DEPARTMENT OF COMPUTER SCIENCE

Concrete Examples (using CSP) of Process Algebra Templates
and Their Children

P.N. Taylor

Technical Report No. 280

April 1997

Concrete Examples (using CSP) of Process Algebra

Templates and Their Children

P. N. Taylor.
Department of Computer Science, Faculty of Information Sciences,
University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9AB. U.K.
Tel: 01707 284763, Fax: 01707 284303, Email: p.n.taylor@herts.ac.uk

April 4, 1997

Abstract

This paper describes the concepts of template, class, object and type between processes
defined using the process algebra CSP.

We are primarily concerned with the issues of reuse and behavioural compatibility, partic-
ularly the stability of systems that incorporate object-oriented inheritance via the incremental
modification of existing behaviour.

It is intended that this paper provide concrete process algebra examples for the main
concepts of the object-oriented paradigm. The formal language of CSP is used to specify the
object-oriented concepts defined in the ISO Reference Model for Open Distributed Processing
(RM-ODP) 10746 (Part 2). In this paper CSP processes that are related via strict inheritance

(i.e: incremental modification) are classified using their RM-ODP definitions. Conformance
and extension testing are then used to prove the behavioural compatibility of simple examples
which incorporate reuse.

In order to build an object-oriented concurrent system, components must be classified
in terms of template, class, object and type and shown to exhibit behavioural compatibility

where inheritance is used.

Introduction

The reuse of a specification’s components via object-oriented inheritance is an efficient method of

specifying a system, as behaviour need only be defined once and then used many times throughout

the specification of a system.

Extending the defined behaviour of a process specialises that process. To ensure that one
component is a valid implementation of an existing specification, conformance testing (Q conf P)
and extension testing (@ eztends P) are performed.

This paper extends a previous work [14] on the provision of natural number examples to
cover the object-oriented concepts defined by the International Standardization Organization
(ISO) Reference Model for Open Distributed Processing (RM-ODP) 10746 (Part 2) [8].

The RM-ODP document is intended to act as a central repository for the definition of terms
used in the production of networks and distributed systems. In this paper we develop examples
of simple buffers which incorporate reuse in their definitions.

The RM-ODP definitions for template, class, object and type are the foundation for the
testing of each of the case study’s components in order to identify behavioural compatibility.

An inheritance hierarchy is defined between the given examples in this paper. Inheritance
is realised as an incremental modification technique using CSP external choice as the glue that
binds new behaviour to old. The reader is referred to the work of Wegner [15] for an in-depth

discussion on incremental modification. In this work three forms of inheritance are identified:

1. Strict Inheritance (i.e: incremental modification) which guarantees behavioural compati-

bility.

2. Casual Inheritance (i.e: the modification of existing behaviour) which does not guarantee

behavioural compatibility.

3. Transitive Inheritance (e.g: R Cinherits @ Cinherits P = R Cinperits P) which further defines

the inheritance hierarchy.

The process algebra CSP [7] is used to define the behaviour of the example processes. No prior
knowledge of CSP is expected. However, reference material, such as [7] and [5] are recommended
for a deeper understanding of the concepts and proofs contained in this paper.

The descriptions of the ODP terms presented here are taken jointly from the ODP document
itself [8] and its interpretation by both Rudkin [11] and Cusack [4, 3].

Section 1 of this paper introduces the ODP definitions of template, class, object and type as
they appear in the work of the ODP [8], Rudkin [11] and Cusack [4, 3]. Subtype and subclass

definitions are also given and are further related in section 6. Conformance and extension testing

are used to provide evidence of compatibility between the example process definitions in view of
the ODP definitions.

Section 2 presents concrete examples of the ODP terms introduced in section 1. Proofs
of behavioural compatibility between the example processes are presented using conformance
(Q conf P) and extension (@) extends P) testing,.

Section 3 presents proofs between templates to show that one behaviour extends another.

Section 4 defines subtype and subclass relationships between the examples used throughout
this paper.

Section 5 discusses inheritance realised as the incremental modification of templates. Contra-
diction of predicates, their substitution in an environment and examples of contravariance and
covariance are also presented.

Section 6 looks at subtype and subclass relationships between templates and presents examples
of when these two terms are not equivalent.

Section 7 presents the conclusions drawn from this work and suggests future work concerning
the reuse of specifications using inheritance with incremental modification together with asyn-

chronous communications to avoid ‘deadlock’.

