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Abstract  

This paper addresses various issues involved in sub-band based text-dependent speaker verification. 

The first part of the discussions is concerned with the classification methods. An important issue 

addressed in this part is the determination of a set of weights which emphasises the sub-bands that are 

specific to the target speaker while de-emphasising or removing the contaminated ones. In particular, 

techniques for determining these weights dynamically according to the level of contamination in the 

sub-bands are described. Furthermore, the effectiveness of these methods is experimentally analysed 

through a set of comparative studies. The second part of the discussions focuses on the feature extrac-

tion process. Analytically, it is shown that for a sub-band system of S bands, the cepstral coefficients 

with the quefrency of p have a strong linear relationship to the (S×p)th full-band cepstral parameter. 

With the aid of a set of experimental results, it is demonstrated that this means the conventional 

classification methods adapted to work with sub-band cepstral parameters may not be able to capture 

all the useful spectral information contained in the full-band cepstral parameters. In order to tackle 

this problem, two methods are described and their relative effectiveness is experimentally examined. 

The experimental investigations also include an examination of speaker discrimination abilities of 

different sub-bands and an analysis of different possible recombination levels. 

 

1. Introduction  

In the conventional feature extraction process, each feature vector is generated by utilising the entire 

frequency spectrum of a given speech frame. Therefore, when the speech signal is partially degraded 

by an anomaly which is localised in time and frequency, the feature vectors that are generated within 

the time-span of that anomaly are completely contaminated. In such cases, however, it is likely that 

the unaffected parts of the spectral regions contain useful information for speaker discrimination. A 

logical way to tackle this problem is to split the entire frequency domain into a number of sub-regions 

and to use the spectral information contained in each of these regions to generate independent feature 

vectors. This technique is commonly known as the sub-band analysis and has been studied in the 
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context of both speech and speaker recognition [3][5][6][11][17-20]. The main attraction of this 

approach is that it provides the possibility of selectively de-emphasising the frequency spectral 

regions that are affected by anomalies. The other factors, which further motivate the use of the sub-

band analysis in speaker verification, can be described as follows. 

 
• The sub-band analysis closely resembles the front-end processes involved in human perception. 

The results of some psychoacoustics study have indicated that the human auditory mechanism 

decodes linguistic messages independently in different frequency sub-bands and the final decision 

is based on merging the information from these sub-bands [1]. 

 

• Different frequency spectral regions may not be equally effective for speaker verification. For 

example, it has been shown in [10] that, for some speakers, the upper part of the frequency 

spectrum is considerably more useful for the purpose of identification than the lower part. 

 

• Transitions between more stationary segments of speech do not necessarily occur at the same time 

across different frequency bands [6]. This time-asynchrony may be due to a number of factors 

including the underlying asynchrony between different parts of the human speech production 

system and the asynchrony introduced by the communication channels [20]. Because of the use of 

complete synchronous feature vectors in conventional systems, the above effects are not 

accommodated. The sub-band based approach has the potential to relax this constraint and this 

should be investigated for the purpose of speaker recognition. 

 

• Different verification strategies might ultimately be applied in different sub-bands. For example, 

feature vectors generated from different sub-bands can be selected to have different time/fre-

quency resolutions [6]. 

 

This paper is concerned with the sub-band based text-dependent speaker verification systems. In such 

a system, each registered speaker is represented using a set of reference models in which each model 

is formed using the feature vectors of a particular sub-band [17]. With this speaker modelling, a 

simple strategy for the verification trial is first to time-align the feature vector set in each given sub-

band to the corresponding reference model independently. The resulting scores associated with indi-
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vidual sub-bands can then be used to make the final decision. However, since the individual feature 

vector sets used in the process represent sub-spectral information, the time warping paths obtained in 

this manner may not be as reliable as that based on full-band feature vectors. A possible solution to 

this problem is to recombine the intermediate outcomes of separate time-alignment processes at 

certain pre-defined stages [6][11]. In conventional systems, each of these recombination stages is set 

to correspond to the end of a certain time segment, such as a phoneme, a syllable or a word. This 

assures the time-resynchrony of the speech events in different sub-bands. Figure 1 shows the high-

level operations involved in a typical sub-band based text-dependent speaker verification system. 

