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ABSTRACT

This paper describes experiments performed using a
Genetic Algorithm (GA) to optimise the parameters of a
novel model of a stochastic hierarchical neural clusterer.
Two issues of enhancing and optimising the model are
discussed. Two fitness functions were created from two
selected clustering measures, and a population of
genotypes, specifying parameters of the model were
evolved. Using the idea of optimising the model by a GA
has been proven to be useful. This process mirrors
genomic evolution and ontogeny.

1. INTRODUCTION

Organising the output nodes of a competitive network
into a tree structure may produce potential improvements
in both convergence and recall rates.  It may also make the
network more stable in responding to changes in the data
being classified.  However a limitation of most clustering
algorithms is that they require the number of classes to be
predefined.  This is a problem if no a-priori knowledge
about the data is available [1,2].

Dynamic neural tree networks (DNTN) may avoid the
above limitation by dynamically creating nodes and
automatically creating a tree structure.  However, all the
original models require parameters to be externally set,
which will significantly influence the hierarchical structure
and the classification that is produced [10].

A more recent DNTN is the Stochastic Competitive
Evolutionary Neural Tree (SCENT), [8,9]. This model is
comparatively robust, with respect to its parameter settings
when compared with other DNTNs [8]. Nonetheless, it is

unclear precisely how the internal parameters affect the
performance, which lead to the investigation reported here.
In order to explore the parameter space a good default set
of parameters was needed, and a Genetic Algorithm (GA)
was used as the search tool. A given genome (a set of
parameters), together with a data set allowed SCENT to
produce a classificatory tree. Twelve data sets were used.
The fitness of these trees was calculated using two
clustering measures.

2.  STOCHASTIC COMPETITIVE
EVOLUTIONARY NEURAL TREE

In SCENT, the tree structure is created dynamically in
response to structure in the data set. The neural tree starts
with a root node with its tolerance (the radius of its
classificatory hypersphere) set to the standard deviation of
input vectors and its position set to the mean of input
vectors.  It has 2 randomly positioned children.  Each node
has two counters, called inner and outer, which count the
number of occasions that a classified input vector is within
or outside tolerance, respectively.  These counters are used
to determine whether the tree should grow children or
siblings once it has been determined that growth is to be
allowed.

2.1. Algorithm

At each input presentation, a recursive search through
the tree is made for a winning branch of the tree.  Each
node on this branch is moved towards the input using the
standard competitive neural network update rule.

Any winning node is allowed to grow if it satisfies 2
conditions. It should be mature (have existed for an
epoch), and the number of times it has won compared to



the number of times its parent has won needs to exceed a
threshold. A finite limit is put on the number of times a
node attempts growth.
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Figure 1.  Process of growing a tree

When a node is allowed to grow, if it represents a
dense cluster, then its inner counter will be greater than its
outer counter and it creates two children. Otherwise, it
produces a sibling node. The process of growing is
ill ustrated in figure 1. To improve the tree two pruning
algorithms, short and long term, are applied to delete the
insuff iciently useful nodes.  The short-term pruning
procedure deletes nodes early in their li fe if their existence
is not improving the previous classificatory error. The
long-term pruning procedure removes a leaf when its
activity is not greater than an epsilon parameter. See figure
2 for a pruning process.

 
(a) Node to be pruned.

(b) Singleton is removed, the tree is reconstructed.

(c) Final tree after pruning process.

Figure 2. Pruning process of an inactive node from the
tree. The final tree is restructured so that a singleton is
removed.

The addition of randomness to a hierarchical neural
tree clusterer have some benefit in helping the model
avoid local minima in its implicit cost function. This
approach is well known in the field of optimisation [9].

There are two different ways in which stochasticity can
be added to the model. Firstly the deterministic decisions
relating to growth and pruning can be made probabili stic,
we call this Decision Based Stochasticity.

Secondly the attributes inherited by nodes when they
are created can be calculated with a stochastic element, we
call this Generative Stochasticity. To both of these
approaches a simulated annealing process can be added to
mediate the amount of non-determinism in a controlled
way, so that a decreasing temperature allows for less
randomness later in the li fe of the network.

3. PARAMETER SETTINGS

The parameters that are the object of this experiments
are briefly described in this section. The Growthparameter
is the maximum times a node is allowed to grow.  The K
parameter influences how easy it is for a node to grow - its
activity must satisfy.  As K is increased, it makes node
growth easier, and thereby bigger trees will result.
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The α and β parameters determine the new tolerance of
any children produced.
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An increase in α, and/or an increase in β tend to make
the trees deeper.  When a node produces a sibling these
two nodes have larger tolerance values, mediated by
SiblingToleranceSetting. Increasing this parameter limits
sibling growth.
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ErrorAcceptance is a parameter used in short-term
pruning. The condition to determine when a node should
be deleted is as below:
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In a long-term pruning procedure, a leaf node is
deleted when its activity is not greater than Epsilon.

4. CLUSTER MEASURES

The general goal in many clustering applications is to
arrive at clusters of objects that show small within-cluster
variation relative to the between-cluster variation [3].



Clustering is difficult as many reasonable
classifications may exist for a given data set, moreover it
is easy for a clusterer to identify too few or too many
clusters.  Suitable cluster criterion measures are therefore
needed [6].

There are two types of clustering measures, ones that
grade the flat clustering performance of the leaf nodes and
ones that grade the hierarchical structure.

An initial investigation, concentrated on 10 clustering
criterion selected from a comparative evaluation of
Milligan and Cooper [6] and another 2 hierarchical
methods [4].  From this study, 2 measures were chosen:
the gamma measure, which measures the flat partitioning
performance and the hierarchical correlation that assesses
a hierarchical clustering against the data.

