DIVISION OF COMPUTER SCIENCE

A Case Study for Generic Processes and Reusability in LOTOS

N. Taylor
E. Smith

P.
D.
Technical Report No.209

June 1994

A Case Study for Generic Processes and
Reusability in LOTOS

P.N. Taylor and D.E. Smith
Division of Computer Science,
University of Hertfordshire,
College Lane, Hatfield, Herts. AL10 9AB. UK
email: comrpnt@ hertfordshire.ac.uk

June 1994

Abstract

The benefits of reusability have been widely documented and commented upon. When
processes exhibit similar behaviour the possibilities for generic process specification exist. It
is possible to construct process specifications by instantiating generic process descriptions. In
this paper we investigate the identification and specification of reusable components using the
formal specification technique (FDT) LOTOS. We discuss the semantics of reusability as de-
fined in LOTOS and apply them (o a case study problem. We specify a simple control system
for use within a greenhouse environment and concentrate upon the identification and specifica-
tion of generic, reusable processes found within the case study system.

1 Introduction

In the early 1980’s the International Organisation for Standardization (ISO) decided to
develop a formal description technique to help with the mathematical modelling of computer net-
works and open distributed systems [1, 2, 5, 6]. Those systems that were related to the Open
Systems Interconnection (ISO) seven layered architecture were to be the main beneficiaries of
the work on LOTOS. The idea was to be able to give LOTOS the power to model the relation-
ship between the temporal interaction of processes such that the behaviour of those systems
could be observed external to the system,; that is time ordered communications between process-
es. LOTOS builds on the work of CCS [7] and CSP [4] where the syntax and semantics of
LOTOS are based on both of these previous works. For more information about the foundations
of LOTOS see [3] which compares and contrasts all three languages; CCS, CSP and LOTOS.

2 Process Specification

Our case study originates from a simple problem which is often given to students as part
of a design and specification course. It is a greenhouse control system (GHCS) containing six
components all working in parallel. The informal specification of each component is as follows:

Sprayer (Sp): 1t can be turned ‘on’ or ‘off’ by either accepting communications from the
environment or the Hygrometer. If the Sprayer is left ‘on’ for too long then it will timeout
and turn itself ‘oft’.

Hygrometer (Hy): The Hygrometer process accepts humidity readings from the environ-
ment. It uses these readings to determine whether to tell the Sprayer to turn ‘on’ or ‘off’
and the Window Controller whether to ‘open’ or ‘close’. It can also accept user specified
minimum and maximum settings to determine the humidity range.

Window Controller (WC). The Window Controller accepts communications from either
the Hygrometer or the Heater and the environment which tell it whether to ‘open’ or
‘close’. It has a static minimum and maximum range which it cannot move beyond. If an
attempt is made to adjust the window beyond this preset range then a signal is sent to ac-
tivate the Alarm, thus warning the environment of a problem.

Thermometer (Th): The Thermometer accepts temperature readings from the environment,
Similar in operation to the Hygrometer, The temperature readings are used to determine
whether to tell the Window Controller to ‘open’ or ‘close’ and the Heater to ‘turn up’ or
‘turn down’. This process also has minimum and maximum temperature settings to use
when validating the current temperature.

Heater (He): The Heater accepts communications from the Thermometer which tell it to
‘turn up’ or ‘turn down’. It has a preset range which it cannot be set beyond. Attempts to
adjust the Heater beyond its preset limits will result in a signal being sent to the Alarm,
warning the environment of a problem.

Alarm (Al): The Alarm accepts communications from the Window Controller and the
Heater processes. Upon receipt of a signal the alarm will sound. It can be reset by the en-

vironment or will timeout and turn itself ‘off’. However, the Alarm cannot be activated
from the environment, only via some internal communication.

We can represent the lines of communication between these processes as follows:

OOy &
()
(1—)

Figure 2.1

The simplified diagram of the complete system, in figure 2.1, omits the exact details of
the communications as it only shows how the components connect to each other and the environ-
ment. It does not show the nature of those connections.

3 Reusable Processes and Generality

The informal description of the GHCS processes suggests that the Sprayer and Alarm,
Hygrometer and Thermometer and the Window Controller and the Heater are behaviourally
equivalent. We can specify the following generic processes to capture the common behaviour of
these processes pairings.