 

In this study, Hidden Markov models (HMMs) are used for speaker representation. The reason for this 

choice is that HMMs provide a very effective and, in fact, the most commonly used framework for 

text-dependent speaker verification [16]. Furthermore, the investigations are based on the use of 

cepstral feature parameters. This is believed to be a natural choice as cepstrum is the predominant type 

of speech features in both speech and speaker recognition. 

 

The paper is organised in the following manner. Section 2 describes the direct incorporation of the 

sub-band analysis into the HMM framework for text-dependent speaker verification. An important 

issue addressed in this section is the determination of a set of weights for emphasising the band-

limited segments that are specific to the target speaker while de-emphasising or removing the con-

taminated ones. Three classes of methods for determining the required set of weights are proposed and 

their relative strengths and weaknesses are discussed. Section 3 is concerned with the sub-band 

cepstral parameters. It shows that the conventional verification methods adapted to work with sub-

band cepstral parameters may not be able to capture all the useful spectral information contained in 

the full-band cepstral parameters. In order to tackle this problem, two new techniques are discussed in 

detail. Section 4 covers the experimental investigation carried out to evaluate the effectiveness of the 

proposed methods. It also includes two other related experimental studies: the usefulness of different 

sub-bands for speaker discrimination and the relative effectiveness of different possible recombination 

levels. The overall conclusions are presented in Section 5. 
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2. Sub-band Analysis in the HMM Framework  

In order to directly incorporate the sub-band analysis into the HMM framework each registered 

speaker is represented by a set of HMMs in which individual models are formed in different sub-

bands using an appropriate training algorithm [15]. In this case, the final verification score is obtained 

by modifying the Viterbi algorithm to that given below. 

 
Step 1: Initialisation   
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where the superscript s implies the association of the sth sub-band, S is the number of sub-bands, N is 

the number of states in each sub-band model, T is the number of test vectors in each sub-band, tO  is 

(1) 
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the tth test vector, )( tjb O  is the probability of observing tO in the jth state, )( jtδ  is the best scores 

accumulated along a single path, at time t, which accounts for tOOO ,....,, 21 and ends in ith state, ija  

is the probability of transition from state i to j, )( jiψ  is the state that maximises ( ))log()(1 ijt ai +−δ , P 

is the score used for verification and h is a weighting function which will be defined and discussed in 

Section 2.1.  

 
Equation (3), (5) and (8) are required only if the following backtracking procedure is to be applied. 

From t = 1 to S,  

 From t = T−1 to 1   )(    11
s
t

s
t

s
t qq ++=⇒ ψ  (9) 

Next t 

where { }s
T

ss qqq ,,, 21 LL  is the optimum time-alignment path (given in terms of states) for the test 

vector sequence { }s
T

ss OOO ,,, 21 LL . 

 
From equation (1) – (8) it is evident that, in between two consecutive recombination levels, the opera-

tions are the same as those in an approach where the conventional Viterbi algorithm is applied inde-

pendently in each sub-band at the same time. At recombination levels, however, the δ values which 

correspond to the same states in different sub-bands are set to their mean values (equation 1 and 6). 

This allows the time-alignment paths developing in an individual sub-band to get some benefit from 

the spectral information in the other sub-bands. As a result, the optimum set of time-warping paths 

and resulting verification score are expected to become more reliable. For the purpose of this paper 

the above approach is referred to as sub-band HMM (SB-HMM). 
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2.1. Estimation of the sub-band weights 

An important factor in the modified version of the Viterbi algorithm described above is the choice of 

h weights which operate directly on the band-limited segmental scores. By determining these weights 

appropriately, it is possible to emphasise the band-limited segments that are more specific to the 

speaker whilst de-emphasising the ones that are affected by time and/or frequency localised 

anomalies. The techniques which can be used for this purpose may be grouped into three categories 

according to the type of the measure involved. These measures are (i) a priori knowledge of the sub-

band performance, (ii) the segmental level SNR in each sub-band, and (iii) the average score against a 

set of competing speaker models. The following gives a description of the approach involved in each 

of these categories. 

