their actions. Other, non-similar actions are performed
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independently. With the following examples each process synchronises on the intersection of
common events in each process’s respective alphabet.

(CSP) Pl P2 [9,§2.3] E83.1
where aP1 N aP2 contains the events that are synchronised.

(CCS) Al 1A2 [13,§2.5,p.46] E83.2
where Al and A2 may, or may not interact on complementary actions.

(LOTOS) B1l[gl,....gn]| B2 [3.§2.4] E83.3
where Bl and B2 must synchronise on the gates gl,...,gn.

In the LOTOS example (£83.3) note that we can use general composition |/g1,...gn]l to
specify both of the other types of composition (interleaving lll and full synchronisation II).

Consider: B1 |l B2 is equivalent to BI |[@]| B2 [17,§2] E83.4
B1 I B2 is equivalent to BI |[aBI n aB2]l [17,§2] E83.5
Therefore, both Il and |l can be defined in terms of I[...]|

9 Process Interaction

Both CSP and LOTOS synchronise on identically named actions. However, as I have briefly
discussed, CCS uses the notion of complementary actions as its basis for communication (e.g:

interaction between o and o).

(CSP) [9,8§2.3.1] 9.1 P9.1
—f

P]=a—>b—->c—9ST0PaP] : .

P2=e—b —f - STOP yp, (P11 P2)

(CCS) [13,§2.2, p.39] E9.2

Note that CCS agents synchronise on complementary actions

— b —

Al%f 4 b.c.o

Akl e b.f. 0 (A11A2)
(LOTOS) [3,8§2.4, p.33] E9.3 P9.3
e
. cT —f
process Bl[a,b,c] : exit :=
a;b;c;STOP
endproc (B1\[b]l B2)
process B2[e,b,f] : exit :=
e;b;f:STOP
endproc
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One further point regarding process interaction. Actions are used for the communication
between the processes, not the process names, these are simply used as a means of
encapsulating sequences of actions and choice.

9.1 Number of Participants

In section 6.0.1 (Language Differences) I underlined the fundamental difference between CSP,
LOTOS and CCS. Remember that the model of communication used by CSP and LOTOS is
radically different from that of CCS. Recall that CCS cannot cope with multi-way
communication (the interaction of more than two processes) because interactions in CCS are
hidden from the environment (although work has been carried out to redress this issue [1]).
Restricted actions are stopped from occurring (from the environment’s point of view) and only
internal communication will allow a process to continue. In both CSP and LOTOS it is valid to
compose two or more processes in the following way.

(CSP) (P11 P2)1l P3 [9,§2.3.1] E91.1
(LOTOS) (B \[g]l B2)|[g]| B3 [3,§2.4,p.33] E91.2

Note that Il and I/...] are associative. Using the process definitions in £9.1 and E9.3 let
us extend the previous composition by adding a third process P3 and B3 respectively to each
example shown, as follows.

(CSP) P3=x—y —b - STOP aP3 E91.3
(P11 P2)Il P3 P91.1

Y O\

b
: — . X
cT -y

e'f

(LOTOS) process B3[x,y,b] : exit := E91.4
x,y;b;STOP
endproc
(BI\[b]1 B2) \[b]| B3

Consider the following potential problem. What would happen to the system if either
one of the three processes failed to supply the action b? Would the system be able to cope with
such a failure of one of its components or would it deadlock? I shall return to this issue later in
the text.

Now consider an attempt to build a similar system in CCS. As we have already seen,
CCS cannot cope with anything other than bi-party interaction (a maximum of two processes)
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[13,§2.2, p.39]. If we attempt to compose A3 with the existing (AIlA2) system what will
happen?

(CCS) A39%f x.y.b. 0 E91.5
((AI1A2) 1 A3)

P91.3

f

c

Due to the way that CCS models communication we are left in somewhat of a dilemma.
With which complementary action does action b synchronise? Is it BI(b) or B3(b)? The answer

is either! The problem lies with the nondeterministic nature of the expression in E91.5. The
environment could also play a part in the synchronisation if action b is not restricted. The system
illustrated in P91.3 will not function deterministically!

10 Visibility of Interactions

I reiterate the comments of the previous section by reminding the reader about the visibility of
interactions between CSP and LOTOS processes. As observers and members of the
environment of a process we can see which actions are part of any communication between the
processes [9,§2.3.1],[3,§2.4, p.33]. We know what’s going on! We can see the specific actions
involved in the communications!

By now I have explained the main difference between CCS and the two other process
algebras presented in this text. The internalisation of CCS communications prevents outside
influence from the environment in such a way as to require internal synchronisation to permit
any process to continue. Consequently, it is simpler to deadlock a CCS process than a CSP or
LOTOS process. Again, CSP and LOTOS share a common view of communication and set this
view aside from the notion of restricting actions so that the environment cannot influence them.

With CCS the observer will see a T action in place of a synchronising communication and that is
all. As observers we only know that a process has performed an interaction by referencing the

new state of the process and the existence of the T action in the traces of that process.

10.1 Explicit Action Concealment

Concealing process actions has the power to stop the environment from influencing,
participating with or observing those actions. If we chose to build complex processes made up
from sub-processes then we hide the communications between the sub-processes using action
restriction (referred to as action hiding in LOTOS). The interface to an externally visible process
is made up from the unrestricted actions of that external process and those actions that are
unrestricted belonging to the sub-processes that lie beneath it. Let’s look at an example from
each language.
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(CSP - Concealment) Pl=a—b—c—STOP aPl [9,§3.5] El01.1
P2=b—>f—x—STOP aP2
P3=x—y —b— STOP oP3
((P11l P2)\{b}) | P3

Within the composition (PI || P2) the concealed action b allows P3 to proceed
independently if capable of doing so. However, P3 requires the synchronisation with action x at
the end of P2 so it will not proceed until P2 reaches that point. One aspect of CSP that has also
been captured in LOTOS is the ability to progress should synchronisation fail. In the example in
E101.1 process P1 could drop the action b and continue if b fails to be offered by any other
process in the system. If b is present elsewhere then P1 will wait but if b is not a valid action of
any other process in the system then P1 will simply pass over its own b action and continue
with action c.

If we fail to restrict action b in the composition of P/ and P2 then the entire system will
deadlock because all three processes will be looking to synchronise on b. The reason lies behind
the fact that P/ and P2 will hang on b, waiting for P3(b). Incidentally, P3(b) cannot occur until
P3(x) occurs earlier in its temporal behaviour. P3(x) is subsequently waiting for P2(x), which
itself cannot occur until P2(b) occurs. Aha! A catch-22 situation. A classic circular argument
involving two parties saying “I’m not moving until you move and you won’t move until I do!”;
rather reminiscent of Irish peace negotiations and those of the former Yugoslavia. What about
the LOTOS equivalent, action hiding?

(LOTOS Action Hiding) [3,§2.5] EI101.2
process Bl[a,b,c] : exit := process B2[b,f,x] : exit :=
a;b;c;STOP b;f;x;STOP
endproc endproc
E101.3
process B3[x,yb] : exit := process Bd[a,c,f,x,y] : exit :=
x;¥;b;STOP hide b in
endproc (B11[b] B2) |[x]| B3
endproc

The shaded area of P101.1 denotes the restricted synchronisation that we, as observers
have no access to. Notice from the diagram in P101.] that B3 is not actually related to BI and
B2 by action b. The use of |[g],...gn]l| precludes b in B3 from interacting with BI and B2. The
hide operator keeps the environment from influencing and observing the interaction of b
between B and B2.

Now let us consider the mechanics of CCS action restriction. In CCS restricted actions
are prevented from occurring by influence from the environment. We can therefore prevent
interaction by restricting certain actions. This restriction forces processes to wait until internal
communications occur which allow them to proceed.

(CCS Action Restriction) [13, p.40] EI01.5
((A11A2)\{b}) | A3

P101.2
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e f
where the agents are defined as follows:

Al a.b.c.0 A2 e b.f.x.0 A3% x.y.b.0

From the CCS example above note that \{5} also restricts the complementary action of
the defined set element (b). Therefore we assume that some restriction expression \{ ¢} also

restricts its complement \{ &r}; there is no need for it to appear within the restriction set.

11 Internal Actions (I)
Within the process algebras internal actions can result from:

* interaction within the language of CCS
» concealment in CSP and LOTOS (using the kide operator).

In CCS and LOTOS internal actions may also be explicitly defined as action prefixes
using the special actions T and i.

(CCS Silent action T) [13, p.39] Ell.1
T.A ega.T.A

Pll.1
a
T
A
(LOTOS unobserved action prefix i) [3,§2.2] Ell.2
i;,B ega.iB
Pi1.2
a
i
B

Whereas the internal actions appear within the derivation trees for both of the previous
languages a CSP trace would not contain any evidence of an internalised action, it simply
disappears from the trace as if it never happened.
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12 Action Renaming

If we are required to define one action in terms of another then it is possible in all three
languages to rename actions with new identities. Renaming alters the action names of a process
but leaves the behaviour of the process the same. In [17] I use action renaming to reuse certain
generic components of a case study system and then incorporate action restriction to specialise
those renamed processes.

(CSP Symbol Change) fiP) [9,§2.6] El2.1
(CSP Process Labelling) 1. P [9,§2.6.2] Ei2.2
(CCS Relabelling) Alfl [13, p.32] El2.3
where [f] is of the form
[newLabel/oldLabel]
Example: Al%a.b.c.0

A2 % Al[x/a, y/b, Z/c]

P12.1 P22

Al A2
a X
b y
c » zZ

%) %}

(LOTOS meta-language relabelling) [3,§2.6, p.35] EI24
process B[x/a,y/b,7/c]

or using parameter shifting during recursion.

process Bla,b,c] : noexit := El12.5
a;b;c;Blcab]
endproc

Note that the LOTOS example of shifting parameters effectively renames the meaning of
the actions when the next recursive call to the process is made.