5. OPTIMISING PARAMETERS BY GENETIC
ALGORITHMS

Searching a complex space of problem solutions often
involves a balance between two apparently conflicting
objectives. The first is exploiting the best solutions
currently available and the second is exploring the space.
GAs have been identified as a general purpose search
strategy that strikes a reasonable balance between
exploration and exploitation [7].

The seven parameters, described earlier, were encoded
in a binary genome of 40 bits.  A population of 50
individuals with random initialisation, were evolved using
the GENESIS package from John Grefenstette [5], for 100
generations. The mutation rate was 0.001 and the
crossover rate was 0.6, using dual point crossover.
Selection was rank based using an elitist strategy [7].

1 0 1 1

G e ne

Encode d parame te r

1 0 1 1
M in: - 0 .95 M a x: 5 .4 0

K : 7  b its

1 0 1 1
M in: 0 .0 05 M ax: 0 .9 50

α: 6  b its

1 0 1 1
M in: 1 M a x: 32

B : 5  b its

1 0 1 1
M in: 1 M a x: 32

G ro w t h p ara : 5  b its

1 0 1 1
M in: 0 .0 0 M a x: 0 .6 3

S ib T o l: 6  b its

1 0 1 1
M in: 0 .0 5 M a x: 1 .6 0

E rra ccp t : 5  b its 1 0 1 1
M in: 1 .0 0 M a x: 4 .1 5

E psilo n : 6  b its

Figure 3.  A Genome picture of 7 encoded parameters

5.1. Fitness Evaluation

The fitness function in the GA was constructed in
terms of the two best criteria described in the previous
section. The gamma measure and the hierarchical measure
both need to be maximised. Two fitness functions were
used, one just used the 2 cluster measures and was
otherwise unconstrained and the other constrained the
resulting tree to have fewer than 80 nodes. So the fitness
functions are:

Fitness Function1 = Hierarchical Correlation + Gamma
Fitness Function2 = Hierarchical Correlation + Gamma

- (Total nodes if > 80)

The genome for each individual was decoded into
parameter values for SCENT.  The corresponding model
was applied to all twelve data sets three times; the
resulting trees were evaluated using the two criterion
described above, and the overall fitness of an individual
calculated from the average fitness of the three runs across
the twelve data sets.

6. RESULTS

Results in this section are divided into 2 sets of results.
The first set of results illustrates the convergence of the
fitness functions to a final value and gives the sets of
parameters found by the best individual over a 100
generation run. These results are shown in Figures 4 and 5.
The second set of results is to show the effects on each
parameter during the run and are depicted in Figures 6 and
7.
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Figure 4. The average and best fitness of the
population when using the first fitness function.

Figure 4 depicts clearly that for the first 20 generations
there is a big difference in value of the population average
fitness and the best individual. Nonetheless, the difference



was reduced as the number of generations increased.
Toward the end of the run, the average fitness was
increased almost to the level of the best. An analysis of the
results for the first fitness function showed that the best
individual settled to a set of parameters that always
produced network trees with less than 80 nodes.

This is what motivated the creation of the second
fitness function. It was designed to see if a reduced search
space would produce better results. Since the final result
always had less than 80 nodes could a better performance
be produced by restricting the whole search space.
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Figure 5. The average and best fitness of the
population when using the second fitness function.

Interestingly results show in Figure 5 that the average
fitness started with a negative value as it penalised large
trees which were more than 80 total nodes in size.
However, the average fitness was positive after 10
generations. The average fitness value in Figure 5 was
more erratic than that in Figure 4, due to the large penalty
associated with large trees.

Nevertheless, this average fitness value also
approached the value of the best individual over 100
generations as had been the case with the first fitness
function. It can be seen that in both cases the overall
fitness level of the population and the best individual
fitness increase over time.

During the 100 generations, the best individual in the
population changed 19 times. Information regarding each
best of population using the first fitness function was
recorded and these 19 points represent the x-axis on a
graph in Figure 6. In the experimental run using the
second fitness function, the best individual only changed
12 times. Again information from each of these individual
is plotted in Figure 7 as the change occurred.

Figure 6 and 7 depict the number of total nodes and
leaf nodes and the depth of tree when the best of
population changed. The 22 clusters data sets was selected
to illustrate the changes that occurred to the parameters as
each best of population was found. Similar results were
obtained for most of the data sets.

From Figure 6, it can be seen that the number of total
nodes and leaf nodes and depth of the tree had settled by
about the 7th and 8th best of population. In Figure 7, the
basic tree shape in terms of number of nodes, number of
leaf nodes and tree depth had basically settled by the 5th
best of population.
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Figure 6. Results in term of number of total nodes and
leaf nodes and depth of tree, using the first fitness function
and a representative data set.
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Figure 7. Results in term of  number of total nodes and
leaf nodes and depth of tree,using the second fitness
function and a representative data set.



7. DISCUSSION AND CONCLUSION

One of the interesting features of this study is that the
fitness function is not applied directly to the genotypes on
the population that the GA is evolving but to neural
classifiers that have grown in response to environmental
stimuli.

This provides a direct analogue with the normal
genotype to phenotype mapping that occurs in ontogeny.
The results presented here demonstrate that a GA can
optimise the network performance by using an indirect
coding between the genotype (a set of parameters) and
phenotype (the grown tree).

Moreover different fitness functions clearly produced
different parameter sets.  Previous experimentation had
shown that certain parameters had a more critical impact
on the tree structures produced, and the GAs produced
parameter settings that corresponded with intuition,
varying with the aim of the specific fitness function.
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