 

i) A Priori Knowledge of the Sub-Band Performance 

A method for computing the required h weights is based on the use of knowledge of the relative 

performance of the individual sub-bands. Such knowledge can be gained through a series of 

experiments using a given set of speech data. For example, if at a given speech unit level (e.g. 

phoneme, syllable, word), the average verification error rates in the sub-bands 1,2,...,S are (1−η1), 

(1−η2),...,(1−ηS) respectively, then the required weights may be specified as  

∑
=

=
S

s
ss

s
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1

ηη  1 ≤ ≤s S ,   TtT ′′≤≤′  (10) 

where T′ and T′′ are the boundaries of the considered speech unit. The above formulation indicates 

that the weights are linearly proportional to the corresponding normalised verification rates. 

Alternatively, based on the argument that such linear schemes may not be the most effective approach 

for this purpose, the verification rates may be used in a non-linear procedure to compute the required 

weights. For example [17] 
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Comparing this approach with that described by equation (10) it can be seen that in this case, the sub-

bands with higher relative verification rates are weighted more heavily. Another, perhaps more 

effective, mechanism for the non-linear recombination of sub-bands is the discriminative training 

method [6][11]. In this technique the required weights are chosen in such a way that the rate of 

misclassifications is minimised for the given set of data. 

 

In general, the above approaches are expected to improve the verification accuracy by appropriately 

emphasising the sub-bands that are more specific to the target speaker. However, since the weights 

are computed prior to the verification process, if a test utterance (produced by the true speaker) is 

contaminated in the regions where the weights are relatively high, then the techniques can lead to an 

increase in the false rejection error. An obvious way of tackling this problem, as described below, is 

to incorporate the localised levels of contamination in the test utterance into the process of generating 

the weights.  

 

ii) Use of Segmental level SNR in each Sub-Band  

In order to reduce the effect of additive band-limited noise, the h weights may be computed as SNR 

dependent. An important issue in this approach is the estimation of the noise levels. A common 

method for this purpose is the use of the noise spectrum in the last few non-speech segments 

preceding the speech utterance. In such an approach, the required weights can be specified as follows. 
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where Φ(⋅) is a non-linear function which controls the heaviness of weights according to the local 

SNR. A number of possible types of this function can be derived from the theory of spectral 

subtraction [13]. An example of this is 
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where K′′ and K′ are the indices of the upper and lower frequency boundaries of the sth sub-band, γ is 
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a scaling factor, Bmax(k) is the maximum noise magnitude at the kth frequency index in the considered 

noise frames, and ρ(⋅) is the presumed band-limited frame level SNR which is given as: 

),(),(),( tkBtkXtk =ρ ,   (15) 

where |X(⋅)| and |B(⋅)| are the estimates for the spectral magnitudes of the smoothed noisy speech and 

the noise respectively [13]. 

 
The main assumption in the above approach is that the interfering noise remains stationary during 

speech activities. This, however, cannot be the case in many practical applications. In order to tackle 

the problem, an approach has been proposed in [12]. The technique involves the use of spectral 

magnitude distributions of the band-limited speech segments. The estimation of the noise levels is in 

fact based on the peak shifts observed in these distributions. A disadvantage of this method is that, for 

accurate estimation of the noise level, a relatively large speech segment (typically in the range of 0.5-

2.0 s) is required. The technique described in the next section not only deals with this problem 

effectively, but also handles the effects of various other forms of undesired mismatches that may be 

speaker generated or due to the environmental and communication channel noise. 

 

iii) Use of Competing Speaker Models 

The underlying idea here is to determine the h weights dynamically based on the argument that if, due 

to certain time and frequency localised anomalies, there is some degree of mismatch between a 

particular band-limited segment of the test utterance (produced by the true speaker) and the 

corresponding section in the target model, then a similar level of mismatch should exist between the 

considered test segment and the corresponding sections in a selected set of background speaker 

models. Such background models can be either speaker independent sub-band models or a group of 

sub-band model sets that are capable of competing with the sub-band model set of the target speaker. 

In the latter case the competing speaker model set can be selected based on their closeness to either 

the target model set or the test utterance [2]. For the reason stated below, the second approach (which 

is also unknown as unconstrained cohort normalisation [2][4]) was chosen in this study. Based on 
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this method, the h weights can be defined as follows. 

