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Abstract. The analysis and modification of numerical programs in the context of
generating and optimizing adjoint code automatically probably ranges among the
technically and theoretically most challenging source transformation algorithms
known today. A complete compiler for the target language (Fortran in our case) is
needed to cover the technical side. This amounts to a mathematically motivated
semantic transformation of the source code that involves the reversal of the flow
of data through the program. Both the arithmetic complexity and the memory
requirement can be substantial for large-scale numerical simulations. Finding the
optimal data-flow reveral schedule turns out to be an NP-complete problem. The
same complexity result applies to other domain-specific peephole optimizations.
In this paper we present a first research prototype of the NAGWare Fortran
compiler with the ability to generate adjoint code automatically. Moreover, we
discuss an approach to generating second-order adjoint code for use in Newton-
type algorithms for unconstrained nonlinear optimization. While the focus of this
paper is mostly on the compiler issues some information on the mathematical
background will be found helpful for motivational purposes.

1 Motivation

Suppose that we are interested in the gradient of a given Fortran implementation

1 r e a l f unct i on f (n , x )
2 i n t e g e r n
3 r ea l , dimension (n) , i n t en t ( in ) : : x
4 . . .
5 end funct i on

of a multivariate scalar function y = f(x), f : IRn → IR, with respect to the
elements of its input vector x. Classical numerical differentiation by finite differ-
ence quotients computes approximations to the gradient entries by perturbing
the corresponding elements in x. The following example illustrates this method.

1 . . .
2 r ea l , dimension (n) : : x , g
3 r ea l , parameter : : h=1e−5
4 r e a l : : y , t
5 i n t e g e r i
6 . . .
7 y=f (n , x )
8 do i =1,n
9 t=x( i )

10 x ( i )=x ( i )+h



11 g ( i )=( f (n , x )−y) /h
12 x ( i )=t
13 end do
14 . . .

There are two major problems with this approach.

1. In infinite precision arithmetic we would make the perturbation parameter
h as small as necessary in order to get the desired accuracy of the approxi-
mation. Unfortunately, floating-point arithmetic is everything but infinite in
precision making the right choice of h a matter of trial and error. Moreover,
in most cases we do not even know what to aim for when trying out different
values of h. It may be dangerous to trust the derivatives obtained by finite
difference approximation.

2. Unidirectional (forward or backward) finite differences require n+1 function
evaluations. Even for a very simple nonlinear computation such as

1 . . .
2 i n t e g e r i
3 f=x (1)
4 do i =2,n
5 f=f ∗x ( i )
6 end do
7 . . .

the runtime can amount to several hours for n ≥ 107. Some of our target
applications are in the range of n ≥ 109.

Second-order accuracy can be obtained by centered finite differences. The com-
putational cost though is twice that of the unidirectional approaches.

A semantic source transformation technique known as automatic differentia-
tion [6] can be used to transform numerical codes into tangent-linear and adjoint
codes. Adjoint codes compute the gradient with machine accuracy and at a com-
putational cost exceeding that of the original function by merely a constant
factor. Accurate second derivatives can be computed by tangent-linear versions
of adjoint codes.

In this paper we present a research prototype of the NAGWare Fortran com-
piler that can generate adjoint code automatically by modifying the original
program at the level of the compiler’s intermediate representation. The benefit
of this approach in the context of numerical algorithms is illustrated in Figure 1
where we compare the runtimes (vertical axis in seconds) of a Truncated Newton
algorithm for unconstrained minimization of the Elastic Plastic Torsion problem
from the Minpack test problem collection [1] based on the finite difference (FD)
and automatic differentiation (AD) approaches for increasing problem sizes n
(horizontal axis). In FD mode both the gradients and the Hessian vector prod-
ucts are approximated by finite difference quotients. An adjoint code for the
efficient evaluation of accurate gradient information is generated by the com-
piler automatically in AD mode. The Hessian vector products are evaluated by a
tangent-linear version of the adjoint code obtained by operator overloading with
automatic type changes performed by the compiler. Obviously, finite differences
do not scale well. For n = 300 the optimization took approximately 15 minutes
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Fig. 1. Runtime of Truncated Newton algorithm for unconstrained minimization of the Elastic
Plastic Torsion problem.

on a state-of-the art high-end PC whereas the compiler-generated derivative code
lead to a runtime of less than one second. Many more steps had to be performed
by the algorithm due to inaccurate numerical approximations of the gradients
and the Hessian vector products. Refer to Section 5 for details on the Truncated
Newton method.