» Generic process SPAL captures the behaviour of the Sprayer and Alarm processes
= Generic process HYTH captures the behaviour of the Hygrometer and Thermometer processes

» Generic process HEWI captures the behaviour of the Heater and Window Controller processes

By instantiating generic processes we can reduce the complexity of our specification.
LOTOS supplies a relabelling operator which enables us to rename the gates that connect the
process to the rest of the system and the environment. Renaming allows us to define new pro-
cesses in terms of existing processes. For example, the generic process HYTH is used to define
both a Hygrometer and a Thermometer process.

Consider the semantics of the relabelling operator:

B—g 5B, &=[gligl’,...gnlgn’],
and glg" e @

implies

Bd—g 5B'®

B—u+ —»B and u+ ¢ {gl’,....gn’}
implies
B®—y+ —>B'®

Figure 3.1

The semantics of relabelling, in figure 3.1, state that process B can progress to a new
state B”, via the actions of the relabelled gates, g, where the list of relabelled gates exist in the
gate list for B. This in turn implies that the process B, with gates listed in the set @, can perform
an action contained in the gate list @. The second part of the rule states that an action y+ may
occur and process B will progress to some new state, B”. The actions in g+ do not include suc-
cessful termination and internal actions (¢), which are not affected by relabelling.

The renaming of process gates takes place at the meta-language level. For our purposes
this level of specification will suffice as we intend to use LOTOS to convey ideas about the sys-
tem and not specific details which are more closely related to implementation.

4 Capturing Generic, Reusable Behaviour

By concentrating on only the SPAL, HYTH and HEWI processes we can reduce the
amount of work required to prove the behaviour of the component parts of the system. We still
have to prove the system correct but if we have confidence in the reusable processes then we
only have to prove the behaviour of the composed processes and not worry about the validity of
the existing reusable processes (we put our trust in the abilities of the original authors). Our first
task is to specify formally each generic process for use with our greenhouse control system. The
HYTH and HEWI processes capture the behaviour of the Hygrometer/Thermometer and

Heater/Window Controller processes respectively. However, slight modifications to the SPAL
process are required for it to be used in place of the Sprayer and the Alarm processes. Therefore
we shall deal with the generic process SPAL last.

Prior to the formal specification of the generic processes we need to introduce the ab-
stract data types and operations that are used throughout the specification. These data types and
operations would, in practice, be based upon recognised base-types, such as natural numbers.
Although we recognise the need for such base-types we do not include them in this discussion
because of the generic/reusable emphasise of this particular paper. Also, only a minimum num-
ber of equations have been specified as these also rely on base-types. The algebraic operations
are defined thus:

type StateType is Boolean
sorts State

opns
onoff : State
isOn : State — Boolean
eqns
isOn(on) = true;
isOn(off) = false;
endtype
type LevelType
sorts Level
opns
theMinLevel :: Level
theMaxLevel :: Level
isAtMinLevel : Level — Boolean
isAtMaxLevel : Level — Boolean
incLevel : Level — Level
decLevel : Level — Level
eqns
endtype
type ReadingType
sorts Reading
opns
> : Reading Reading — Boolean
< : Reading Reading — Boolean
2 Reading Reading — Boolean
<: Reading Reading — Boolean
= : Reading Reading — Boolean
egns
endtype
type RecStateType
sorts RecState
opns
setMax : Reading RecState — RecState
setMin : Reading RecState — RecState
theMax : RecState — Reading
theMin : RecState — Reading
eqns
endtype

Figure 4.1

Using the specified types and operations in figure 4.1 we can specify fully the generic
operations that capture the behaviour of the GHCS processes.

Censider the formal specifications for HYTH and HEWI.
hythGates def {SetMin,SetMax,ReadlInput,on,off open,close}

process HYTH[hythGates](hyth:RecState) : noexit :=
SetMin ? r:Reading;
([r <theMax(hyth)] — HYTH{hythGates](setMin(r,hyth))

i)
[r > theMax(hyth)] — HYTH[hythGates](hyth))

[]
SetMax ? r:Reading;

([r 2theMin(hyth)] — HYTH[hythGates](setMax(r,hyth))
[]
[r < theMin(hyth)] — HYTH[hythGates](hyth))

[]
Readlnput ? r:Reading;

([r < theMin{hyth)] — on;close;HYTH[hythGates](hyth)
i .
[r > theMax(hyth)] — off;open;HYTH{[hythGates](hyth)
[]
[(r 2 theMin(hyth)) and (r <theMax(hyth))] — HYTH[hythGates](hyth))
endproc (¥ HYTH *)

hewiGates def {SetLevel,open,close,on]

process HEWI[hewiGates](I:Level) : noexit :=
SetLevel ? I:Level, HEWI[hewiGates](l)

