
Computer Science Technical Report CS-TR-383

1 of 30

A secondary analyses of Bradac et al.’s
prototype process-monitoring experiment

Austen Rainer

Department of Computer Science
University of Hertfordshire

Hatfield Campus
College Lane

Hatfield
AL10 9AB

U.K.

a.w.rainer@herts.ac.uk
+44 (0) 1707 284763

April 2003

Computer Science Technical Report CS-TR-383

We report on the secondary analyses of some conjectures and empirical evidence
presented in Bradac et al.’s prototype process-monitoring experiment, published
previously in IEEE Transactions on Software Engineering. We identify 13 conjectures
in the original paper, and re-analyse six of these conjectures using the original
evidence. Rather than rejecting any of the original conjectures, we identify
assumptions underlying those conjectures, identify alternative interpretations of the
conjectures, and also propose a number of new conjectures. Bradac et al.’s study
focused on reducing the project schedule interval. Some of our re-analysis has
considered improving software quality. We note that our analyses were only possible
because of the quality and quantity of evidence presented in the original paper.
Reflecting on our analyses leads us to speculate about the value of ‘descriptive papers’
that seek to present ‘empirical material’ (together with an explicit statement of goals,
assumptions and constraints) separate from the analyses that proceeds from that
material. Such descriptive papers could improve the ‘public scrutiny’ of software
engineering research and may respond, in part, to some researchers criticisms
concerning the small amount of software engineering research that is actually
evaluated. We also consider opportunities for further research, in particular
opportunities for relating individual actions to project outcomes.

~ Criticism of our conjectures is of decisive importance: by bringing out our mistakes

it makes us understand the difficulties of the problem which we are trying to solve.
Sir Karl Popper, Conjectures and Refutations, p. xi

Introduction
An important activity when conducting empirical research is to review work that has
previously been conducted in the same and related areas. Certain studies may warrant a great
deal of attention and a very detailed examination. Such an examination may become an
analysis in itself. In the case of older papers, a detailed examination may ‘breath new life’
into a paper, perhaps through revealing alternative interpretations of the same empirical
evidence, through revealing new conjectures and insights, or through relating ‘old data’ to
more recent theoretical issues.

A detailed examination of a previously published paper can also fulfil another important
quality of the research process: evaluating the results of the study. Glass [1] has previously
argued that almost no computing research has an evaluative phase. Tichy et al. [2] provide
quantitative evidence that complements Glass’ arguments. Fenton et al. [3] reflect on the

Computer Science Technical Report CS-TR-383

2 of 30

quality of software engineering research, reviewing both good and poor examples, and
offering advice on evaluating research.

This report presents a very detailed, secondary analyses of the evidence presented in Bradac
et al. [4]. Although Bradac et al.’s paper was published almost a decade ago, the analyses we
present here are a significant contribution to our understanding of actual software
development. This is because:

• The study was part of a long-term, coherent ‘programme’ of research at Lucent

Technologies that directed attention at developing a better understanding of how
software is actually developed. There appear to be few such long-term ‘programmes’
although NASA’s Software Engineering Laboratory (e.g. [5-8]) and the MCC
consortium (e.g. [9-12] are two notable complements to the work of Lucent
Technologies.

• The study is problem-oriented, focusing on a ‘real-world’ problem recognised in

industry i.e. reducing development time.

• The study is based on data that is produced within an industrial context (cf. Potts’ [13]

concept of industry-as-laboratory) and so has ‘ecological validity’.

• The study provides a useful complement to other studies that have investigated the

planned and actual duration of formally-defined activities in projects. There may be the
opportunity to investigate how studies of actual time usage can integrate with studies of
formally-defined project activities.

• Bradac et al.’s paper provides a sufficient amount of appropriate evidence to allow

secondary analyses. This is unusual for journal papers but is, in itself, an indication of
the quality of Bradac et al.’s study.

An earlier version of Bradac et al.’s paper appeared as a conference paper [14] and the
findings of the paper are also discussed in [15] and [16]. The paper has also informed other
research (e.g. [17] and [18]) within Lucent Technologies.

The secondary analyses that we present in this paper are very detailed, and the paper is
lengthy as a result. This detail reflects our general approach i.e. to ‘decompose’ the original
analyses into constituent parts, to re-analyse those parts, and then to conduct additional
analyses using the original empirical evidence. Our analyses lead to the identification of
assumptions underlying some of the original conjectures, the identification of alternative
interpretations of the original conjectures, and the identification of a number of new
conjectures. We emphasise that our analyses are only possible because of the quality and
quantity of evidence presented in the original paper.

The remainder of this report is organised as follows. Section 1 presents a detailed review of
the empirical evidence and analyses presented in Bradac et al.’s paper, and a summary of the
conjectures forwarded by Bradac et al. The detailed review is necessary as it forms the
foundation for all of the subsequent secondary analyses. Section 2 then reports our
secondary analyses of several of Bradac et al.’s conjectures, using their empirical evidence.
Section 3 then presents additional analyses of Bradac et al.’s empirical evidence, resulting in
several new conjectures. Section 4 discusses the results of the secondary analyses, relates
these results to other work, and considers possible future work. Section 5 provides brief
conclusions. An appendix provides a list of statements from Bradac et al.’s paper that can be
used to complement the review provided in section 1.

Computer Science Technical Report CS-TR-383

3 of 30

1 A review of Bradac et al.’s arguments

1.1 An overview of Bradac et al.’s study
Bradac et al. report on a pilot study (they call it a ‘prototype process monitoring
experiment’) that investigates how a developer spent their time during development. Bradac
et al. state: “The specific goal of our process monitoring experiment is to find ways to
reduce the development interval.” ([4], p. 774; see the appendix for further information).

Bradac et al.’s study was a pilot study in preparation for a more substantial study, which has
been reported elsewhere [15, 16]. The presence of a subsequent, more substantive study
raises the question of why the pilot study, rather than the subsequent study, is being
analysed. The short answer is data: more data, and more appropriate data, is presented in the
pilot study. In addition, however, the pilot study lays foundations for the subsequent study.
Consequently, it is sensible to examine those foundations.

The pilot study was based on a reconstruction of a 30-month time diary for the lead engineer
of a feature composed of both hardware and software. Bradac et al. explain that features are
often the most basic unit of development for a very large software system and represent
long-term efforts spanning up to several years from inception to actual use. In their pilot
study, Bradac et al. broadly distinguish between working the process and being prevented
from working the process. Where a developer is prevented from working the process, this is
because the process is blocked, primarily due to some form of waiting. As is to be expected
of a pilot study, Bradac et al. revise their opinion on certain aspects of their study design and
empirical findings. For example, they note that where a developer is not working the
process, this may either be because their work is blocked or because the developer has been
temporarily reassigned to another project.

1.2 Empirical evidence and analysis
Bradac et al. present three main sets of evidence and use these sets to develop some
conjectures about the way that individual developers use their time when developing
features. The three sets of evidence are:

• A summary of the amount of time spent working and being blocked over the 30-month

time-period.
• A summary of the percentage of time spent waiting in each of the tasks.
• Two 75-day ‘time-lines’ providing more detail on the actual allocation of time to tasks.

Computer Science Technical Report CS-TR-383

4 of 30

1.2.1 An overall analysis of time spent working and blocked

0 5 10 15 20 25 30

Post-mortem

Support

Customer doc.

High level test
Low level test

Inspection
Code

Test plan

Low level design
High level design

Requirements

Plan development
Estimate

Unassigned

Percentage

Worked
Blocked

T
as

k

Figure 1 Percentage time spent working and blocked

(Reproduced from Bradac et al. [4])

Bradac et al. present data on the percentage of time spent working and blocked in 14 tasks.
This data is reproduced here in Figure 1. (Bradac et al. are not explicit about the source of
this data. We assume that this data is based on the complete 30-month time period.) Bradac
et al. note that for almost every task, the time spent waiting exceeds that of productive work.
Overall, 60% of the time was spent waiting rather than working. This leads Bradac et al. to
state that:

“… it seems clear that one important way of improving the process is to reduce
significantly the number of days in blocking states.” ([4], p. 782)

Bradac et al. add:

“The utility of this conjecture depends on the degree of multiplexing within these
processes. Clearly, if the global level of blocking is consonant with this local level, the
conjecture will hold.” ([4], p. 782)

Computer Science Technical Report CS-TR-383

5 of 30

1.2.2 The prevalence of blocking in the process
Bradac et al. also examine the percentage of waiting for each task according to the total
number of days spent in that task (with total days including both productive and blocked
days). Figure 2 is a reproduction of the data used by Bradac et al. Bradac et al. emphasise
that the breakdown into small, medium and large numbers of days helped them to distinguish
the more important tasks in the process. The figure indicates, for example, that work on
Customer documentation was blocked for almost 50% of the time but, overall, Customer
documentation only required a small number of days.