2 AD Compiler’s View on Numerical Code

In this section we introduce parse tree manipulation algorithms for the compiler-
based generation of tangent-linear, adjoint, and second-order adjoint numerical
programs. We consider (Fortran) implementations

F (
↓
x,y

↓
)

(an overset downarrow marks an input, an underset downarrow marks an output)
of multvariate vector functions

y = F (x), x ∈ IRn,y ∈ IRm .

2.1 Tangent-Linear Code Ḟ

The signature of the tangent-linear code is the following:

Ḟ (
↓
x,

↓
ẋ, ẏ

↓
)
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Fig. 2. From F (a) to Ḟ (b) by Parse Tree Manipulation

where
ẏ = F ′(x) ∗ ẋ, ẋ ∈ IRn, ẏ ∈ IRm .

F ′ ≡ F ′(x) denotes the (m × n)-matrix of the partial derivatives of all outputs
with respect to all inputs (the Jacobian matrix). The gradient of an output is
represented by the respective row in F ′.

The tangent-linear parse tree manipulation algorithm for assignments of the
form y = F (x) is illustrated in Figure 2. The right-hand side is linearized by
labeling the edge (x, F ) with the symbolic partial derivative F ′ = F ′(x) of its
target with respect to its source. The tangent-linear assignment overwrites ẏ. The
right-hand side of the tangent-linear assignment is build top-down for each node
by summation over all incoming edges of the products of the respective edge’s
label with the tangent-linear subtree of its source. All leaf nodes are replaced by
their respective tangent-linear symbols, that is, ẋ and ẏ. The partial derivatives
are functions of the respective edge’s source. This dependence is also represented
in the tangent-linear parse tree.

For z = x ∗ y and with F ′ = (y, x) we simply get the product rule of differ-
entiation as

ż = F ′ ∗
(

ẋ
ẏ

)
= y ∗ ẋ + x ∗ ẏ .

The recursive nature of the algorithm will become clearer in the context of
second-order adjoints illustrated by the transition from Figure 3 to Figure 4.

2.2 Adjoint Code F̄

The signature of the adjoint code is

F̄ (
↓
x,

↓
x̄
↓
,
↓
ȳ)

where
x̄ = x̄ + F ′(x)T ∗ ȳ, x̄ ∈ IRn, ȳ ∈ IRm .

The adjoint parse tree manipulation algorithm for assignments of the form y =
F (x) starts with the linearization of the right-hand side as in Section 2.1. As
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an immediate consequence of the chain rule the adjoint assignment increments
x̄ with the product of the row vector ȳ with the local Jacobian matrix F ′(x).
The incrementation is due to the data-flow reversal that accumulates adjoints of
variables that are read by the original assignment. The corresponding instances
can potentially be read by several assignments. Hence, the respective adjoints
need to be composed incrementally out of contributions from all of those assign-
ments. Moreover, all adjoints need to be initialized properly (e.g., to zero for
local program variables). The algorithm is illustrated in Figure 3. The adjoint
parse tree is linearized in order to derive the second-order adjoint code in the
next section. Refer to Section 3.1 for a description of the globalization of the
data-flow reversal.

