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Abstract

This research focuses upon the reuse of processes in numerous environments. It is primarily
concerned with investigating the relationship between sub-types, inheritance [13,28] and reuse
within the context of process algebras. A fundamental issue underlying all of the research is the
idea of communication and synchronisation between processes and the effect that modification has
upon that communication,

Using current process algebras (CCS [15], CSP[10] and LOTOS[3,11]) an object can be
modelled as a communicating process; its interface being defined as a set of synchronising ports.

A number of key issues have arisen from the research. Traditional process specification, using
the languages of [15,10] and [11], assume that the signature of a process is static. This limits its
reuse in different environments; such processes cannot change to meet future needs. It has been
shown [24] that using action restriction and renaming with complex processes does not provide the
flexibility required to maximise the reuse of a process.

This paper illustrates that extending a system with new processes can cause the system to
deadlock. Models of synchronisation and communication play a key role in process algebras. In the
context of extendible systems the semantics of synchronisation, modelled in [15,10], result in an
unacceptable influence on the original behaviour of a system with the introduction of new
processes. In order to guarantee behavioural equivalence within extendible systems there is a need
to demonstrate conformance [19] within the sub-type relationship. If sub-typing is guaranteed then
(at least) the behaviour of the superclass is available within the sub-type.

The key issues discussed in this paper can be summarised as:

« the nature of process synchronisation and its effect on extendible systems.
» the maintenance of system integrity despite the introduction of new processes.
« the investigation and notion of conformance between sub-types.

The main aim of the proposed research is to provide a mechanism for extending current

process behaviour using non-strict inheritance [6] (referred to as casual inheritance). It is in this

area of extendibility that the proposed investigation lies.







Introduction

In an object-oriented environment the elementary unit is an object, which is a single encapsulated entity
containing both state and behaviour. Each object has an explicitly defined interface with its
environment and the state of the object can only be changed via this interface. An object may
communicate via several interface points (ports) with other objects in the system; either internal system
objects or external objects (i.e: users).

One of the important concepts associated with object-oriented design has been the idea of sub-
typing which is implemented via inheritance. Sub-typing allows both the extension and reuse of
specifications, where one process definition can be substituted for another and still guarantee the
behaviour of the system. Objects can be classified hierarchically using sub-typing to derive a new
object from an existing one. The sub-type relationship between a superclass and its subclasses is a
partial order [12], that is, it satisfies reflexivity (Q <P), transitivity (R < Q <P therefore R <P) and
anti-symmetry (Q <P and P <Q then P = Q), where x <y denotes that x is a sub-type of y.

The sub-type relationship must guarantee sub-typing to ensure that no ill effects will result in
the substitution of superclass and subclass objects. Ideally, a library of objects can be envisaged (i.e:
process definitions) which can be used as the basis for numerous systems. Each specialised object
would inherit its core behaviour from some central library and extend that behaviour to meet the
requirements of the system. Meyer [14] argues that precise specifications of program code should
accompany each library module. Specifications for that code should therefore be carried out using
formal description techniques. By formally specifying the sub-type relationship and using formal
languages to validate the behaviour of processes a system can be given a precise definition. Confidence
will then remain high about the integrity of the design and behaviour of its components.

1 Current Investigation

This research focuses upon reusable processes in numerous environments. It is primarily concerned
with investigating the relationship between inheritance [13,28] and reuse within the context of process
algebras. A fundamental issue underlying all of the research is the idea of communication and
synchronisation between processes and the effect that modification has upon that communication. The
work so far has covered current practices in the following areas:
* process specification and portability
* specification of generic processes incorporating reuse
* behavioural inheritance; strict, non-strict (a.k.a casual) and transitive inheritance
* dynamic port allocation
» notions of equivalence between processes, such as:
- testing equivalence
- failure equivalence
- conformance and extension testing
- <Smay/<must equivalence
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* temporal behavioural modification (i.e: the mechanics and effects of non-strict inheritance)