[]
open;
([not isAtMaxLevel(l)] — HEWI[hewiGaltes](incLevel(l))
[]
[isAtMaxLevel(l)] — on; HEWI[hewiGates](l))
[]
close;

([not isAtMinLevel(l})] — HEWI[hewiGates](decLevel(l))

[l
[isAtMinLevel(l)] — on, HEWI[hewiGates](l))
endproc (* HEWI *)

Figure 4.2

The behaviour for each process matches the informal process descriptions in section 2.
To change a generic process into a specific process we simply relabel the gates in the generic
process so that the relabelled gates match those of the new target process. For the
Hygrometer/Thermometer and Heater/Window Controller processes we achieve this transfor-
mation with the following definitions:

Hygrometer def HYTH[SetMintHumid/SetMin,SetMaxHumid/SetMax,ReadHumid/Read ,sprayOnlon,
sprayOffloff.open,close](hyState:RecState)

Thermometer def HYTH[SetMinTemplSetMin,SetMaxTempiSetMax,Readlemp/Read,inclon,
decloffopen,close](thState :RecState)

Heater dgf HEWI[SetHeat/SetLevel,inclopen,deciclose,on](heState:Level)
Window Controller dgf HEWI] Setl%ndoW/SelLevel,open,close,on](wcState.'Level)
Figure 4.3

The general format for the specification of relabelling a generic process to a specific pro-
cess is specificName def generalName[newNameioldName]. From this format description we

can see how both HYTH and HEWI can be used as the foundations for two specific processes
each.

Due the differences between Sprayer and Alarm we cannot simply perform the same
steps as those employed for the creation of the HYTH and HEWI processes. We can summarise
these differences thus:

The Alarm is activated internally, via communications with other processes in the system.
Sprayer can be activated in a similar manner but can also be activated by the environment
(Alarm cannot be activated in this way). Also, the Sprayer can be deactivated via an in-
ternal communication , whereas the Alarm can only be deactivated via an external commu-
nication from the environment.

Figure 4.4

We can formalise the informal description in figure 4.4 by specifying Sprayer and
Alarm.

sprayGates def {SetSprayOn,SetSprayOff sprayOn,sprayOff}

process Sprayer[sprayGatesj(spState:State) : noexit :=
[not isOn(spState)] — (SetSprayOn;Sprayer[sprayGates](on) []
sprayOn;Sprayer[sprayGates](on))

{]
[isOn(spState)] — (i;Sprayer(sprayGates](off) []
SetSprayOff;Sprayer[sprayGates](off) []

sprayOff:Sprayer(sprayGates](off))
endproc (* Sprayer *)

alarmGates def {SetAlarmOff,on}

process Alarm[alarmGates](alState:State) : noexit :=
[not isOn(alState)] — on;AlarmfalarmGates](on)

[]
[isOn(alState)] — (i;Alarm[alarmGates](off) []

SetAlarmOff;Alarm{alarmGates](off))
endproc (* Alarm *)
Figure 4.5

A comparison between the two gate lists for Sprayer and Alarm reveals a different set of
links to the environment. In order to specify a generic process that captures both Sprayer and
Alarm we must use action restriction on the external action SetSprayOn so that we can specify
SPAL. If SetSprayOn were an internal actions then the LOTOS hide operator would suffice and
we could define Alarm in terms of Sprayer by using action hiding only. The remaining similari-
ties between the two processes can be expressed formally with the following expression, taken
from the language of CCS.

Alarm = Sprayer \ {sprayOff, SetSprayOn}
Figure 4.6

where \ is the restriction operator borrowed from CCS. The restriction of the actions from the
Sprayer process differs from the LOTOS hide operation in that the restricted actions are not
available either internally or externally with respect to their environment.

To generate a reusable process to capture both Sprayer and Alarm we take a maximal
view and provide all of the functionality used by both processes. This gives rise to the following
generic process specification.

spalGates def {SetOn,SetOff,on,off}

process SPAL[spalGates](spalState:State) : noexit :=
[notisOn(spalState)] — SetOn,SPAL[spalGates](on) [] on;SPAL{spalGates](on)
[]

[isOn(spalState)] — (i,SPAL(spalGates](off) [] SetOff;SPAL[spalGates](off) []

off:SPAL{spalGates](off)
endproc (* SPAL *)

Sprayer dgf SPAL[SetSprayOniSetOn,SetSprayOffiSetOff,sprayOnlon,sprayOffioff](spalState:State)

Alarm def SPAL \ {SetOn,off}[SetAlarmOffiSetOff](spalState :State)
Figure 4.7

By using action restriction we can define new processes that only require a subset of the
actions provided by the reusable process. We could also think of this relationship between gen-
eral and specific processes as a parent/child relationship. The parent provides all of the neces-
sary actions for the child to use in order to allow the child to capture its own required behaviour.