1 ODP Definitions of Object-Oriented Concepts

The following definitions are taken directly from the ODP Reference Model document [8] and are

supplemented with extra observations from the work of Cusack [4, 3] and Rudkin [11].

o X Template: The specification of the common features of a collection of Xs in sufficient

detail that an X can be instantiated using it. X can be anything that has a type.

Also, a template is an abstraction of that collection. Templates may be combined according
to some calculus. The precise nature of the combination is determined by the specification

language used (in this paper CSP external choice).
e Class (of Xs): The set of all Xs satisfying a type. The elements of the set are referred to
as members of the class.

Also, the set of all objects obtained from a given template (known as the class template)

by a process of instantiation. Each object is an instance of the class template.

Note: A class may have no members. The size of the class may vary over time, depending

upon the definition of the type.

e Object (instance): An object is an instance of a class when it is related to the class
template via some chosen membership relation (i.e: it conforms to the predicate of the

class template).

o Type (of an X): A predicate characterising a collection of Xs. An X is of the type (or
satisfies the type) if the predicate holds for that X. A specification defines which of the
terms it uses have types (i.e: are actually Xs). In RM-ODP types are needed for, at least,

objects, interfaces and actions (these last two are relevant to this study using CSP).

e Subtype/Supertype: A type A is a subtype of a type B, and B is a supertype of A, if

every X which satisfies A also satisfies B.

e Subclass/Superclass: One class 4 is a subclass of another class B, and B is a superclass

of A, precisely when the type associated with A is a subtype of the type associated with B.

The target process algebra CSP can now be briefly described prior to illustrating the ODP terms

introduced in this section.

2 Concrete Examples of Object-Oriented Concepts

The main aim of this paper is to provide the reader with concrete examples of the ODP terms
described in section 1 using a process algebra. The language of CSP can be used to describe such

terms.

2.1 Basic Laws of CSP

The process algebra Communicating Sequential Processes (CSP) was developed by Tony Hoare
and others at Oxford University towards the end of the 1970’s [6].

CSP permits the formal specification of sequential processes and the composition of those
processes to describe concurrent communicating systems.

The central core of CSP is built around a process which is governed by its alphabet, consisting

of those externally visible events with which the process may engage.

aP denotes the alphabet of a process P which may only engage in actions that are specified in

its alphabet.
traces(P) denotes the sequence of observable actions with which P has previously engaged.

failures(P) denotes the failures of P which is a set of (s, X) tuples. Each (s, X) consists of a

trace s and a refusal set X of P, denoting events that P refuses after s has occurred.

divergences(P) denotes the divergences of P. The traces after which P behaves like CHAOS 1!

(i.e: behaves like any other process; being completely non-deterministic).

(P || @) denotes the parallel composition of processes P and) which then communicate with

each other on events shared between their alphabets.

(P O Q) denotes an external (deterministic) choice between process P or @ that is offered to

the environment. The choice being influenced by the environment.

(P Q) denotes internal (non-deterministic) choice between process P or), where the processes

themselves make the choice. The choice not being influenced by the environment.
(a — P) denotes event a followed by behaviour P.

(a = P | b— Q) denotes choice between the initial events a or b, followed by the corresponding
behaviour. Note that (¢ = P |b— Q)=(a = POb— Q)if a # b [7, p.107].

Now that the core components of CSP have been presented the ODP terms of the previous section

can be illustrated.

2.2 ODP Classification in CSP

A simple buffer example is introduced and expanded using an incremental modification technique.

Template

From the ODP definitions in section 1 we know that an entity X is said to be of a certain type

if X satisfies the predicate for that type. So, the template P, from its CSP definition, has a

'CHAOSs=puX: A.X

behaviour which forms the predicate and its type. Note, from their respective definitions, that

predicate and type are closely related.

P(q) = in?z — self ((z) " q) (1)
O out!hd(q) — self (t1(q)) < (¢ # () > self (q)

Q(g9) = P(qg) O flush — self (empty) (2)

R(¢) = Q(q) O delete — (outllen(q) — Stop) (3)

Note that the original behaviour of P is extended by @ to offer more choice to the environment
on initial actions, and likewise for R. We use Rudkin’s self primitive [11, p.416] to solve the
redirection problem identified by Cook regarding self-referential objects and inheritance [2, p.435].
Each occurrence of self is instantiated with the name of the process to which control is to be
passed after the action sequence ends.