2 Process Specification

Using process algebras such as CCS[15], CSP[10] and LOTOS[3,11] the interface and behaviour of a
process can only be defined once during its lifetime, with little scope for subsequent modification.
Previous work in [23,24,25] and [26] illustrates the standard form of process specification as defined

| in LOTOS [11]. It can be argued that a process signature does not provide enough flexibility to make
i the process portable. Previous work on the Rigorous Object-Oriented Analysis (ROOA) method [17]
‘ models systems using a client/server architecture. A process consists of one server port and » client
| ports. Consequently, when a process is modified to communicate with extra clients its interface needs
to be redefined. This redefinition makes the process specific to the environment. I regard current
process specification methods as too rigid because they limit the application of reusable processes.

Consider the following example case study system that is referred to throughout this paper. It is
a case study of a system designed to control a chemical plant. Processes in the Chemical Plant Control
System (CPCS) can be defined in the LOTOS notation. The process defined in Figure 2.1 is shown as
a generic reusable process and is named after the behaviour that it exhibits; namely Flow Detection
Heat Sensor (FDHS).

process FDHS[eSetMin,eSetMax,eReadlnput,iSetOff,iOpen,iClose](r:RecState) : self(RecState) =
eSetMin ? h:Reading;
([isLEMax(h,r)] — self(setMin(h,r))
i)
[isGTMax(h,r)] — selfir))
/)
eSetMax ? h:Reading;
([isGEMin(h,r)] — self(setMax(h,r))
)
[isLTMin(h,r)] — self(r))

)
eReadlnput ? h:Reading;
([isLTMin(h,r)] — iSetOn;iOpen;self(r)
)
[isGTMax(h,r)] — iSetOn,iClose,self(r)
i

[isGEMin(h,r) and isLEMax(h,r)] — self(r))
endproc (* FDHS*)
Figure 2.1

The specific process Heat Sensor (HS) in Figure 2.2 is responsible for taking a reading from
the temperature sensor in the chemicals. The Heat Sensor’s behaviour is inherited from the behaviour
of its superclass process, the Flow Detection Heat Sensor (FDHS).

Ph.D. Progress Report. Paul N. Taylor. July 1995. Page: 3




process HS[eSetMinTemp,eSetMaxTemp,eReadlemp,iSetALOn,iOpenCF,iCloseCF](r:RecState) :
self(RecState) noexit :=
FDHS[eSetMinTempleSetMin,eSetMaxTempleSetMax,eReadlempleReadlnput,
iSetALOn/iSetOn,iOpenCF/iOpen,iCloseCFliClose] (r)
endproc (¥ HS *)
Figure 2.2

The process Coolant Flow Heater (CFHE) in Figure 2.3 maintains a flow of coolant around the
chemical plant to regulate temperature. A heating unit is also included to maintain a constant
temperature around the plant.

process CFHE[eSetLevel,iOpen,iClose,iSetOn](1:Level) : self(Level) =
eSetLevel ? I:Level;self(l)

7
iOpen;
([not isMaxLevel(l)] — self(incLevel(l))
)
[isMaxLevel(l)] — iSetOn;self(l))
)
iClose;

([not isMinLevel(l)] — self(decLevel(l))

]
[isMinLevel(l)] — iSetOn;self(l))
endproc (* CFHE *)
Figure 2.3

One specific process that is based upon CFHE'’s generic behaviour is the Coolant Flow
Regulator (CF) which is specified in Figure 2.4.

process CF[SetCF,iOpenCF,iCloseCF,iSetALOn](1:Level) : self(Level) noexit :=
CFHE[SetCF/SetLevel iOpenCF[iOpen,iCloseCF/iClose,iSetALOn/iSetOnj(1)
endproc (* CF *)
Figure 2.4

One final generic process resident in our system is the Sprayer Alarm process (SPAL); as
shown in Figure 2.5. The SPAL process defines the behaviour of spraying units around the site to help
with cooling and decontamination. SPAL is also responsible for providing alarm signals, signifying
problems with the running of the chemical plant. Note that each generic class is a superclass and is
used as a template for defining subclasses. These subclasses provide the specialised templates that are
used to create instances of the processes within the Chemical Plant Control System.