P
os

t-
m

or
te

m

Su
pp

or
t

C
us

to
m

er
 d

oc
um

en
ta

ti
on

H
ig

h
le

ve
l t

es
t

L
ow

 le
ve

l t
es

t

In
sp

ec
ti

on

C
od

e

T
es

t p
la

n

L
ow

 le
ve

l d
es

ig
n

H
ig

h
le

ve
l d

es
ig

n

R
eq

ui
re

m
en

ts

P
la

n
de

ve
lo

pm
en

t

E
st

im
at

e

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

bl
oc

ke
d

Task

Small number of days in task
Medium number of days in task
Large number of days in task

P
os

t-
m

or
te

m

Su
pp

or
t

C
us

to
m

er
 d

oc
um

en
ta

ti
on

H
ig

h
le

ve
l t

es
t

L
ow

 le
ve

l t
es

t

In
sp

ec
ti

on

C
od

e

T
es

t p
la

n

L
ow

 le
ve

l d
es

ig
n

H
ig

h
le

ve
l d

es
ig

n

R
eq

ui
re

m
en

ts

P
la

n
de

ve
lo

pm
en

t

E
st

im
at

e

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

bl
oc

ke
d

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

bl
oc

ke
d

Task

Small number of days in task
Medium number of days in task
Large number of days in task

Small number of days in task
Medium number of days in task
Large number of days in task

Small number of days in task
Medium number of days in task
Large number of days in task

Figure 2 Percentage of time blocked per task

(Reproduced from Bradac et al. [4])

Based on the data presented in Figure 2, Bradac et al. state:

“The other thing to note is that blocking tends to be more prevalent at the beginning and
end of the process.” ([4], p. 783).

With this insight, Bradac et al. suggest that one should attack blocking factors in the
requirements, high-level design and high-level test phases of the process because these have
some of the highest percentages of blocked work, together with the highest number of days
spent in the tasks.

Bradac et al. appear to assume that the tasks occur in a broadly sequential manner i.e. there
are certain tasks (such as requirements and high-level design) that occur during the earlier
periods of the process, certain tasks (such as low-level design and coding) that occur during
the middle periods of the process and certain tasks (such as high-level testing) that occur
during the final periods of the project. (The use of a line to connect the points in Figure 2
suggests continuity between tasks and, consequently, implies an assumption that the tasks
are broadly sequential.)

Computer Science Technical Report CS-TR-383

6 of 30

We also note that Bradac et al. do not explicitly state the criteria for distinguishing between
a small, medium and large number of days, and do not provide a rationale for this
distinction.

1.2.3 Bradac et al.’s two ‘time-lines’
Figure 3 and Figure 4 reproduce the two ‘time-lines’ presented in Bradac et al.’s paper.
Figure 3 presents data on the tasks and states of a developer during an earlier part of a
project. By contrast, Figure 4 presents data on the tasks and states of a developer during a
later part of a project. Bradac et al. are not specific about when exactly, during the 30-month
period, these two time-lines occur. The difficulty in mapping the time-lines to the 30 months
is relevant to our secondary analyses and will be returned to later in this report.

Bradac et al. note that the first part of the project (see Figure 3) appears to conform to the
traditional waterfall process, with the developer moving sequentially from the plan
development to the requirements. Bradac et al. also note the lengthy blocking times during
this earlier part of the project, in particular the lengthy times spent waiting on reviews. These
observations appear to confirm the assumption of a sequential process and also appear to
confirm the conjecture that blocking is more prevalent toward the beginning of the process.

As indicated in Figure 4, a later part of the project appears to be dramatically different to the
beginning of the project. The developer is alternating between a series of tasks, with tasks
and states being inter-mixed. Bradac et al. recognise the less sequential nature of their
developer’s behaviour and relate that behaviour to Guindon’s ‘opportunistic developers’ [10,
11].

C
om

pu
te

r
S

ci
en

ce
 T

ec
hn

ic
al

 R
ep

or
t C

S
-T

R
-3

83

7
of

 3
0

F
ig

ur
e

3
T

as
ks

 a
nd

 s
ta

te
s

fo
r

a
de

ve
lo

pe
r

du
ri

ng
 a

n
ea

rl
ie

r
75

-d
ay

 p
er

io
d

of
 a

 p
ro

je
ct

(R
ep

ro
du

ce
d

fr
om

 B
ra

da
c

et
 a

l.
[4

])

K
ey

: T
he

 d
as

he
s

(‘
-’

)
in

di
ca

te
 w

ai
ti

ng
. T

he
 s

ol
id

 s
qu

ar
es

 (
‘ ■

’)
 in

di
ca

te
 w

or
ki

ng
.

■-
■-

-
-
-
-
-
-
■■

-
-
-
■■

-
-
-
-
-
-
■■
■■
■■

-
-
-
-
-

P
la

n
de

ve
lo

pm
en

t

E
st

im
at

e

U
na

ss
ig

ne
d

R
eq

ui
re

m
en

ts

H
ig

h
le

ve
l d

es
ig

n

L
ow

 le
ve

l d
es

ig
n

T
es

t p
la

n

C
od

e

In
sp

ec
tio

n

L
ow

 le
ve

l t
es

t

H
ig

h
le

ve
l t

es
t

C
us

to
m

er
 d

oc
um

en
ta

tio
n

Su
pp

or
t

P
os

t-
m

or
te

m

■

■-

-
■-

-
-
-
-
-
-
-
-
-
■-

-
-
-
-
-
-
-
-
-
■-
■-

-
■-
■■

-
-
-
-
-
-
-

■

■

■■
■

■

■

■

■
■

R
ew

or
k

pr
oc

es
s

D
oc

um
en

ta
tio

n

W
or

k
pr

oc
es

s

R
ew

or
k

do
c.

W
ai

t L
ab

W
ai

t E
xp

er
t

W
ai

t R
ev

ie
w

W
ai

t H
ar

dw
ar

e

W
ai

t S
of

tw
ar

e

W
ai

t D
oc

.

W
ai

t O
th

er

■

■■

■

■

■
■■

■

■■

-
-
-

-
-

-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-

-

-

-

-

-
-
-
-
-
-
-

-
-
-
-
-

-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

C
om

pu
te

r
S

ci
en

ce
 T

ec
hn

ic
al

 R
ep

or
t C

S
-T

R
-3

83

8
of

 3
0

F
ig

ur
e

4
T

as
ks

 a
nd

 s
ta

te
s

fo
r

a
de

ve
lo

pe
r

du
ri

ng
 a

 la
te

r
75

-d
ay

 p
er

io
d

of
 a

 p
ro

je
ct

 (
R

ep
ro

du
ce

d
fr

om
 B

ra
da

c
et

 a
l.

[4
])

A

 q
ue

st
io

n
m

ar
k

(i
.e

. ‘
?’

)
 in

di
ca

te
s

a
da

y
of

 w
or

ki
ng

, b
ut

 th
e

sp
ec

if
ic

 ta
sk

 is
 u

nk
no

w
n.

 T
he

 d
as

he
s

(‘
-’

)
in

di
ca

te
 w

ai
ti

ng
. T

he
 s

ol
id

 s
qu

ar
es

 (
‘ ■

’)
 in

di
ca

te
 w

or
ki

ng
.