For z = x ∗ y we get

(
x̄ ȳ

)
=

(
x̄ ȳ

)
+ z̄ ∗ (

y x
)

resulting in the two scalar assignments

x̄ = x̄ + z̄ ∗ y

ȳ = ȳ + z̄ ∗ x .
(1)

2.3 Second-Order Adjoint Code ˙̄F

Second-order adjoint code can be generated by building a tangent-linear version
of the adjoint code. The signature of the second-order adjoint code is

˙̄F (
↓
x,

↓
ẋ,

↓
˙̄x
↓
,
↓
ȳ,

↓
˙̄y)

where
˙̄x = ˙̄x + ˙̄y ∗ F ′(x) + ȳ ∗ F ′′(x) ∗ ẋ ˙̄x ∈ IRn, ˙̄y ∈ IRm .

Products of the Hessian matrix F ′′ = F ′′(x) ∈ Rn×n with a vector ẋ can be
computed by setting ˙̄x = ˙̄y = 0 and ȳ = 1 at roughly twice the cost of running
the adjoint code. The benefit for the Truncated Newton algorithm is illustrated
in Figure 1. Mathematical details are outlined in Section 5.

In order to generate second-order adjoint code for the simple assignment
z = x ∗ y we apply the rules for tangent-linear parse tree construction from
Section 2.1 to Equation (1) to obtain

˙̄x = ˙̄x + ˙̄z ∗ y + z̄ ∗ ẏ

˙̄y = ˙̄y + ˙̄z ∗ x + z̄ ∗ ẋ

Setting ˙̄x = ˙̄y = ˙̄z = 0 and z̄ = 1 we get

F ′′
(

ẋ
ẏ

)
=

(
0 1
1 0

)(
ẋ
ẏ

)
=

(
ẏ
ẋ

)

as expected. Figure 4 illustrates the general approach.
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3 Implementation

The conceptual insight into derivative code generation gained so far needs to
be commented on further in order to understand the work of an AD compiler.
Various additional issues arise when implementing the theory.

3.1 Data-Flow Reversal

The easiest way to reverse the flow of control is to enumerate all assignments in
the original program and to push their indexes onto a control stack during an
appropriately instrumented program execution (the augmented forward sweep).
The original order is reversed by poping the indexes from the control stack. The
following code listing is built on the example from Section 1.

1 . . .
2 i n t e g e r i
3 c a l l push c (1)
4 f=x (1)
5 do i =2,n
6 c a l l push c (2)
7 c a l l push d ( f )
8 c a l l push d ( i )
9 f=f ∗x( i )

10 end do
11 . . .
12 do whi le ( . not . empty c ( ) )
13 i n t i
14 c a l l pop c ( i )
15 i f ( i==1)
16 . . .
17 e l s e i f ( i==2) then
18 c a l l pop d ( i )
19 c a l l pop d ( f )
20 b x ( i ) = b x ( i ) + f ∗ b f
21 b f=x( i )∗ b f
22 end i f
23 . . .
24 end do

Pushes to and pops from the control stack are performed by the subroutines
push c and pop c. The Boolean function empty c tests for emptiness of the
control stack.

Instances of program variables may be required in reverse order if they oc-
cur as arguments of nonlinear intrinsics or arithmetic operators. However these
instances may be lost during the augmented forward sweep due to overwrites.
Such instances need to be made persistent by pushing them onto a data stack
before the corresponding memory gets overwritten. The required values need to
be restored prior to their use in the computation of a local partial derivative.
For example, f is overwritten repeatedly in line 9. A push of the old instance of
f onto the data stack needs to be inserted in front of line 9. The matching pop
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preceedes the corresponding adjoint statements in the backward sweep. Special
care must be taken for address computations in order to reference the correct
adjoint memory. See lines 8 and 18. Various domain-specific static code analyses
and optimizations must be performed to be able to handle large-scale numerical
simulation programs. They are part of our todo list. A complete description of
the issues arising in adjoint code generation is beyond the scope of this paper.
To our knowledge there is no single publication that covers it all. Refer to [5, 10,
11] for further reading.