process SPAL[iSetOn,eSetOff](s:State) : self(State) =
[not isOn(s)] — iSetOn,self(on)
1)
[isOn(s)] — (i;self(off) [] eSetOff;self{(off))
endproc (* SPAL *)
Figure 2.5

An example of a subclass process of the generic abstract template SPAL is the Alarm process
(AL) in Figure 2.6. Process AL can be activated either internally from another process synchronising
communication with it or by external panic buttons situated around the chemical plant.
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process AL[eSetALOn,iSetALOn,eSetALOJfiSetALOff](s:State) : self{State) noexit :=
SPAL[iSetALOn/iSetOn,eSetALOff!eSetOff](s)

a
[not isOn(s)] — eSetALOn;self(on)

/)
[isOn(s)] — iSetALOff;s e lf(off)
endproc (* AL *)
Figure 2.6

Process AL illustrates strict inheritance as it first inherits its basic behaviour from the generic
process SPAL and then extends that behaviour with two extra action choices; namely the guarded
expressions eSetALOn and iSetALOff. Note that with all process action names ‘€’ is used to denote an
intended external action and ‘7’ is used to denote an intended internal action (e.g: eSetMin and iClose):

The work of Rudkin [19] illustrates that strict inheritance succeeds in offering behavioural
extension via an extra choice of actions. However, adhering to the limitations imposed in [19] strict
inheritance is not applicable to any but the simplest of systems. Rudkin states that it is not possible to
show that strict inheritance can be applied to recursive processes. This particular restriction makes the
ideas introduced in [19] unusable in practice and requires further investigation to see if a more suitable
approach can be found.

As an extension to strict inheritance, non-strict inheritance is considered (which I refer to as
casual inheritance). To highlight the key issues arising from casual inheritance consider the following
problem. Suppose that we modify the Chemical Plant Control System (CPCS) to include a Warning
Light process (WL). The new Warning Light process behaves similar to the Alarm process except that
it has no external panic button to activate it. Figures 2.7 and 2.8 illustrate the extension to the control
system CPCS with the new Warning Light process (WL).

CPCS CPCS’

Figure 2.7 Figure 2.8

The Heat Sensor (HS) needs to be synchronised with both WL and AL during the same
sequence of actions. Using the LOTOS definitions given in Figures 2.1 to 2.8 the problem can be
solved in one of two ways.

The first course of action would be to configure WL to synchronise on the same port as AL;

namely iSetALOn. LOTOS provides a facility for multiple synchronisation which would allow HSS to
communicate with both AL and WL on port iSetALOn at the same time. CSP also provides multiple

synchronisation courtesy of its semantics (which LOTOS is based heavily upon) [10, §2.3.1] but CCS
only allows bi-party communication due to the restrictive nature of the internal tau (t) action. With

CCS it is not possible for an observer to determine the nature of an inter-process communication [135,
§2.2, p.39].
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As a second proposed solution to the system extension introduced in Figures 2.7 and 2.8 it is
possible to introduce a new communication port into H.S, changing the interface of HS so that it can
synchronise with WL whilst maintaining separate communications from AL. This second approach
underlines the concept of casual inheritance because HS would have to be modified with a new
synchronising action to WL.

The first approach uses multiple synchronisation between HS, WL and AL to solve the
problem of reuse but has undesirable side-effects. The problems associated with multiple
synchronisation are discussed later in section 5, regarding dynamic port allocation.

If casual inheritance is chosen then the temporal behaviour of HS would have to be modified.
This modification poses a different set of problems which are related to the signature and temporal
behaviour of HS. These problems are also discussed in detail later, in section 5.

3 Specification of generic processes incorporating reuse

The issues discussed in [23,24] and [26] recognise the need for reusable processes so that each
specific process can use an existing generic core behaviour as its foundation. Process reuse in [24]
adopts a strategy of capturing common behaviour to be copied and restricted by other subclasses. In
[24] specific processes are defined in terms of a generic process (see Figure 3.1). The specific
processes then restrict any unwanted behaviour from the inherited generic process. The following
diagram shows how Q and R inherit behaviour from P (via straightforward duplication) and then
restrict that behaviour in order to specialise.