13 Recursion

So far, I have only dealt with processes that terminate (cease to exist) after one pass through
their sequence of actions. In reality, the real world objects that we trying to model continues
through numerous (possibly infinite) iterations. A machine repeats a certain sequence of actions
many times during the course of its life. To model useful processes each algebra allows the
name of the process to be used at the end of an action sequence, allowing the process to repeat.
Formally recursion is defined as a fix point expression.

(CSP) ux . x [9,§1.1.2] El31
(Example) Pl=a—b —c— Pl

A Brief History of Time (Before and After Objects) Page: 22/60




(CCS) fix(X = a.X) [13,§2.9] El3.2
A 9 fix(X = a.X)

(CCS Example) Al % a.b.c.Al Exi3.1
fix(Al =a.b.c.Al)
Pi3.1
Al

(LOTOS) process B[g] : noexit := [3,§2.6, p.36] EI13.3

8 Blgl
endproc

Note that for all three languages, CCS, CSP and LOTOS, for unique solutions under
recursion the recursion must be guarded by a preceding action prior to the recursive call,
otherwise there may be many possible solutions.

14 Inaction

The word itself says quite a lot about what we can expect from a process which contains
inaction; not a lot! Inaction is defined formally as being a process that cannot do anything. It
cannot proceed in any further actions or interactions.

(CSP) STOP [9, p.25] El4.1

(CCS) o [13,§2.4] El4.2
note that @ is not basic. @ %/ i (] A; [7, p.16] which states that there

are no more actions to be undertaken by the process A.

(LOTOS) STOP [3,§2.2] El4.3

And so ends the first instalment of this text. With the inclusion of inaction we are at the
end of the sections 1ntr0ducmg basic CSP and CCS, although we haven’t quite finished with
LOTOS yet!

—end of section on basic CSP/CCS.
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15 Successful Process Termination

To show that a process has completed its task successfully we need some way of specifying task
completion.

(CSP) SKIP [9,§5.1] EI5.1

(LOTOS) EXIT [3, p.36] El15.2

The CCS equivalent is a trifle more complicated but it can be achieved. The label done

indicates the termination of an agent. The CCS definition of successful termination can be
formalised thus:

(CCS) [13,§8.2, p173] DI15.1

P terminates successfully if, for every derivative P* of P

(a child process of P) P* done_, g impossible.
No more actions of P if terminated.

Note that the definition in D15.1 does not state that P should terminate, only that when
it performs the label done that it does terminate. This label is required so that other processes

that may be waiting on the successful completion of P can recognise that the completion of P has
occurred and start executing themselves.

16 Sequential Composition

The idea behind a sequential process is that events occur one after another. Sequential
composition entails the starting of some second process after the successful termination of a
leading process. We can model sequential composition in CSP and LOTOS, whereas CCS (a
simpler language; as we are finding out) involves a little more work.

(CSP) PI1; P2 [9,§5.1] El6.1
Example: Pl=a—b —c—STOP ,p;

P2=d—e—f— STOP aP?
where a valid set of traces P1 ; P2 would be <a,b,c,d,e,f>

(LOTOS) Bl >> B2 [3,p.36] El16.2
For a comparative model in CCS we require a new operator titled Before, which is defined thus:

(CCS) [13, p.173] El6.3

Al Before A2 % (Al[b/done] | b . A2)\ (b}

where Al —421€_ A2 signifies successful termination

Note that the CCS definition in D15.1 is used in E16.3, together with action renaming
and restriction to enforce internal interaction between only A 1 and A2. With this synchronisation
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we can follow a successful path from the execution of one process to another.

17 Value Passing Between Processes

The processes that we have seen so far only communicate with each other and their environment
on simple terms. I will now discuss an extension to these terms to include parameterisation. The
aim is to pass values along with the interactions that processes engage in. Each notation allows a
certain degree of parameterisation.

(CSP Equations) N(li,...,vn) = P2 [9p.32] El7.1
Example: P(xy) = a(x) = b(y) = STOP ,p, Ex17.1
(CCS Parameterised Constant) N = (vi,...,vn) def A [13,§2.8] Ei17.2
Example: Al(xy) % a(x). b . A2(y) Ex17.2

A2(y) % c(y). @

(LOTOS Parametric Processes) [3,85.4] El17.3
process N[...][(vi:tn,...,va:tn) : f:=
Example: process B[g](v : t) : noexit := Ex17.3
g 7x:t Blg](x)
endproc

In LOTOS types ¢ are defined using the algebraic specification language ACT ONE. The
functionality f of a process B (the operator that appears after the gate list [g] and value
parameters (v : t) ) is described as either:

* noexit functionality, which indicates that the process never terminates successfully

e exit functionality, which indicates that a process successfully terminates

* exit(tl,...,tn) functionality, which indicates that the process will terminate and also offer
data values for receipt by other processes.

For LOTOS I shall discuss the notion of passing values upon successful termination of a
leading process in a sequential composition.

17.1 Value Passing with Sequential Composition
In LOTOS values may be passed between processes. That is to say that values may be passed
from BI to B2 in the context of Bl >> B2. Processes which pass values are to end with
functionality exit(¢1,...,tn). For example:

process Bl[g](v:t) : exit(el,...,en) := [3,§5.5.1] Ei171.1

endproc

Processes that are to receive values are to be specified in a complementary state to the

sender and take the following form:
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process B2[g](v:t): f := [3,§5.5.2] El171.2

>> accept X1:t,...,Xn:t in Bl
endproc

For the transfer of information to be successful the parameters and their types from }
source to target must match exactly. If the transfer succeeds then B2 will continue, B1 will cease ‘
to exist in the system but its legacy (the passed information) will continue to be resident within

the system for as long as B2 continues to function.
CCS value passing on sequential composition is defined as a process Ax, terminating by

yielding up its exit values via the label res. The CCS operator Into provides the value passing
medium. Consider the definition D171.1.

(CCS) [13,§8.2, p.174] DI171.1
Al Into(x) A2 %f (Al | res(x). Q) \res
where A2 refers to the result x, passed from Al

P171.1
Into(x)

17.2 Value Input/Output

To allow a process to model the acceptance of values from the environment, as well as from
each other in the same system we need to be able to specify that a value v enters the process
through some recognised port. Here’s how the three languages cope with value input and

output.

Value Input:

(CSP Channel Input) c?v — P(v) [9,§4.2] E172.1
(CCS Input Port) p(v). A(v) [13,p.17] El172.2
(LOTOS Input Gate) g?v:t;Bv) [3,§5.1.3] E172.3

The post-fix value v within each example (shown as P(v), A(v) or B(v)) illustrates that
the input value has the ability to change the local state of the process after the recursive call at the
end of each expression. Now consider the syntax for output:

Value Output:

(CSP Channel Output) clv— Pk) [9,§4.2] El1724
(CCS Output Port) ;)?v) .A®W) [13,p.17] El172.5
(LOTOS Output Gate) glv:t; Bv) [3,§5.1.3] E172.6
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Notice that although it is not necessary it is still possible for the value v to remain with
the process despite being output to some other interacting process or the environment.

One more type of value passing remains to be discussed and it is only applicable within
the realms of LOTOS.

17.3 Multiple Value Message Passing

In LOTOS a gate g may be followed by a list c1,...,cn of offered (/e output) and accepted ( ? v:t
input) events. The general form of these lists is shown as:
(LOTOS) gcl,..,cn; B [14,§3.3.10, p.27] El173.1

Three forms of communication exist which follow the general form. These are:

1. Value Passing.  le matches with ? v : t
=t/ <
2. Value Matching .’el matches with ! e2

- ™

3. Value Generation ? vl : tI matches with ? v2 : t2

figure 173.1
Each method of value passing can be illustrated using the following simple examples.
We tend to think of the first example, value passing, as the value passing synchronisation that
takes place between two processes. Note that passing values restricts the number of participants

in a communication (see section 18.1). Value passing in CSP and LOTOS requires an output
and input communication to contain similar sorts along the same channel.

‘g!E] gl g./Ez<b :

value(E1) = value(E2) Effect: synchronisation

figure 173.2

Value matching brings two processes together on the same channel (port) with equivalent values
being passed onto that channel (output signals from bother processes).

{ g!El[g]lg?x:t %

value(E) is of sortt  Effect: after synchronisation x = value(E)

Figure 173.3

Value generation is the most complex form of value passing as it requires two processes to wait
on some channel for values of a certain sort (type) from some third process. The third process
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supplies the signal, allowing the first two processes to synchronise. The variables from the three
processes will all be equivalent and of the same sort.

sortt =sortu Effect: after synchronisationx = y =,
where v is some value of sort t

Figure 173.4

18 Communication (Value Passing)

Communication within the process algebras is strictly synchronous. Two processes come
together to synchronise on some common action. The actual event occurs simultaneously at both
ends of the interaction. When we think of this type of synchronous communication we tend

towards a signal — acknowledgement model. This view is incompatible with the semantics of
the process algebras that are presented in this text. If we think of both sides of the interaction
engaging at once then we’ve got the idea!

If required we can model asynchronous communications. A simple solution requires
some form of buffer where the final target process is removed. from the source’s immediate
environment. Basically, using E.W. Dijkstra's metaphor, “we have solved yet another problem
in Computer Science by adding one more level of abstraction”. For example, consider the
following buffers to allow us to model asynchronous communication.

(CSP Buffer)  BUFFER = P<>, [9,§4.2, p.138] EI&8.1
where
P<> =left 7 x — P<x>
and
P<x>ns = (left 7y — P<x>"s"<y> | right ! x — Ps
P18.1
in out
(CCS Buffer) C % in(x). C1x) [13,§1.2] Ei8.2

C’ (x) % out(x) . C

With the buffer process inserted between two communicating processes the source
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process never explicitly requires an acknowledgement with the target process, only the buffer
process. Consequently, the source can continually send messages without requiring any
acknowledgements from the target, only the buffer. This is actually a bit of a hack!
Synchronisation is still occurring but if we restrict our view to just the source and target then it
appears that messages are being sent out without the need to actually synchronise with the final
target process.

