Prototyping real time engineering systems
using Hatley & Pirbhai's requirement model

Technical Report No 131

David A Fensome

April 1992

PROTOTYPING REAL TIME ENGINEERING SYSTEMS
USING HATLEY & PIRBHAI'S REQUIREMENT MODEL

David A Fensome

School of Information Sciences, Hatfield Polytechnic,
Hatfield Herts AL10 9AB UK

Abstract A research programme is underway which is aimed at establishing
ways of prototyping real time engineering systems using existing concurrent
programming systems. The role of formal techniques in the development of
prototypes, and its subsequent reuse in a well engineered product, is also an
important theme. The first prototypes have used the Hatley & Pirbhai
Transformation Schema, and have been built using Ada. A case study is
described.

The research shows that a prototype based on Hatley & Pirbhai's requirement
model would require a significant structural overhead, mainly because of the
model 'execution' assumptions. Also Ada is an inappropriate language t‘;o use,
mainly because the tasking overhead is too great, but also because the
communications model differs from Hatley & Pirbhai's model. Some future

research direction are indicated.

Keywords Control system design, Computer simulation, Modelling, Prototyping,
Real time computer systems, Software development, Software specification,
Transformation Schema.

INTRODUCTION

A research programme is currently underway which is aimed at establishing

ways of prototyping real time engineering systems. In particular

* To evaluate the suitability of existing concurrent programming

systems

* To establish the role of formal techniques in the development of
prototypes

* To identify ways that this formality could subsequently be reused in the
development of a well engineered software product.

* To provide an environment to improve the prototyping process.

Prototyping in the context of this research means the examination of areas of
uncertainty in the functional requirements by execution of a software model.
Other aspects of prototyping such as target system performance and user
interface considerations are regarded as separate problems, and are not
considered. Real time engineering systems for this purpose covers that class of
systems that are event driven, are (software) process oriented, and concerned
with the control and monitoring of equipment in its widest interpretation
(sometimes called 'reactive' systems). See (Harel, 1992) for a general discussion

on modelling and prototyping of reactive systems.

The initial work is to build prototypes from requirements specifications expressed
in natural language and diagrams. The first prototypes have used the Hatley &
Pirbhai Transformation Schema (Hatley, 1988), since this is based on well
understood and widely used data flow techniques from Structured Systems
Analysis (Yourdon, 1989), and have been implemented in Ada. The rationale for
this strategy lies in the intuitive notion that mapping from a data flow model to a
concurrent procedural language (Ada in this case) should be easy. Earlier work
using Transformation Schema as a basis for prototypes can be found in (Coomber,
1990) where Smalltalk is used as a process definition language, and a Petri net

execution approach has been used.

THE CROOK PROOF VENDING MACHINE CASE STUDY

The first prototype was built using the Hatley & Pirbhai requirement model of the
'‘Crook Proof Vending Machine' (CPVM), and an Ada animation. The

requirements statement and top level modelling is described in Chapter 28 of
(Hatley, 1988), and briefly, is an attempt to build a vending machine that does not
allow customers to fool the machine into giving product when it should not. The

machine also has facilities for storing information on product quantity and price.

As the model was built assumptions were made about the mechanisms the
system had to interface into, since these were not available in (Hatley, 1988), and
were important in deriving the model. For example it was assumed each input
coin fell into a coin hopper where physical measurements were made on the coin
(producing the_object: PHYSICAL in Fig 1), and the coin was then routed to the

appropriate coin register, or returned to the user as a 'slug'.

Extracting the data models using the requirement dictionary given in (Hatley,
1988) was hard, mainly because emphasis is given to flow (and data store) 'types'
eg group/primitive, internal/external, control/data, discrete/continuous, whereas
the 'attributes’' name /units /range /resolution /rate contain most of the
information on data types. In fact both objects and types appear as entries in the
requirement dictionary, whereas separate entries in a types and a data dictionary

proved much more helpful in building the prototype.
USING THE REQUIREMENT MODEL AS A PROTOTYPE MODEL

Intuitively it would seem that the two models should be the same and the
animation could be coded directly from the requirement model. However there are

some problems with this.