If explicit process naming is used in place of self then recursion is trapped at the level of the
last process called, thereby failing to return control to the calling process and offer all possible

choices of behaviour again.

Class

- A class is defined as a set of all objects conforming to the predicate of the template. In the case

of process algebras, the actual behaviour of the template. Both ¢ and R are templates defined
by reusing the originally defined behaviour of P. Any instances of P, Q or R (e.q: p,q,r) are
valid members of the class associated with template P. The class members for each template

derived from P are shown as follows:

Cp = A{p,q,r} taken from template P
Co = {gq,r} taken from template Q
Cr = {r} taken from template R

Note the convention used to describe templates and instances. Upper case initials denote a

template. Lower case initials denote a class instance.

Object

The template classes Cp, Cg and Cg contain object instances that are said to conform to their

respective template’s predicate. In a later proof (on page 9) we shall also attempt to establish

6

that template R is transitively related to P, via Q.

To show the relationship between P, and R it is necessary to prove that each process is
at least compatible with its parent (i.e: offers at least the same behaviour). In the case of our
inheriting buffer examples, R is at least compatible with @, which is at least compatible with P.
For the proof of behavioural compatibility we shall adopt a two-stage approach. Firstly, proving
that @ conforms to P and secondly, that R conforms to Q. It is noted that conformance is not

necessarily transitive [3, p.131]. Formalisation of the conformance law is now presented [1, p.11]:

Definition 1 Conformance

Let @@ and P be processes.

(Q conf P) iff
Vs € Traces(P).YA C L(P) If @ fails to offer an action a (after sequence
if3Q eVacAeQS3Q A s) then P must also fail to offer the same

then 3P'eVac Ae P 5 P A action a (after the same sequence s).

If the conformance law is satisfied then a new process can replace an original process in all places
where the original process was expected; substitution can then take place 2.

The environment of the original process will be unaware of the exchange as each function
offered by the old process will also be offered by the new process. Conformance guarantees at
least the same behaviour as was originally present in the environment before the substitution
took place.

Conformance can be further defined in CSP as follows [3, p.135]:

Law 1: aP C a@.
Law 2: If (s, X) is a failure of @ with s € traces(P), then (s, X) is a failure of P.

Law 3: (divergences(Q) N traces(P)) C divergences(P).

If the three CSP laws above hold for (@ conf P) and (R conf ()) then we have our compatibility
proof. We shall also attempt to prove that a transitive relationship between R and P exists in
order to say that (R conf P) which implies that {q,r} C Cp is true.

To aid in the identification of the failure sets, transition diagrams are presented in figure 1 for

each process. The circles represent the different states of each process and the arcs are labelled

2Substitution is discussed further in section 5.2

to show an particular event leading to a new state. Recursion is shown using an unlabelled arc
pointing back to the initial (top) state of the process. A terminal state is shown as a solid circle.

Elementary sets are provided for each process in order to perform the conformance proofs. These

Figure 1: Transition Diagrams for buffer P and its children.

elementary sets are the alphabet, failures and divergences of each buffer process. The elementary

sets for template P and its children can now be derived.

aP = {in,out}
a@ = aPU{flush}
aR = aQU {delete}
faitures(P) = {(Q,{{}}), ((in), {{}}); (out), {{}})}
faitures(Q) = {(), {1, (i), {1, ((out), {{3}), (LAush), {{}1)}

faitures(R) = {((), {{}}), ((in), {{}}), (Cout), {{}}), ({Alush), {{}}),

((delete), {{in}, {out}, {flush}, {delete}})}
divergences(P) = divergences(Q) = divergences(R) = {}

The CSP laws for conformance, from Cusack [3, p.134], can now be applied to (Q conf P) and
(R conf Q).

Proof 1 (Q conf P)
Law 1: aP C a@. In extension: {in, out} C {in, out, flush}.

Law 2: All (s, X) (s € traces(P)) in failures(@) can also be found in failures(P).

In extension: All elements of {((), {{}}), ((in), {{}}), ((out),{{}}), ((flush), {{}})} (com-
mon to traces(P)) can be found in {((), {{}}), ((in), {{}}), ((out), {{})}

Law 3: (divergences(@Q) N traces(P)) C divergences(P). In extension: ({} N {}) C {}.

All three laws for conformance hold for P and @, therefore (@ conf P). The same steps can now

be performed to prove (R conf Q).
Proof 2 (R conf Q)

Law 1: a@ C oR. In extension {in, out, flush} C {in, out, flush, delete}.

