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Abstract

In this paper we investigate the applicability of the formal description language
LOTOS for specifying a concurrent system, We are particularly interested in how a specifier
might capture a system’s requirements, given LOTOS as a choice of target formal description
language. We show how a LOTOS specification can be modularised using encapsulated pro-
cesses. A simple case study is introduced, specified using LOTOS. Questions about different
design issues concerning process composition with regard to capturing the required behaviour
of the case study system are then raised, together with possible solutions.







Introduction

In this paper we specify, in LOTOS, a simple control system for use with a greenhouse
environment. A full version of the system’s specification can be seen in appendix B. From the
initial specification of the component parts of the system we shall compose these processes to
form the complete control system itself.

In the early 1980s the International Organisation for Standardization (ISO) decided to
develop a formal description technique to help with the mathematical modelling of computer net-
works and open distributed systems [1, 5, 6]. Those systems that were related to the Open
Systems Interconnection (ISO) seven layered architecture were to be the main beneficiaries of
the work on LOTOS. The idea was to be able to give LOTOS the power to model the relation-
ship between the temporal interaction of processes such that the behaviour of those systems
could be observed external to the system; that is time ordered communications between process-
es. LOTOS builds on the work of Milner’s CCS at Edinburgh [8] and Hoare’s CSP at Oxford
[4]. The syntax and semantics of LOTOS are based on both of these previous works. For more
information about the foundations of LOTOS see [3] which compares and contrasts all three
languages, CCS, CSP and LOTOS.

1 Process Specification

Our case study originates from a simple problem which is often given to students as part
of a design and specification course. It is a greenhouse control system (GHCS) containing six
components all working in parallel. The informal specification of each component is as follows:

Sprayer (Sp): Can be turned ‘on” or ‘off” by either accepting communications from the en-
vironment or the Hygromelter. If the Sprayer is left ‘on’ for oo long then it will timeout
and turn itself ‘off”.

Hygrometer (Hy): Accepls humidity readings from the environment, It uses these readings
to determine whether to tell the Sprayer to turn ‘on’ or ‘off* and the Window Controller
whether to ‘open’ or ‘close’. It can also accept user specified minimum and maximum set-
tings to determine the humidity range. ’ :

Window (W C): Accepts communications from either the Hygromeler or the Heater and the
environment which tell it whether 1o ‘open” or ‘close’. It has a static minimum and maxi-
mum range which it cannot move beyond. If an attempt is made to adjust the window be-
yond these preset ranges then a signal is sent to activate the Alarm, thus warning the envi-
ronment of a problem.

Thermometer (Th): Accepts temperature readings from the environment. Similar in opera-
tion to the Hygrometer. The temperature readings are used to determine whether to tell the
Window Controller to ‘open’ or ‘close’ and the Heater (o ‘wurn up’ or ‘turn down’. This
process also has minimum and maximum temperature seltings to use when validating the
temperature range.

Heater (He): Accepts communications {rom the Thermometer which tell it to ‘turn up’ or
‘turn down’. It has presel, static, heat settings which it cannot be set beyond. Attempts to
adjust the Heater beyond its presct limits will result in a signal being sent to the Alarm,
warmning the environment of a problem.

Alarm (AD): Accepls communications from the Window Controller and the Heater process-

es. Upon receipt of a signal the alarm will sound. It can be reset by the environment or
will timeout and turn itsell ‘off”,

We can represent the lines of communication between these processes as follows:




OO
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Figure 1.1

This simplified diagram of the complete system omits the exact details of the communi-
cations because it only shows how the components connect to each other and not the nature of
those connections. Later in this paper we look at the actual communication channels that are rep-
resented by these connections. Our model will show the communication gates that exist for each
process.

Typically, the LOTOS process descriptions will have the following format:

process processName| gateList](parameterList:parameterType)
process description

endproc (* comments *)

Section 1 of appendix A presents those elements of the LOTOS syntax that we require to
model the GHCS, together with simple examples of how each expression is used. For the green-
house control system the first process that we formally specify is that of the Sprayer.