∑
=

−=
U

u
st

us
tx

s
t Ob

U
h

1
)( )(log1log , (16) 

where U is a prefixed value which defines the number of speakers to be allowed in the competing set 

[2], and )()( st
us

tx Ob  is the probability of observing the tth test vector of sth sub-band in the x(t)th state of 

sth sub-band model belonging to the uth competing speaker. In order to obtain the required state 

sequences, the test utterance has to be time-aligned with the sub-band models of each competing 

speaker using the modified Viterbi algorithm described by equations (1) – (8) and then the backtrack 

procedure described by equation (9) has to be applied (Figure 2). It should be noted that each of these 

alignment procedures involves an additional set of h weights. These weights can simply be set to 1 or 

computed according to the band-limited frame level SNRs as described in the previous section (the 

former approach is used in this study).  

 

In order for the above weighting scheme to be meaningful, the corresponding states in the sub-band 

models of the target speaker and each of the competing speakers have to represent equivalent acoustic 

events. This equivalency can be encouraged during the training procedure by using the speaker inde-

pendent sub-band models to initialise or seed the training of all required sets of the sub-band models 

(this technique is commonly known as bootstrap [16]). 

 

The main attraction of the adopted approach for choosing the competing speaker models is its superior 

ability in reducing the false acceptance error [2]. This is because when the test utterance is produced 

by an impostor, the competing speaker models will be close to the test token and not necessarily to the 

target model. As a result s
th  will become small and thereby the probability of false acceptance will be 

reduced significantly. 

 

For the purpose of this paper the above method of determining h weights is referred to as dynamic 

band-limited segmental weights (DBSW). It should be pointed out that the fundamental difference 

between the DBSW technique and the conventional score normalisation approaches [2] is that the 
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latter assumes that the mismatch is uniform across the entire frequency range at a given segmental 

level. The DBSW method, on the other hand, does not make such an assumption and attempts to 

estimate the level of mismatch associated with each individual band-limited segment of the utterances. 

This information is then used to compute a weighting factor for correcting each segmental (band 

limited) distance prior to the calculation of the final score. 

 

3. Sub-band Cepstrum 

The main focus of this section is the spectral information represented by the sub-band cepstral 

parameters in relation to that contained in the full-band cepstral parameters [18]. Suppose that a S sub-

band system is formed by equally distributing the log spectral parameters Y(k), k = 0,1,.., K−1. The pth 

cepstral coefficient of the sth sub-band can be computed according to the following equation. 
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where )(/, kf SKp  is kth order basis function of the discrete cosine transform (DCT) and it is given by 
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The values of a1 and a2 embedded in the above cosine basis function are either {2 and 0} or {1 and 

0.5} respectively. The former set of values is commonly used in computing the fast Fourier transform 

(FFT) based cepstral parameters. These values are also implicitly involved in the computation of the 

LPC based cepstral parameters [8]. In this case, equation (17) implies that 

( )∑ =
=×

S

s S pscSpSc
1

),(1)(  (19) 

where c(x) { = c1(1,x) } is the xth full-band cepstral parameter. The latter set of values (i.e. 1 and 0.5) 

is commonly used in determining mel-frequency cepstral coefficients (MFCCs) [7]. In this case, the 

relationship between the full and sub band cepstral parameters is of the following form 

( )∑ =

−−=×
S

s S
sp pscSpSc

1
)1( ),()1(1)(  (20) 
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From equation (19) and (20), it is evident that there exists a strong linear relationship between 

)( pSc ×  and { }. ),(),.......,,2(),,1( pScpcpc SSS  In other words, the cepstral coefficients with the 

same index in different sub-bands have a strong linear relationship to a full-band cepstral parameter 

whose quefrency is given by the product of that specific index with the number of sub-bands. This 

would, for example, imply that in a 4-sub-band system, the parameter sets  

{ } . . . . . ,3,2,14444  ),4(),,3(),,2(),,1( =ppcpcpcpc  

have high correlations with the full-band coefficients c(4), c(8), c(12),.…. respectively. 