Law 2: All (s, X) (s € traces(Q)) in failures(R) can be found in failures(Q).
In extension: All elements of {((), {{}}), ((in), {{}}), (Cout), {{}}), ((flush), {{}}),
((delete), {{in}, {out}, {flush}, {delete}})} (common to traces(Q)) can be found in
{(O, ({31, ((in), {{3}), (Cout), {{3}), ((fush), {{}})}

Law 3: (divergences(R) N traces(Q)) C divergences(Q). In extension: ({} N {}) C {}.

Finally, we attempt to prove a transitive relationship between the templates R and P; prove
that (R conf P) is true. Although conformance is not necessarily transitive this final proof will
show that a transitive conformance relationship exists in the inheritance hierarchy. Implicitly
we suspect that R conforms to the behaviour of P because within R we can identify the exact

behaviour of P.
Proof 3 (R conf P)

Law 1: aP C aR. In extension {in, out} C {in, out, flush, delete}.

Law 2: All (s, X) (s € traces(P)) in failures(R) can be found in failures(P).

In extension: All elements of {((), {{}}), ((¢n), {{}}), ({out), {{}}),
((flush), {{}}), ((delete), {{in},{out}, {flush}, {delete}})} (common to traces(P)) can be

found in {((), {{}}), ((én), {{}}), (Cout), {{}})}

Law 3: (divergences(R) N traces(P)) C divergences(P). In extension: ({} N {}) C {}.

All three laws for conformance hold for (R conf P). Therefore, as we would expect from incre-
mental modification, the behaviour of each child of P can be found within P, so conformance
holds for both immediate and transitive relations.

The types of each template and class member can now be defined.

9

Type

A relationship is defined between template and type as both can be described in terms of a
predicate. The predicate for a type characterises a collection of object instances.

We have shown that (@ conf P), (R conf Q) and (R conf P) are true. Therefore, the class
sets Cp = {p, q,r},Cqg = {g¢,r} and Cr = {r} are valid according to their types, which in turn
conform to their respective predicates. Both p, ¢ and r are valid instances of the template class

described by the template P.

3 Further Classification of buffer P with Extension

One extra criteria separates the CSP rules for conformance (@ conf P) from those of extension
(Q extends P). The traces of the original process must be present in the traces of the modified

process [3, p.134]. Formally, we write this extra rule as:
Law 4 : traces(P) C traces(Q)

In order to prove that the three previous conformance proofs hold for extension we simply evaluate
the elementary sets of each derivative of P in light of this new rule. Firstly, we prove that @

extends the behaviour of P.

Proof 4 (Q extends P)

Law 1,2,3: true, as per proof 1.

Law 4: traces(P) C traces(Q). In extension: (in, out,...) C (in, out, flush,...).

Next, we prove that R extends the behaviour of Q.

Proof 5 (R extends Q)

Law 1,2,3: true, as per proof 2.

Law 4: traces(@Q) C traces(R). In extension: (in, out, flush,...) C (in, out, flush, delete).

Finally, we attempt the transitive extension relationship which states that R extends the be-
haviour of P. Implicitly, we expect (R extends P) to be true as, from the original CSP specifi-
cation for R (see page 6), the behaviour of P is embedded within R. So, next we prove that R

extends the behaviour of P.

10

Proof 6 (R eztends P)

Law 1,2,3: true, as per proof 3.

Law 4: traces(P) C traces(R). In extension: (in, out,...) C (in, out, flush, delete).

Not only can we say that the children of P conform to P but, after proof 6 above, we can also

say that the children of P extend P.

4 Subtype/Supertype and Subclass/Superclass Relationships

According to the proofs in the previous section a buffer ¢ implies a buffer P because any object
instance that conforms to the behaviour of @ must also conform to the behaviour of P (and
likewise for extends). Therefore, by definition (from page 3), @ is a subtype of P (P is, by
implication, a supertype of ¢}). From proofs 2 and 3 (page 9 onwards) we can also say that R
is a subtype of () and that R is also a subtype of P. This subtype relationship can be written

formally as follows:

(Q Esubtype P) A (R Esubtype Q) = (R gsubtype P)

The subtype relationship can be extended to encompass the object instances drawn from the
class sets for the two templates @ and P. Again, conformance is used to prove that behavioural
compatibility exists between the object instances of both P and Q. The range of the traces
of a subtype process, restricted to the alphabet of the supertype process can be compared to
determine the validity of an object instance in a class set. For example, the traces of P and @

can be compared, as follows:

(ran traces(R) | aP) C (ran traces(Q) | aP) C ran traces(P).