18.1 Number of Participants (Value Passing)

In previous sections I have mentioned the number of processes that are synchronised during
one value passing interaction. In CSP and CCS only bi-party communication [9,§4.2, p.134]
[13, p.15] with value passing is possible, whereas in LOTOS full multi- -party
communication is possible with value passing. CSP adopts a different strategy with normal
synchronising communications without value passing. CSP allows multi-party communication
in this instance. CCS disallows any form of multi-party communication or value passing.
Consider further the differences between the three languages, as illustrated in the following
examples.

(CSP) EI8L1 PI8LI

a—_ e

Pl=a?v—b(v) >c—>STOPyp;  °© f
P2=¢— b!v—f—STOP,p, (P11 P2)

~(CC8) EI81.2 PI81.2

a= b(v) bl —
—_—
Al % a. bV).c.0

A2%f ¢.b,.f. 0 (Al 1A2)
where data item i € data set V

(LOTOS)
B11[b(x)]I B2 |[b(x)]!| B3 Ei181.3 [3, §2 4 p 33] PI81.3
b(x) b(x)
=OIOIO=
e f

18.2 Direction of Communication (Value Passing)
Both CSP and CCS use unidirectional communication; one direction only from source to target

[9,§4.2, p.134] [13, §1.1]. However, LOTOS, having a slightly more complex
communlcatlons model, allows for multi- d1rect1ona1 communication [3, §5.1.3]. For a better
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understanding of this type of communication consider the direction of the arrows in the value
matching and value passing forms of message passing in section 17.3 (figure 173.1).

(CSP and CCS) El182.1 Pi182.1
a— b(v) _b(v C
c —f

Al % q.bpwl).c. 0

A2 ¢ b(v2).f. 0 (Al 1A2)
(LOTOS) E182.2 P182.2
g ‘ } ‘ g
process Bl[g](vl : t) : noexit := process B2[g](v2 : t) : noexit :=
g!vl:t;Blfg]vl) g!v2:t B2[g](v2)
endproc endproc
process B3[g](v3 : t) : noexit :=
g?v3:t;B3[g](v3) ((BI\[g]I B2)|[g]| B3)
endproc

18.3 Communication Conditions

When communications occur in CSP, CCS and LOTOS processes they may be guarded
[9,85.5,p186], [13,83.2, p65], [3, §5.2.1]. This means that certain Boolean conditions have to
be met before the communication will occur. The next section introduces guarded commands.

19 Guarded Commands

During the course of process execution we may need to enforce a logical path through its
sequence of actions, rather like the path that a computer program will choose based upon the
evaluation of some Boolean expressions. Each target language supplies the means to guard
action sequences using similar Boolean expressions. If the expression evaluates to true then the
subsequent action sequence is executed, just like our program source code.

(CSP Condition) PI<bD> P2 [9,§5.5, p.186] EI9.1

Translation: “P1ifb else P2”

Note: Many users of CSP use an if...then...else construct, the result of the previous expression would
be:

if b then PI else P2

(CCS Condition) if b then Al [13,§2.8, p.55] EI9.2
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(LOTOS Guarded Expression) [b] - B [3, §5.2.2] El19.3
Translation: “if b then B”

—end of section on value passing calculus of CCS.

20 Modularisation

Up until this point in the text I have discussed very little about objects, except in the case of
processes purporting to be objects in view of their state and behaviour. The concept of
modularisation is a key issue supporting the modelling of objects and their environments.
Modularisation supports large scale specification. We need to be able to model large systems as
these are common in the real world that we are attempting to model.

Each process algebra provides notation for modularising specifications to help break
them up into component parts and make them more readable.

(CSP Process) Pl=a—b— PI E20.1
P2=b—>c—-P2
P3=c—d—-P3
P4 =((P11l P2)\{b}) | P3

(CCS Agent) Al % q. b.Al E20.2
A29 b c. A2
A3 ¢ d. A3
A4 % (A11A2)\(b}) | A3

(LOTOS Process Definition) [3,85, pp.47-48] E20.3
process Bla,b,c,d] : noexit :=

1l

process Bl[a,b] : noexit :
a;b;Bllab]
endproc (* BI *)

process B2[b,c] : noexit :
b;c;B2[bc]
endproc (* B2 *)

process B3[c,d] : noexit :
c,d;B3[cd]
endproc (* B3 *)

endproc (* B ¥)

(LOTOS Specification) [3,85, pp47-48] E20.4
specification System[a,c,d] : noexit :=
behaviour
hide b in
(B11[b]I B2) \[c]I B3
endspec
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Each process can be encapsulated within a sub-system which itself can be further
encapsulated in other subsystems. Layering a specification keeps the information within it
hidden from undesirable influence. The specification can therefore be made more resilient and
robust. We adopt the same strategy for modularising a formal specification as we would for
modularising program code.

—end of section covering complete LOTOS.

21 Operational Semantics

The operational semantics for each process algebra dictates how each operator will behave. For
example, in CSP the observational behaviour of a process is defined by the set of all traces it
may perform.

A trace is a finite sequence of event symbols taken from the definition of a process. The
trace sequence only records events visible to the environment (i.e: unrestricted events). At some
arbitrary point in time the trace sequence will contain only those events that have occurred.
Therefore, a set of traces will hold all possible trace sequences of a process. Due to recursion
the set of traces for a process may be infinite.

21.1 Behaviour of Operators Defined by traces Function

In CSP the formal definition of operations on the traces function [5, §1.5] are defined as
follows:

* traces(STOP) = {<>]. [5,§1.8.1]

The empty sequence is the only valid sequence for a process that does nothing. No actions

occur, therefore no set of action sequences is possible except the empty sequence which

belongs to every set of sequences.

e traces(e — P) = {<>} U {<e>M | t € traces(P)) ~ [5,81.81]

The set of sequences for P, which initially only includes the empty set, is made up from
the union of all possible sequences of P concatenated onto the end of the initial action
sequence e.

e traces(P1 [ P2) = traces(P1) U traces(P2) [5,§1.8.1]
Deterministic choice over either process PI or P2 yields the union of both possible sets
of sequences for each branch of the choice.

o traces(a — STOP [l b — ¢ — STOP) = {<>,<a>,<b>,<b,c>} [5,§3.3.3]

Choice between one action sequence or another yields a set of all possible sequences that
either choice can engage in. Note that no repetition occurs in the set as duplicate elements
are ignored (re: two occurrences of <> from each part of the choice expression).

The previous definitions of traces apply soley to that function in the CSP language. CCS

has its own method of tracing the actions and choices available within in its own process
definitions.
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21.2 CCS Derivation Trees

The behaviour of a CCS agent is expressed as a property of its derivation tree. Transitions
within the tree represent the ability to perform an action; denoted by:

A —2— A’, where a may be the internal action T which is unobservable to the environment [7, p.33].

Derivation trees collect all possible agent derivations (surprisingly enough!) and are
similar in concept to the CSP traces function. As with the contents of a set of sequences
derivation trees may be infinite in length. An incomplete tree is termed a partial tree. Study the
following derivation tree in figure 212.1. Notice how the choice between the behaviour in the
expression places us on one branch of the tree or another. Both choice and recursion can be
modelled using a tree of this sort. Recursion, although not covered here but later in the text,
links the base of a branch to the root. The root always appears at the top of the diagram (think of
the tree as inverted). For this particular derivation tree (in figure 212.1) we shall refer to the
marker pen example process that was introduced back in section 5.

pickUp . capOff . write . A+ capOn . putDown . ()
pickUp capOn

capOff

putDown

]

write

7
figure 212.1

Each branch of the tree represents a single action. It is customary to rewrite the
remaining actions that are left at the junctions along a particular branch, such as:

capOff
write . ()

write

o
figure 212.2

Note that the remaining actions at each junction in figure 2/2.1 were left out to aid
clarity. I did not want to swamp the reader with too much information first time around!

22 Choice versus Concurrency

Within the syntax of CSP and CCS it is not possible to determine some of the properties that
distinguish one type of process from another. Consider the following examples.

(CSP) E22.1
The results of the traces function in CSP cannot identify choice from composition.
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[9.p.120][7,p.35]
traces(a — b — STOP |l ¢ — STOP) = {<>,<a>,<a,b>,<a,c>,<a,b,c>,<a,¢,b>}

which is equivalent to the result obtained by:

[9,p.120]
traces (a = b — ¢ — STOP [| ¢ = b — STOP) = {<>,<a>,<a,b>,<a,c>,<a,b,c>,<a,¢c,b>)

Likewise, a CCS derivation tree cannot distinguish between choice and composition.

[13,p.69]
a.(b.@ 1 c.0) a.(b.c.O+c.b.0)
a a

b.0|c.0) (b.c.O+c.b.0)
(@lc.@d) (b.0| @) c. @ b.9

c I b c | b

] [ 7 o

figure 22.1

The similarity between the trees gives us an indication that the behaviour of the
composed processes is identical. Agents in CCS can be tested for equivalence based upon the
state of their respective derivation trees (more about process equivalence later).

23 Internal Actions (II)

Actions that are restricted are considered to be internal actions. CCS and LOTOS have specific
actions that are automatically considered to be internal. In CSP hidden actions are those that are
internalised. Although internal actions are valid actions for a CSP process they never appear in
the traces of that process, not even as place holders for some unknown action (as they would in
a CCS derivation tree). From the point of view of the traces function internal actions are not
registered.