 

In general, all the mid-quefrency full-band cepstral parameters {e.g. c(3) – c(8)} are highly useful for 

speaker discrimination. This is because they are neither, like the lower-order parameters, easily 

affected by the transmission channels nor, like higher-order parameters, significantly influenced by 

the voice pitch (which is susceptible to both mimicry and changes over time and also significantly 

affected by factors such as emotional state and speech efforts [9]). This implies that a linear 

relationship could not be established between each and every full-band cepstral parameter that is 

highly useful for speaker discrimination and a set of cepstral coefficients of the same quefrency 

belonging to an S-sub-band system (S > 1). This in turn arises a question: could the final decision in 

any of the conventional classification methods that are adapted to use only the cepstral parameters 

derived from an S-sub-band system account for the spectral information contained in all the full-band 

cepstral parameters that are proven to be useful for speaker discrimination?  

 

The experimental investigations carried out in the HMM framework to determine the answer to this 

question is described in Section 4. The results of these study shows that indeed the cepstral parameters 

derived from a single sub-band-system cannot capture all the spectral information contained in the 

full-band cepstral coefficients that are highly effective for speaker verification. This is obviously a 

serious obstacle in using the sub-band analysis for the purpose of speaker verification. The following 

sections provide possible methods to tackle this problem. 

 

Remark I: It should be noted that simple linear relationships, such as (19) and (20), would be possible 

between sub-band and full-band cepstral parameters only if the log-spectral magnitudes are equally 
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divided into non-overlapping sub-bands. However, the general point in the above discussions is that 

the overall spectral variation measured by a lower order DCT basis function in a sub-band is 

comparable to that of a higher DCT basis function of the full-band in the same spectral region. As a 

result, the details of the overall spectral variation measured by the complete set of DCT basis 

functions of the full-band in a given sub-band cannot be extracted using the DCT basis functions 

associated specifically with that sub-band. 

 

Remark II: Based on the results of a set of tests carried out in the initial part of the experimental 

investigation (which is presented in Section 4.3), it was decided to choose the frame-level sub-band 

recombination for the subsequent parts of the experimental study including the evaluation of the 

methods proposed in the next two sections. Hence, to simplify the discussions in the next two 

sections, these methods are presented based on the assumption that the sub-band recombination is 

performed at the frame-level. It should be pointed out that under this condition, the modified Viterbi 

algorithm described by the equations (1) – (8) reduces to that presented below: 

 
Step 1 : Initialisation : 
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Step 3 : Termination  
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It should also be noted that the operations to determine the optimum set of time-alignment paths were 

omitted in the above description since they would have the exact same form as before. 

 

3.1. Sub-band system with full-band cepstral supplements 

One possible method to tackle the problem stated in the previous section is to supplement the sub-

band cepstral coefficients with appropriate subsets of the full-band cepstral parameters. In a S-Sub-
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band system, this subset may be formed using the full-band cepstral coefficients c(n), where n takes 

all values except those divisible by S (this is because of the fact that coefficients c(S), c(2S), c(3S), … 

have strong linear relationships with sub-band cepstral parameters). For example, in the case of a 4-

sub-band system, this complementary subset could contain c(1) – c(3), c(5) – c(7) and  c(9) – c(11), if 

the full-band quefrency is truncated to 12. For the purpose of this paper, this method is referred to as 

“sub-band system with full-band cepstral supplements – SSFCS”. In order to incorporate this tech-

nique into the SB-HMM procedure, the term                     
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in equations (21) and (23) could be replaced with 
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where α is a combination factor between 0 and 1 (in this study, α was simply set to 0.5), tO′  is the set 

of tth complementary full-band cepstral coefficients (CFBCCs) of the test data, )( tj Ob ′′  is the 

probability for observing tO′  in the jth state of CFBCCs based model of the target speaker and, and th′  

are weighting factors for dealing with speech contamination in a time-localised manner (these weights 

can be computed dynamically based on an approach similar to DBSW (Section 2.1(iii)) and by using 

the competing speaker models of CFBCCs). Of course, due to the involvement of the full-band 

parameters, the benefits of the sub-band processing cannot be fully exploited. It is, however, believed 

that the full-band parameters can significantly improve the robustness of the target speaker model and 

thereby a better verification accuracy is achieved. 