4__ P —J P qbcdefP

0 R QI P\ fefy
[T
e ffg//’?ﬁ RSP\ {cdef)
Figure 3.1

The ideas presented in [24] illustrate a method which is opposed to the inheritance that I am
primarily concerned with. Action restriction is limited to small systems that do not offer many different
forms of behaviour. Work in [24] has shown that restriction soon fails to support the ideas of
inheritance that lead to greater reuse and flexibility.

Ideally, I seek to capture the common behaviour of a superclass and then extend that behaviour
via strict and casual inheritance. This behavioural extension makes reuse more efficient and flexible
because simple superclasses can be reused more widely than complex (specific) superclasses.
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4 Behavioural Inheritance; strict, non-strict (casual) and transitive

There has been some work covering inheritance in LOTOS [12, 17] and [19]. However, many of the
issues surrounding inheritance have not been adequately addressed and cannot be applied to large
recursive systems. Consequently, this work concentrates upon the concepts of inheritance [13,28] and
its application. There are three types of inheritance that my research is primarily concerned with:

i) strict inheritance which extends superclass behaviour.

P P ap.P

0 defp 4 cdeQ

R P +fR

Figure 4.1

Processes Q and R in Figure 4.1 inherit behaviour from P and then extend that behaviour by offering
extra action choices. The shading in Q and R illustrates the choice extension over the original

behaviour supplied by process P.

ii) casual inheritance which modifies and extends existing process behaviour, such as

supplied by the operator @ in Figure 4.2.

¢ P ¢ P9 qabP
| 0 Q¥ P®cO

The definition of process Q shows the inherited behaviour of P being modified to include action c,
prior to the recursion of Q. Process Q would therefore be written as Q % a.b.c.Q. Process R shows

| temporal behavioural extension together with action choice extension (as used in strict inheritance).
Process R can be written in full as R %/ a.b.d.R + efR.

R P®IR +efR

Figure4.2

iii) transitive inheritance which states that R inherits from Q, which in turn inherits from P.

Consequently, R transitively inherits from P.
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P F--a pddapp

0% P +cdQ

R Q + efR

Figure 4.3

The dashed line in Figure 4.3 shows the transitive link between superclass process P and
subclass process R, where P is the superclass of both Q and R. It can be seen from the diagram that
the modules surrounding each process expand as each one inherits from its superclass. Such is the
case with any form of inheritance where each subclass encapsulates and (possibly) extends inherited
behaviour.

Previous work containing examples of strict inheritance can be found in [12,17] and [18].
However, each work has a different view of how inheritance should be modelled. The work of [12]
uses process renaming to implement recursion but fails to show clearly if recursion is possible with an
inheritance hierarchy of greater than one layer from the superclass. Recursion appears trapped in the
superclass class offering the synchronising action such that the full range of actions of an inherited
process are only on offer once and then cease to be available. This trapping of the flow of control
between classes in the inheritance hierarchy is due to the recursion failing to return to the point of
origin for the action call.

In [17] process enabling is used to provide recursion between superclasses and sub-types. Our
studies have shown that process enabling does not support transitive inheritance. To illustrate the
restriction imposed by the LOTOS process enabling operator (i.e: >>) consider the following example,
based upon work in ROOA [17] and applied to the Chemical Plant Control System (CPCS) case study:

process SPAL[c](s:State) : exit (State) :=
[not isOn(s)] — a ! iSetOn;exit(on) . iSetOn
i] eSetOff—i SPAL
[isOn(s)] — (i;exit(off) [] o ! eSetOff;exit(off))
endproc (* SPAL *)

process AL[B](s:State) : noexit :=
(SPAL[B](s) >> accept s:State in exif(s)
{]