SpGates def (SetSprayOn,SetSprayOff, sprayOn, sprayOff}

process Sprayer[SpGates](s:State) : noexit :=
[not isOn(s)] — SetSprayOn;Sprayer[SpGates](on) [] sprayOn,;Sprayer[SpGates](on)

{]
[isOn(s)] — (i;Sprayer[SpGates](off) [] SetSprayOff:Sprayer[SpGates](off) []
sprayOff,Sprayer[SpGates](off)
endproc (* Sprayer *)

The signature of the process Sprayer has a gate-list (/SpGates]) through which the pro-
cess communicates with the environment. The parameter s.State encapsulates the state of the
process. In this case the fact that the Sprayer is ‘on’ will be recorded in the parameter s.State
when a call to Sprayer is made. We discuss this encapsulation of state in more detail later. The
Sprayer is defined recursively and as such will not terminate. It is said to have the functionality
noexit.

Inside the main body of the process definition there are two guarded sequences of ex-
pressions, denoted by [x] — processA. We can view the functionality of the guards as:

[false] — processA = stop (deadlock)
and
[true] — processA = processA

where the truth value of the guard will determine the behaviour of the process. In the first
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case a value of false will cause the process to stop, which denotes deadlock in the system. A
value of frue simply causes the process to behave as specified in the expression following the
guard.

The Sprayer can only be in one of two states, ‘on’ or ‘off’, so we combine the two
guarded expressions together using the nondeterministic choice operator ({]). If the Sprayer is
‘on’ then it can only be turned ‘off ’(either by the environment, internal communication or hid-
den i-action) and vice versa.

A distinction should be made between the use of the square brackets to define both the
guards and the nondeterministic operator (e.g: [x] — actionl; processA and processA []
processB). They are not related in any sense. For nondeterminism we can categorise degrees of
visibility in view of the system boundary and observable actions. Although this may sound
strange consider the following diagram.

External SetSprayOn SetSprayOff

sprayOn
Internal

Level of Visibility

Hidden

i-action

Figure 1.2

From the external environment’s point of view the choice of actions may appear to be
more deterministic because we can observe every action that occurs at this level and influence it.
We can think of this observation as cause-and-effect where causing some action effects the be-
haviour of the process. We can therefore ‘determine’ what action occurred. Internal actions can
be restricted from the environment so that they cannot be observed. Consequently, there is less
cause-and-effect at this level of determinism because actions elsewhere may have caused the ef-
fect that it observed by the environment. Hidden actions occur deep within the processes of a
system and are not influenced at all by external or internal actions. The environment does not
have any control over internal actions, either explicitly or implicitly. :

When trying to predict the levels of determinism that a process exhibits we tend to think
in terms of the whole process itself, not the individual actions that make the process up. For ex-
ample, consider the following process definitions:

VM1 dgl‘ Iitea. VM + i.collee. VM1

VM2 dgf tea,. VM2 + colfec. VM2

The first vending machine (VM1) may, or may not offer tea or coffee whereas the second
machine will always supply the requested beverage. The i-action makes VM1 less deterministic
than VM2 which is usually shown as VM1 < VYM2. One way to test for determinism is to com-
pose a test process (which might ask for tea) with the VM processes and look at how many
times the VM process passes the test.

At this point it is worth discussing the internal i-action in more detail. In LOTOS this ac-
tion is used to denote some form of action that cannot be observed by the environment. In our
example the internal i-action specifies that when the Sprayer is in the on’ state some nondeter-
ministic amount of time elapses before the Sprayer evolves into an‘off’ state. The actual time
that elapses, denoted by the J-action, cannot be predicted as it is absolutely nondeterministic. In
practice this could be at an instance (now) or at any time in the future. We use it to show some
method of elapsed time but at the implementation level we would have to define exactly what pe-
riod of time would be required. The Alarm process uses the i-action in a similar way for the
same reasons at stated here.
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The Hygrometer process introduces new notation which we discuss after its formal spec-
ification.