Model Execution

The requirement model is built with the intention of 'mental execution', with only
fine grain execution (almost single step mode), and a lot of assumptions about the
execution environment. Firstly, as a consequence of the infinitely fast execution of
the processes in the requirement model, there is no interleaving of events and

each event is processed atomically. The prototype model would have to guarantee

this by serial feedback on completion of event processing, or by some overall
parallel monitoring of completion of data flow. Also the process model is only feed
forward, and any accidental feedback via a complex process network will not
produce deadlock or instability (or the mental execution environment will 'sort it
out'). Finally the activation/deactivation of sets of processes by the associated
control model must be completed after the atomic processing of an event, and this

therefore implies a separate control phase in the prototype model.

Data Flow

The requirement model data types require access mechanisms in the prototype
model eg a flow of 'read_price' (see Fig 2) requires to be changed to a new type

" 'price X product' for the prototype model. Also continuous data flow requires
special attention in the prototype model (see below), and data stores in general

require mutual exclusion mechanisms for readers and writers.

The requirements dictionary with standard BNF like data dictionary notation was
found to be satisfactory for a high level view of the system. However refinement of
types and objects using the Z type system (Potter, 1991), and separate dictionaries
for types and objects, allowed easy translation to Ada.

Finally data flow arrows entering a requirement model process do not necessarily
correspond to Ada task entries. Sometimes an Ada task will be in the 'server' role
(with entries), and sometimes active calling other tasks. A better graphical model
based on Buhr's notation (Buhr, 1984) was found to be much more convenient for

the prototype.

USING ADA AS AN ANIMATION TOOL

The requirement model uses hierarchical process decomposition which is
cumbersome to emulate with Ada's tasking model. This is because each level in
the requirement model requires an Ada task with a 'select' and multiple 'accepts’

just to pass on data to lower levels in the hierarchy.

package body context_data is

task body top_level is

begin
loop

select

accept the_object (.....) do
levell_data.validate_coins.the_object ()

end the_object;

or
accept etc

Fig. 3. An Ada implementation of a top level requirement process

Also the possibility of deadlock with this structure is very high because of the
additional rendezvous. This could be avoided by 'flattening’ the process network,
but this then means that large requirement models become potentially
unmanageable. Also the positive advantage of automatic consistency checking
between levels by the compiler (the balancing' part of the requirement model
build), would be lost.

This structural overhead, and associated deadlock risk, could be significantly
reduced using OCCAM with named channels as parameters to lower level

procedures (representing parallel processes), as shown in Fig. 4 below.

PROC level0 (CHAN OF INT coin,
CHAN OF REAL32 price.....

PAR
levell.1 (coin,)

levell.2 (price,)

PROC levell.1 (CHAN OF INT coin,)

PAR
levell.1.1 (coin,
levell.1.2 (....

Fig. 4. Skeleton OCCAM process structure using channels

However the data typing facilities offered by OCCAM are significantly poorer than
those of Ada.

Another problem using Ada is that the Ada task state is not the same as a
requirement model process state. In the requirement model a process is activated
and deactivated by the underlying control model (a finite state machine), which
effectively removes any communication with a deactivated process. In Ada a task
runs forever, or until terminated in some way, and then completes. This means
that entries have to be provided to activate and deactivate an Ada task, and in
addition, to be able to check the state of a task using a complex select/loop
structure for each requirement model process. A possible structure for each

requirement model process is shown below.

accept start

--first start
end
loop
select
accept entryl --data flow 'port'
-- process it
end
or
accept entry2
or
accept stop
end stop
loop
select
accept start
exit loop
end
or
accept is_go (..)
end
end select
end loop
or
accept is_go (..)
end
end select
end loop

Fig. 4. Possible process state emulation with Ada.