■■

P
la

n
de

ve
lo

pm
en

t

E
st

im
at

e

U
na

ss
ig

ne
d

R
eq

ui
re

m
en

ts

H
ig

h
le

ve
l d

es
ig

n

L
ow

 le
ve

l d
es

ig
n

T
es

t p
la

n

C
od

e

In
sp

ec
tio

n

L
ow

 le
ve

l t
es

t

H
ig

h
le

ve
l t

es
t

C
us

to
m

er
 d

oc
.

Su
pp

or
t

P
os

t-
m

or
te

m

■■

-
-
-

■

■

■

■■

■
■■
■
■
■

■
■

■■

■■

■

■■

■

■■
■■

R
ew

or
k

pr
oc

es
s

D
oc

um
en

ta
tio

n

W
or

k
pr

oc
es

s

R
ew

or
k

do
c.

W
ai

t L
ab

W
ai

t E
xp

er
t

W
ai

t R
ev

ie
w

W
ai

t H
ar

dw
ar

e

W
ai

t S
of

tw
ar

e

W
ai

t D
oc

.

W
ai

t O
th

er

■

■
■■

■
■
■

■■

■

■

■
■■

■

■■

■

■■

■■

■
■

■

-
-

-

-

-

-
-

-

-

-

-
-
-

-

-
-

-
-
-

-
-

-
-
-

-

-

■

■-

?
?

■■
■■
■-

-
-
-
■
■■
■
■

■

-

-

-
■
■-

-
-

■■

-
-
■-

-
■

■■

-
-

-

■
■-

-
■■

■

-
-
■

■

■

■

■■

■■

■

■-

■

■

■

■

■■

■

■

Computer Science Technical Report CS-TR-383

9 of 30

1.3 Conjectures
Overall, Bradac et al. propose several conjectures regarding the ‘behaviour’ of developers as
they develop features. We present these conjectures in Table 1, and indicate which of these
conjectures we have re-analysed. (Bradac et al. also make a number of statements regarding
the theoretical, empirical and methodological aspects of their study. We have summarised
these statements in the appendix.) We re-analysed those conjectures where the data made it
feasible to do so. In total, we re-analysed six of the 13 conjectures.

Table 1 Bradac et al.'s conjectures

Conjecture Re-analysed?

1 The specific goal of our process monitoring experiment is to find ways to

reduce the development interval.
No

2 A process is characterised by a set of tasks and a set of states. The tasks

define the various activities within the process that are of interest and that
will be sampled in the experiment. The states represent either progress
within a task or lack of progress (that is, where the task is blocked for some
reason).

No

3 We assume that developers really do only one or two things per day per

process – that is, their time is not overly fragmented.
No

4 The intent is to sample the most important aspect of the task on the

previous day.
No

5 Overall, approximately 60% of the time is spent waiting or being

reassigned to other projects [with 40% of the time spent working].
Yes

6 It seems clear that one important way to improving the process [to reducing

development duration cf. conjecture 1] is to reduce significantly the
number of days in blocking states.

Yes

7 Blocking tends to be more prevalent at the beginning and the end of the

process [compared to the overall process].
Yes

8 Waiting for reviews dominated both the beginning and the end of the

process.
No

9 The utility of conjecture 7 depends on the degree of multiplexing within

the process. If the global level of blocking is consonant with the local level,
then the conjecture should hold.

No

10 If blocking is more prevalent during the beginning and the end of the

project, and this occurs at the project level, then one should attack blocking
factors in the requirements, high-level design and high-level test phases of
the process.

Yes

11 The first part of the process is almost a pure waterfall process moving first

through the plan development task and then to the requirements.
Yes

12 The later part of the process is much more inter-mixed, consistent with

Guindon’s arguments that design is opportunistic.
Yes

13 A caveat: although this analysis is based on real data, they are

reconstructed from one instance of the process, with some blurring of the
accuracy because of retrospection.

No

Computer Science Technical Report CS-TR-383

10 of 30

2 Secondary analysis of Bradac et al.’s
conjectures
This section reports the results of our secondary analysis of Bradac et al.’s conjectures.

2.1 Conjecture 5: Approximately 60% of the time is spent waiting or
being reassigned

Table 2 Comparison of the earlier and later parts of the project with the overall process

State Earlier in the project Later in the project Overall process
 f % f % f %

Working 21 27.6 50 65.8 30 39

Blocked 55 72.4 26 34.2 46 61

Total 76 100 76 100 76 100

Table 2 presents the frequency counts and percentages for the earlier and later parts of the
project, and the overall process. (The data on the earlier and later parts of the process are
taken from Figure 3 and Figure 4. The data on the overall process are taken from Figure 11.)
The table suggests that there is a great deal of variation in the amount of time that can be
spent blocked or working. Between a quarter and two-thirds of the developer’s time is spent
working, and between a third and three-quarters of the developer’s time is spent waiting.

1 In their paper, Bradac et al. did not provide frequency counts for the overall process, instead

providing only percentages. To ‘recover’ the frequency counts, we have converted the
percentages of the overall process to frequency counts based on the total number of days of
the earlier and later parts of the project i.e. based on a total of 76 days. More specifically, as
39% of the overall process was spent working, this can be converted to approximately 30
days i.e. 39% of 76 days. Similarly, 61% of the overall process was spent waiting and this
converts to approximately 46 days i.e. 61% of 76 days.

Computer Science Technical Report CS-TR-383

11 of 30

Task

W
ait on other things

W
ait on docum

entation

W
ait on softw

are

W
ait on hardw

are

W
ait on review

W
ait on expert

R
ew

ork docum
entation

R
ew

ork the process

D
ocum

entation

W
ork the process

P
er

ce
nt

ile
 p

oi
nt

s

50

40

30

20

10

0

E

L

E

E

E E

E

E

E
E

E

L

L L

L

L

L
L

L L

E=earlier

L=later

Overall

Key

Figure 5 Variation in percentile points of blocked work

Figure 5 summarises the variation, in percentile points, between the earlier, later and overall
process for all the states examined by Bradac et al. In almost all cases, the earlier and later
parts of the process represent the extreme points2.

Both Table 2 and Figure 5 suggest that one should be cautious about the 60:40 ratio of
waiting to working suggested by Bradac et al. because this ratio does not ‘capture’ the
variation that is present in the process being examined3. Figure 5 suggests that one should be
particularly cautious about the ratio of waiting to working for the following states (because
of the degree of variation observed for these states):

• Working the process
• Reworking the process
• Waiting on reviews
• Waiting on other things

Bradac et al. recognised that waiting on other things was actually a special category that
included being reassigned to other projects. This suggests that a reasonable amount of
reassignment occurs; a suggestion consistent with other studies e.g. [20-23].

2 For only two exceptions – reworking documentation and waiting on other things – the earlier and later

parts of the process do not represent the extremes. This means that during some other part(s) of the 30-
month process, the amount of reworking documentation and waiting on other things was greater than
that represented in the two time-lines.

3 The presence of variation, and strategies to monitor and then reduce that variation, are the concerns of
statistical process control e.g. 19. Florac, W.A., A.D. Carleton, and J.R. Barnard, Statistical
Process Control: Analyzing A Space Shuttle Onboard Software Process. IEEE Software, 2000. 17(4):
p. 97-106..

Computer Science Technical Report CS-TR-383

12 of 30

2.2 Conjecture 7: The prevalence of waiting
An ‘eyeball test’ of Table 2 suggests that of the earlier and later parts of the process, it is the
earlier part of the process that is more like the overall process. This ‘eyeball test’ appears to
undermine Bradac et al.’s conjecture that waiting is more prevalent during the beginning and
the end of the process. As a result of the ‘eyeball test’, we forwarded two hypotheses:

H1 The frequency of waiting in the earlier part of the process is significantly different to

the frequency of waiting in the overall process

H2 The frequency of waiting in the later part of the process is significantly different to

the frequency of waiting in the overall process

We tested these hypotheses using chi-square (χ2) tests of independence.

Table 3 Results of chi-square tests of hypotheses H1 and H2

 statistics
Hypotheses p df χ2 α β

H1 The frequency of waiting in the

earlier part of the process is
significantly different to the
frequency of waiting in the overall
process

0.122 1 2.39 0.05 unknown

H2 The frequency of waiting in the

later part of the process is
significantly different to the
frequency of waiting in the overall
process

 0.001 1 10.556 0.05 unknown

The results of the chi-square tests of the two hypotheses are presented in Table 3. The results
indicate that:

1. The earlier part of the process is not significantly different to the overall process.
2. The later part of the process is significantly different to the overall process.