With all of the generic processes now specified we can consider how they might be com-
posed together to form the greenhouse control system (GHCS). We would like to encapsulate
processes together so that details particular to process groups are hidden from the rest of the
system and the environment. The next diagram (taken from figure 2.1) shows the partitions that
we wish to enforce within the complete GHCS.

= SpHy

= ThHe

= SpHyThHeWC

= GHCS

Figure 4.8

From the diagram in figure 4.8 we can see that SpHy comprises of the processes built
from the generic processes SPAL and HYTH and ThHe uses HYTH and HEWI.
SpHyThHeWC then uses SpHy and ThHe, together with HEWI. The complete system (GHCS)
uses SpHyThHeWC and SPAL (acting as an Alarm process). Each part hides information from
those around them using the LOTOS hide operator. We can specify the components formally
like so:

SpGates def {SetSprayOn/SetOn,SetSprayOffiSetOff sprayOnlon,sprayOffioff}

HyGates dgf {SetMinHumid/SetMin,SetMaxHumid/SetMax,ReadHumid/Readlnput,sprayOnion,
sprayOffioff.open,close}

ThGates def {SetMinTemplSetMin,SetMaxTempiSetMax ,ReadlemplReadlnput,inclon,decloff,
open,close}

HeGates dgf {SetHeatlSetLevel,inc/open,deciclose}

WCGates def {SetWindowiSetLevel,open,close}

AlGates {SetAlarmOffiSetOff,on}

SpHyThHeWCGates def {SpGatesUHyGates UThGates UHeGates W CGates} \ {sprayOn,sprayOff,
inc,dec,open,close}

process GHCS[SpHyThHeWCGates UAlGates](spalSP,hythHY,hythTH hewiHE hewiWC spalAL)
: noexit ;=
hide on in
SpHyThHeWC[SpGates UHyGates UThGates UHeGates UAIG ates \

{sprayOn,sprayOffiinc,dec}](spalSP,hythHY,hythTH ,hewiHE ,hewiW C spalAL)

{lon]/

SPAL \ {SetOn,off}[SetAlarmOffiSetOff](spalAL)
where
process SpHy[SpGates UHyGates](spalSP :State,hythHY:RecState) : noexit :=

hide sprayOn,sprayOff in

SPAL[SpGates](spalSP) [[sprayOn,sprayOff]| HYTH{HyGates](hythHY)

endproc (* SpHy *)

process Thile[ThGates HeGates](hythTH :RecState hewiHE :Level) : noexit :=
hide inc,dec in

HYTH([ThGates](hythTH) [[inc,dec]| HEWI[HeGates](hewiHE)
endproc (* ThHe *)

process SpliyThHeWC[SpGates HyGatesiThGates UHeGatesuWCGates \
{sprayOn,sprayOff.inc.dec}](spalSP :State, hythHY,hythTH :RecState hewillE hewiWC':Level) :
noexit :=
hide open,close in

(SpHy[SpGatesiuHyGates \ {sprayOn,sprayOff} J(spalSP,hythHY)

n

ThHe[ThGates UHeGates\ {inc,dec} J(hythTH ,hewiHE))

/[open,close]] HEWI[WCGates](hewiWC)

endproc (*SpHyThHeW(C *)

endproc (* GHCS *)
Figure 4.9

To reduce the complexity of the process definitions we have made use of the set restric-
tion notation which should not be confused with the CCS action restriction notation introduced
in figure 4.6. The gates in each generic process are renamed to produce the individual GHCS
processes that make up our complete system, as shown in figure 4.8.