3.2 Multiple sub-band-systems analysis 

Another way of tackling the above problem may be that of ensuring that there is a strong linear 

relationship between every full-band cepstral coefficient which is proven to be useful for speaker 

verification, and the sub-band parameters that are to be used in the classification. This can be 

accomplished if the sets of cepstral parameters are drawn from a group of different sub-band systems. 

The approach can be further described as follows. Assume that the full-band cepstral coefficients with 

quefrencies in the range p to p+q are the most useful ones for speaker verification. Based on the 
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analytical study presented in Section 3, the use of all the 1st cepstral coefficients of S(0), S(1),…., and 

S(q) (where S(i) is the sub-band system with  p+i bands) would ensure a strong linear relationship 

between each of c(p), c(p+1),.…, and c(p+q), and the sub-band parameters. Such an approach may, 

however, need to include systems of unusually large number of sub-bands. This in turn may detract 

from the reliability of the speaker verification process.  

 

An alternative method would be based on using R (< q) sub-band systems in which certain sub-band 

systems contribute more than one set of cepstral coefficients. With this technique, it is possible to 

avoid the systems that have unusually large number of sub-bands. However, the difficulty is in 

determining the relationship for the full-band cepstral coefficients c(i1), c(i2), c(i3), . . . , where p ≤ ix ≤ 

p+q and ix is not divisible by any of S1,S2,…,SR  (Sr is the number of bands in the rth sub-bands 

system). A possible method to tackle this problem is to supplement {c(i1), c(i2), c(i3), . . .} to the 

chosen set of sub-band parameters. It should be pointed out that, in this approach, the number of full-

band parameters to be used is much smaller than those in the case of SSFCS and thus the benefits of 

the sub-band analysis can be better realised. For the purpose of this paper, this technique is referred to 

as multiple-sub-band-systems analysis (MSBSA). Figure 3 illustrates a possible choice of parameters 

in the MSBSA method to represent the full-band cepstral coefficients c(1) – c(12). In order to 

incorporate this technique in the SB-HMM procedure, the term   
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r rβ  {in this study, βr is simply set to 1/R}, R is the utilised number of sub-band 

systems, the superscript r indicates the association of the rth sub-band system, and the symbols α, 

)( tj Ob ′′  and th′  have the same meanings as in the case of SSFCS. This method can certainly provide 

more flexibility in dealing with time and frequency localised anomalies. Its main drawback, however, 

is the increase in the computational complexity. It should also be noted that, the number of full-band 
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cepstral coefficients available to form a speaker model here is far less than that used in the conven-

tional full-band analysis. Furthermore, to build speaker models for an associated sub-band system, it 

may not be possible to use the entire set of cepstral parameters that would have been chosen in an 

analysis based solely on that sub-band system. This can lead to an unreliable speaker representation in 

the HMM framework. In order to tackle this problem a collective training method is devised and 

applied. The details of this technique are presented in the appendix. 

 

4. Experimental Investigation and Results 

The experimental work is divided into two main parts. In the first part, a number of issues concerning 

the techniques discussed in Section 2 and 3 are addressed. This includes the usefulness of different 

spectral regions for speaker verification as well as the effects of increasing the number of sub-bands 

and relaxing the time-synchrony assumption. The details of these studies are covered in Sections 4.2 

and 4.3. In the second part, the robustness of the proposed methods under adverse conditions is 

evaluated. The details of this part of the investigation are presented in Sections 4.4 and 4.5. The 

purpose of Section 4.1 is to present the general considerations in the experimental studies.  

 



  18

4.1. General considerations  

i) Definition of sub-bands 

A critical choice to be made in the design of a sub-band based system was the number and the 

positions of the constituent sub-bands. Obviously, narrower sub-bands would allow greater flexibility 

in dealing with the frequency localised anomalies. However, in such cases, the sub-bands would 

contain less information regarding the speaker, which could lead to unreliable partial decisions. The 

sub-band systems used for the purpose of this study were chosen in relation to the critical filterbank 

configuration used in the feature extraction procedure described earlier. In each of these systems, the 

individual bands were set such that they covered equal number of critical bands while the overlap 

between the consecutive bands were kept as minimum as possible (more precisely, no more than one 

overlap between consecutive sub-bands was allowed to fully cover a critical band in the correspond-

ing frequency region). Examples of the sub-band systems used in this work are given in Figure 4. 