These results suggest two things. First, the results suggest a re-interpretation of Bradac et
al.’s seventh conjecture viz. that waiting is more prevalent in the earlier and later parts of the
project. The test results suggest that blocking is indeed more prevalent in an earlier part of
the process, but is not so prevalent in a later part of the process. Second, the test results are
further support for our re-analyses of conjecture 5, and provide stronger evidence that one
should be cautious about the 60:40 ratio of waiting to working. The test results suggest that
there is a significant difference in the amount of waiting between the overall process and a
later part of the process. Therefore, there will be different ratios of waiting to working for
these two parts of the process.

The two time-lines presented in Figure 3 and Figure 4 represent extremes of the process but
it is not clear where exactly in the 30-month time period these two time-lines occur. It may
be that either of the time-lines occur closer to the middle of the process and so may not be
appropriate for testing the validity of Bradac et al.’s seventh conjecture.

A related issue is that Bradac et al. may make their claim about the prevalence of waiting
based on more data than is presented in their paper. Being extremes, these two time-lines
may not be entirely representative of other data that Bradac et al. possessed at the time of
writing their paper.

Computer Science Technical Report CS-TR-383

13 of 30

2.3 Methods for investigating the prevalence of waiting
The results of our two hypotheses lead us to re-consider the methods that Bradac et al. used
to identify the most important tasks in the process. Recall from section 1.2.2 that Bradac et
al. distinguished between a small, medium and large number of days spent waiting and
working the process. Recall also that Bradac et al. subsequently used these distinctions to
identify those tasks that had both a large percentage of waiting and a large total number of
days in the task.

Table 4 Thresholds for small, medium and large number of days

Threshold Percentages of days in task

Large n ≥ 8 percentile points
Medium 8 > n > 5 percentile points
Small 0 ≤ n ≤ 5 percentile points

Note: n is the total percentage of days in the task

In their paper, Bradac et al. do not explicitly state the ‘thresholds’ that they used to
distinguish between a small, medium and large number of days. Our estimates of Bradac et
al.’s thresholds for distinguishing between a small, medium or large number of days waiting
and working a task are presented in Table 4.

Table 5 Alternative thresholds

Threshold Bradac et al 1st Alternative 2nd Alternative

(Very large) N/A N/A 13.5 ≤ n
Large 8 ≤ n 13.5 ≤ N 6.4 < N < 13.5
Medium 5 < n < 8 5.3 < n < 13.5 3.8 < n ≤ 6.4
Small 0 ≤ n ≤ 5 0 ≤ n ≤ 5.3 0 ≤ n ≤ 3.8

We considered two alternative thresholds to Bradac et al.’s. For the first threshold, we
calculated the range of percentile points (i.e. 13.5 – 1.2 = 12.3, cf. Table 6) and divided the
range into three equal sections (i.e. sections each with a range of 4.1) and then calculated
thresholds. These thresholds are presented in Table 5 as the 1st alternative threshold. With
this threshold, we recognised that the high-level design task distorts the calculation of the
range and this then has an effect on the calculated thresholds (leaving only the high-level
design task in the category of a large number of days).

For our second alternative, we treated the high-level design task as a special case. We
removed the high-level design task from our initial data, and re-calculated our range (i.e. 8.9
– 1.2 = 7.7), our three equal sections (i.e. each section now had an approximate range of 2.6)
and then the thresholds. We treated the high-level design task as exhibiting a very large
number of days in the task. These thresholds are presented in Table 5 as the 2nd alternative
threshold. The re-classification of tasks with small, medium, large and very large numbers of
days is presented in Figure 6.

Depending on the thresholds chosen, different tasks emerge as the most important tasks in
the process. This leads to different advice about which tasks to concentrate on in order to
reduce waiting and blocked work. For example, the second alternative threshold in Table 5
and Figure 6 suggests that one should focus on all the major tasks of software development
i.e. requirements, high-level design, low-level design, code, inspection, low-level test and
high-level test. The problem with all three of the sets of thresholds is that they are unable to
effectively discriminate between a larger number of relevant tasks and a small number of
really important tasks.

Computer Science Technical Report CS-TR-383

14 of 30

Figure 6 Breakdown of important tasks

10

20

30

40

50

60

70

80

90

100

P
ercentage

10

20

30

40

50

60

70

80

90

100

P
ercentage

10

20

30

40

50

60

70

80

90

100
P

ercentage

Post-m
ortem

Support

C
ustom

er docum
entation

H
igh level test

L
ow

 level test

Inspection

C
ode

T
est plan

L
ow

 level design

H
igh level design

R
equirem

ents

Plan developm
ent

E
stim

ate

Task

Small number of days in
Medium number of days in

Large number of days in
Very large number of days in

Bradac et al.

1st alternative

2nd alternative

Computer Science Technical Report CS-TR-383

15 of 30

Because of the problems of poor discrimination with the thresholds, we investigated another
method of identifying the most important tasks.

Figure 7 Scatter-plot of percentile points of blocked work (waiting) and working the process

Key: CD=Customer documentation; Code=coding; Est=Estimation; HLD=High level
design; HLT=High level test; Ins=Inspections; PD=Plan development; P-M=Post-
Mortem; LLD=Low level design; LLT=Low-level test; Req=Requirements;
Sup=Support; TP=Test planning.

Figure 7 provides an alternative representation of the data presented in Figure 2, and plots
the percentile points for work the process against waiting. This analysis suggests that the
most important tasks are high-level design and low-level test. We discuss this analysis in
more detail in section 2.5.

2.4 Conjecture 8: The dominance of waiting on reviews
Figure 5 indicates that reviews are not dominant during the end of the process. Recall that
the figure is based on the two 75-day time-lines and, as noted earlier, there may be problems
concerning the representativeness of the two time-lines.

2.5 Conjecture 10: Attacking blocking factors
Bradac et al. used data (presented in this report as Figure 2) to suggest that reducing
blocking in the earlier and later parts of the process could be an effective method for
reducing the project schedule. This is because these tasks are the most heavily ‘weighted’ in
terms of blocking. An alternative analysis, one that focuses on the amount of time spent
working, leads to somewhat different conclusions.

0 1 2 3 4 5 6 7 8

% Worked

0

1

2

3

4

5

6

7

8

%
 B

lo
ck

ed

HLD

Est

HLT

Req

LLT

LLD

Ins
Code

PD

P-M

Sup
CD

TP

Computer Science Technical Report CS-TR-383

16 of 30

Table 6 Percentages and rankings of time spent working or blocked in each task

(Based on Figure 3 of Bradac et al. [4])
 Percentages Rankings
Task Working Blocked Total Working Blocked Total

Post-mortem 1.8 3.1 4.9 10 8 11
Support 3 1.3 4.3 6 12 12
Customer documentation 1 0.9 1.9 13 13 13
High level test 2.4 6.5 8.9 8 3 3
Low level test 3.6 4.3 7.9 4 6 6
Inspection 3.9 3.1 7.0 3 8 7
Code 5.6 2.8 8.4 2 10 4
Test plan 1.2 0 1.2 12 14 14
Low level design 3.6 1.8 5.4 4 11 10
High level design 6.5 7 13.5 1 2 2
Requirements 2.4 5.8 8.2 8 4 5
Plan development 2.5 3.6 6.1 7 7 8
Estimate 1.5 4.5 6.0 11 5 9
Unassigned 0 16.3 16.3 14 1 1

Total 39 61 100

Table 6 presents the percentages, and the rankings of those percentages, of the time spent
working or blocked in each task for the overall 30-month process. If one ranks the tasks
based on the percentage of waiting then one finds that, indeed, the tasks of requirements,
high-level design, and high-level test are the most important tasks (excluding the unassigned
task). If one ranks the tasks based on the percentage of time spent working then one finds
that high-level design, low-level design, coding, inspections and low-level tests become the
most important tasks. This represents a shift from the earlier part of the process to,
predominantly, the middle of the process. Phrased another way, most of the actual work
appears to occur during the middle of the process4.