The Ada communication model is also different to the requirement model in
several ways. Firstly communication is not via a named channel, but rather by a
named port (the entry), giving the cumbersome Ada task structure mentioned
above. Also Ada tasks must check whether a consumer task is active before
communication is started, otherwise deadlock will occur. In addition it is
desirable to include a single buffer in an Ada emulation, at least to decouple
producer and consumer, but also to provide a simulation of a continuous data flow

(ie to allow random re-reads of a data flow by a consumer process).

Finally there is no direct equivalent of the split or merge data flow operations that
occur in the requirement model. These would have to be provided by yet another
Ada task.

These communications differences indicate that a generic package is required for
the Ada emulation, containing one task for each data flow, and generic
parameters defining the data flow type and the entry name of the consuming task.
This was built for unidirectional data flow, as shown in Fig. 5, but the Ada

language would not allow a generic split or merge.

generic
type MESSAGE is private;
--data flow type
with procedure fire_entry (the_mess : in
MESSAGE);
--consumer entry name
with function is_go return BOOLEAN;

--process state check

package uni_df is
procedure put_df (fwd_mess : in MESSAGE);
function get_df return MESSAGE,;

end uni_df;

package body uni_df is

buffer : MESSAGE,;
function get_df return MESSAGE is
begin
return buffer;
end get_df;

task buff_server is
entry put (input : MESSAGE);

end buff_server;

task body buff_server is

begin

loop
accept put (input : MESSAGE) do

buffer := input;

end put;
if is_go then fire_entry (buffer);
end if;

end loop;

end buff_server;

procedure put_df (fwd_mess : in MESSAGE) is
begin

buff _server.put (fwd_mess)
end put_df;

end uni_df;

Fig. 5.

Ada Uni-directional data flow emulation

CONCLUSIONS

Using Hatley and Pirbhai's requirement model as a basis for a prototype model is
not quite so attractive as intuition might indicate, mainly because of the
underlying 'execution’ assumptions described above. In fact a prototype based on
this model would require a significant structural overhead, almost like a

conventional discrete event simulation package.

Using Ada to animate the prototype has shown that Ada is not an appropriate
language, mainly because the tasking overhead is too great, and there is ample
opportunity for deadlock. The tasking overhead occurs when implementing the
requirement model process hierarchy, data flow and process state. One reason for
this overhead is that the Ada communication model is many to one 'ported’,
whilst named channels are used in the requirement model. To some extent
animations based on programming languages using channels, such as OCCAM,
would be better, as long as the data modelling and generic facilities are

reasonably good.

For these reasons it is not felt to be productive to pursue using Hatley and

Pirbhai's requirement model as a prototype model, or its Ada animation.

Then next stage of the research will focus on a more appropriate (perhaps more
abstract) requirement model without all the execution assumptions implicit in
Hatley and Pirbhai's requirement model. It is felt that implementing prototypes
from such models using conventional programming languages will be easier.
Candidate requirement models are a Z model (Potter, 91) and a UNITY model
(Chandy, 88), both based on mathematical models at a relatively high level of
abstraction. However the issue of non determinism in these specifications, and
how this is dealt with in the prototype, will have to carefully considered. The
UNITY model has some advantage here, since the model is based on
nondeterministic selection of statements executed in parallel and constrained by a

fairness rule. .

10

REFERENCES

Buhr, R. J. A. (1984) System Design with Ada Prentice Hall

Chandy and Misra (1988) Parallel Program Design Addison Wesley

Coomber, C. J. and Childs, R.E. (1990) A Graphical Tool for the prototyping of
Real Time Systems ACM Sigsoft Vol15 No 2 Apr 1990

Harel, D. (1992) Biting the Silver Bullet IEEE Computer Jan 1992

Hatley, D.J. and Pirbhai, 1. A. (1988) Strategies for Real-Time System
Specification Wiley

Potter, B, Sinclair, J and Till, D (1991) An Introduction to Formal Specification
and Z Prentice Hall

Yourdon, E. (1989). Modern Structured Analysis Prentice Hall

1

Product
the product Selector

the object Coln Hopper
Maintenance
coins Coin Register
Panel entered price)f_ &
~ selection