In extension: {in, out,...} C {in, out,...} C {in, out,...}.

Extra behaviour of the subtype is ignored as conformance only guarantees that one process
implements at least the behaviour of the other. Provided that @ acts like P any other behaviour
that it offers to the environment is not relevant to the conformance proof. With extends more
behaviour is assumed if at least the minimum behaviour of the parent is represented in the

extended process.

11

5 Inheritance via Incremental Modification

The method of reuse employed in this paper is incremental modification (see [15]) and is referred
to as strict inheritance. We do not imply any other form of inheritance here, only that of offering
extra choice over the initial actions of a process.

Duplicate initial actions lead to non-determinism which we aim to avoid. Care must be taken
when adding new behaviour to an existing process by avoiding the inclusion of initial actions that
will dupl;lcate any existing initial actions.

In our buffer examples CSP external choice (e.g: P O Q) is used as the glue to attach any
new behaviour to an existing process definition. As shown in the definitions for templates @ and
R which inherit from P (see page 6). Consider another example template S which inherits from
P and is a further restriction (sometimes called a ‘specialisation’) of P, resulting in a template

offering the environment an extra initial action flush.

S(q) = P(q) O flush — self(Q) (4)

As more behaviour is added to a process it can become more difficult to satisfy the predicate
defined by that new behaviour. As with our earlier paper (where natural number predicates were
extended using logical conjunction [14, p.5]) when behavioural extension takes place the number
of elements in the template class can be reduced. We note that if S implies P then S is a subtype

of P.

CS’ g CP = {Q7 T}g_ {p7 q, 7‘}

The associated classes for S, namely elements that meet the predicate for S in Cg, are equivalent
to the behaviour of @ (by definition of @ on page 6). Consequently, (S = @) which allows us to
substitute .S in all places where @) was originally expected. The concept of substituting processes
is discussed in more detail in section 5.2.

Further extension of a process denotes more external choice, remembering that extension
which introduces duplicate initial actions must be avoided (see section 5.1). Consider the defini-

tion of another template which inherits from S:
T(q) = S(q) O delete — (out!len(q) — Stop) O length — (out!len(q) — self (q)) (5)

The class set for T'is {r} as only instantiations of R can offer at least the behaviour of template

T. To formalise the inheritance relationship between these new templates that we have derived

12

from P we write the following;:
T Cinherits S Cinherits P

Using the established inheritance hierarchy we identify the subtype relationship between the

templates:
T ;subtype S Esubtype P

The subset operator on sets can then be used to define a relationship between instances of each

type, as follows:

{r}<{e,ry C{p,q,7}

The cardinality of the template’s class sets may reduce as the predicate to satisfy increases. Note
that extending the predicates of a template will not necessarily specialise it further and may have

no effect on the elements of the class set. For example:

U(q) = P(q) O flush — self (empty) | (6)

The behaviour defined in template U does not alter the traces of @ (the behaviour of which
is equivalent), although U does introduce non-determinism into the template definition. In this
example, the new behaviour of U is the same as for an existing branch (as defined in P). External
choice (the glue for our incremental modification) is idempotent if the behaviour is identical on
both sides of the external choice operator. Therefore, (P O P-= P) [T, p.‘107, Law 1], which
allows us to remove the extra duplicate behaviour in U. The reader is left the task of proving
that U = P. (Hint: use associative, symmetric and idempotent laws on external choice [7, p.107,

Laws 3,2,1]). Needless to say, the following is true:
Cy=Cq={qr}

So, as you can see, it is not guaranteed that incremental modification will reduce the scope of
the objects in a class template. What is guaranteed is that incremental modification will not

increase the scope of the number of objects captured by a class template.

5.1 Contradiction of Predicates Leading to Non-determinism

A contradiction with a template’s type predicate restricts the template’s class set to an empty

set. Contradiction within process specifications occurs when an initial action is duplicated within

13

a process where external choice is present. From the previous section, U contains a contradiction
which can be resolved by the idempotent law. With a slight change to the behaviour offered by
U consider the following definition for buffer V:

V(¢) = P(q) O flush — Stop (7)
Cv = {}

No instances exist that match the new behaviour of template V that are derivable from P. We
cannot predict which behaviour will result from choosing the initial action flush, hence V exhibits
non-deterministic behaviour, one branch of which leads to a terminal state. Note that instances

of V (i.e: elements of C'y) are not deemed stable as they can ‘halt’ execution of the process.