With the combined perspectives of waiting and working, we can extend Bradac et al.’s
initial advice that one should attack the earlier and later parts of the process. An initial step
for reducing the development interval may be to reduce the amount of time spent waiting. As
that time is reduced, however, further efforts to reduce the development interval will need to
be directed elsewhere i.e. to where the actual work is being done.

Ranking tasks according to the percentage of actual work also suggests strategies for
resource allocation. The data suggests that the most effort is used during the middle parts of
the project. (This is consistent with findings we have made in other work e.g. [24].) The data
also suggests that attempts to improve the quality of the product should be directed at the
middle of the process, as this is where the most work is actually done and hence where there
are the greatest opportunities to introduce defects into the product.

4 Based on the assumption of a sequential process.

Computer Science Technical Report CS-TR-383

17 of 30

Table 7 Tasks to focus on to reduce time and improve quality

Task Reduce time

(cost)
Improve quality Reduce time and

improve quality

Customer documentation - -
Code - Yes
Estimation Yes -
High level design Yes Yes Yes
High level test Yes -
Inspection - Yes
Plan development Yes -
Post-Mortem - -
Low level design - Yes
Low-level test Yes Yes Yes
Requirements Yes -
Support - Yes
Test planning. - -

Table 1 provides an alternative summary of the evidence presented in Figure 7, and indicates
which tasks to focus on when trying to reduce schedule time or improve quality. This
analysis appears to possess more discriminatory power, in that it clearly identifies a small
number of apparently very important tasks i.e. high-level design and low-level test. (These
two tasks seem an odd combination, and some further research is required here.)

2.6 Conjectures 6, 11 and 12: The nature of the process
An ‘eyeball test’ of Figure 5 suggests that the overall process is more similar to the earlier
process than to the later process. This, in turn, would suggest that the time-line for the earlier
part of the process (together with summary data of that time-line) is more representative of
the overall process. One implication is that the overall process is more structured and
orderly. This appears to qualify Bradac et al.’s claim that the later part of the project exhibits
behaviour similar to Guindon’s designer. One explanation may be that Guindon focused on a
task requiring only one individual rather than interaction with other individuals. Also, there
is an argument that Bradac et al.’s data has more ecological validity because it was collected
‘from the field’.

Computer Science Technical Report CS-TR-383

18 of 30

2.7 Summary of the re-analysis of Bradac et al.’s conjectures
We have independently re-analysed several of Bradac et al.’s conjectures using Bradac et
al.’s original empirical evidence. We have not sought to discredit Bradac et al.’s analyses,
but rather to understand that analyses in more detail. We have made assumptions more
explicit and this has helped to make the interpretation of the evidence more explicit. Our re-
analysis has introduced a number of qualifiers to the original conjectures. Our main
qualifiers are:

1. The ratio of 60:40 waiting to working appears to be most problematic for the tasks of

working the process, reworking the process, waiting on reviews and waiting on other
things. Furthermore, the evidence suggests that the ratio of 60:40 waiting to working may
only apply to the earlier and middle parts of the process and not the end of the process.

2. There appears to be a tension within Bradac et al.’s study between modelling the process

with a structured model and modelling the process with an opportunistic model. This
tension has been discussed in other literature e.g. [10, 25-27].

3. As the process become more iterative, so the assumption of a sequential process is less

easy to sustain. This introduces problems for the prevalence of waiting, as the conjecture
on the prevalence of waiting seems to be based on an assumption of a sequential process.

4. The thresholds used by Bradac et al. to define tasks with a small, medium or large

number of days appears to be problematic because it is not clear how the threshold were
determined. This means that it is not clear which tasks in the process have the most affect
on schedule interval.

But developing alternative thresholds does not seem to be effective for identifying the
most important tasks in the process, because these thresholds lack discriminatory power:
they seem to identify a large number of tasks. Further analysis based on a scatter-plot of
time spent waiting and time spent working does seem to be more effective and has
identified two tasks which appear to affect both schedule interval and software quality.
These two tasks are high-level design and low-level test.

5. Ranking the tasks according to the amount of work performed in the task (rather than the

amount of waiting in the task) suggests insights for improving the quality of the product
and not just for the time interval of the project.

Computer Science Technical Report CS-TR-383

19 of 30

3 Additional analyses of Bradac et al.’s evidence

3.1 The developer’s states in the earlier and later parts of the
process

Table 8 A detailed summary of the developer’s states

 Earlier part of project Later part of project
State Working Blocked Working Blocked
 f % f % f % f %

Work process 10 13.2 25 32.9
Documentation 8 10.5 1 1.3
Rework process 1 1.3 21 27.6
Rework documentation 2 2.6 3 3.9
Wait Lab 2 2.6
Wait Expert 5 6.6 2 2.6
Wait Review 17 22.4 0 0.0
Wait Hardware 0 0.0 4 5.3
Wait Software 0 0.0 8 10.5
Wait Documentation 4 5.3 0 0.0
Wait Other 29 38.2 10 13.2

Sub-Total 21 27.6 55 72.4 50 65.8 26 34.2

Total (Working + blocked) 76 100. 76 100.

Key: Emboldened figures in the table denote the most interesting observations.

Table 8 provides a detailed summary of the various states of the developer in the earlier and
later parts of the process.

The table suggests that more work and more rework occur in a later part of the process, that
there is almost as much rework as work in the later part of the process, and that there is very
little original documentation conducted later in the process, but some rework of
documentation (perhaps in response to the rework of the process). These insights have
implications for the prevalence of waiting and the structure of the process, which we have
considered elsewhere in this report.

Regardless of the prevalence of waiting in the earlier and later parts of the project, we note
that there appears to be a shift in the kind of waiting that occurs. In an earlier part of the
process, the developer is waiting on reviews and on other things (perhaps being assigned
temporarily to another project). In the later part of the process, there is a substantial drop in
both the amount of waiting on other things and the amount of waiting on reviews. There is
also some increase in waiting on software.

In other work [23], we have noted that there appears to be an increase in the urgency of a
project as the project approaches its planned completion. (We understand ‘urgency’ to be the
pressure of necessity i.e. it is necessary for the project to complete.) This may explain the
reduction in waiting on other things. During the earlier parts of the project, the project has a
lower urgency and other projects may be more urgent. Consequently, the developer may be
reassigned, temporarily, to those other projects. As the current project proceeds into its later
stages, so the project becomes more urgent (perhaps with other projects becoming less
urgent). Consequently, the developer is not assigned to other projects. In addition, other
developers may be assigned to the current project. This may explain why there is less
waiting and more work and rework. Developers temporarily reassigned to the current project
may get outstanding work completed, allowing this developer to get their work completed.
Also, with the increasing urgency of the project, the project’s managers may decide not to

Computer Science Technical Report CS-TR-383

20 of 30

hold reviews. Similarly, the developer may focus more on work and rework rather than on
documenting that work and rework.

3.2 An alternative analysis of the developer’s tasks

Figure 8 Combined box-plot and scatter-plot of the percentage of working for each task

In Figure 7, the task of high-level design (HLD) appears to be an outlier. Figure 8 confirms
that the task of high-level design consumes an exceptional percentage of time in the process.
Figure 8 also indicates that the task of coding is close to consuming an exceptional
percentage of time in the process.

High level design High level design

Code

High-level test

Support

Low-level design Low-level test

Inspection

Customer documentation

Test plan

Requirements

Plan development

Post-mortem

Estimate

7

6

5

4

3

2

1

0

%
 w

or
ki

ng

Computer Science Technical Report CS-TR-383

21 of 30

4 Discussion

4.1 A review and extension of the original conjectures
The secondary analyses of Bradac et al.’s empirical evidence have produced some
interesting insights that clarify, enrich and extend the original conjectures. The analyses have
also generated some new conjectures.

Table 9 summarises some of Bradac et al.’s original conjectures, together with comments
and revisions from the secondary analyses. Table 10 summarises the new conjectures,
together with comments on those conjectures.

Computer Science Technical Report CS-TR-383

22 of 30

Table 9 Revisions to Bradac et al.'s conjectures

Conjecture

1 The specific goal of our process monitoring experiment is to find ways to reduce the

development interval.