HyGaltes dgf {SetMinHumid,SetMaxHumid,Readlumid sprayOn,sprayOff.open,close}

process Hygrometer{ HyGates](min:Humid,max:Humid) : noexit :=
SetMinHumid ? h:Humid;
([h le max] — Hygrometer[HyGates](h,max)

[h gt max] — Hygrometer{HyGates](min,max))

{]
SetMaxHumid ? h:Humid,
([h ge min] — Hygrometer[HyGates](min,h)

{]
[h It min] — Hygrometer[HyGates](min,max))

{]
ReadHumid ? h:Humid,
([h It min] — sprayOn;close;Hygrometer{HyGates](min,max)

[h gt max] — sprayOff:open;Hygrometer[ HyGates]{min,max)

[h ge min and h le max| — ygrometer[ HyGates](minmnax))
endproc (* llygrometer *)

The expression SetMinHumid ? h:Humid,; accepts a value of type Humid, stored in the
variable 4, at the gate named SetMinHumid. This reads as some input value into the process via a
named gate and stored in a variable. The value of / is then used within the guards to determine
the choice of action. According to the outcome of the guards new values are stored using recur-
sive calls that change the state of the Hygrometer (in terms of its min and max values). To see
this effect look closely at the parameters of the following extracts of Hygrometer:

* [h le max] — Hygrometer{ HyGates](h.max)
> [h ge min] — Hygrometer{HyGates|(min,h)

The current humidity reading is accepted at the ReadHumid gate and the Hygrometer’s
actions are dictated according to that reading. If the humidity is within an acceptable range (h ge
min and h le max) then Hygrometer is simply called recursively with no changes to its state or
communications to other processes.

It is worth mentioning why we need to keep encapsulating the states of the processes in
the system when we refer to them. The reason for this encapsulation is because LOTOS has its
data model founded upon an algebraic specification language, namely ACT-ONE [7]. This im-
plies that we cannot specify the storage of some static state inside a process. We cannot model
static data (or state) like the data contained within a record structure in some programming lan-
guage. Consequently, the representation of a process’s State is continually referred to when call-
ing the process and is not actually stored anywhere—the state of the process is totally dynamic.
Alternate views concerning the formal modelling of data in communicating systems do exist [2],
but we will not discuss them here. Examples of encapsulating the current state of a process can
be seen throughout the GHCS and in the next process definition, the Window Controller.

WCGates dgf {SetWindow,open.close,on)

process Window[WCGates|(cw:Level) : noexit :=
SetWindow ? cw:Level,Window/WCGates](cw)
[]
open,
([not isMaxLevel(cw)] — Window[WCGates](incLevel(cw))

!
lisMaxLevel(cw)] — on,Window[WCGates|(cw))
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[

close;
([not isMinLevel(cw)] — Window[WCGates](decLevel(cw))

]
[isMinLevel(cw)] — onWindow[WCGates](cw))
endproc (* Window *)

The current state of the window is stored in the variable cw and is used to determine
whether the window can be opened or closed, according to some predefined range. The Window
process itself can receive communications from either the environment, the Hygrometer or the
Heater. The Window process may be set to some level, determined by the type Level, or it can be
incremented or decremented via some internal communication from another process. It is not
possible to set the window to some value that is out of range in the SetWindow action because of
the type restrictions on Level (see appendix B). However, if one of the hidden communications
tries to set the window past the defined range of Level then the Alarm process is signalled.