(CSP) traces((a — b — ¢ — STOP)\{b}) = { <>,<a>,<a,c>} [9,§3.5.3] [E23.1

Note that the restricted action b is conspicuous by its absence in the set of traces for
E23.1. Both CCS and LOTOS include their internalised actions in their derivation trees or traces
that are derived from the behaviour expressions of their own processes [13, p.40][3, p.35].
Consider the following diagram which shows how internal actions feature in both CCS and
LOTOS derivation trees. Officially, CCS does not have a traces function, it only uses derivation
trees as a method of expressing the performed actions of a process.
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P23.1

CcCS LOTOS
a.t.c.0 a.i.c.
o
a a
T.c. 0 i.c.@
T i
c. @ c. 0
c c

7] 0

Note that under normal circumstances, despite the fact that the internal actions are
included in any traces that CCS and LOTOS processes might have, they are ignored and
consequently have no overall effect upon the behaviour of the process. However, one important
case when internal actions do have an effect is when they are initial (first) actions. To explain
this important case in more detail we need to look again at nondeterminism.

24 Nondeterminism (Basic)

If we say that a process is nondeterministic we imply that the behaviour of the process cannot be
predicted from its specified sequence of actions. Nondeterministic processes can contain choices
between specific actions or start with a hidden action. Examples of nondeterministic processes
usually contain choice but initial hidden (internal actions) will still yield the same amount of
nondeterminism as we, the observers, cannot predict if (and when) the process will progress. A
hidden initial action has the power to stop a process from doing any action, alternatively it may
proceed, we have no way of predicting what it will do!
CSP process traces (traces(P)) do not capture nondeterminism, Here is-an example:

(CSP) traces((a — STOP) n (b — STOP)) = { <>,<a>,<b>} [9,§3.4] E24.1
(CSP) traces((a — STOP) [l (b — STOP)) = { <>,<a>,<b>} [9,§3.4] E24.2

As we can see from the set of traces in E24.1 and E24.2, they are the same.

24.1 Refusals

For each operator the refusals set records sets of events that may lead to deadlock when offered
to the environment. These events may be restricted initial actions or actions that do not occur in
some behaviour that we are trying to justify as equivalent to another process. Note the
definitions for the function refusals.

(CSP) refusals(PIn P2) = refusals(P1)V refusals(P2) [9,§3.4..1] D241.1
where the set of refusals for a nondeterministic choice of
actions of P1 or P2 is the same as the union of the set of both the
refusals of each process.
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(CSP) refusals(P1 [| P2) = refusals(P1) N refusals(P2) [9,§3.4.1]  D241.2
where the set of refusals for the deterministic choice of
actions for P1 or P2 is the same as the common set of refusals
of both processes.

Example:[7, p.37]i) refusals((a— STOP) n (b — STOP)) = { {}, {a}, [b} } Ex241.1
ii) refusals((a— STOP) [I (b — STOP))={{}} Ex241.2

The refusals set of Ex241.1 contains both action a and action b because due to its
nondeterministic state it may refuse to offer either action. As observers in
its environment we have no control over which action it will carry out first.

Because Ex241.2 is deterministic we can predict which action will occur first.

Note that a deterministic process is one that never refuses any event it is capable of
performing at the next step.

24.2 Failures

Failures are defined as being the relation between the traces of a process and the sets of events
that cause a refusal. Put simply, the failures set of a process lists those actions which would
cause the process to fail were they to be requested as the next possible action, in contrast to the
explicitly defined behaviour of the process. Study the following example and then relate that to
the explanatory text.

(CSP) [9,§3.9] failures(a — b — STOP) = { (<>,{}), (<>.{a}), (<a>,{}), Ex242.1
(<a>{a}), (<a,b>{}), (<a,b>{a}),

(<a,b>,{b}), (<a,b>,{a,b})}
where the tuple (<x>,{y}) denotes “after action trace <x>, fail on providing actions in {y}”.
Quote: Reference CSP by C.A.R Hoare. p129, [9]. “(5,X) is a failure of P if P can engage in the

sequence of events s and then refuse to do any more, despite the environment prepared to engage in any
events of X.”

24.3 Divergences

Divergence in a process is extremely undesirable if we expect our systems to terminate
successfully. Divergence defines chaos to be the result of unguarded recursion. That is to say
that a divergent process no longer engages in any further events, it simply ceases to respond to
any interactions and acts as if it is locked into some infinite loop, making the process endlessly

unavailable. In CCS the symbol Q is used to show a process which becomes divergent. In CSP
we can define chaos as a worst case process, thus:

(CSP) CHAOS =uX. X [9,§3.8] Ex243.1
and only a slightly more stable process (slightly less divergent) as:

(CSP) LessCHAOS = uX. (¢ = (X\{c}))=c —» CHAOS Ex243.2
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The second process in Ex243.2 is slightly less divergent because we can predict the
initial action c. Only then does this process fall into the depths of divergent behaviour.

Any process satisfies divergence, for instance the process CHAOS can do anything and
it can also refuse to do anything. The function diverges can be defined as the set of traces
leading to chaos [9,§3.5.3].

25 Nondeterminism in CCS

As we have seen with the CSP examples in section 24, nondeterminism affects observable
behaviour. However, internal actions cannot always be ignored, especially if they are leading
actions in a process’s behaviour [13,§2.3]. For example:

(CCS) T.a.b.c.O+d.e.f. 0 E25.1
would not be as predictable as:

(CCS) a.b.c.@+d.e.f. 0 E25.2

because of the leading tau (7) in the left hand side of the expression in E25.1. If the left
hand side is chosen then we cannot tell when the actions a, b and ¢ will occur.

In CCS there are different types of equivalence, where one process is deemed to be
comparable to another or a valid implementation of a specification.

25.1 Strong Equivalence (~)

To test one process against another for equivalence we can perform a strong bisimulation over

the two processes. For this test we do not regard 7T as a special action. Strong bisimulations are
defined as follows: :

(CCS) (Al1LA2) € S = whenever Al —%— Al then, D251.1

for some A2°, A2 —2%— A2 and
(A1°,A2°) € S and vice versa. [13,§4.2, p.88]

Which translates into plain English as “whenever Al performs some action, including t, and
progresses into some new state Al then A2 also performs that action and progresses into a new state
itself”. The tuple (A1,A2) and new state tuple (Al°,A2°) denote the contents of the bisimulation set B
which must be a closed set if there is to be a strong equivalence between the two processes. An open
set would mean that one of the processes could not perform some action that the other process could,
which would denote that strong equivalence does not exist between the two processes.

Forexample: Al 9% a.b. 0 A29 a.(b.B+b.0) [7, p.40]Ex251.1
Al A2
Al —2— Al A2 —& A2

Al —b Al A2 —b A2 [
(?) (@) bl B
AN 47
L/‘ o0
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B={(a.b.0,a.(b.0+b.D)),(b.0,b.0+b.0),(0,0))}={ALA2), (Al A2'),(0,0))
therefore Al ~ A2 if there exists a set S such that (A1,A2) € S [13,§4.2, p.90].

A lot of work has been done in the area of process equivalence. Some of the work
concentrating on certain process algebras [4, 6].

25.2 Observational Equivalence (=)

As potential observers we are interested in the behaviour of processes from the viewpoint of a
third party entity which can observe the process perform its unrestricted actions to satisfy some
form of equivalence. Other names for observational equivalence are bisimularity or weak
equivalence.

For this type of equivalence we ignore tau () actions and use a new transition system (a
system whereby a process moves from one state to another). This new transition system can be
defined formally thus:

(CCS)[13, p.106] A =L= A’ where T’is a sequence of actions with T removed D252.1

Weak Bisimulations are defined using a tuple, as before in D251.1.

(CCS)[13,§5.1, p.108] (A1,A2) € S = whenever Al —%— Al "then, D252.2
forsome A2, a” = a—-ﬁ—a a
A2 Z= A2” and
(Al,A2°) € S and vice versa.

Forexample: Al %fa.b. 0 A29%fa.7.b.0 [7,p41]  Ex252.1
Al A2
| ,,
m b| 7:
Al —4—5AT" A2 —GT_5 A2° A
Al—b g A2—bg 9

. J b

B={(a.b.0,a.7.b.9),(b.0,7.b.0),(b.0,b.0D),(00))

&l

therefore Al = A2 if there exists a set S such that (A1,A2) € S (as per Ex251.1).

Note how the state of Al, after action a, maps to two states in A2, surrounding the T action This dual
mapping is caused because of the placement of . It is sandwiched between two actions and
consequently these actions will occur, albeit after the T has occurred (at whatever time it chooses to
occur - remember that we have no control over ). Refer to D272.7 in section 27.2.
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25.3 Observational Congruence (equality)

To enable us to substitute one process for another we need to be able to show observational
congruence. A congruence relationship between two processes is stronger than other types of
equivalence as it states that processes must perform exactly the same actions so that a new
process can offer the same actions as the one it is replacing. Consider the transition system
which defines progression from some initial state (A) to some new state (A ”).

(CCS) A=8= A7 if A(—F—)*—9 (T 5) A [13,85.3] D253.1

where process A transforms into some new state A’ after some action a which can
be surrounded by a number of possible T actions.

Equality states that:

(CCS) Al = A2 if whenever Al —%— A’ then, D253.2
for some A2°, A2 =8= A2"and Al '~ A2’ and vice versa.

In plain language this definition states that A2 gets into some new state A2 “after
performing the same actions as Al did when it transformed into A1".

If both processes therefore perform the same actions, regardless of some embedded T
actions (which are ignored) then we can say that one process can be substituted for another in
every circumstance that we would expect to find the original process.

26 Equivalence (Basic)

So far we have dealt with a few different views of equivalence between processes. I hope that
the reader has grasped the concept that there are many different ways of determining equivalence
between processes. Each language has its own ways of telling whether one process conforms to
the behaviour (observable or otherwise) of another process. As we have seen, it may be
necessary to test for all possible actions (including hidden actions). Alternatively, we might only
be concerned with testing a process against what is observable. Let us explore some more views

of equivalence.