 Bradac et al.’s explicit statement of the goal of their research has helped us in our secondary

analyses because we can be clear about what goal (or criterion) we are evaluating their research
against. At the same time, there are other goals involved in improving the process, such as
product quality (see Table 10).

5 Overall, approximately 60% of the time is spent waiting or being reassigned to other projects.

 While 60% of the overall process may be spent waiting, the evidence indicates significant

variation within the process. While the average ratio may be 40:60 (working to waiting) this
ratio varies between the limits of 30:70 and 65:35. (Note that even in the best case scenario,
35% of the time is spent waiting! Only stating the average may be misleading for subsequent
research that might build on Bradac et al.’s study. Furthermore, there appear to be particular
tasks that exhibit the most variation. These are: working the process, reworking the process,
waiting on reviews, and waiting on other things.

6 It seems clear that one important way to improving the process [to reducing development

duration cf. conjecture 1] is to reduce significantly the number of days in blocking states.

 There is no evidence, however, to indicate what effect reducing the development interval would

have on other goals, such as product quality. The lack of evidence is understandable, given the
practical constraints of research and Bradac et al.’s research goal.

7 Blocking tends to be more prevalent at the beginning and the end of the process.

 Blocking tends to be most prevalent during the beginning of the process, assuming that the

tasks in the process proceed in a broadly sequential manner (cf. conjectures 11 and 12). Our re-
analyses found that, depending on the perspective taken, blocking occurred mainly during an
earlier part of the process or, alternatively, throughout the process.

10 If blocking is more prevalent during the beginning and the end of the project, and this occurs at

the project level, then one should attack blocking factors in the requirements, high-level design
and high-level test phases of the process.

 As stated for conjecture 7, our re-analyses found that, depending on the perspective taken,

blocking occurred throughout the process. Therefore, depending on one’s assumptions, one
should either attack blocking factors during an earlier part of the process, blocking factors
during the earlier and later parts of the process, or blocking factors throughout the process.

11 The first part of the process is almost a pure waterfall process moving first through the plan

development task and then to the requirements.

 This conjecture supports the assumption of a sequential process, which is necessary for the

statement of conjectures 7 and 10. There appears to be a tension within Bradac et al.’s study
and within the broader research community as to the validity of this conjecture.

12 The later part of the process is much more inter-mixed, consistent with Guindon’s arguments

that design is opportunistic.

 This conjecture seems to contradict the assumption of a sequential process, which is necessary

for the statement of conjectures 7 and 10. As with conjecture 11, there appears to be a tension
within Bradac et al.’s study and within the broader research community as to the validity of this
conjecture.

13 A caveat: although this analysis is based on real data, they are reconstructed from one instance

of the process, with some blurring of the accuracy because of retrospection.

 This conjecture also underpins our secondary analyses.

Computer Science Technical Report CS-TR-383

23 of 30

Table 10 Additional conjectures based on Bradac et al.’s evidence.

Conjecture

14 Waiting occurs during parts of the beginning, middle and end of the process

15 Attempts to improve the quality of the product should be directed at the middle of the

process, as this is where the most work is actually done and hence where there are the
greatest opportunities to introduce defects into the product. There is popular opinion
in the research literature that the requirements process has the greatest impact on the
success of software projects. Therefore, attention needs to be directed at how
conjecture 15 relates to the opinions on requirements. It may be that most of the work
is done in the middle of the process as a result of an ineffective requirements phase.

16 More work and more rework occur in a later part of the project.

17 There is as much work as rework in a later part of the project

18 There is very little documentation conducted in a later part of the project

19 There appears to be a shift in the type of waiting that occurs as the project progresses,

from an emphasis on waiting on reviews and waiting on other things (notably
reassignments to other projects) toward an emphasis on waiting on software.

20 The reduction in waiting on other things, the shift toward more work and more

rework, and the shift toward waiting on software might be explained by an increase in
the urgency of projects as they approach their planned completions.

Bradac et al.’s empirical evidence has been re-analysed in terms of other research objectives.
The most notable of these is the objective of understanding project urgency.

4.2 The value of secondary analyses
The secondary analyses presented in this paper are, by definition, dependent on an
appropriate quantity and quality of evidence being presented in a preceding publication.
Given the constraints of journal and conference papers, it is unlikely that one would (or
should) include empirical evidence that is surplus to the aims and objectives of a paper.
(Because of the exploratory nature of the research being presented, Bradac et al.’s paper is a
‘fortuitous’ exception.) There may be value, however, in descriptive papers or reports that
present ‘empirical material’, and that attempt to present that material with the assumptions
about that material made explicit. Such descriptive papers could then be used in subsequent
secondary analyses to help address a variety of different research questions, in particular
research questions not considered by the researchers who collected and organised the
original empirical material. For example, we have used Bradac et al.’s data (originally
collected to investigate reducing development interval) to draw some insights about where to
focus process improvements for improving software quality. Our analyses of Bradac et al.’s
conjectures also highlight the importance of stating assumptions. For example, the
assumption of a sequential process appears to be used to support the conjecture that waiting
is more prevalent during the earlier and later parts of the process.

Connected to the issue of re-analysing evidence to investigate different research questions,
different researchers may interpret the same empirical material differently for the same
research question, as we have done so with the conjecture on the prevalence of waiting. Lee
[28] argues that multiple, conflicting theories increase the degrees of freedom in an analysis,
and thus strengthen the final claims of that analysis. Similarly, analysis of empirical material
by a number of independent researchers can, in the long-term, strengthen the validity of the
claims that are made from that material (although, in the short-term, the independent
analyses may lead to disagreements). For example, there are studies that have re-analysed
data used to build estimation models.

Computer Science Technical Report CS-TR-383

24 of 30

We have previously produced a descriptive paper [29] that presents 48 ‘analytical fragments’
of the progress of a software development project. The analytical fragments are intended to
present the empirical material separately from our interpretations of that material (which
have been presented in, for example, [24]). The number of fragments is partly an indication
of the ‘breadth’ and ‘depth’ of the evidence and partly an indication of our attempts to
separate the data from its interpretation (recognising, of course, the profound problem of
being able to truly separate data from its interpretation).

Some journals, for example Empirical Software Engineering, require researchers to (where
appropriate) submit empirical data with their papers so that the data can be made available to
others. Empirical data in itself, however, may not articulate the methods by which the data
were collected, or the constraints on, and assumptions of, researchers during the collection
and analysis of that data. Descriptive papers may better communicate such constraints and
assumptions, and provide more information to help others in their evaluation or replication
of previous empirical studies. We note that others (e.g. [30, 31]) are developing tools for
sharing data whilst maintaining the integrity of that data.

Archaeological field evaluation may serve as an illustrative example of the purpose of
descriptive papers. The Institute of Field Archaeologists define archaeological field
evaluation as follows:

“… a limited programme of non-intrusive and/or intrusive fieldwork which
determines the presence or absence of archaeological features, structures, deposits,
artefacts or ecofacts within a specified area or site on land, inter-tidal zone or
underwater. If such archaeological remains are present field evaluation defines their
character, extent, quality and preservation, and enables an assessment of their worth
in a local, regional, national or international context as appropriate.” ([32], p. 3;
emphasise added)

As this definition indicates, archaeological field evaluation provides a description of a
resource and an assessment of the value of that resource. (Clearly, an assessment of the value
of a resource requires an awareness of how others may want to use that resource.) Note that
archaeological field evaluation does not seek to explain or predict the occurrence of that
resource i.e. does not investigate why or how that resource came to exist within the specified
area or site. In making an assessment of the value of a resource, archaeological field
evaluation would consider the potential benefits of a resource for subsequent explanations
and predictions.

Another way of understanding the value of descriptive papers is in terms of critical thinking
[33] (also known as informal logic [34]). With critical thinking one seeks to either produce
sound arguments or to evaluate the soundness of existing arguments. Sound arguments have
true premises and logical strength [33]. A logically strong argument is one where there is a
robust connection between the premises and the conclusion. Therefore, a sound argument is
one with both true premises and a robust connection of those premises with the conclusion.
Note that there may be many ‘threats’ to the logical strength of an argument, such as implicit
premises. Descriptive papers can be used to subsequently help critically evaluate the
premises of an argument, including the identification of implicit premises.