The Thermometer process is similar in behaviour to the Hygrometer process. Readers
might like to think about future specifications where the renaming of gates in a generic process
would yield both a Hygrometer and Thermometer process. Due to the similarities between
Hygrometer and Thermometer we can keep our commentary to a minimum,

ThGates dgf (SeiMinTemp, SetMaxTemp,ReadTemp inc,dec,open.close)

process Thermometer[ThGates|(minTemp,max:Temp) : noexit :=

SetMinTemp ? t:Temp;
([t le max] — Thermometer[ThGates](t,max)

{1

[t gt max| — Thermometer[ThGates](min,max))

SetMaxTemp ? 1:Temp;
([t ge min] — Thermometer[ThGates](min,t)

[t Lt min] — Thermometer[ThGates](min,max))

[l
ReadTemp ? 1:Temp;
([t lt min] — inc;close; Thermometer{ThGates](min,max)

([

[t gt max] — dec,open;Thermometer{ ThGates](min,max)

[

[t ge min and | le max] — Thermometer{ThGates](min,max))
endproc (* Thermometer *)

The Thermometer communicates with both the Window Controller and the Heater. If
the temperature drops below a certain level then the Heater is told to turn ‘up’ (inc) and the
Window is told to close (close). The opposite actions are requested if the temperature gets too
high. If the current temperature is within the predefined range then the Thermometer simply re-
verts back to its original state (i.e: no changes to its state).

Moving on to Heater we again notice similarities between this process and Window.

HeGates dg‘ {SetHeat,inc dec,on}

process Heater[HeGates](ch:Level) : noexit :=
SetHeat ? ch:Level;Heater(ch)
[
ine;
([not isMaxLevel(ch)] — Heater[HeGates](incLevel(ch))

[
[isMaxLevel(ch)] — on;Heater{HeGates|(ch))
[]
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dec,
([not isMinLevel(ch)] — Heater[HeGates](decLevel(ch))

{1
lisMinLevel(ch)] — onHeater[HeGates|(ch))
endproc (* Heater *)

The Heater behaves in a similar way to the Window process. It is linked to the
Thermometer and the Alarm. If the heater is asked to turn up above its maximum setting, or turn
down below its minimum setting (inc, [isMaxLevel(ch)] or dec; [isMinLevel(ch)]) then the
Alarm is signalled to alert the environment of a problem. This behaviour certainly underlines its
similarities with the Window process.

The final process is, the Alarm. Although it bears some similarities with Sprayer it is not
completely identical in behaviour.

AlGates def {on,SetAlarmOff}

process Alarm[AlGates](s:State) : noexit :=
[not isOn(s)] — on;Alarm{AlGates](on)

[l
[isOn(s)] — (i;Alarm|AlGates](off) [ | SeiAlarmOff:Alarm{AlGates](off))
endproc (* Alarm *)

The Alarm process only has two named gates which link it to the environment; commu-
nications via the gate named on originate from both the Heater and Window processes. As with
similar behaviour in the Sprayer process the Alarm process is either in an ‘off’ state or in
an‘on’ state. There is no external environment communication to set the Alarm on, only the in-
ternal communications themselves can turn the Alarm ‘on’.

The complete structure for the GHCS can now be represented in the following diagram,
showing all of the defined processes and the communication gates between them

ReadHumid
SetMinlumid SetMaxt{umid
SetW i?dow
’ F
SetSprayQn— sprayOn open )
. , P { 1y close /T WC
SetSprayOfj— sprayOf] Nt
opey, on
SetMinTemp,
SetM axTemp. L SetAlarmOff
ReadTemy
inc
Environment Boundary Settleat

Figure 1.2

The set of gates for each process define the basis of the communications links that are
present in figure 1.2. The actual composition of the processes to form the complete system is the
subject of the next section.




2 Process Composition

Large individual processes are not ideal when it comes to building large systems. It
would not be advisable to build one large monolithic process that performs the functions of
many smaller ones. Experience has taught us that the flexibility enjoyed by large systems built
from smaller component parts is a design technique that should be encouraged. To build these
systems we need to be able to bring processes together so that they can communicate with each
other to form concurrent systems. Section 2 of appendix A introduces the various LOTOS com-
position operators that give us control of process composition.