3.2 AD by Overloading

A very robust and convenient way to implement tangent-linear code is by over-
loading of a programming language’s arithmetic operators and intrinsic functions
for a derived data type that contains in addition to the original function value
v a component for the derivative v̇. All active program variables (those that po-
tentially carry nonzero derivatives) need to get their types changed to the new
data type. This is done automatically by the compiler as outlined in Section 4.2.
A static data-flow analysis can compute a conservative estimate for this set [7].
The overhead of the additional function call can be eliminated by the compiler
through inlining. Below we show excerpts from the Fortran module that we use
for propagating directional derivatives in the context of second-order adjoint
codes as described in Section 4.1.

1 module compad module
2 im p l i c i t none
3

4 p r i v a t e
5

6 pub l i c : : compad type , t l s t y p e
7 pub l i c : : ass ignment(=) , operator (∗ ) . . .
8 pub l i c : : s i n . . .
9

10 type t l s t y p e
11 double p r e c i s i o n : : v=0
12 double p r e c i s i o n : : d=0
13 end type t l s t y p e
14

15 type compad type
16 type ( t l s t y p e ) va l
17 type ( t l s t y p e ) drv
18 end type compad type
19

20 i n t e r f a c e ass ignment(=)
21 module procedure t l s a s s i g n t l s
22 end i n t e r f a c e ass ignment(=)
23

24 i n t e r f a c e operator (∗ )
25 module procedure t l s t i m e s t l s
26 end i n t e r f a c e operator (∗ )
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27

28 i n t e r f a c e s i n
29 module procedure s i n t l s
30 end i n t e r f a c e s i n
31

32 . . .
33

34 con ta in s
35

36 e lementa l subrout ine t l s a s s i g n t l s (y , x )
37 type ( t l s t y p e ) , i n t en t ( out ) : : y
38 type ( t l s t y p e ) , i n t en t ( in ) : : x
39 y%v=x%v ; y%d=x%d
40 end subrout ine t l s a s s i g n t l s
41

42 e lementa l funct i on t l s t i m e s t l s ( x1 , x2 ) r e s u l t ( y )
43 type ( t l s t y p e ) , i n t en t ( in ) : : x1 , x2
44 type ( t l s t y p e ) : : y
45 y%v=x1%v∗x2%v ; y%d=x1%d∗x2%v+x2%d∗x1%v
46 end funct i on t l s t i m e s t l s
47

48 e lementa l funct i on s i n t l s ( x ) r e s u l t ( y )
49 type ( t l s t y p e ) , i n t en t ( in ) : : x
50 type ( t l s t y p e ) : : y
51 y%v=s in ( x%v) ; y%d=cos (x%v) ∗x%d
52 end funct i on s i n t l s
53

54 . . .
55

56 end module compad module

Conceptually, adjoint codes can be implemented by overloading too. However,
the interpretive overhead that results from the mapping of the real address space
onto a virtual one may be significant. Moreover, static code optimization is even
more relevant in adjoint codes. Refer to [3] and [9] for further details on the
use of overloading techniques in the differentiation-enabled NAGWare Fortran
compiler.

4 AD Compiler Support

In this section we describe a hybrid approach to second-order adjoint code gen-
eration that uses extensive parse tree manipulation techniques in addition to
overloading. Our focus is on the discussion of the modifications of the compiler’s
internal representation needed to make the generation of second-order adjoint
code fully automatic for the set of test problems currently under consideration.
We expect further work to become necessary to cover the full Fortran standard.
However, a large step has been made already.
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4.1 A Hybrid Approach

We use parse tree manipulation techniques to generate the adjoint code as de-
scribed in Section 4.3. Second-order adjoints are computed by overloading the
adjoint code as outlined in Section 3.2. The use of the second-order adjoint code
is best illustrated with an example: Consider the Fortran routine

1 subrout ine F(x , y )
2 double p r e c i s i o n : : x
3 double p r e c i s i o n : : y
4 y=s in ( x )
5 end subrout ine

The parse tree is manipulated internally to produce adjoint code such that ad-
joints are associated with original variables by address; that is, v (val) and v̄
(drv) are the two components of a derived type compad type. Both of them
are of type tls type (with components v and d of type double precision as
shown in Section 3.2). Thus, directional derivatives of the adjoints (second-order
adjoints) can be computed by overloading. Conceptually, the following code is
generated automatically by the compiler:

1 subrout ine dbF(x , y )
2 use compad module
3 type ( compad type ) : : x
4 type ( compad type ) : : y
5 y%val=s in (x%val )
6 x%drv=x%drv+cos (x%val ) ∗y%drv
7 end subrout ine

The second-order adjoint code is never unparsed. Instead the routine dbF is used
in a driver routine (for example, in the context of a truncated Newton algorithm)
as illustrated below.