4.3 Integrating the findings of Bradac et al. with other studies
Intuitively, there should be some connection between the behaviour of an individual and a
project’s ability to act [16]. In particular the actual use of an individual’s time within a
project ought to have some relationship to the actual use of time at the project level, and to
eventual project outcomes. Bradac et al.’s study appears to be founded on the assumption
that there is a connection between the individual’s use of time and project outcomes.

Perry et al. state:

“… there has been little research on time related behavior at the individual level (the
micro level) and on the connection between the individual actions and the organization’s

Computer Science Technical Report CS-TR-383

25 of 30

ability to act – that is, on the relationships between the micro and macro levels.” ([16], p.
2; emphasis in original)

Although there has been some work relating individual actions and a project’s ability to act
(most notably, Humphrey’s work [35] on the Personal Software Process (PSP) and its
relationship to the Capability Maturity Model (CMM), and Curtis et al.’s [9] classic analysis
of the development of large software systems), there is a surprising lack of research in this
area.

We believe that the secondary analyses presented in this report can be used as part of a wider
aim to collect and analyse existing empirical evidence on the connections between individual
actions and a project’s ability to act. For example, Perry et al. [16] observed the number of
times that developers were interrupted, a factor that would affect productivity. Van Solingen
et al. [36] have further investigated interruptions.

As another example, Van Genuchten [37] collected data on 160 activities across six
development projects to consider the impact of minor problems on the eventual outcomes of
the projects. Van Genuchten’s activities seem to loosely map to Bradac et al.’s tasks, and
this mapping provides an opportunity for relating the micro behaviour of individual tasks to
the macro behaviour of projects.

We have observed [24, 38]} that reports of waiting, outstanding work and the poor progress
of work are all more prevalent during the later parts of a project than during the earlier and
middle parts of the project. These reports occurred at the team level, and seem to contradict
the conjectures of Bradac et al. at the individual level. But this contradiction may be
resolved if one recognises the presence of additional factors. For example, reporting the
status of a development team may not only be a function of the actual status of that team, but
may also be a function of the status of the project. As a project approaches its planned
completion, the urgency of the project increases and this may make reporting more
important. Conversely, during the beginning of a project, there is less urgency and so team
leaders may not report waiting when it occurs.

Finally, attempts to integrate findings from a number of studies suggest the need for one or
more frameworks within which to position empirical studies of actual software development.
Such frameworks may be particularly valuable if they attempt to integrate the empirical
findings of the studies and not just classify the technical characteristics of those studies (such
as the research strategy, or sample size, or methods of analysis). Such frameworks may come
to form partial, or incomplete, theories in themselves.

Finally, as noted in the introduction to this report, Bradac et al.’s study was a pilot study for
a more substantial subsequent study. Also, other studies have referenced the Bradac et al.
pilot study. One logical extension to this research is to conduct secondary analyses of these
subsequent papers.

5 Conclusions
We have reported on secondary analyses of the conjectures and empirical evidence presented
in Bradac et al.’s pilot study. Our secondary analyses leads to a clarification, enrichment and
extension of several of Bradac et al.’s original conjectures. We note that our analyses were
only possible because of the quality and quantity of evidence presented in the original paper.
We also note that such quality and quantity is unusual for journal and conference papers
(principally because of the editorial constraints placed on such papers) and this leads us to
suggest that there is value in publishing ‘descriptive papers’ that seek to present ‘empirical
material’ (together with an explicit statement of goals, assumptions and constraints) separate
from the analyses that proceeds from that material. Such descriptive papers can improve the
‘public scrutiny’ of software engineering research and may respond, in part, to Glass’s [1]
criticisms concerning the small amount of software engineering research that is actually
evaluated.

Computer Science Technical Report CS-TR-383

26 of 30

Acknowledgements
Some of the secondary analyses presented in this paper were first conducted as part of my
doctoral research whilst at Bournemouth University and IBM Hursley Park. The bulk of the
analyses, however, have been conducted subsequent to the doctoral research.

Computer Science Technical Report CS-TR-383

27 of 30

A. Appendix

A.1 Detailed statements from Bradac et al.
Table 11 presents key statements made in Bradac et al.’s paper. We include these statements
here for three reasons. First, the statements provide a detailed summary of Bradac et al.’s
arguments. Second, being a detailed summary, the statements provide context to the
empirical evidence that has been taken from Bradac et al.’s study and re-presented and
analysed in this report. Third, the statements provide the ‘raw material’ from which we have
‘re-constructed’ Bradac et al.’s conjectures (as presented in section 1 of this report). Where
the reader is further interested in our ‘re-construction’, these statements provide a basis from
which to pursue those interests. In the table, the page number refers to the page in Bradac et
al.’s original paper.

Table 11 Statements from Bradac et al.

Statement Page

1 Features are often the basic unit of development for very large software systems and

represent long-term effects, spanning several years from inception to actual use.
774

2 … monitoring these processes is a long-term effort as well
3 Time, like costs, can be viewed as a unit of optimisation in improving software

development processes.
774

4 The specific goal of our process monitoring experiment is to find ways to reduce the
development interval.

774

5 We want to find out what people actually do when they add features to a large software
system.

776

6 What people do and how they interact are of paramount importance in engineering
processes.

776

7 We want to understand how people progress through their activities… and where and how
they are hindered from making that progress in those activities.

776

8 With features as the unit of development, it is important to understand what people do
when developing a feature, how they interact within a single feature development, and how
the different development groups interact with each other in developing several features
concurrently.

776

9 The purpose of this experiment is to provide an understanding of the feature development
process. We then use this understanding as the basis both for accurate descriptions of, and
for substantive improvements to, these processes.

776

10 Our motivation for prototyping the experimental design is also straightforward: The
experiment will be a long-term effort, and we want to work out as many wrinkles as
possible before committing to the actual experiment.

776

11 In general, the [the TAME project and Amadeus system] emphasis is on automating
measurement and control of evolving products. This approach assumes that we know what
needs to be measured to control the process at the desired level of precision within the
desired cost constraints. We believe that we have not reached that level of maturity in the
measurement and control of software processes.

777/
778

12 A process is characterised by a set of tasks and a set of states. The tasks define the various
activities within the process that are of interest and that will be sampled in the experiment.
The states represent either progress within a task or lack of progress (that is, where the task
is blocked for some reason).

778/
779

13 The intent is to sample the most important aspect of the task on the previous day. 779
14 … people often do multiple tasks concurrently and do multiple things during the course of

a workday. However, this is ameliorated by the facts that we monitor per-feature
development (which will differentiate the effort of a develop working on several features
concurrently) and that we have a blocking category for other assignments (which will
differentiate a developer doing things other than working on this feature).

780

15 Furthermore, we assume that developers really do only one or two things per day per
process – that is, their time is not overly fragmented.

780

16 We need three things to prototype the experiment: a process, a development, and a set of
analyses.

780

17 For the process, we selected a well-understood one that is a standard development process. 780
18 For the development, we selected a relatively large feature development…[because]… we

felt that a large, complex feature would stress the experiment in such a way that if there
were inherent problems, we would see them.

780

Computer Science Technical Report CS-TR-383

28 of 30

19 For the analyses, we selected a set of basic views of the data to consider both the blocked
and working states of the process.

780

20 … the reconstructed development data represents only one path through the process – that
is, it is one instance of the process.

782

21 … the accuracy of the data are open to question; because of the retrospective nature of the
data

782

22 We also note that 60% of the time was spent waiting rather than being productive 782
23 Although there may well be other factors to consider, it seems clear that one important way

of improving the process is to reduce significantly the number of days in blocking states.
782

24 The utility of this conjecture depends on the degree of multiplexing within these processes.
Clearly, if the global level of blocking is consonant with this local level, the conjecture will
hold.

782

25 Approximately 27% of the total process time was spent working and reworking the
process, and approximately 13% of the time was spent writing and rewriting the
documentation.

783

26 About one third as much time was spent reworking the process as working it; about one-
half as much time was spent rewriting documentation as was spent initially [writing] it.