In LOTOS, the use of three composition operators (///, /[x]/ and //) will effect the be-
haviour of the overall system depending upon how those operators are used. Both the interleav-
ing and full synchronisation operators can be defined in terms of the selective parallel operator.
Consider the following equivalences, noting that the alphabet o of a process pN (shown as apN)
is the set of actions that process p/N can engage in:

opl = {all,al2} and op2 = {a2],a22}
spljl p2 =pl fopluap2]] p2

e pl )l p2 =pl [le]] p2 where ¢ denoles the cmpty set.

From the equivalences it is shown that full synchronisation is equivalent to selective par-
allel composition using all of the actions specified for the composed processes and process in-
terleaving is equivalent to selective parallel composition where no synchronisation occurs, leaving
the composed processes to proceed independently.

LOTOS achieves multiple communications by using gate names that are common across
more than one process. This multi-way communication is a powerful feature of LOTOS and to
avoid problems with processes waiting on each other selective parallel composition should be
used carefully. Synchronisation between two processes can then be extended to multi-process
communication (synchronisation) by composing several processes together using selective paral-
lel composition. Like so:

((p1 /[x]{ p2) [{x]] p3) /lx]| p4

where the processes p/ and p2 synchronise together, then with p3 and finally with p4. The sys-
tem will not progress until they all synchronise together but we can view the expression as oc-
curring in the order dictated by the brackets. For LOTOS specifications, with their lack of
unique gate-naming, the gates x, in the selective parallel operator (/[x]/), take part in a multi-pro-
cess communication where each named gate must take part in a synchronised communication.
The fact that LOTOS provides this flexibility with its three composition operators underlines its
power as a specification language. LOTOS forces the specifier to consider the issues surround-
ing multi-process communication, synchronisation between processes and the overall system’s
behaviour.

3 Capturing Concurrent Behaviour

In our GHCS model an expression like (pl /[x]] p2) /[x]/ p3 would deadlock the
Hygrometer, Window and Thermometer, together with the Window, Heater and Alarm until all
of the processes could agree to perform the same synchronising action using the commonly
named gate. Although the p//p2 composition could progress the whole system would have to
wait on pJ.

Our aim is to keep processes in certain parts of the system from having influence over
other non-related processes in other parts of the system. If we maintain a high-level view of the
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system we notice that there are two distinct parts to the GHCS with boundaries that can be drawn
around parts of the whole system. Both the Sprayer/Hygrometer and Thermometer/Heater parts
communicate with the Window part of the system. These first two parts do not (and should not)
communicate with each other, as they would if we simply used selective composition alone
throughout the construction of the system. The composition is quite straight forward but we
must consider restricting the composed actions so as to hide unnecessary communications from
other parts of the system and the environment.

4 Hiding Communications

In LOTOS a method of hiding internal actions is provided (as presented in section 3 of
appendix A). Each system can have its actions restricted from observation by the environment
using the hide operator. For each action that is hidden from the environment an internal i-action
occurs, The example below shows the syntax of the hide operator.

process System{a,b.c| : exit ;=
hide ain
a;b;e;SystemA ab.cl

endproc

The sequence of actions that System performs will resemble the action trace <i — b —
¢>, where i is the hidden action. By restricting certain actions we can enforce the behaviour of
our system to keep the environment from gaining access and influencing the processes within, A
combination of action hiding, selective parallel composition and interleaving will keep the pro-
cesses separate. Therefore maintaining the encapsulation and modularity that we require to cap-
ture the required behaviour of the system. This encapsulation allows us more freedom when
specifying complex systems.

S5 Building the System

For our system we need to construct capsules (or parts) which will house the composed
processes that we need to synchronise together. These parts have to be specified so that they can-
not be tampered with by their environment (whether internally or externally). We would like to
model absolute modularity, hiding any internal communications that take place within a capsule.
The following definitions will therefore provide the encapsulated structure that we are looking
for.