26.1 Equivalence (CSP)

In CSP we can use the previously defined functions failures and diverges to determine the
equivalence of one process over another. A process P can be uniquely defined by the following
tuple:

(CSP) (0P, failures(P), diverges(P)) [9, p.130] D261.1

The tuple in D26.1 portrays a combination of the set of failures for a process, related to
its set of divergences, all based upon its original alphabet. Compared to CCS we might think
that the CSP view of equivalence is simplistic, however we must consider the work that the
functions failures and diverges are doing behind the scenes. Refer to sections 24.1 and 24.2 for
more details about the mechanics of both of these testing functions.

Due of the unique definition of a process, using the tuple, a comparison between the
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contents of the results of the tuple when applied to two processes would be able to tell us if two
processes were the same in all but name (i.e: equivalent behaviour).

26.2 Equivalence (CCS)

Using the language of CCS we can derive three views of process equivalence, namely:

i) Strong Equivalence (~)
i) Equality (=)
iit) Observational Equivalence (=)

We could consider these views to be ordered in some way so as to infer that Strong
Equivalence is the most binding form of equivalence, followed by Egquality and finally
Observational Equivalence. Put simply, we can view the relationship between the different
forms of equivalence as:

(Al ~ A2) > (Al = A2) 2 (Al =A2) [13, p.154] D262.1
Note that when using CCS it is possible to distinguish between nondeterministic
processes that are regarded as deterministic processes in CSP. This ability to identify the

difference in behaviour has some relevance when considering the equivalence of one process
against another if the newcomer contains nondeterminism.

27 Algebraic Laws (Basic)

For each language (CSP, CCS and LOTOS) I have introduced the semantics and syntax of many
operators. Certain algebraic laws govern the mathematical manipulation of these laws such that
we can only perform certain defined tasks using the laws. We map a law to an expression, apply
that law and derive a new form of the expression. »

27.1 Algebraic Laws (CSP)

Algebraic laws for the basic CSP operators are shown as follows:

(CSP) [9,$ P\{}=P [9,§3.5.1] D271.1
Pl STOP =P [9,§3.5.1] D271.2
(P\B\C = P\(Bu C) [9,§3.5.1] D271.3
(e > P)\C=e—(P\C) ifezxC [9,§3.5.1] D271.4
=PC otherwise

(PIn P2)\C = (PI\C) n (P2\C) (distributive law) [9,§3.5.1] D271.5
Each of these algebraic laws can be used forwards or backwards as either the left hand

side can be replaced by the right hand side or vice versa. Moving on to CCS we find that the
language provides many of the same laws.

A Brief History of Time (Before and After Objects) Page: 40/60




27.2 Algebraic Laws (CCS)

We can subdivide the algebraic laws for CCS into three groups. These are specified as those
laws for:

i) Static Operators (composition, restriction and relabelling).
ii) Dynamic Operators (action prefix and summation).

iii) Expansion Law (which links the previous two groups).

The algebraic laws for CCS are defined as:

(CCS) A+0=A [13, p.62] D272.1
A\K\ L=AN\(KuUL) [13, p.80] D272.2
(aA)\L=a.(A\L) ifag LUL [13, p.70] D272.3

=@ otherwise

Further to these basic laws we also include the monoid laws:

(CCS) Al + A2 = A2 + Al (commutative) [13, p.62] D272.4
Al + (A2 + A3) = (Al + A2) + A3 (associative) [13, p.62] D272.5
Al + Al = Al [13, p.62] D272.6

Tau (t) laws further expand the set of laws available to us.

(CCS) a.t.P=a.P [13, p.62] D272.7
A+T.A=7. A [13, p.62] D272.8

a. (Al +7.42) +a.A2=a. (Al + 1. A2)[13, p.62] D272.9

Armed with these laws (for both CSP and CCS) we can put our newly gained
knowledge to good use, proving properties about certain behavioural expressions in either
language. Consider the following sections which set out to prove equivalence properties
between two different expressions written in either notation.

28 Verification Using Algebraic Laws (Basic)

A mathematical language provides us with the tools to prove properties about expressions in the
language using formal laws. It is our intention to show how such laws can be used together to
prove simple theorems, such as those that appear in the following two sections.

28.1 Verification Using Algebraic Laws (CSP)

(CSP) [7, p.49] E281.1
Prove (el — STOP [l €2 — STOP)\ {el} = ((el — STOP)\ {el}) [l ((e2 — STOP)\ {el})
LHS =STOPn (STOP [l (e2 — STOP)) using law: if c N B #{} and is finite

then (x:B — P(x))\C =
on (@0 (x:(B-C)— P(x))

= STOPn (e2 — STOP) using law: P [| STOP = P, which

incidentally is not equivalent to (e2 —
STOP)
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=((el — STOP)\ {el}) [l ((e2 = STOP)\ {el}) = RHS .. Q.E.D.

using law:
(x =>p)\C=x—=>(P\C) ifxeC
=PC ifxeC
28.2 Verification Using Algebraic Laws (CCS)
(CCS) [7, p.49] E282.1
Prove Al + 1. (Al +A2)=1. (Al + A2)
LHS =Al + (Al +A2) + 7. (Al + A2) using law: A+ 7. A=1. A
=(Al + AI) + A2+ 7. (Al + A2) using law: Al + (A2 + A3) =
(Al + A2) + A3 (associative)
=(Al + A2) + 1. (Al + A2) using law: Al + Al = Al
=17.(Al + A2) = RHS .. Q.E.D. usinglaw: A+ 1. A=1. A

—end of section on Process Algebras without application.

Part 1T

29 Object-Oriented Concepts

This section brings with it a discussion of objects and their structure. I will leave behind some
of the formalisms of the previous sections (thankfully you may say!) to concentrate upon the
notion of an object and related issues. I will, of course, return to the process algebras to relate
the two sides of this text together (what would be the point of this whole document otherwise?).
Let us begin much the same as we did in the first half of our journey, from the beginning with
first principles.

29.1 What is an Object?

An object is an elementary unit encapsulating both state and behaviour. In short, an object
contains data and functions which act over that data. The functions (referred to as methods) are
used to access the data and form the interface to the object.

We view an object as having an explicitly defined interface with its environment. Already
we can correlate the form of an object with that of a process. Consider the similarity between the
following diagram and that of the processes shown in earlier sections.

X } interface points (ports)
y

figure 291.1
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Similar to an abstract data type (ADT), where the methods (a.k.a functions) are
considered related to the hidden data structure an object’s methods reside within the bounds of
the object itself. Therefore, an ADT share many attributes normally associated with objects.
However, ADTs are not strictly objects and the functions which correspond to an ADT are not
as closely related to the data as an objects methods are related to its data area. Figure 291.2
illustrates the separation that can be observed when making a distinction between these two
types of entity.

Despite being related at the data/function level objects and ADTs depart from the same
model when inheritance becomes an issue. ADTs cannot cope with inheritance (the ability to
copy and extend/overwrite an existing data definition). Inheritance is one area where objects take
over the modelling role.

ADT Object
Data I | Data
abc
XyZ ADT functions xyz | | I Object methods
figure 291.2

In process algebras we can model an object using the value passing calculus to model the
state and action sequences to model the methods. My particular line of enquiry concentrates on
the communication between objects and therefore does not consider state. We can model the
infamous marker pen example process interacting with a lecturer and the wipe board in the
following way:

(CCS) x = {black,red} y = {subjectMatter} Ex291.1

Lecturer(x,y) = talk(y) — pickUp(x) — write(y) — putDown(x) — Lecturer(x,y)

P291.1

Lecturer Audience

putDown(x) pickUp(x)

Pen(x)

29.2 What is a Class (I)?

The simple example in the previous section (Ex291.1, P291.1) illustrates that certain objects
share common attributes with one another. The similar objects in question are the two Pen
objects. An implementation of P291.1 would require two instances of Pen, one representing
either colour. Apart from the difference in the colour parameter both objects exhibit the same
behaviour. They are both from the same class of object. Detailed discussions of class structure
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and object oriented concepts can be found in [12] and [19].

29.3 Why are the Last Two Sections in the Wrong Order?

In much of the object-oriented literature (e.g: [12] and [19]) the concepts of object and class are
introduced class first, followed by objects taken from those classes. We can justify the order of
preference for this particular text because, as individuals, we think in terms of actual objects
first! Consider the two coloured pens that were used in Ex291.1. We visualise the physical
attributes of each pen, we do not abstract from the individual characteristics of the pens to arrive
at some general description, only then recognising the class of Pen before identifying each pen
by its own merits (Red or Black).

Another analogy to support object-class ordering is to imagine that we are waiting for a
bus. As one approaches we look to see if it’s the one that we want. We identify the individual
and then place it in its appropriate class; “Oh look! it’s a number 9 bus”; object before class.

Even if we do choose to refer to class then object (“a bus and its a number 6) we still
encapsulate the idea of a bus, rather than the more general class of mechanised people carrier.

29.4 What is a Class (II)?

In terms of objects we classify them in class-object order when we generalise objects whilst
looking for reusable attributes that can be contained within a single class.

However, we visualise an object in the real world using the object-class order.

In a process algebra the available notations do not allow us to distinguish between a
class and an object. The distinction between them is lost. However, programming languages

P294.1

P294.2

‘resurrect this distinction. Consider the following C++ [16] code fragment, followed by an

equivalent LOTOS definition:

(C++) Ex294.1
class Pen

{
private:
Colour penColour;
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public:
Pen (Colour c¢);
Colour Pen::GetColour (void);
Pen: :SetColour(Colour c¢);

}; //end-class
Pen *penPointer = new Pen(Red);

(LOTOS) Ex294.1
process Pen[GetColour,SetColour](c: Colour) : noexit :=

GetColour ! ¢ : Colour; Pen(c)

[1

SetColour ? ¢ : Colour;Pen(c)
endproc

The pointer variable *penPointer represents an instance of class Pen (an object
behaving like a pen). We could have an infinite number of instances of class pen (until we
exceed allocated memory) where each instance would be a copy of all of the data fields and
methods defined in the abstract class template Pen. Until we instantiate class Pen all we have is
an abstract concept of a pen which has no physical presence that we can actually use. An
analogy of the abstract class template is like someone describing a pen to you and describing its
function without actually showing you a physical pen. If you’ve never seen a pen before then all
you know about one is what you’ve been told!

