The Evolution, Analysis, and Design of Minimal Spiking Neural Networks for Temporal Pattern Recognition
All sensory stimuli are temporal in structure. How a pattern of action potentials encodes the information received from the sensory stimuli is an important research question in neurosciencce. Although it is clear that information is carried by the number or the timing of spikes, the information processing in the nervous system is poorly understood. The desire to understand information processing in the animal brain led to the development of spiking neural networks (SNNs). Understanding information processing in spiking neural networks may give us an insight into the information processing in the animal brain. One way to understand the mechanisms which enable SNNs to perform a computational task is to associate the structural connectivity of the network with the corresponding functional behaviour. This work demonstrates the structure-function mapping of spiking networks evolved (or handcrafted) for recognising temporal patterns. The SNNs are composed of simple yet biologically meaningful adaptive exponential integrate-and-fire (AdEx) neurons. The computational task can be described as identifying a subsequence of three signals (say ABC) in a random input stream of signals ("ABBBCCBABABCBBCAC"). The topology and connection weights of the networks are optimised using a genetic algorithm such that the network output spikes only for the correct input pattern and remains silent for all others. The fitness function rewards the network output for spiking after receiving the correct pattern and penalises spikes elsewhere. To analyse the effect of noise, two types of noise are introduced during evolution: (i) random fluctuations of the membrane potential of neurons in the network at every network step, (ii) random variations of the duration of the silent interval between input signals. It has been observed that evolution in the presence of noise produced networks that were robust to perturbation of neuronal parameters. Moreover, the networks also developed a form of memory, enabling them to maintain network states in the absence of input activity. It has been demonstrated that the network states of an evolved network have a one-to-one correspondence with the states of a finite-state transducer (FST) { a model of computation for time-structured data. The analysis of networks indicated that the task of recognition is accomplished by transitions between network states. Evolution may overproduce synaptic connections, pruning these superfluous connections pronounced structural similarities among individuals obtained from different independent runs. Moreover, the analysis of the pruned networks highlighted that memory is a property of self-excitation in the network. Neurons with self-excitatory loops (also called autapses) could sustain spiking activity indefinitely in the absence of input activity. To recognise a pattern of length n, a network requires n+1 network states, where n states are maintained actively with autapses and the penultimate state is maintained passively by no activity in the network. Simultaneously, the role of other connections in the network is identified. Of particular interest, three interneurons in the network are found to have a specialized role: (i) the lock neuron is always active, preventing the output from spiking unless it is released by the penultimate signal in the correct pattern, exposing the output neuron to spike for the correct last signal, (ii) the switch neuron is responsible for switching the network between the inter-signal states and the start state, and (iii) the accept neuron produces spikes in the output neuron when the network receives the last correct input. It also sends a signal to the switch neuron, transforming the network back into the start state Understanding how information is processed in the evolved networks led to handcrafting network topologies for recognising more extended patterns. The proposed rules can extend network topologies to recognize temporal patterns up to length six. To validate the handcrafted topology, a genetic algorithm is used to optimise its connection weights. It has been observed that the maximum number of active neurons representing a state in the network increases with the pattern length. Therefore, the suggested rules can handcraft network topologies only up to length 6. Handcrafting network topologies, representing a network state with a fixed number of active neurons requires further investigation.
Item Type | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords | Spiking neural networks (SNNs); the evolution of SNNs; minimal cognition; temporal pattern recognition; learning mechanism of SNNs; designing minimal networks |
Date Deposited | 18 Nov 2024 11:15 |
Last Modified | 18 Nov 2024 11:15 |
-
picture_as_pdf - 17072515 YAQOOB Muhammad Final Version of PhD Submission.pdf