Firstly, let us remind ourselves of the contents of the gate lists for each process,

Sprayer spGates def {SetSprayOn,SetSprayQff,sprayOn,sprayOff}

Hygrometer hyGates def {SetMintiumid,SetMaxHumid ReadHumid,sprayOn,sprayOff,open,close}
Window weGates d_gf {SetWindow,open,close,on}

Thermometer thGates dg? {SetMinlemp SetMaxTemp Readlemp inc,dec,open,close}

Heater heGates def {Setlleat inc,dec,on}

Alarm alGates dg_f {on.SetAlarmOff}

and then introduce the shorthand notation for use with the specification of the parameter lists for
each of the parts,
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spState def {sprayer}

hyState def {minHumid,maxt{umid}
weState def {window}

thState dgf {minTemp,maxlemp]
heState def {heater}

alState def {alarm}

The sections which make up the GHCS can be referred to as parts of the GHCS. The
Sprayer and Hygrometer both need to synchronise on common actions. We compose them
using selective parallel composition and then encapsulate them with the hide operator. This en-
closes the part SpHy and stops any influence on the communications that take place within the
part via the gates sprayOn and sprayOff.

s process SpHy[spGatesuhyGates](spState:State,hyState:Humid) : noexit :=
hide sprayOn,sprayOff in
Sprayer[spGates|(spState) J{ sprayOn,sprayOff]] Hygrometer[hyGates](hyState)
endproc

Readl{umid
SetMintlumid SetMaxHumid
(PR ron -
SetSprayOn — sprayOn
Sp ) { 1r[y) (){)en
SetSprayOff - SprayO)] \// close

Figure 5.1

Part ThHe uses the same techniques to keep itself immune from external influence. The
common actions are again used for composure and subsequently used to hide the internal com-
munications from the environment, thus completing part ThHe.

s process Thie[thGatesheGates](thState Temp,heState:Level) : noexit ;=
hide inc,dec in
Thermometer{thGates](thSate) [[inc,dec]] Heater[heGates](heState)
endproc

open  close

SeiMinTemp___
SetMaxTemp |
Readlemp —

Settleat
Figure 5.2

Part STWin brings the first two parts together so that they do not interfere with each
other. Parallel composition is used to achieve this requirement. We not want to broadcast any in-
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formation about the internal workings of SpHy or ThHe. As an example of information hiding
consider the gates sprayOn, sprayOff, inc and dec which are defined in SpHy and ThHe. They
are hidden from STWin and cannot be accessed by it.

We use interleaving at this stage of the system’s composition to enforce a strict separa -
tion between SpHy and ThHe (we need process independence). We do not want these two mod-
ules talking to each other because they contain common gates and would consequently have to
wait on each other, forcing delays and possibly deadlock. However, we can selectively compose
them with Window because they communicate via common gates and are interleaved in doing so.
Either SpHy or ThHe can talk to Window, but not both at the same time and not to each other.

» process STWin[spGates hyGates thGates heGates,weGates]
(spState:State hyState :Humid thState ‘Temp,heState :Level,wcState :Level) : noexit =
hide open,close in
(SpHy[spGates UhyGates](spState :State, hyState :Humid) [j]
Thile{thGatesUheGates](thState:Temp heState:Level)) [[open,close]/
Window|wcGates](weState)

endproc
ReadlHumid
SeiMintlumid SeiMaxHumid
SetWindow
(B N A
SetSprayOn 7\ sprayOn 27N open
) ( Sp Ity close WC }4—on
SetSprayOff 4 sprayQf] \_ _/ j
open,
close
SetMinTemp
SeitMaxTemp ( Th
ReadTemp
inc dec
He STW
\_ o