30 Inheritance and Reuse

In order to make the most use of abstract classes we need to be able to reuse common elements
supplied by a class to help define yet another class.

Inheritance uses class templates to build new class templates. Rudkin [15] discusses
classes, templates and objects in his work with LOTOS and inheritance, referencing the work of
Wegner [19] in the process. A formal definition of inheritance is based upon incremental
modification. To illustrate basic inheritance (there are three main types that I shall discuss in due
course) we need a more complex example of a Pen class.

Consider a switching unit, such as we might find controlling an alarm clock, whose
behaviour is defined informally as follows:

““Accept one of two possible signals, one internal signal to tell the switch to turn ON,
one external signal to tell the switch to turn OFF. Set the internal state to reflect the
nature of the signal. If the switch is left ON for a time then automatically turn it OFE”
In CCS we might define the Switch agent as:
(CCS) Switch\ {on} dchwitch(oﬁ) E30.1
Switch(off) % iOn . Switch(on)
Switch(on) % cOff . Switch(off) + T . Switch(off)
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Here is a pictorial view of the class Switch:

Object Switch

Object Switch has an area for
_ storage for the 'private’ state of
| 1iOn  the switch and two public methods
1 cOff (accessible by any process in the
environment),

figure 30.1

Now suppose that we intend an object of class Switch to be the controlling process in a
warning system for the coolant flow system in our friendly neighbourhood nuclear reprocessing
plant. Coolant sensors would synchronise with the action iOn to turn the alarm on, thus warning
the controllers of a problem. The alarm, according to the informal description of its behaviour,
could then be deactivated by either an external input eOff or by timing out and turning itself off

(using 7).
So, we have the basic description for an alarm controller class BasicAlarm.

process BasicAlarm[iOn,eOff](s :State) : noexit
[isOn(s)] — (eOff;BasicAlarm(iOn,eOff)(off)

BasicAlL iOn i;BasicAlarm[iOn,[e,{Oﬁ](oﬂ) )
eOff {1
[not isOn(s)] — iOn; BasicAlarm{[iOn,eOff](on)
endproc
figure 30.1

What would happen to our specification if we were to include a new action eOn into
BasicAlarm? The new action models a panic button for the warning system allowing external
activation of the alarm (i.e: the controllers pressing a large red button marked “Panic!”).

The new process PanicAlarm extends the behaviour of BasicAlarm thus: (by the way,
notice how ‘effortlessly’ we move between the notations of CSP, CCS and LOTOS...?).

(LOTOS) process PanicAlarm[iOn,eOff,eOn](s : State) : noexit := E30.2
BasicAlarm[iOn,eOff](s)
®
[not isOn(s)] — eOn;PanicAlarm[iOn,eOff,eOn](on)
endproc

where PanicAlarm written out in full is specified thus:

process PanicAlarm[iOn,eOff,eOn](s : State) : noexit := E30.3
hide iOn in
[isOn(s)] — (eOff;PanicAlarm[iOn,eOff,eOn](off)
]
i;PanicAlarm[iOn,eOff,eOnj(off))
]
[not isOn(s)] — (iOn, PanicAlarm[iOn,eOff,eOn](on)
@
eOn; PanicAlarm[iOn,eOff,eOn](on))
endproc
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Note that the hide operator is not used in the definition of the PanicAlarm in E30.2 because it is
inherited from the definition of the BasicAlarm’s behaviour introduced in figure 30.1.

For reference, other work on object-oriented specification using LOTOS has been
carried out, evaluating the feasibility of the object-oriented concepts within the language [5],
[11], [15]. The inheritance that exists between the BasicAlarm class and the new derived
| PanicAlarm class can be illustrated in the following diagram:
: iOn

PanicAlarm eOn

figure 30.2

Note that only one of each method and data storage is offered in the definition of the new
class PanicAlarm. From an external observer’s point of view all that can be seen are the three
methods (interface actions) iOn, eOff and eOn.

figure 30.3

As observers we have no idea that PanicAlarm is constructed from BasicAlarm with
extra action extensions.

Before we proceed let’s take a step back to the @ symbol that crept into the definition of

PanicAlarm in E30.2. What does @ stand for and what are its operational semantics? Many
readers will have seen this particular symbol before in the context of set theory. In some sense

® 1is used exactly as it is for function overriding. In the context of inheritance we use @ to
modify existing behaviour and to extend a process with new behaviour.

30.1 Three Types of Inheritance

At this point in the text I am ready to explicitly define the different types of inheritance that I
consider important, taken from my own previous work in this area [18]. These types of
inheritance are strict inheritance, non-strict inheritance (which I refer to as casual inheritance)
and transitive inheritance. There now follows a short graphical and formal description of each of
these three types of inheritance.
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P q.b.P i) Strict inheritance (Copies state and
behaviour and can extend both attributes)

*Note: No modification at this stage.

QI p + cdeQ
RIS P + fR
figure 301.1
P ab P ii) Non-strict inheritance (a.k.a casual
inheritance, copies modifies and extends
existing attributes).
QU P®cQ

RIS P®AR +efR

figure 301.2
- T Pdef g b p iii) Transitive inheritance (Inheritance
across a hierarchy greater than one
def p 4 cd ancestor. R inherits from Q which in turn
Q ¢dQ inherits from P. Consequently R

transitively inherits from P).

RIS Q + efR

figure 301.3

The work so far has only covered strict inheritance via the on-going example using
BasicAlarm and PanicAlarm. Let us now move a step further and consider how we can illustrate
the remaining types of casual and transitive inheritance. Again, I shall use BasicAlarm as the
foundation for this work.

As we have seen when I covered the inner workings of processes, in section 7 onwards,
the behaviour of a process is defined as an ordered sequence of actions. In our friendly
neighbourhood nuclear reprocessing plant example we may wish to include new actions within
the defined sequence of actions already present in the system. Perhaps we want to introduce a
warning light into the system which flashes when the alarm bell sounds or whenever there is a
less serious problem to be reported by our monitoring system (that would help, don’t you
think?).

Written in full (in CSP, why not?) the new sequence of actions, including a signal to the
warning light telling it flash, would be defined as follows:

(CSP) E301.1

WarningAlarm(s) = if isOn(s) then (eOff — Warning Alarm(off) n
i — WarningAlarm(off)) \ (i}
else if = isOn(s) then
(iOn — flashLight — WarningAlarm(on) [l
eOn — flashLight — WarningLight(on))
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Note: the more readable if...then...else syntax for CSP is used, rather than the less readable
notation incorporating <] and P>

We note that the signal to start the warning light flashing has been inserted into the
sequence of existing actions inherited from PanicAlarm. A CCS derivation tree for
WarningAlarm would be drawn as:

}WamingAlarm( off)
i0, eOn

eOff ® T
flashLigh flashLight
Waming’{larm( on)
figure 301.4
Taken from the CCS expression:
(CCS) WarningAlarm\ {on} dgf WarningAlarm(off) E301.2

WarningAlarm(off) def iOn . WarningAlarm(on) + eOn . WarningAlarm(on)
WarningAlarm(on) def eOff . WarningAlarm(off) + ©. WarningAlarm(off)

The casual inheritance that has been shown in the definition of WarningAlarm is evident
in the behavioural modification that PanicAlarm has been subjected to. The ports iOn and eOn in
WarningAlarm no longer offer the same behaviour as their PanicAlarm ancestors. Notice how
easily the biological meaning of inheritance slipped into the text to illustrate the relationship
between PanicAlarm and WarningAlarm. It is sometimes easier to think of inheritance between
classes in this way, although care must be taken as biological inheritance is not quite the same as
class inheritance (re: mutations of a parental template as opposed to direct copies of one’s
parents). Meanwhile, back to the WarningAlarm example. What is the state of our current
inheritance hierarchy for WarningAlarm? Here is a diagram depicting the chain of inheritance:

iOn eOff

PanicAlarm

iOn  eOff eOn WarningAlarm
iOn eOff eOn
figure 301.5

Note that the original actions iOn and eOn in BasicAlarm and PanicAlarm respectively,
have been superseded by modified equivalent action sequences due to the casual inheritance
enforced by the definition of WarningAlarm. In LOTOS the class WarningAlarm would be
defined as a process.

(LOTOS) E301.3
process WarningAlarm[iOn,eOn,eOff.flashLight](s:State) : noexit :=
PanicAlarm{iOn,eOn,eOff](s)
]
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[not isOn(s)] — (iOn;flashLight, WarningAlarm{iOn,eOn,eOff,flashLight](on)
)
eOn;flashLight; WarningAlarm[iOn,eOn,eOff.flashLight](on))
endproc

From the simplicity of WarningAlarm in E301.3 we get a feel for the benefits of reuse
via the power of inheritance. Once again, the original occurrences of actions which are guarded
under [not isOn(s)] are replaced with new versions of the action sequences that the original
guard covered.

The careful reader will note that even at this stage of our journey nothing has been said

about the detail or operational semantics of ®. We have not seen how it works or what the

implications of its use entail. It so happens that the mystery surrounding @ has not yet been
solved. However, I recognise its importance in implementing inheritance using process
algebras. At present I regard the override operator as a meta-operator that seems to provide the
results I'm looking for in a modifier for existing process behaviour. The work that is being done

in this area has not yet been formalised regarding how @ actually works! Let us keep in mind its
shortcomings but let us not ignore its potential either.