5.2 Substitution

The substitution of S for) was achievable (see page 12) because they both shared the same
external behaviour and could not be distinguished from each other by testing (e.g: (S conf @)).
As an observer we would accept one template in place of the other because each action required
by the environment of @ could be serviced by either @ or §.

If (Cq C Cp) then (Cp ¢ Cg), by definition of the proper subset operator. Therefore, objects
in Cp offer less behaviour than their Cg counterparts; P is therefore contravariant in relation to
). Whereas we might use @ in place of P we cannot reverse the substitution, only S can do so

(as defined on page 12).

5.3 Contravariance and Covariance

This section introduces contravariance and covariance in the light of the subtype/subclass rela-

tionships defined over templates P, @ and R.

Definition 2 Contravariance: Arguments of the subtype must be less-than-or-equal to argu-

ments of the supertype.

If P and) are regarded as functions then each action is mapped to a state of the buffer’s queue.

The domain of the function being equal to the alphabet of the process.

e ={in— () " q,out — ti(q¢)}

14

fo ={in— (z) " ¢, out — tl(q), flush — empty}

The possible set of states accessible from the full range of initial events can then be derived:

contravariance

e N
fp ({in, out}) — {in— (z) ™ q, out — tl(q)}
Jfo({in, out, flush}) — {in — () ™ q, out > tl(q), flush — empty}

If @ is a subtype of P then the initial actions offered by P are said to be contravariant in relation
to @ because {in,out} C {in, out, flush} is true. Buffer P does not allow for the full range of
actions provided by . For example, after an event in the buffer ¢ may accept an event flush,

which is something that buffer P may never do.

Definition 3 Covariance: Results of the application of the subtype must be less-than-or-equal

to the results obtained from the supertype, given the same arguments.

Using the same examples above, consider the case when P offers similar behaviour to that of Q,

given the same initial event.

covariance

A

fe({in, out}) — {in— (z) ™ ¢, out = tl(q)}
fo({in, out, flush}) — {in — (2) ™ ¢, out — tl(q), flush — empty}

Covariance is identified in P as it returns the same result as @) given thé same'inputs. From these
simple examples we can see that an invalid subtype relationship would result from contravariance
due to more restrictive arguments of one of the types (in this case P).

If we attempt type assignment of the templates for P and ¢ we see another example of

subtype violation due to contravariance, as shown by the following example:

p : fp// variable declaration
g : fo // variable declaration
g = p // type assignment

Attempts to apply function ¢(flush) will fail as ¢ is assigned p of type fp, the only acceptable
initial action for which is either in or out. Contravariance is responsible for the failure here as it

restricts the range of inputs in fp to those of type fg.

15

6 Defining Subtype and Subclass Relationships

The subtype relationship between P, @ and R has been defined. If Q C subtype P then we have
shown that Cy C Cp (see page 11). This section explains the differences between the subtype and
subclass relationships. It is not always the case that objects related by the subtype relationship

P
P = {in,out}

<in,out> <in,out,out,in,...>

<in,out,in,out,...>
<in,in,out,...>

Figure 2: The Set of Traces Derivable from buffer P.

are necessarily related by the subclass relationship. From the template P all other templates
that accept the initial events in or out can be derived. Two examples of templates that are type
compatible with P but not class compatible are shown as bold traces in the diagram in figure 2.

Neither (in,in, out,...) nor (in,out,out,in,...) can be reached using the predicates that
describe either P or its children. These bold traces represent subtypes but not subclasses of P.
Note that the bottom (L) of the type-tree in figure 2 is the empty trace (()) and the top of the
type-tree is template P itself,

7 Conclusions and Future Work

This paper has presented concrete examples of processes taken from simple examples in order to
classify them according to the ODP object-oriented definitions that appear in [8].

The main focus of this paper was to prove the behavioural compatibility of templates that
reuse existing behaviour via incremental modification (i.e: strict inheritance). Two other forms
of inheritance are worth mentioning at this point; transitive and casual inheritance. Transitive
inheritance has been discussed in this paper in relation to the successful conformance testing
of templates R and P (see page 9). The discussion of casual inheritance (where behavioural
compatibility is not guaranteed between templates) is left to a future paper.