[not isOn(s)] — B! eSetOn;exit{on)
) >> accept s:State in AL[P](s)
endproc (* AL *)

process SP[y](s:State) : noexit :=
AL[Y](s) >> accept s:State in exifs)
{]
[isOn(s)] — v ! iSetOff;exit(off)
) >> accept s:State in SP[Y](s)
endproc (* SP *)

Figure 4.4
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The superclass for the Sprayer/Alarm process SPAL is defined with exit functionality so that its
services can be invoked from any of the subclasses which inherits from it. These services are called
using delegation which searches up through the inheritance hierarchy until it finds either the
appropriate action or fails. Both AL and SP can access the SPAL services iSetOn and eSetOff. After
the SPAL services have been handled the services offered by its subclasses must be made available
again. Recursion must be invoked on the subclass and not the superclass to ensure that the subclass
services are made available after servicing a request to the superclass. By defining the functionality of
processes in this way means that all superclass processes in LOTOS are abstract class templates [17]
and are subsequently not created as physical entities within a system.

Notice that process AL in Figure 4.4 does not conform to the rules of functionality as defined
above. Ideally, AL should be defined with the functionality exit for a superclass or noexit for a
subclass. In order for AL to be a subclass of SPAL and a superclass of SP it is necessary to be able to
specify that AL can delegate service requests to its superclass and receive requests from it subsequent
subclasses. A mechanism is required for returning service requesters to their point of origin for each
service call.

The method illustrated in Figure 4.4 cannot cope with transitive inheritance as the functionality
for process AL, in the centre of the inheritance hierarchy, is required to have both the functionality of
noexit and exit which is not possible. The bold downward pointing arrows in Figure 4.4 denote
inheritance whilst the arc arrows denote recursion. Notice that the flow of control fails to return from
AL to SP due to the noexit functionality of AL; recursion is trapped in AL when called from SP and
therefore the system will fail to offer the services of SP again.

For recursion with transitive inheritance I prefer the notion of self [19,28] where each process
can delegate the responsibility of servicing a request to another process, higher in the inheritance
hierarchy; requests can therefore traverse numerous layers of inheritance-(i.e: 21 inheritance layer).
The redirection operator (*) [19] enforces the scope of recursion such that delegation in an inheritance
hierarchy of R <*Q < P will not go beyond the redirection operator (*).

P p a.b.self

*Q 4¢f P + ¢ d.self

R Q + efself

recursion trapped by *Q

Figure 4.5

Certain restrictions imposed in [19] with regard to the sub-typing problem [7,19,20] make the
ideas of self and redirection less applicable. These restrictions concern recursive processes and
maintaining the integrity of the existing system prior to inheritance and possible sub-type substitution.
These issues will need to be addressed if self and redirection are to be used widely in support of the
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ideas concerning casual inheritance.

5 Dynamic port allocation

Static process signatures and behaviour prevent simple modification without rewriting the process
itself. The processes defined in earlier work, such as [24, 25], cannot communicate with new
processes as they are added to the system. Similar to my own models, the process definitions of
ROOA [17] require new ports to be defined as a process becomes the client of a server process.

In a dynamic environment processes may leave and join the environment over time and will
communicate with other processes whilst they are attached; similar in architecture to many computer
networks. Such an environment can be modelled using a shared communication medium (shown as

o). The structure of an inter-process communication is modelled as an event containing

<receiverldentity, msg>, as illustrated in the following LOTOS example:

Sending process P: a ! receiverldentity ! msg . Type
T T
\2 ol
Receiving process Q: a ! receiverldentity ? msg:Type
Figure 5.1

The communication illustrated in Figure 5.1 synchronises at three points in the event with a
(unique) complementary partner. The synchronisation points in the communication are denoted by the
vertical arrows in Figure 5.1. Using this form of communication, » processes can be added to the
environment and remain confident that each process can communicate with the other existing processes
(using o).

A key issue associated with the use of a shared communications medium is the problem
encountered with multiple synchronisation. Processes with the same identity synchronise on the same
action but if either process fails then the remaining processes that also synchronise on that action will
also fail, causing the system to deadlock. Consequently, failure to synchronise across multiple
processes communicating on the same port is a critical factor in the failure of a system.