783

27 The other thing to note… is that blocking tends to be more prevalent at the beginning and
end of the process.

783

28 The middle of the process… tend no to be interrupted by waiting on other factors. 783
29 Clearly, one should attack the blocking factors in the requirements, high-level design, and

high-level test phases of the process, because they are the more heavily weighted.
783

30 It will be interesting to see if this conjecture… holds over a wide variety of developments. 783
31 It is worth noting that the first part of the development is almost a pure waterfall process. 783
32 It will certainly be interesting if this holds over a large class of processes and

developments. The important question then will be the source of this linearization.
783

33 The second thing worth noting is the lengthy blocking times in this phase of the process. In
particular, note the time spent waiting on reviews…

783

34 Not surprisingly, waiting for reviews dominated both the beginning and the end of the
process, but was relatively infrequent in the middle.

783

35 … a later part of the process, however, shows a completely different overall process.
Various tasks are intermixed, alternating between four and five different tasks, and the
various blocking factors are intermixed aswell… This reflects more the kind of process we
would expect…

783

36 We reiterate our caveat about these data: Though they are real data, they are reconstructed
data of only one instance of the process, with some blurring of accuracy because of
retrospection. We feel, however, that there are some intriguing conjectures about our
feature development processes that we hope to validate with subsequent experiments.

783

37 We conclude that just as prototyping is often a necessary auxiliary step in a large-scale,
long-term development effort, so, too, is prototyping a necessary step in the development
of a large-scale, long-term process monitoring experiment.

783

Computer Science Technical Report CS-TR-383

29 of 30

References

1. Glass, R.L., The software research crisis. IEEE Software, 1994. 11(6): p. 42-47.
2. Tichy, W.F., et al., Experimental Evaluation in Computer Science: A Quantitative Study.

Journal of Systems Software., 1995. 28(1): p. 9-18.
3. Fenton, N., S.L. Pfleeger, and R.L. Glass, Science and substance: A challenge to software

engineers. IEEE Software, 1994. 11(4): p. 86-95.
4. Bradac, M.G., D.E. Perry, and L.G. Votta, Prototyping A Process Monitoring Experiment.

IEEE Transactions on Software Engineering, 1994. 20(10): p. 774-784.
5. Billings, C., et al., Journey To A Mature Software Process. IBM Systems Journal, 1994. 33(1):

p. 46-61.
6. NASA, An Overview Of The Software Engineering Laboratory. 1994, NASA Goddard Space

Flight Center: Greenbelt, Maryland.
7. Paulk, M.C., et al., A High-Maturity Example: Space Shuttle Onboard Software, in The

Capability Maturity Model: Guidelines for Improving The Software Process, M.C. Paulk, et
al., Editors. 1994, Addison-Wesley: Harlow, England.

8. Pajerski, R., S. and V.R. Basili. The SEL Adapts To Meet Changing Times. in 22nd Software
Engineering Workshop. 1997. NASA/Goddard SEL, Greenbelt, Maryland, December 1997.

9. Curtis, B., H. Krasner, and N. Iscoe, A field study of the software design process for large
systems. Communications of the ACM, 1988. 31(11): p. 1268-1287.

10. Guindon, R., Designing the design process: Exploiting opportunistic thought. Human-
Computer Interaction, 1990. 5(2-3): p. 305-344.

11. Guindon, R., Knowledge exploited by experts during software system design. International
Journal of Man-Machine Studies, 1990. 33(3): p. 279-304.

12. Walz, D.B., J.J. Elam, and B. Curtis, Inside A Software Design Team: Knowledge Acquisition,
Sharing, And Integration. Communications of the ACM, 1993. 36(10): p. 63-77.

13. Potts, C., Software-Engineering Research Revisited. IEEE Software, 1993. 10(5): p. 19-28.
14. Bradac, M.G., D.E. Perry, and L.G. Votta. Prototyping A Process Monitoring Experiment. in

15th International Conference on Software Engineering. 1993: IEEE Computer Society Press.
15. Perry, D.E., N.A. Staudenmayer, and L.G. Votta, People, organizations, and process

improvement. IEEE Software, 1994. 11(4): p. 36-45.
16. Perry, D.E., N.A. Staudenmayer, and J.G. Votta Jr., Understanding and improving time usage

in software development, in Trends in software: software process, A. Fuggetta and A.L. Wolf,
Editors. 1995, John Wiley and Sons Ltd.

17. Ballman, K. and L.G. Votta. Organizational congestion in large-scale software development.
in Third International Conference on Software Process. 1994. Reston, Virginia, USA,
October: IEEE Computer Society Press.

18. Dandekar, A., D.E. Perry, and L.G. Votta, A study in process simplification. Software Process:
Improvement and Practice, 1997. 3(2): p. 87-104.

19. Florac, W.A., A.D. Carleton, and J.R. Barnard, Statistical Process Control: Analyzing A Space
Shuttle Onboard Software Process. IEEE Software, 2000. 17(4): p. 97-106.

20. Waterson, P.E., C.W. Clegg, and C.M. Axtell, The dynamics of work organisation, knowledge,
and technology during software development. International Journal of Human-Computer
Studies, 1997. 46(1): p. 79-101.

21. Sommerville, I. and S. Monk. Supporting informality in the software process. in Third
European Workshop on Software Process Technology (EWSPT'94). 1994. Villard de Lans,
France: Springer-Verlag.

22. Rodden, T., et al. Process modelling and development practice. in Third European Workshop
on Software Process Technology (EWSPT'94). 1994. Villard de Lans, France: Springer-
Verlag.

23. Rainer, A. and M.J. Shepperd, An empirical investigation into waiting in software
development projects. 1998, Bournemouth University.

24. Rainer, A.W., An Empirical Investigation of Software Schedule Behaviour, in Department of
Computing. 1999, Bournemouth University: Bournemouth UK.

25. Visser, W., Organisation Of Design Activities: Opportunistic, With Hierarchical Episodes.
Interacting With Computers, 1994. 6(3): p. 235-238.

26. Davies, S.P., Characterizing The Program Design Activity: Neither Strictly Top-Down Nor
Globally Opportunistic. 10, 1991. 3(173-190).

27. Suchman, L., Office Procedures as Practical Action: Models of Work and System Design.
ACM Transactions on Office Information Systems., 1983. 1(4): p. 320-328.

Computer Science Technical Report CS-TR-383

30 of 30

28. Lee, A.S., A scientific methodology for MIS case studies. MIS Quarterly, 1989. 13(1): p. 33-
50.

29. Rainer, A.W., A catalogue of 'analytic fragments' of the behaviour of a software project. 2000,
Empirical Software Engineering Research Group (ESERG) Bournemouth University:
Bournemouth.

30. Kitchenham, B., R.T. Hughes, and S.G. Linkman, Modeling software measurement data.
IEEE Transactions on Software Engineering, 2001. 27(9): p. 788-804.

31. Kitchenham, B., S.L. Pfleeger, and N. Fenton, Toward a Framework for Software
Measurement Validation. IEEE Transactions on Software Engineering, 1995. 21(12): p. 929-
943.

32. Institute of Field Archaeologists, Standard And Guidance For Archaeological Field
Evaluation. 1999, Institute of Field Archaeologists (University of Reading): Reading, UK. p.
21.

33. Hughes, W., Critical Thinking: An Introduction To The Basic Skills. 2nd ed. 1996, Ontario,
Canada: Broadview Press Ltd.

34. Fisher, A., The Logic of Real Arguments. 1988: Cambridge University Press.
35. Humphrey, W., Three process perspectives: organizations, teams, and people. Annals of

Software Engineering, 2002. 14: p. 39-72.
36. van Solingen, R., E. Berghout, and F. van Latum, Interrupts: Just A Minute Never Is. IEEE

Software, 1998. 15(5): p. 97-103.
37. van Genuchten, M., Why is software late? An empirical study of reasons for delay in software

development. IEEE Transactions on Software Engineering, 1991. 17(6): p. 582-590.
38. Rainer, A. Waiting in software projects: an exploratory study. in International Symposium on

Empirical Software Engineering. submitted. September 2003, Rome, Italy.