Conformance and extension testing were used to prove that templates incorporating reuse

were valid implementations of their parents. Proofs of subtype and subclass relationships between

16

example processes were also supplied.

If a communicating system requires modification then certain processes are natural candidates
for substitution. Certainly, any process that meet the laws of conformance will be capable of
replacing existing behaviour. However, an issue for future discussion is the cost of the replacement
if stability is compromised by the newcomer.

Most process algebras, including CSP, use synchronisation between processes in order to model
communication. An inheriting replacement process could wait on some extra communication not
present in the original process. The new process’s failure to respond during synchronisation could
then result in a chain reaction of ‘deadlocked’ processes which will eventually lead to deadlock
of the entire system. We refer to this chain reaction of waiting processes as domino waiting [12].
Further work is required to see if asynchronous communications using unbounded buffers, such
as the work of Josephs [10, 9] and our own work [13], can offer a solution to the synchronisation
problem of inheriting processes. When using external (deterministic) choice as the glue to patch
new behaviour onto existing process behaviour we need to be able to guarantee the stability of
the resulting system.

Given that conformance must be present in order for inheritance and substitution to produce a
stable system, the importance of establishing a valid inheritance, subtype and subclass hierarchy
is made clear. The method by which this inheritance and substitution is to be achieved is still

open to debate. Our work continues.

Acknowledgements

Many thanks go to David Smith for his insight into templates and their representation as natural
numbers. Also, thanks to Jean Baillie for various discussions regarding CSP and non-determinism
and finally, Mary Buchanan for contributing to my knowledge about types, contravariance and

covariance.

References

[1] E.Brinksma and G. Scollo. Formal notations of implementation and conformance in LOTOS.
Memorandum inf-86-13, Department of Informatics, University of Twente, The Netherlands,

1986.

17

[2] W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. In

OOPSLA ’89 Proceedings. ACM Press, October 1989.

[3] E. Cusack. Refinement, Conformance and Inheritance. BCS Formal Aspects of Computing,
3(2):129-141, 1991.

[4] E. Cusack, S. Rudkin, and C. Smith. An object-oriented interpretation of LOTOS. In The
2nd International Conference on Formal Description Techniques (FORTES9), December
1989.

[6] M.G. Hinchey and S.A. Jarvis. Concurrent Systems: Formal Development in CSP. Interna-
tional Series in Software Engineering. McGraw-Hill, London, 1995.

[6] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21:666—
677, 1978.

[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

(8] ISO/IEC. Information retrieval. transfer and management for OSI - committee draft - basic

reference model of open distributed processing - part 2: Descriptive model. Technical Report

ISO/IEC JTC1/SC21 N6079 8807, International Standardization Organisation, June 1991.
[9] M.B. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

[10] M.B. Josephs, C.A.R. Hoare, and H. Jifeng. A theory of asynchronous processes. Tech-
nical Report PRG-TR-6-89, Programming Research Group, University of Oxford, Oxford
University Computing Laboratory, 11 Keble Road, Oxford. OX1 3QD, 1989.

[11] S. Rudkin. Inheritance in LOTOS. In K.R. Parker and G.A. Rose, editors, Formal Descrip-
tion Techniques, volume VI, pages 409-423. Elsevier Science Publishers B.V: North Holland,
1992.

[12] P.N. Taylor. Research issues associated with Process Algebras in an Object-Oriented de-
sign framework. Unpublished lecture notes, Department of Computer Science, Faculty of

Information Sciences, University of Hertfordshire, Hatfield, U.K. AL10 9AB, November 1996.

[13] P.N. Taylor. Resilient Process Theory (RsPT). Unpublished lecture notes, Department of
Computer Science, Faculty of Information Sciences, University of Hertfordshire, Hatfield,

U.K. AL10 9AB, November 1996.

18

[14] P.N. Taylor. Concrete examples of templates and their children. Unpublished lecture notes,
Department of Computer Science, Faculty of Information Sciences, University of Hertford-

shire, Hatfield, U.K. AL10 9AB, January 1997.

[15] P. Wegner and S.B. Zdonik. Inheritance as an Incremental Modification Technique or What
Like is and Isn’t Like. In Proceedings of ECOOP’88, pages 55-77, Oslo, Norway, August
1988. ECOOP.

19