1 program main
2 use compad module
3 ex t e r n a l dbF
4

5 type ( compad type ) x , y
6

7 x%val%v=1. ; x%val%d=.5
8 x%drv%v=0. ; x%drv%d=0.
9 y%drv%v=1. ; y%drv%d=0.

10

11 c a l l dbF(x , y )
12

13 p r i n t ∗ , ”x= ” , x%val
14 p r i n t ∗ , ”bx= ” , x%drv
15 p r i n t ∗ , ”y= ” , y%val
16 p r i n t ∗ , ”by= ” , y%drv
17

18 end program

Here we simply print the results producing the following (edited) output:
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1 x= 1.000000 0.5000000
2 bx= 0.540302 −0.4207354
3 y= 0.841470 0.2701511
4 by= 1.000000 0.0000000

The interesting value is that of ˙̄x = x%drv%d (line 2, second value) holding the
product of the second derivative of sin(x), that is, − sin(x), with ẋ = 0.5 at point
x = 1. Take the value of y = sin(x) (line 3, first value) and divide it by −2 to
verify numerical correctness.

4.2 Support for Overloading

The compiler provides support for overloading by automatic type changes and by
importing a module named compad module. As simple as it might sound, chang-
ing the types of all floating-point variables from REAL or DOUBLE PRECISION to
compad type while parsing the source code yields a number of technical chal-
lenges.

use compad_module statements must be inserted into all scopes that are to
be differentiated.

Calls to structure constructors of type compad_type need to be generated
for right-hand sides of initializations, for DATA entries, and whenever a named or
literal constant is passed as an actual parameter to a subroutine that expects a
dummy parameter of type compad_type.

The types of named floating-point constants is also changed to compad_type.
Derivatives with respect to constants are known to be identically zero. Hence,
their type should remain unchanged meaning that the changes that have already
happened need to be reversed. Both X and Y should have their types changed in
the following example.

1 REAL(KIND=2) , DIMENSION(2) : : X, P, Y
2 . . .
3 PARAMETER( P = 3.14 )

Initially the type of P is also changed to compad_type leading to the (edited)
parse tree on the left of Figure 5. Note, that the original declaration (its parse
tree) is kept in a COMMENT node for potential undoing of the type change. When
the parser finds the PARAMETER statement it backtracks to the original declaration
of P to generate a separate declaration based on the subtree of the COMMENT node.
The result is shown in Figure 5 on the right.

Fortran offers a large variety of syntactical constructs making the develop-
ment of robust parse tree manipulation algorithms a major technical challenge.
We have shown a very simple example. Still we are able to handle more com-
pilcated situations including higher-rank array declarations and additional at-
tributes such as SAVE and ALLOCATABLE as well.

4.3 Support for Parse Tree Manipulation

The adjoint parse tree manipulation algorithm is an extension of our original
approach. That used association by name for augmenting the original memory
space with adjoint variables, that is, v and v̄ were two separate variables of type
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|-TYPE |-TYPE

|-USERTYPE |-USERTYPE

| |-NAME=COMPAD_TYPE | |-NAME=COMPAD_TYPE

| |-COMMENT | |-COMMENT

| |-REAL | |-REAL

| | |-PAIR | | |-PAIR

| | |-ID=KIND | | |-ID=KIND

| | |-ICONST=2 | | |-ICONST=2

| |-ICONST=2 | |-ICONST=2

| |-ICONST=2 | |-ICONST=2

|-DIMENSION |-DIMENSION

| |-E_BOUND | |-E_BOUND

| |-ICONST=2 | |-ICONST=2

|-NAME=X |-NAME=X

|-NAME=P |-NAME=Y

|-NAME=Y |-TYPE

|-REAL

| |-PAIR

| |-ID=KIND

| |-ICONST=2

|-DIMENSION

| |-E_BOUND

| |-|ICONST=2

|-NAME=P

Fig. 5. Undoing Type Changes

double precision linked via some naming convention, for example v and v.
See [8] for details.