Consider the process signatures for the processes Heat Sensor (HS[s(HS),c(1),¢(2)]), Coolant
Flow Regulator (CF[s(CF)]) and Alarm (AL[s(AL)]). The contents of [...] signify the set of
communicating ports for each process. From these process signatures the following system diagram
can be derived. As shown in Figure 5.2.

. c(l) /‘\C( 1)
————— F
S(HS) —@ s(CF)@ SCHS) S )@

s(WL)

Figure 5.2 Figure 5.3

Ph.D. Progress Report. Paul N. Taylor. July 1995. Page: 10




The gates present in HS are renamed to match those present in both CF and AL (i.e:
HS[s(HS),s(CF)/c(1),s(AL)/c(2)]). Each process has a minimum of one server port, offering its
services to the environment. If a process is also a client of other processes in the system then it also
has n client ports for each process that it requires services from. As the model expands, with CF and
AL themselves becoming clients c(n) of some other process, note that renaming alone cannot cope with
the added complexity.

If an extra process is added to the system (as shown in Figure 5.3) then all of the
consequences of this extension will have to be considered. Firstly, assume that W L communicates with
AL on the same port as H S;'namely port s(AL). All three processes (HS, AL and WL) will have to
synchronise on s(AL). If, for example, WL fails then so will both HS and AL because they cannot
synchronise with WL as it no longer offers the synchronising action s(AL). Multiple synchronisation
is very powerful. Any process using which makes use of multiple synchronisation has the power to
stop all of the other processes from progressing, hence deadlocking the entire system.

It could be argued that no process should have the right to influence the operation of any other
process. If WL is a low priority process then it would be beneficial if the system were to ignore WL if
it fails to synchronise with any other process. Certainly, critical processes should halt the system if
they fail because the system cannot function without them. However, prioritising processes is a
complex issue and beyond the scope of this particular work.

Returning to the problem posed by the extension to the system in Figure 5.2 (as shown in
Figure 5.3). If WL communicates with HS on a different port then its failure will not affect any other
process. However, complications lie in the failure of WL to progress with its communications to H S.
Further communications with AL will be impossible as HS has not progressed. Therefore, a domino
effect occurs with one process causing the failure of another which eventually propagates throughout
the entire system, causing its failure. : ‘

To summarise the issues associated with multiple synchronisation. Firstly, introducing a new
process into a system which communicates on the same channel as other processes forces those third-
party processes into a synchronisation with which they were not previously associated. Subsequently,
the new process may cause them to deadlock as it exerts an influence over them. Secondly, adding a
new process which communicates on a new port can still cause the original processes to deadlock if the
new process then fails. Further to deadlocking an original process the introduction of a new process
which uses a new communication port will also require the host process to be redefined with that new
port to enable it to communicate with the new process; one of the original problem areas in this
research.

As part of my work I have briefly investigated the rt-calculus [16] which itself offers a method
of switching between processes whilst a system is executing. Related work using LOTOS is discussed
in [18]. The following diagram in Figure 5.4 illustrates a w-calculus solution to the dynamic switching
between communication ports in the Chemical Plant Control System (CPCS) example. It shows a Heat
Sensor (HS) connecting to a Warning Light (WL) rather than an Alarm (AL) at some time during the
execution of the system. Similar to system CPCS in Figure 5.4 changing state to become system
CPCS’ in Figure 5.5.

Ph.D. Progress Report. Paul N. Taylor. July 1995. Page: 11




CPCS _ HS(0,B,5etX0n) % if temp < min o closeCF B setXOn HS
else
if temp > max o openCF [ setXOn HS
else

if (temp > min) and (temp <max) then HS

CF( a,action) 4% a(action) action CF
AL( B.action) %€ B(action) action AL

WL( B.action) 4¢f PB(action) action WL

Figure 5.4

The number of ports and actions in the process’s signature (e.g: HS( o, B,setXOn)) are constant
and the names of the synchronising ports and actions are also constant. To modify H S to synchronise
on port Y the process would have to be redefined accordingly; similar to the LOTOS solution discussed

earlier regarding the addition of an extra client port. I want to avoid the limitation of changing the
signature of a process explicitly by using casual inheritance to extend the signature of a process.