 

ii) Speech data  

The speech data chosen for this study was a subset of the BT Millar speech database. This database 

was collected in a quiet environment over a period of approximately three months using a high quality 

microphone. It consists of 25 repetitions of digit utterances 1 to 9, "zero", "oh" and "nought" spoken 

by a total of 63 native English-speakers. Each speaker participated in five sessions and repeated the 

above utterances five times in each session. Subjects were prompted to speak individual digit 

utterances in a random order. All utterances were validated by human listeners, and provided with 

approximate endpoints within the digital recording. The first 10 versions of each utterance (obtained 

over the first two recording sessions) were reserved for training and the last 15 versions of the 

utterances (recorded over the last three sessions) formed the standard test set of the database. 

 
The subset adopted for the purpose of this study consisted of digit utterances 1 to 9 and "zero" spoken 

by 20 speakers. This subset has a bandwidth of 3.1 kHz (telephone bandwidth) and a sample rate of 

8.0 kHz. In order to make the speaker verification task more challenging, all the speakers in this set 

were chosen to be male speakers of about the same age.   
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iii) Feature parameters  

The main type of feature parameters chosen for the purpose of this study was SB-MFCC. In 

generating these features, each utterance was segmented into 32 ms frames at intervals of 16 ms using 

a Hamming window, and subjected to an 8th order FFT. The critical filterbank configuration used in 

this study was of the type proposed in [7]. An additional aim of the experimental study was to 

investigate how the spectral information contained in SB-MFCCs was influenced by DCT (Section 3). 

It was therefore decided to provide a basis for this investigation by producing a second type of feature 

parameters using only the log-energy outputs of the filterbank in each sub-band. For the purpose of 

this paper, these alternative features are abbreviated as SB-MFBOs (sub-band, mel-scale filterbank 

outputs). 

 
The full-band feature sets that were used for the purpose of comparison were MFBOs and MFCCs. 

The former is the entire log-energy outputs of the filterbank and the latter is the result of applying the 

DCT to the corresponding set of MFBOs. 

 
iv) Speaker representation  

In all the experimental investigations discussed in the subsequent sections, the speaker representation 

was based on digit-level HMMs. The HMM topology adopted was 4s2m, where NsMm stands for N-

state left-to-right structure without any "skip" transitions and M Gaussian mixtures per state (it should 

be noted that this selection of topology was made on the basis of a set of preliminary study carried out 

to evaluate the relative effectiveness of 2s4m, 4s2m, 2s6m and 8s1m). The k-means algorithm was 

used to train the speaker models [15]. In this procedure, for a given utterance text, the same speaker-

independent-HMM was used as the seed in the training of all the associated speaker models. 

Furthermore, when cepstral feature parameters were used, the covariance matrixes of the probability 

distributions associated with the speaker models were assumed to be diagonal. 

v) Testing procedure 
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In each verification trail, each of the reference models of each registered speaker for each vocabulary 

item was compared against the corresponding test set of all 20 speakers. Hence, the total number of 

true speaker and impostor tests carried out in a verification trail were T1 = nt × nr × nv and T0 = nt × ni × nr 

× nv respectively. Here, nt (=15), nr (=20), nv and ni (=19) have the following respective meanings: the 

number of test versions, the number of registered speakers, the number of vocabulary items, and the 

number impostors tested against each given registered speaker. The experimental investigation given 

in Section 4.5(iii) was based on a vocabulary of three sequences of four-digits which implies that, in 

this case, T1 = 900 and T0 = 17100. In all the other experimental studies, the vocabulary items were the 

10 individual digits in the set resulting in T1 = 3000 and T0 = 57000. The final scores obtained in each 

verification trail were used to form the empirical distributions of the true speakers and impostors to 

determine the equal error rate (EER) i.e., the probability of equal number of false acceptances and 

false rejections.  