Our new method uses association by address. Moreover, the components of
the corresponding derived type can be of derived type themselves, thus allowing
for overloading to be applied to the adjoint code as described above.

5 A Little Mathematical Background

The following is a gentle introduction to the Truncated Newton algorithm aimed
at those without an extensive background in numerical analysis.

Suppose that some smooth function f has a vector x of inputs and a scalar
output y, and that we want to find the value of x for which y = f(x) is a
minimum.

Probably the most famous way of doing this is Newton’s method, which
consists of evaluating the gradient g = f ′ and Hessian H = g′ = f ′′ of f at a
trial point x and solving the linear equations Hd = −g for d. Provided that
lots of assumptions are satisfied, this gives the value of d which minimizes the
quadratic approximation q(d) = f(x)+g ·d+ 1

2dHd to f(x+d), and x+d will
be a better approximation to the optimal value of f than was the starting point
x. This process is then repeated iteratively.

Newton’s method has two drawbacks: it tends to be distracted by saddle
points unless we start off close to the minimum, and the labour of evaluating the
complete Hessian and then solving a huge system of equations at every iteration
is so immense as to be impractical if x has a very large number of dimensions.

14



At the other extreme, a simple approach which is guaranteed to work even-
tually is to follow the gradient (like walking downhill) by setting d to be some
multiple of −g. This method, which is called ”steepest descent”, converges ter-
ribly slowly in practice, because the gradient (and hence the correct direction in
which to walk) changes continuously as we go along. Really we should adjust the
downhill direction d = −g by a multiple of −Hd = Hg to allow for the change
in gradient caused by the curvature as we move along, and then by a multiple of
H2d = −H2g to allow for the effect on the gradient of the first adjustment, and
so on.

Truncated Newton (TN) is a way of iteratively approximating the solution to
Newton’s equation Hd = −g for a given “outer” step, by a series di of “inner”
steps. These inner steps exactly minimize q(di) in the search space spanned by
{g,Hg,H2g, . . . ,H i−1g}. The inner iterations are stopped when the approxima-
tion di to the Newton step is “close enough”. As normal, a line search along d is
then performed before the next outer step in order to ensure global convergence.

The TN approach has several advantages over the full Newton method. First,
it can avoid saddlepoints by detecting directions of negative curvature (search
directions in which f is concave instead of convex). Second, it does not require the
full Hessian, but only directional Hessians (vectors of the form Hp), which can be
efficiently and accurately calculated by the second-order adjoint codes introduced
previously, even for very large dimensions of x. Thirdly, TN can automatically
exploit symmetries in the function f : the number of inner iterations required
in theory for exact convergence is not the number of dimensions of x, but the
number of distinct eigenvalues of H, which is often much smaller.

The reason for this is that, if λ1, λ2 . . . λk are the distinct eigenvalues, then
(H − λ1I)(H − λ2I) . . . (H − λkI) = 0, so Hkg is already a linear combination
of lower powers.

Even where the number of distinct eigenvalues of H is large, approximate
equalities between them often lead in a smaller number of inner iterations to a
good enough approximate Newton solution.