Limitations with the m-calculus suggest that a review of high order (second and w-order)

process algebras be carried out, such as the High Order m-calculus [21] and the Calculus of High
Order Communicating Systems [27]. Although these high order calculi offer parameterisation of
processes to aid modification it is not clear whether they address the problems of behavioural extension
and the effects of multiple synchronisation.

6 Notions of equivalence between processes

The proposed research intends to investigate the notions of failure and testing equivalence (<may,
<must) [8] to determine whether one process can be substituted for another in an environment where
the original process was expected. The new process must still provide (at least) the same behaviour
[4,5] (congruence) as the original process. I am primarily interested in applying notions of equivalence
to the inheritance issues that the work has raised so far.

Conformance testing (Q conf P)[5,20] and its derivatives [5] will be used as part of the study
to equate the behaviour of a subclass process Q with its superclass P. I am concerned about the
behaviour of sub-types when viewed from the behaviour of their superclasses. Much of the work on
equivalences will draw upon the use of conformance testing, as illustrated in [19], where the main
theme of the testing falls within the area of Hoare’s failures model [10]. If a superclass fails to perform
an action then the subclass should also fail to perform the same action. I am also concerned with how
process equivalence is affected by inheritance and modularisation, building upon the work carried out
in [1] and extending the ideas of [19] regarding the rules of conformance.

Using notions of equivalence I would like to capture the behaviour of a modified process (for
example Q) and show it to be the same as its superclass (P) if the modifications are ignored; thus P =
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O \{c} where P% a.b.Pand Q% a.b.c.0. The semantics of CCS [15], CSP [10] and LOTOS [11]
do not allow us to say that P and Q are equivalent, regardless of the restriction on ¢ because of the
differences between the traces of P and Q. Conformance states that the traces are subsets of one
another; T(P) < T(Q). The subset rule is violated by the previous definitions for P and Q above.

Process O cannot be substituted for P because Q may deadlock if it fails to synchronise on ¢, whereas
P does not; thus the stability of the system has been reduced.

7 Temporal behaviour modification (casual inheritance)

The effects of casual inheritance are recognised as the modification of existing process behaviour
together with possible behavioural extension. The term temporal behaviour relates to the sequence of
actions present in a process. Casual inheritance presents a complex challenge and is illustrated by the
following example, which again uses the Chemical Plant Control System (CPCS) as its basis:

A basic system contains three processes which all communicate with each other via the shared
port o.. A heat sensor process (HS) synchronises with both a Coolant Flow Regulator (CF) and

an Alarm (AL), via the shared communications medium o.

W @

[04 [04

Figure 7.1

To illustrate how the specification of the processes change when a shared communications
medium is used consider the formal definitions for the processes Heat Sensor (HS), Coolant Flow
Regulator (CF) and Alarm (AL).

process HS[a]{CF(iOpenCF,iCloseCF),AL(iSetALOn)}(min:State,max.State) : self(State) :=
eReadValue ? v : Value; ({v It min] — o ! CF ! iOpenCF; a ! AL ! iSetALOn,self(min,max)
i)
[v gt max] — a! CF ! iCloseCF; o ! AL ! iSetALOn;self(min,max)
/)
[(v ge min) and (v le max)] — self(min,max))
/)
eSetMinValue ? v : Value;
([v le max] — self(v,max)
i)
[v gt max] — self(min,max))
i)
eSetMaxValue ? v : Value;
([v ge min] — self(min,v)
/)
[v It min] — self(min,max))
endproc (* HS*)
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process CF[a]{AL(iSetALOn)}(s:Level) : self(Level) :=
o ! me ? msg : Action,([msg == openCF] —
([s ==max] — o ! AL ! iSetALOn; self(s)
7
[s < max] — self(s+1))
/)
[msg == closeCF] —
([s ==min] — o ! AL ! iSetALOn; self(s)
1)
[s > min] — self(s-1)))

| )
ﬁ eSetLevel? | : Level; self(l)
endproc (* CF *)

process AL[a]{}(s:State) : self(State) :=
a ! me ? msg : Action,self(action)) )
7
i ;self(off)

endproc (¥ AL *)