5 Generalising Generality

To make our specification as general as possible we have abstracted away much of the
implementation specific details that would normally be associated with a LOTOS specification
(i.e: specific variable typing). We have found that LOTOS is ideal for communicating our ideas
about concurrent systems to potential implementors because the structure of LOTOS lends itself
to many programming languages. For our purposes programming language specifics concerning
data structures and data types are not required at the level of abstraction at which we have chosen
to specify. We keep these data oriented details away from our abstract specifications and in par-
ticular the generic issues that this paper concentrates upon. Qur approach is at the meta-level of
specification and therefore is above the level of a typical ‘typed’ LOTOS specification. The ab-
stract nature of our specification allows us to introduce easily the notions of reusability within
large systems where common behaviour amongst processes is more likely to be found. As work
continues in this area we can envisage a library of reusable components being created and main-
tained so that specifiers can simply use supplied (proved) sections of LOTOS to build their
models; similar to the abstract data type/object reuse approach used by software houses.

6 Conclusions

We have shown that even a simple concurrent system can contain processes that exhibit
common behaviour. Our first goal has been to elicit this behaviour in order to capture it in gener-
ic reusable components. Our study has shown that it is possible to reuse certain aspects of a
LOTOS specification, albeit at the meta-level of specification. With combinations of gate renam-
ing and action restriction we have produced new processes which (to use the term loosely) inher-
it the behaviour of the parent processes upon which they are based. For more information on
LOTOS and inheritance (in the object-oriented sense) we suggest [8]. In our study a maximal
approach was used to provide enough functionality to child processes so that their behaviour
could be captured. Restricting the maximal generic processes provided only as much observa-
tional behaviour as was necessary to create the child process itself.

The composition of the generic processes is the second stage in capturing the behaviour
of the target system. Each reusable process must join together to form the whole system using
process composition. Some renaming of common gates will be required depending upon the
original choice for generic gate names.

With this paper we have shown how the introduction of a different method of reusing
processes in LOTOS gives us a new insight into how formal specification languages can be used
to mimic the practices commonly reserved for programming languages (i.e: inheritance and
reusability). We have seen many developments in the approach to implementing systems over the
years but few advances in developing formal specification languages to meet those new ap-
proaches. We feel that further work in harmonising the work of specifiers and specification lan-
guages together with programmers and programming languages will create a smoother transition
between system specification and implementation.

References

[1] Bolognesi, T and Brinksma, E. (1987). Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems. 14(1):25—59.

[2] Bustard, D.W, Norris, M.T., Orr, R.A. and Winstanley, A.C. (December 1992). An Exercise in

Formalizing the Description of a Concurrent System. Software Practice and Experience. 22(12):
1069—1098. '

3] Fidge, C. (1993). A Comparative Introduction to CSP, CCS and LOTOS. Key Centre for Software
Technology, University of Queensland, Australia. Technical Note.

(4] Hoare, C.A.R., (1985). Communicating Sequential Processes. Prentice-Hall.

(5] International Standardization Organisation, (1987). Information Processing System—Open Systems
Interconnection, LOTOS—A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour, DIS 8807, 1987.

[6] Logrippo, L., Faci, M and Haj-Hussein, M. (1992). An Introduction to LOTOS: learning by examples.
Computer Networks and ISDN Systems. 23(1):325—342.

[7] Milner, R., (1989), Communication and Concurrency. Prentice-Hall.

[8] Rudkin, S. (1992). Inheritance in LOTOS. IFIP Proceedings 1992.

Appendix

Specification GreenHouse_Control_System(...)

type BasicType is Boolean, Level
sorts Basic

type Statelype is Boolean
sorts State {on,off}
opns
isOn : State — Boolean
eqns
isOn(on) = true;
isOn(off) = false,
endtype

type Levellype
sorts Level
opns
succ(_) : Level — Level
It:Level Level — Boolean
le : Level Level — Boolean
gt: Level Level — Boolean
ge: Level Level — Boolean
setLevel: Level — Level
incLevel: Level — Level
decLevel: Level — Level
isMinLevel: Level — Boolean
isMaxLevel: Level — Boolean
eqns
Jorall n:Level (* in the range min...max *)
ofsort Level
incLevel(setLevel(minLevel)) = setLevel(succ(minLevel));
incLevel(setLevel(n)) = setLevel(succ(n)) if n It maxLevel,
incLevel(setLevel(n)) = setLevel(maxLevel) if n ge maxLevel;
decLevel(setLevel(minLevel)) = setLevel(minLevel);

decLevel(setLevel(succ(n))) = setLevel(n) if n le maxLevel-1;
ofsort Bool

isMinLevel(setLevel(minLevel)) = true;
isMinLevel(setLevel(succ(n))) = false;
isMaxLevel(setLevel(maxLevel)) = true;

isMaxLevel(setLevel(n)) = false if n It maxLevel;
endtype

type RecStateType
sorts RecState, Reading
opns
setMax : Reading RecState — RecState
setMin : Reading RecState — RecState
isLTmin : Reading RecState — Boolean
isGTmax : Reading RecState — Boolean
isGEmin : Reading RecState — Boolean
isLEmax : Reading RecState — Boolean
endtype

process GHCS(spalState:State, hythState :RecState, hewiState:Level) : noexit :=
hide spailState in