Setlleat

Figure 5.3

We can define the GHCS to be complete by including the Alarm process and hiding the
communications with it so that the environment cannot influence the activation of the Alarm. The
complete modularised specification follows, together with a diagrammatic representation of the
same system.

s process GHCS[spGates hyGates hGates,heGates,weGates,alGates]

(spState:State hyState :-Humid,thState :Temp,heState :Level,wcState :‘Level,

alState:State) : noexit =
hide on in

STWin/spGates,hyGates,ihGates,heGates,weGales]
(spState:State hyState :Humid thState :Temp,heState :Level,wcState:Level)
Hon]]

AlarmfalGates|(alState)
endproc
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ReadHumid

SetMinHumid SetMaxtumid
SetWindow
4 I
(IR ~ I
SetSprayOn /N prayon N open 7
Sp ] | Hy ] close 7\ WC
SetSprayOff ~—r sprayOff N/ Wy,
open, on
close
SetMinTemp L SetAlarmO
SetMaxTemp ( Tn etAlarmOff
ReadTemp A on
inc dec
He mr@
\& ~— ’
Setlleat

Figure 5.4

We have built the GHCS specification to be flexible in terms of modularisation. By
using the language constructs to separate each process we have kept the system partitioned and
free from unnecessary complexity. Also, a deeper understanding of the semantics of the compo-
sition operators has allowed us to manipulate the expressions to capture the correct behaviour of
our system.

7 Conclusions

One of the initial goals of this work has been to determine whether LOTOS could be
used as an equal platform (compared with other formal specification languages) from which we
could specify the behaviour of systems. From a potential implementor’s point of view the
LOTOS specification (shown in appendix B) would be easier to comprehend due to its layout
and use of familiar programming-style format.

One key part of our investigation has centred around the design approach that we might
adopt if we already knew that LOTOS was the specification language. The decision to modu-
larise the system was an obvious choice and LOTOS certainly provides the necessary syntax to
allow us to model processes individually. The way that the specific communication gates have
been included in the LOTOS process definitions together with the ability to model multiple com-
munications has helped us to keep track of which processes can talk to which. Consistent gate
naming is therefore enforced throughout the specification,

One of the main advantages of LOTOS came to light when we tried to link the separate
GHCS processes together. LOTOS has a strict view of process composition and consequently
the language forced us to adopt a stricter approach to the composition of the system compo-
nents. The use of the same gate names in LOTOS, across different processes, was the main
issue. One advantage with this view of a system is that multiple communications between numer-
ous processes can be achieved because all of the processes talk via the same gates. We viewed
this multi-process communication as a direct result of the networking requirements that LOTOS
was originally intended to satisfy. From one process multiple communications with many other
processes can be achieved. This type of communication satisfies a standard network requirement
where a broadcast message is sent to all current users. With this type of multiple communication
available to us we had to think carefully about the composition of the GHCS processes.
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available to us we had to think carefully about the composition of the GHCS processes.

The LOTOS specification of the GHCS is very close to one possible implementation of
the same system. Although we found the formality of LOTOS to be more useful in terms of
thinking about the problem we concluded that a high level first draft specification was a better
way to begin the task of specification; due to its more relaxed structure. A good method to adopt
for the writing of a LOTOS specification can be derived from a typical step-by-step approach.

(1) Write a draft specification using an abstract notation such as CCS.
(2) Convert the abstract notation into LOTOS syntax.
(3) Implement the specilication in a programming language such as Ada.

These three stages of development might prove to be more productive than jumping
straight into LOTOS itself. We certainly found them useful when trying to think about specify -
ing the behaviour of the GHCS in terms of a new language

We could not claim to have covered all of the issues that even our simple GHCS system
has raised; later papers are aimed at filling some of these gaps. However, the main approach to
specifying a system in LOTOS has now been covered, together with the design approaches that
the LOTOS language implies through its syntax and semantics.