Problem: The Warning Light process (WL) is added to the existing environment containing HS, CF
and AL. Communications to WL need to be incorporated into process HS together with
communications to the existing processes CF and AL. Ideally, communications to WL after the
original communications to CF and AL would need to be inserted, such that the modified behaviour of
HS would allow communication with CF, AL and WL together during the same atomic transmission.

The following LOTOS process definitions formalise the structure of WL, together with the extension
to HS:

process HS[a]{...}(...) : self(State) :=
eReadValue ? v : Value,
([vitmin] — o ! CF ! iOpenCF; o ! AL ! iSetALOn; oo ! WL ! iSetWLOn; self(min,max)
” : .
[v gt max] — o ! CF ! iCloseCF; o.! AL ! iSetALOn;o0 ! WL ! iSetWLOn; self(min,max)
)

[(v ge min) and (v le max)] — self(min,max))

7

process WL{aj{}(s:State) : self(State) :=
o ! me ? msg : Action,self(action)) )

© 9 .
o

i ;self(off)
endproc (¥ WL *)
Figure 7.2

The aim for a proposed solution to the problem is to modify the structure for the behaviour of
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HS; as shown in bold text as part of the modified heat sensor HS . Complex issues associated with
multiple synchronisation and deadlock are brought to the forefront when considering adding new
processes to a system. Consider the sphere of influence that a new process has over its neighbours
when they are all required to synchronise on the same actions. There is no concept of priority; if one
fails then they all fail!

Section 5 illustrates fully the issues raised as part of the discussion into extending an existing
system. Further to these issues, the work of [9] addresses part of the problem of process dynamics in
a different way to the current work presented here; using a constant number of ports for
communication, similar to the n-calculus [16] and switching between available communications
channels and processes during run-time. Current methods, including [12,17,19], do not address
casual inheritance. Further work is needed to support the ideas of reuse using process algebras.

8 Proposed Investigation

The investigation will centre on the reusability of processes using inheritance. Primarily I shall address
the issues arising from the temporal modification of process behaviour and the effect that this
modification has on the behaviour of the rest of the system. Casual inheritance can be defined as a
method of extending the sequence of actions that comprise the temporal behaviour of a process. By
incorporating casual inheritance I can make the target process more flexible and portable.

Iintend to investigate the application of self and redirection (*) [19] and address the restrictions
imposed upon processes that use these two constructs to enable them to meet conformance criteria;
increasing their application area whilst maintaining the sub-type relationship.

Other issues imposed by the introduction of casual inheritance will need to be addressed in
order to approach a more complete solution. Issues such as i) multiple synchronisation between
processes which can lead to deadlock if one action fails to synchronise and ii) introducing new
communication ports into existing processes if a new process synchronises on a new channel.

I seek to provide a mechanism for implementing casual inheritance. The introduction of
additional operators into standard LOTOS [11] may also be required to allow the temporal behaviour of
a process to be extended. These operators, if applicable, will be investigated. This new operator would
bind communications together (similar to the operator discussed in [1] and introduced in [2]) so that
they would occur during the same atomic communication.

To complete the proposed research an investigation into various formal proofs of equivalence
will need to be carried out. The equivalence proofs, taken from [4,5,8] and [19], are intended to show
that the modifications I propose do not compromise the semantics of the formal description techniques
upon which the process definitions are based.

To conclude, my goal is to provide a mechanism for modifying current process behaviour
whilst maintaining the integrity of the modified system. Formal proofs will need to be constructed to
show that a new modified process is (at least ) behaviourally equivalent to the original process.

Finally, future work concerning the implementation of my proposed research ideas could be
considered using various programming languages such as C++ [22] and various actor languages [29].
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