Control Panel

product available
DATA CONTEXT
hopper Coin Hopper
— -
-~
~
Maintenance
Panel Coin Reglster
N
N returned
N _colﬁ __ _| Centrol Panel
CONTROL CONTEXT

Fig. 1 Crook Proof Vending Machine

(after Hatley & Pirbhal)

the
object

entered price

Validate
Colns

2

product data current payment

read price

Validate
Selection

Glve change
4

3

selection

the

change
product .

product available

Fig. 2 CPVM DFD 0 Level 1

7 1949] ¢ dAD/ddd

TE
J|qe[ieAe
jonpoxd

prediaio

€303

g
a|qejreae jonpoad

(4%
JlqejreAe
jonpoad

jonpoid ayy uonoRes

pred y3nous

so1xd peax

Juswifed juarind

adueyo

suiod

T [°A9]

(44
suiod

0] 319AU0D

(44
Su10d
0] 1I9AU0D

v PI/PIP

juswdedisao

'y

adueyd
Jjemore)

154
aduep
Iemore)

jonpoxd a3

juswfed Jusiind

3o1ad peax

Validate
Coins

Get
Product
Price

1

hopper

2

s 7
coin inserted, ¢
Ve

/ ', “ min payment
’, .
return coins
Ve

//
product 7 //
given " »

overpaid

Validate .
Give change

Selection

3 4

CPVM CFD 0 Level 1

Areuonoip eleq - suiyoe|y Buipusp Jooid 001D

Yo| sway lonpoud jo Jequinu |elol
lolosjes 1onpoid eyl o} elep
pauesul 108lqo sjuesaidel eiep
[oued [osjuod 8y} wolj elep

)}oBq SUIOD || SJUBM Jawiolsho
elep jonpoid wol} peal eoud jonpoid
joued jonuoos syl uo 1yby

810}s uolijewJsojul 1onpoud

unowe siyy o) ebueyo salinbel
Asuow yonw oo} pied sey Jauwloisno
spoof 109|@s MOU UED J8WO}SND
Joddoy uioo indul sjosiuod

elep Indui soueualuieW

1500 =< juswdAedjusuno

juswAed ujoo |ebe| Jawolsno |10}
loysibel U100 [EOJUBYOBW BYl WO}
indur 6njs, e j0u

v

adA} yoee Jo sulod U 8AIB UBO WsIUBYOBW SBWNSSE

Sjuewwoo

0oPip
1X8Juo09o
1X81U090
1X81u09o
1X8l1U09o
opP4p
1X81U09
0pPip
144218
epIo

0p4°
1X8juo0o

1Xe1uoo
epip
op4o
1X81uoo

0p4°
1X81uo0d

aoualajay

H3ddOHSA00D
10Ndodd
IVOISAHd
10Ndo4d
IN3A3

1S00
Nv3100d
INDO0VIVO'd
AINON

AN3A3

IN3IAT
103rdo
JNOO0TVLVO
Nv3100d
AINON
H3ddOHNIOO
IN3IAT
H3ddOHNIOO

adA]

ejol

1onpoidT ey
108[gqo~ay}
uolloe|es
sul09-uinial
aolid ™ pesl
a|gejieAe 1onpo.id
BlepT1onpoad
1uswAedisno
predisno
uswAed uiw
Jaddoy
a9o1id"paisjus
pred ybnous
1uswAedusiing
sui09o
peilssul—uloo
abueyo

a|qelleA/mo|4

Type

CATALOGUE
COINCOUNT
COINHOPPER
COsT
GOODSHOPPER
MONEY
OBJECT
PRODUCT
PHYSICAL
DIAMETER
WEIGHT
EVENT

definition

PRODUCT X COST X GOODSHOPPER
0..Maxcount

COINCOUNT X COINCOUNT X COINCOUNT
Mincost..Maxcost

0 .. Maxhopper
Minmoney..Maxmoney
10pl20p|50plsiug

Beer | Cola

DIAMETER X WEIGHT

Mindia .. Maxdia

Minweight .. Maxweight

null

comments

50ps X 20ps X 10ps

assume just 2 products

no values

Crook Proof Vending Machine -Types Dictionary