It turns out that an effective way to construct the TN sequence of inner
approximations di is via a series of two-dimensional searches on q. At the i−th
stage the two search directions (starting from di) in which q is minimized are the
previous direction of movement di − di−1, which we can think of as a momen-
tum term, and the direction opposite to the updated gradient gi = g + Hdi at
di, which is the steepest descent direction for q (not f) at the current point di.
(Indeed one way to think of the TN algorithm is as the Conjugate Gradient algo-
rithm applied to q instead of f .) The TN algorithm starts with a one-dimensional
search in the steepest descent direction −g. Initialize i to zero.

d0 = 0; g0 = g; Δ0 = 0; p0 = −g0

Now for each i form Hpi and stop if piHpi < εp2
i

βi =
g2

i

piHpi

di+1 = di + βipi

gi+1 = gi + βiHpi

Δi+1 = Δi + β2
i piHpi/2
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stop if g2
i+1/g

2
0 < min(g2

0, 1.0/K
2)

αi+1 = g2
i+1/g

2
i ; pi+1 = αi+1pi − gi+1

Increment i.
The coefficients αi, βi are chosen so that gi+1 is orthogonal to both gi and

pi−1. This ensures that the search directions pi generated by the TN algorithm
are conjugate, piHpj = 0 for i �= j, and that the gradients gi are orthogonal,
gi · gj = 0 for i �= j. With respect to the partial orthogonal basis gi, the Hessian
H is tridiagonal, since giHgj = 0 for i > j + 1.

If TN stops because piHpi/p2
i is close to zero then we take di as the step

direction for the outer iteration. If TN stops because piHpi/p2
i is significantly

negative then we have found a direction of negative curvature, and take the
descent direction pi as the step direction for the outer iteration.

If TN stops because gi+1 is small (Newton itself is only quadratically conver-
gent, so there is no point in trying to do better than this) then we know that H is
positive definite in the space spanned by the gi. (Any linear combination of the
gi can be written as d =

∑
i γipi whence by conjugacy dHd =

∑
i γ

2
i piHpi.)

Note that g2
i is not guaranteed to decrease at each step, although q does decrease

at each step, by the amount β2
i piHpi/2. (This is because g0 · pi = −g2

i , whence
g0 · βipi = −β2

i piHpi.) Hence di is a descent direction, with g0 · di = −diHdi.
Another condition under which it is desirable to stop the inner iterations is

when di moves into a region where the quadratic model q breaks down. One way
to detect this is periodically to compare f(x)−f(x+di) with Δi and stop if the
relative error is more than a specified proportion. Alternatively g(x + di) can
be periodically compared with gi in some norm. This breakdown could be due
to di growing too large (trust regions are sometimes used in conjunction with
TN to monitor this) but it could also be due to the accumulation of roundoff
errors in the values for gi,pi. The TN algorithm responds well when provided
with accurate second derivatives, which allow a much larger number of inner
iterations to be taken before this second form of breakdown occurs.

For more information about the TN algorithm, the best place to begin is the
original paper by Dembo and Steihaug [4].

6 Case Study

We consider the application of the Truncated Newton algorithm to a Fortran
implementation of the well-known Rosenbrock function

f(x1, x2) = (1 − x1)2 + 100(x2 − x2
1)

2 .

The Hatfield NOC OPTIMA TN algorithm expects the user to provide the fol-
lowing three subroutines:

– CALFUN to compute the function value FF at point X;
– CALGRD to compute the gradient G at point X;
– CALHP to compute the product HP of the Hessian at point X with a vector

P.

Both CALGRD and CALHP use the second-order adjoint routine dbRosenbrock
that is generated automatically by the compiler. All three routines are shown in
the following code listing.
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1 SUBROUTINE CALFUN(X,N,FF, INF)
2 IMPLICIT DOUBLE PRECISION (A−H,O−Z)
3 DIMENSION X(N)
4 INF=0
5 t1 = (1−x (1) )
6 t2 = t1 ∗ t1
7 t3 = x (2)−x (1) ∗x (1)
8 FF = t2 + 100∗ t3 ∗ t3
9 RETURN

10 END
11

12 SUBROUTINE CALGRD(X,N,FF,G, INF)
13 use compad module
14 IMPLICIT DOUBLE PRECISION (A−H,O−Z)
15 ex t e r n a l dbRosenbrock
16 DIMENSION X(N) ,G(N)
17 type ( compad type ) ctx (N) , c t f
18 INF=0
19