(SpHyHewi2[spalGates UhythGates UhewiGates](spalState,hythState hewiState)) [[on]/

SPAL[spalGates](spalState:State)
where

process SpHy[spalGateshythGates](spalState State, hythState:RecState) : noexit :=

hide on,off in
SPAL[spalGates](spalSiate:State) |{on,off]]

HYTH[hythGates](hythState:RecState)
endproc

*relabel common gates across processes, otherwise a gate name mismatch will occur where
Inc/Dec in HYTH is not recognised as the same gate as openlclose in HEWI.

*HYTH = HYTH[Inclon, Decloff](hythState:RecState)
*HEWI = HEWI[Inclopen, Declclose](p:Level)

process HyHewi[hythGates UhewiGates](hythState :RecState hewiState :Level) : noexit :=
hide Inc,.Dec in
HYTH[hythGates](hythState) [[Inc,Dec]] HEWI[hewiGates](hewiState)
endproc

process SpHyHewi2 [spalGates UhythGates UhewiGates]
(spalState:State hythState:RecState hewiState:Level) : noexit :=
hide open,close in
(SpHy[spalGates UhythGates] ||| HyHewi[hythGates UhewiGates])

[[open,close]]
HEWI[hewiGuates](hewiState)
endproc

spalGates dg‘ {SetOn,SetOff on,off}

process SPAL[spalGates](s:State) : noexit :=
[not isOn(s)] — SetOn;SPAL[spalGates](on) [] on;SPAL[spalGates](on)

[]
[isOn(s)] — (i;SPAL[spalGates](off) [] SetOff;SPAL[spalGates](off) []

off :SPAL[spalGates](off)
endproc (* SPAL *)

hythGates def {SetMin,SetMax,Readlnput,on,off open,close}

process HYTH[hythGates](r:RecState) : noexit :=
SetMin ? h:Reading,
([isLEMax(h,r)] — HYTH[hythGates](setMin(h,r))

{1
[isGTMax(h,r)] — HYTH[hythGates](r))

[]
SetMax ? h:Reading,;
([isGEMin(h,r)] — HYTH[hythGates](setMax(h,r))

[]
[isLTMin(h,r)] — HYTH{[hythGates](r))
[]

Readlnput ? h:Reading;
([isLTMin(h,r)] — on,close;HYTH[hythGates](r)

]
[isGTMax(h,r)] — off;open;HYTH[hythGates](r)
{1
[isGEMin(h,r) and isLEMax(h,r)] — HYTH[hythGates](r))
endproc (* HYTH *)

hewiGates def {SetLevel,open,close,on}

process HEWI[hewiGates](cw:Level) : noexit :=
SetLevel ? cw:Level, HEWI[hewiGates](cw)

[]
open;
([not isMaxLevel(cw)] — HEWI[hewiGates](incLevel(cw))
[]
[isMaxLevel(cw)] — on, HEWI[hewiGates](cw))
[]
close,

([not isMinLevel(cw)] — HEWI[hewiGates](decLevel(cw))

[]
[isMinLevel(cw)] — on;HEWI[hewiGates](cw))
endproc (* HEWI *)

endproc (* GHCS *)

Hygrometer dg HYTH[SetMinHumidlSetMin, SetMaxHumid/SetMax, ReadHumid/Read,
SprayOnlon, SprayOffloff, openlopen, closelclose](r:RecState)

Thermometer def HYTH[SetMinTemplSetMin, SetMaxTemplSetMax, ReadTemp/Read,
Inclon, Decloff, openlopen, closelclose](r:RecState)

Heater def HEWI[SetHeatlSetLevel, Inclopen, Declclose, onlon](p:Level)
Window Controller d_gf HEWI[SetWindow/SetLevel, openlopen, closelclose, onlon](p:Level)
Sprayer def SPAL[SetSprayOniSetOn SetSprayOffiSetOff sprayOnlon,sprayOffioff]

Alarm def SPAL[SetAlarmOffiSetOff,onlon] \ {SetOn,off}