At this point I should move on to consider the mechanics of transitive inheritance, but it
so happens that I do not need to expand our example process WarningAlarm further to
encapsulate transitive inheritance, it is already present in WarningAlarm. If you’re not sure then
refer to figures 301.5 and 301.3. Process WarningAlarm does two things for us. It provides us
with an example of casual inheritance and it also has transitive inheritance links with our original
foundation process (the grandparent process) BasicAlarm.

31 Sub-Type Relationships (Basic)

The relationship that is defined between BasicAlarm and PanicAlarm can be presented as a sub-
type relationship. To be a valid sub-type of some class an inherited class must be able to
guarantee that it provides (at least) the same behaviour to the environment as its parent class (the
class it inherited from). If a process can guarantee this behaviour then it can substitute its parent
in all instances where a copy of the parent was expected. We show sub-types as Q <P, where
“Qis a valid sub-type of P” [11].

Notice how WarningAlarm was excluded from the opening statement in this section. The
process WarningAlarm is not a valid sub-type of either BasicAlarm or PanicAlarm. Why is this
the case? After all WarningAlarm did inherit from PanicAlarm, which in turn inherits from
BasicAlarm. The answer is simple, although undesirable and is explained as follows.

The behaviour of WarningAlarm is radically different from either BasicAlarm or
PanicAlarm. If WarningAlarm extended the choice of either of its parent classes then that would
be a different case and we could say that WarningAlarm was a valid sub-type of PanicAlarm
(using transitivity in the case of BasicAlarm).

I could have constructed WarningAlarm in two different ways; the casual inheritance
version we have already seen (that’s one way!). I have not yet discussed the strict inheritance
version (that’s the other way!) but will do in the next section.

31.1 Sub-Type Relationships (CSP)

This section covers the strict inheritance version of WarningAlarm, making use of the behaviour
of PanicAlarm, defined using CSP syntax.
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(CSP) E311.1
WarningAlarm(s) = if —isOn(s) then (PanicAlarm [| flashLight — WarningAlarm(on))

The derivation tree for this type of WarningAlarm process is shown in figure 311.1.

B WarningAlarm(o

iOn SflashLight

eOff WarningAlarm(on)

figure 311.1

The extended action choice flashLight (note that it is deterministic choice, which is
environmentally influenced) is another possible choice attached to the same Boolean guard

—isOn(s) when the alarm is OFF. Recall that casual inheritance produced an entirely different
derivation tree (reference figure 301.4). Closer examination of the two versions of

WarningAlarm (E301.3 (Casual-WA) and E311.1 (Strict-WA)) shows differences using Hoare’s
failure sets.

(CSP) The failure sets for Casual-WA are: E311.2

{ 9, {eOff}, {t}, (flashLight}, {eOff;t},
{eOff,flashLight},
{t.flashLight}, {eOfft.flashLight} }

eOff’

flashLigh flashLight

{ @, {eOn}, (iOn}, {flashLight},
WarningAlarm(on) '

{eOn,iOn}, '
{eOn,flashLight},{iOn,flashLight} }

whereas the failure sets for Strict-WA are defined as:

- WarningAlarm(off)

{ {eOff, 1), O, {eOff}, {1} ]

i0 flashLigHt

{ @, {eOn}, {iOn}, {flashLight}, {eOn,iOn},

WarngngAlarm(on) {eOn,flashLight},{iOn,flashLight} }

Therefore, the result of a union of failures(Strict-WA) is not the same as a union of
failures(Casual-WA ). Different failures sets, consequently different process behaviour.

CCS bisimulation equivalence would also reveal differences between Strict-WA and
Casual-WA, which seems intuitive as the behaviour of each process at first glance seems quite
different. Using CCS bisimulation equivalence the process Strict-WA would perform, say, the

action iOn and be in a position to offer an eOff action or a T action; Casual-WA could not comply
as its next action after an iOn or eOn is the flashLight action. Hence the bisimulation set B for
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Strict-WA = Casual-WA could not be closed, therefore no equivalence is present.
To conclude this section I state that inheritance with the process algebras of CSP, CCS
and LOTOS has not been defined formally. I have discussed a mechanism for introducing

inheritance at the meta-language level, using @ . I have also underlined the types of extension
and modification that I am trying to achieve with inheritance but as yet the work needs to be
done to actually formalise these ideas. That’s the state of play so far; the work continues.

Already we start to see that the darker side of modifying a process behaviour and trying
to substitute one process for another is fraught with dangers to the unwary. I hope to have
highlighted some of those dangers here. The remainder of this text will try to highlight further
problem areas. Rather than get embroiled in the obvious deeper issues surrounding inheritance,
particularly casual inheritance, I shall move swiftly on to uncover the intricacies of method
invocation. From there I shall discuss recursion. Up until now I have managed to avoid
recursion in too much detail, certainly since I have started to discuss objects. Well, not for much
longer as you, the reader, shall find out.

32 Method Invocation

Firstly, let us explicitly define what I mean by method invocation, as it is a rather grand title for
a section after all. Each class in the inheritance hierarchy (such as appears in figure 301.5) is
responsible for adding something to the behaviour of the classes that follow it, together with
additions to the data storage within a class (part of the state information). Of course, we could
simply inherit from a class and leave the structure and state alone although then we would only
have a straight copy of the parent class under a different name.

Each method belonging to a class will need to be referenced when that method is
required to be executed. In the WarningAlarm inheritance hierarchy (figure 301.5) we might
consider invoking the method eOff. If we invoke eOff from within an instance of the
WarningAlarm class then we begin a search for the method in that class. If eOff cannot be found
in WarningAlarm (as indeed it cannot!) then we start to search in the parent of the class for eOff.
And so on up the inheritance hierarchy until we find the method we’re looking for. In the
example in figure 301.5 (using the definition of £301.3) we get a ‘hit’ in the class BasicAlarm.
It is the BasicAlarm action eOff that will be executed.

Incidentally, if I were using an object-oriented programming language as the basis for
discussion then only one class would exist (WarningAlarm) and it would be a resident method
from that class that was executed rather than one (supposedly) belonging to another class. This
is the difference between how object-oriented programming languages and the mathematical
notations that we are using model this eventuality. In one domain each parent has some
presence, in another only instances of the classes carry any influence. The process algebra view
is the former (in case you’re not sure).

Consider the following inheritance hierarchy, taken from the CSP strict inheritance
expression in E311.1.

iOn  eOff

operation request (eOff)

iOn eOff eOn
figure 32.1
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From the diagram in figure 32.1 we can see that the control thread (shown as the solid
arrow line) has stopped in BasicAlarm: to execute eOff, which is where that operation resides.
There is one point to consider before we continue. From an observer’s point of view we know
nothing about the inner workings of WarningAlarm or its parents. The original processes are
absorbed into the latest child and we (as outsiders) cannot distinguish between each individual
process under the cloak of one interface. As far as we’re concerned there are four ports
connecting WarningAlarm to the environment.

As an introduction to the next section let us consider how we get the control thread back
from its current place of execution in BasicAlarm. We require control of the system to return to
WarningAlarm so that all of the available behaviour from each process is once again available
for execution by the environment. Welcome to the topic of recursion, objects and inheritance!

33 Recursion with Inheritance

Towards the end of the previous section I ‘rattled the tiger’s cage’ by daring to ask the question
“How do I define recursion within an inheritance hierarchy?”. Recall that each process in the
chain WarningAlarm < PanicAlarm < BasicAlarm is defined recursively thus:

(CSP) E33.1
x = {on,off}

BasicAlarm(x)\ {iOn} % if (x == off) then
iOn . BasicAlarm(on)
else
(eOff . BasicAlarm(off) + T . BasicAlarm(off))

PanicAlarm(x) % BasicAlarm + if (x == off) then
eOn . PanicAlarm(on)

WarningAlarm(x) def PanicAlarm + if (x == off) then
flashLight . WarningAlarm(on)

The important aspect of the three processes defined in E33.1 is the recursion defined at
the end of each action sequence. Because each process explicitly names the process to pass
control to (namely itself) then as soon as we enter the domain of that process control is trapped
there forever. What is required is a general recursive term which can redirect control back
towards the process where the call originated.

The general term I am seeking is self [15], which is quite powerful as it knows where to
redirect control, based on the origin of the method call. It may help to think of self as a generic
pointer capable of storing the address of a class and using that address to direct the recursion.
Initially self will hold the address of the class where it is resident. That is, it will always point
back to the class where it is situated if no external invocations of that process’s methods arrive.

Upon arrival of an external call to a method self will store the origin address of that call.
An illustration of the alarm system inheritance hierarchy follows, showing recursion with and
without self. To simplify the diagram BA, PA and WA have been used to shorten the process
names BasicAlarm, PanicAlarm and WarningAlarm respectively.
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Without Self With Self
j iOn

iOn

flashLight flashLight

figure 33.1 figure 33.2

The difference between figures 33.1 and 33.2 is clear. The primitive self allows us to
offer the complete behaviour of WarningAlarm (its entire inherited behaviour) after a method
invocation to one of WarningAlarm's parent classes.

Other methods of recursion have been introduced using the LOTOS process enabling
(>>) operator. The ROOA method [14,§3.3.9] defines a parent class as having exit
functionality, which passes a state of the class to some other process upon successful
termination (refer to section 16: Sequential Composition and section 17: Value Passing Between
Processes). An example of LOTOS recursion using process enabling follows. BasicAlarm
would require exit functionality as it is a parent class (a super class). Super classes are required
to exit on termination as they need to pass control to their sub-types.

(LOTOS) E33.2
process BasicAlarm[iOn,eOff](s: State) : exit(State) :=

endproc

Process PanicAlarm, as a child of BasicAlarm, could then be defined using noexit
functionality (remember that PanicAlarm was at the end of the inheritance chain before
WarningAlarm was introduced).