In conclusion, we have shown how LOTOS supplies us with enough tools to enable us
to attempt many problems that would normally be solved using the more traditional formal speci-
fication languages. We could argue that for certain problems a specification written in LOTOS is
a better document for communicating a formal specification about a concurrent system than one
written in a less programming language style. Such problems may fit a LOTOS-style approach
better than other languages which claim to cover the same ground.
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Appendix A — LOTOS Syntax

1 Language Syntax

The LOTOS language is made up of the following expressions. The examples give some
idea as to the way in which these expressions can be used.

Action Prefixing

Perform one action and then progress into a state where the next action can be performed.
Symbol Example
N st

Non-deterministic choice.
A choice between two possibie actions, where either choice may be chosen with no
preference.

Symbol Example

[ sl

Guarded Actions
Perform some guarded action only if the guard itsell holds true.

Symbol Example

[Boolean expr| — y [x=0] — pass [] [x #0] — fail
Recursion
The power to call the process x from within the actual process x; causing self-reference,

Symbol Example

noexit process z[p,q,r](s.t) . noexit :=

c'zlp.qri(s.)
endproc

Boolean Operators
Used within the guard’s expressions (o determine truth value,

Symbol Example

eq.nell, [xeqy] =, [xneyl =, [xlty] —,
ot le,ge [x gt y] =, [xley] -, [x gey] —

Extra Boolean operaior, exclusive to LOTOS guarded
expressions

not [not x| —

Input and Qutput (1/0)
Data passed into and out of the processes within the specified environments,

Input Symbol Output Symbol 1/0 Examples

Accept x, of type X Output y on gate t

on gate s

s7x:X tly Read ? x:X
Write !'y

Internal Actions
Some unobservable action that is performed by a process and is hidden from the
environment. Often used to show some internal aclion or user interaction in a non-
deterministic time frame (timing/timers). Processes with hidden actions can progress given
some external communication but no evidence as to the nature of the communication will
be visible to the environment.

Symbol Example

i [x #0] — s;i;1.P(x)

LOTOS Syntax and Examples




2 Composition Operators

Process composition is achicved via the [ollowing operators, Combinations of these
operators will change the behaviour of the system so care must be taken to ensure that the
semantics of each operator is understood. Future work on this subject will introduce the
semantics more thoroughly,

Full Synchronisation
Processes joincd together in full synchronisation must synchronise on every action and
cannot proceed independently (‘If T can do it then you must do it, else neither of us can
proceed’). For pl 1o proceed p2 must also be in the same state, ready o proceed. This is
the strictest form of synchronisation because it ranges over all processes composed using
it, forcing the processes that are ready to communicate 1o wait for those taking part in the
full synchronisation.

Symbol Example

/! pl/l p2 J] p3

Process Interleaving
In some ways we can think of process interleaving as the opposite of full synchronisation.
Interleaved processes can engage in separate actions, independent of other processes in the
system, For example, two people at a desk in an office can communicate with each other or
the rest of the office, or carry on with their own tasks, independently, If some
communication does occur with these two people (which we model as processes) then
some synchronisation with the receivers must also occur (like any other process
communication).

Symbol Example

1/ pl Il p2

Selective Synchronisation
A selective parallel operator can be used 10 synchronise processes on common actions
listed within the operator, For example p //x// p2 will sclectively synchronise on action x
and proceed in parallel for other actions. The selective parallel operator is binary and
associative and il used in a multi-way communication will require x 1o synchronise across
all listed processes containing x. The rules for the use of /[x]/ also state that in a case
suchas (p! /[x]/ p2) ]yl p3 the process p3 will synchronise in a non-deterministic way
with cither process p/ or p2 on cvents exclusive 1o p3; that is to say that p3 will
synchronise with p/ and p2 if they share some common gate, Remembering that if all of
the processes share the same gate name then they will all have 1o synchronise on that gate
with the appropriate action.

Symbol Example

/1xl/ pllx]] p2

LOTOS Syntax and Examples
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