20 ctx (1)%val%v = X(1)
21 ctx (1)%val%d = 0 .
22 ctx (1)%drv%v = 0 .
23 ctx (1)%drv%d = 0 .
24

25 ctx (2)%val%v = X(2)
26 ctx (2)%val%d = 0 .
27 ctx (2)%drv%v = 0 .
28 ctx (2)%drv%d = 0 .
29

30 c t f%val%v = 0 .
31 c t f%val%d = 0 .
32 c t f%drv%v = 1 .
33 c t f%drv%d = 0 .
34

35 c a l l dbRosenbrock ( ctx , c t f )
36

37 G(1) = ctx (1)%drv%v
38 G(2) = ctx (2)%drv%v
39

40 RETURN
41 END
42

43 SUBROUTINE CALHP(X,G,N,P,HP, INF)
44 use compad module
45 IMPLICIT DOUBLE PRECISION (A−H,O−Z)
46 ex t e r n a l dbRosenbrock
47 DIMENSION X(N) ,G(N) ,P(N) ,HP(N)
48 type ( compad type ) ctx (N) , c t f
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49 INF=0
50

51 ctx (1)%val%v = X(1)
52 ctx (1)%val%d = P(1)
53 ctx (1)%drv%v = 0 .
54 ctx (1)%drv%d = 0 .
55

56 ctx (2)%val%v = X(2)
57 ctx (2)%val%d = P(2)
58 ctx (2)%drv%v = 0 .
59 ctx (2)%drv%d = 0 .
60

61 c t f%val%v = 0 .
62 c t f%val%d = 0 .
63 c t f%drv%v = 1 .
64 c t f%drv%d = 0 .
65

66 c a l l dbRosenbrock ( ctx , c t f )
67

68 HP(1) = ctx (1)%drv%d
69 HP(2) = ctx (2)%drv%d
70

71 RETURN
72 END

The gradient at the current point X (lines 20 and 25) is computed by setting
the adjoint of FF to one (line 32). Its entries are accumulated in the adjoint
components of X (lines 37 and 38).

The product of the Hessian with the vector P at point X (lines 51 and 56)
is computed by initializing the directional derivatives of X(1) and X(2) to P(1)
(line 52) and P(2) (line 57), respectively. Again, the adjoint of FF needs to be
set to one (line 63). The entries of the corresponding directional Hessian occur
as the directional derivatives of the adjoints of X (lines 68 and 69).

The semantic transformation of the original function evaluation routine is
taken over entirely by the compiler. Writing corresponding code by hand and de-
bugging it may require substantial manpower for larger problems. Undoubtedly,
life is much easier with a second-order adjoint compiler.

7 Conclusion and Outlook

Writing a compiler for the automatic generation of robust and efficient adjoint
and second-order adjoint codes is a highly challenging task. Substantial source
code analysis and manipulation is required at the level of the compiler’s internal
representation. The availability of such a compiler facilitates a faster transition
form pure numerical simulation to derivative-based optimization of nonlinear
mathematical models. Thus, the compiler is likely to become a central element
in the toolbox of every computational scientist or engineer.

We are in the process of developing a research prototype of the NAGWare
Fortran compiler that provides the previously mentioned functionalities. Our
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current test set comprises problems from the Minpack test problem collection
as well as several others. Feasibilty and usefulness of the adjoint compiler ap-
proach has been illustrated with the help of a Truncated Newton algorithm for
unconstrained nonlinear optimization where gradients and projected Hessians
are provided automatically by the compiler for a given implementation of the
objective function. The efficient gradient evaluation via adjoints combined with
the accuracy of the obtained numerical values resulted in a speedup of an order
of maginitude.

Further work is necessary to achieve the level of robustness that is desirable
in an industrial setting. Most likely this highliy ambitious software development
task cannot be completed in a purely academic environment where incremental
progress in language coverage is achieved by considering new target applications
as they become relevant.
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