(LOTOS) ’ E33.3
process PanicAlarm{[iOn,eOff,eOn](s: State) : noexit :=
(BasicAlarm[iOn,eOff] >> accept s :State in exit(s)
i
... (* PanicAlarm extended behaviour *)
) >> accept s : State in PanicAlarm[iOn,eOff,eOn](s)
endproc

The output exit value of BasicAlarm is fed into the >> accept PanicAlarm/...]...
statement, passing control back to PanicAlarm after some method call to BasicAlarm.

Now I uncover a problem. I introduced WarningAlarm into the system as a child process
of PanicAlarm. The rules of exit functionality state that to pass control (values) to another
process requires the successful termination of the current process, enabling the next process. It
is here that I enter a dilemma!

BasicAlarm is the grandparent of all processes in the alarm system. Therefore,
BasicAlarm is a super class and, as such, has exit functionality. What about PanicAlarm, which
is stuck in the middle of the inheritance chain? Is it a parent with exit functionality, or a child
with noexit functionality? From its position in the inheritance hierarchy PanicAlarm is both!
Where does that leave us in terms of PanicAlarm’s defined functionality? Obviously,
PanicAlarm cannot hold both types of functionality simultaneously (LOTOS syntax does not
allow such luxury). Here I highlight an explicit problem! Process enabling, when used as part
of recursion to aid the definition of inheritance, cannot cope with an inheritance chain of greater
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than one layer [18]. If we introduce further layers of inheritance the rules governing the use of
process enabling (>>) causes recursion to break down. Bearing in mind the restriction of
process enabling (>>) I hope that the reader will come to recognise the subtle power of self.

Coping with the recursion of processes is important as we are required to model
processes that repeat indefinitely in order to capture real world behaviour. It would not prove to
be a very useful alarm system if, after activating the klaxon and warning light the control
process driving the system stopped executing. If the system only executed once then we might
not get warned about a potential disaster at our friendly neighbourhood nuclear reprocessing
plant. Recursion allows for infinite execution of a process, unless one of the choices within it is
defined as STOP. After such a choice the process ceases to function and no longer engages in
activities with the rest of the system.

Now that we have the model for a process that continues indefinitely we must consider
how other processes interact with each other. I am referring to the communication between
objects (modelled as processes). The next section is a continuation of section 9 (Process
Interaction), which now uses our current view of the world that I have built up during these past

few sections.

34 Object Communication

To show how objects communicate I shall introduce some new objects into the world of our
model (the world of alarm systems within friendly neighbourhood nuclear reprocessing plants).
I shall then connect these objects together via synchronising actions.

Informally, I shall describe the alarm system in the context of its new expanded
environment. I place the PanicAlarm process into a subsystem within the reprocessing plant’s
control system. The PanicAlarm process forms part of some larger warning and control system.
The contents of the subsystem that we are interested in are:

i) Coolant Flow Valve (CFV), which opens and closes to a preset maximum and
minimum setting. Commands to the CFV are sent from the Coolant Heat Sensor (HS).
The warning light is activated from the CFV if it is tasked with opening or closing
beyond its maximum and minimum range. ‘ '

ii) Heat Sensor (HS), which tests the temperature of the reactor core coolant. HS issues
commands to the CFV to regulate the reactor core temperature. HS sounds the alarm
klaxon and flashes the warning light if the core temperature gets too high or too low.

iii) Panic Alarm (PA). This process should be familiar to the reader. It is activated via
signals from the heat sensor (HS) or the panic button situated on the operator’s console.
After a time (which is not defined) the alarm deactivates, returning to an OFF state.

iv) Warning Light (WL) is similar in operation to the BasicAlarm process discussed
eatlier (figure 30.1). We can see no need to include a panic button on the warning light.

Here is a diagram showing all of the control system’s processes interconnected (with one

obvious exception). It includes an external link to some temperature sensor via eTemp and an
external switch to turn off the warning light via e WLOJ.
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iClose iClos

eTemp—{ HS ) ( crv
iOpen iOpen
iOn
eOn
figure 34.1

Notice how the WarningLight process (WL) floats free of connections with other
processes in the system. Why is this so?

34.1 Why is the System Diagram Partially Connected?

From the system diagram in figure 34.1, in the previous section, we can see that WarningLight
is disjoint from the other three processes in the system. Before we connect WarningLight to the
system we must consider how we shall connect it. We could link WL to both HS and PA using
the same line of communication (i.e: via port iOn). If we perform this multi-way connection then
shall we decide to use the flashLight port or some other (as yet undefined) port?

If we name the missing port on process WL flashLight then both HS and CFV could
connect to it using multiple synchronisation between HS, CFV and WL. Remember that only
CSP and LOTOS could be used to model this eventuality as they do not hide their inter-process
communications, allowing them to cope with multiple synchronisations. The hiding of
synchronising actions in CCS precludes it from being able to synchronise between more than
two processes at any one time. A new structure for the control system using multiple
synchronisation is show below: '
iClose iClos

eTemp

eWLOff

eOn

figure 341.1

The structure of the system appears to be fine except now we have a redefined interface
to HS (assuming CFV and WL already have a port named flashLight). So, a potential problem
already begins to show itself, the redefinition of the interface to a process simply by including a
new process into an established system [18]. Another hazard is that now each of the three
synchronising processes must be in a position to communicate with WL on port flashLight at the
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same time before either process can continue with its own action sequence. Put simply, if only
CFV and WL wish to synchronise (presumably because an attempt has been made to set the
valve beyond its limits) then HS will get involved in the synchronisation, whether we want it to
or not. The three processes are explicitly tied together via the multiple synchronisation.

Ideally, we would seek to keep the HS <> WL and CFV < WL communication
separate. To do this we could choose an alternative way of composing the processes together
(via interleaving). Alternatively, we could consider synchronising HS with WL and PA on the
same port and then connecting CFV and WL on a different port. However, the same problems
occur, again due to multiple synchronisation. The focus of the problem simply shifts towards
HS, PA and WL instead of HS, CFV and WL.

iClose iClose

iOpen

eOn

figure 341.2
Yet another possible solution to our ongoing problem would involve communications
between HS and WL on one port, HS and PA on another port and CFV and WL on yet another
port. This strategy would require a lot of redefinition of processes already in the system as the

number of interface ports would increase per process. The resulting system would resemble
figure 341.3.

iClose iClos

iOpen iOpen

flashLight
flashLight2

eOn

figure 341.3

Note the difference between the two flashLight communications (flashLight and
flashLight2). These stop the name clash that would normally enforce multiple synchronisation,
causing the earlier problem of all three processes synchronising together and holding one
another up.

For much of this work involving communication and synchronisation it might be useful
to think in terms of computer network architecture. One idea that we can experiment with is that
of a shared common port. Simple bus architecture is elegant as it provides a flexible way of
extending the number of processes in a system without the need to alter the interface to each
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process. With a bus network we have the potential to communicate with every node sharing the
same communication medium. It is also a flexible architecture in terms of expansion and
modification [18]. The following diagram illustrates a new version of the nuclear reprocessing
control system using a shared communications medium; namely g. All processes within the
system communicate via this common port g.

4 4

Q eWLOff

figure 341.4

But (and here is another problem) the power that a process has over other processes
communicating on the same port is quite substantial. Any process on the same communications
medium has the power to halt all of the other processes on that medium. If any one process
crashes and the other processes are expecting to synchronise with that (recently deceased)
process then the whole system is in trouble. Recall that in the current system, taking into
account the semantics of both CSP and LOTOS, if one process fails then they all fail [18]!

To throw yet another iron in the fire let us now consider modifying the Heat Sensor
process H S using casual inheritance. We now want H S to activate both the alarm (PA) and the
warning light (WL) without any user interaction. The change in the system does not require an
additional process but a new behaviour embedded within an existing process (namely HS).
This modification is similar to the work carried out in section 30.1, E301.3.

For the modification I refer the reader to the semantics of atomic actions which state that
an action must be allowed to complete before being interrupted by another process (first
introduced in section 6). Remember that neither of the process algebras presented here offer true
concurrency All processes execute a little at a time rather than all at once; akin to multi-
programming rather than multi-processing. Recall that if we walk through an action sequence
ourselves then we’re the processor as well as being part of the environment!

I can give a grand name to the insertion of extra actions into an existing process action
sequence; temporal behavioural modification. The task of getting the Heat Sensor (HS) to
communicate with both PA and WL is a good example of this type of modification. Problems
associated with temporal modification and its potential influence over synchronising processes
have been discussed. It is possible to deadlock a system simply by adding some new process
which then deadlocks, causing the entire system to do likewise. The domino effect occurs,
bringing down the entire system. For this bus architecture method to work more formalisation
of the process algebras is required to ensure that processes only have a limited influence on
other processes.

—end of section on Process Algebras with Object application.

35 Conclusions

From the discussion in the last few sections we can see how easily the integrity of a system can
be damaged by modifying the existing components or adding new components to the system
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which then communicate with any existing processes. Indeed, what use would a new process

~have if it could not integrate into an existing system?

Throughout this lengthy text it has been my intention to create an interconnected view of
the world which contains objects, as viewed from the modelling capabilities of three established
process algebras. The languages of CSP and CCS are the least similar of the three we have
studied, with LOTOS being derived from elements of both languages (although CSP having by
far the greater influence over the way LOTOS looks and behaves).

For many of the examples contained within this text either language can be used as a
formal representation. Only when we compose processes together does it become apparent that
certain differences arise from the semantics of communication and action restriction.

With luck, if this text has done its job, you, the reader, can begin to see how the
different process algebras relate to one another and to the complex task of modelling (what has
become the growth area of) object-oriented systems. From this point onwards I am in a position
to discuss the problems highlighted in earlier sections and concentrate on the issues surrounding
the modification and extension of communicating systems.

Future papers and discussion of work in this area will shed more light on the world of
process algebras and objects. With reference to the future, let’s see what’s out there and figure
out how to formalise it!
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