 
The above discussion indicates that, in this study, the false rejection rate involved in the EER 

computation is subject to much larger statistical variation than the corresponding false 

acceptance rate, as it is based on relatively fewer trials. In this case, an estimate of the 95% 

confidence interval (CI95) for EERs may be obtained by setting the number of constrained 

trials equal to the number of true speaker tests, and using a single normal distribution. Based 

on this, an estimate of the 95% confidence interval is given by  

195 /)100(96.1 Tεεε −±=CI , (25) 

where ε is the EER in percentage and T1 has the same meaning as that given earlier. For 

example, in the case of single digit utterances, the 95% confidant intervals for 5% and 15% 

EERs are (5 ± 0.8)% and (15 ± 1.3)% respectively. 

 

4.2. Relative effectiveness of different sub-bands 
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In this study, the experiments were carried out separately for every band in each considered sub-band 

system {Section 4.1(i)} as well as for the full-band system using the conventional HMM framework. 

The feature parameters used were SB-/MFBOs, and SB-/MFCCs {Section 4.1(iii)}. The purpose of 

this investigation was twofold. Firstly, to acquire the knowledge of how relevant the different spectral 

regions for speaker verification were. Of course, such knowledge is crucial if one chooses to use 

weighting scheme described in Section 2.1(i). Secondly, to understand how the effectiveness of 

speaker verification is influenced by the use of an independent DCT in each sub-bands.  

 
The results of this investigation are given in Figure 5 as a function of the sub-band frequencies. Based 

on these results it can be said that, in general, the mid- and high-frequency sub-bands (1000-2500 & 

2500-4000 Hz) are more useful for speaker verification than the low-frequency ones (100-1000 Hz). 

In particular, the mid-frequency sub-bands appear to have the highest ability to verify speakers. It is 

also interesting to note that in the case of 2-sub-band SB-MFBOs, the band encompassing the upper 

part of the spectral region achieves slightly better performance than that of the conventional full-band. 

 

Remark: In reviewing the speaker recognition literature, the authors have come across two studies on 

the relative performance of sub-bands in a system covering the entire frequency band of interest 

[3][5]. Both of these studies, which contradict the above results, are concerned with the closed-set 

speaker identification tasks. In the first study, the experiments have been conducted in a text-

independent mode and it has been found that the sub-bands in region 600 – 2000 Hz are the most 

irrelevant ones for the task undertaken. In the latter study, the experiments have been carried-out in a 

text-dependent manner using a digit database. The results have shown that if all the speakers are male, 

the sub-bands in the regions 100 – 500 Hz and 1200 - 2600 Hz are relatively better for speaker 

identification and the identification error is at its peak for the sub-bands in the region 700 – 900 Hz. In 

this study, it has also been found that the relative performance of sub-bands for female speakers is 

somewhat different from that of the male speakers. These results together with that reported here 

suggest that the speaker discrimination effectiveness of some parts of the frequency region largely 



  22

depends not only on the chosen phonetic content and the type of the speaker group (particularly the 

gender) but also on the type of speaker recognition.  

 

Figure 5 also shows a general increase in the verification error rate for both groups of feature parame-

ters as the number of sub-bands is increased. This increase is observed to be relatively large in the case 

of SB-MFCCs. The dependence of the verification error rate on the number of sub-bands can be 

further understood by viewing Figure 6. The plots in this figure are based on the EERs computed using 

the values of SP , where ∑=

−=
S

i SS iPSP
1

1 )(  and )(iPS  is the final score obtained independently in the ith 

band of the sub-band-system which consists of S bands. The obvious and the common reason for the 

observed increase in the EER for both types of feature parameters is the reduction of the spectral 

information as the sub-band is narrowed. The cause for the additional increase in the case of SB-

MFCCs has to be attributed to the way in which these parameters represent the spectrum (Section 3). 

 

4.3. Comparative examination of various recombination levels 

Based on the discussion provided in Section 2, it is evident that the level in which sub-bands are 

recombined is an important factor in using the SB-HMM method effectively. Therefore, a series of 

experiments were carried out to determine the best recombination level. In this study the number of 

sub-bands was arbitrarily set to four. The recombination levels examined in the initial stage of the 

investigation were single frame, phoneme and word. In order to obtain the required phonetic 

boundaries in the second case, each test utterance was forced to align against phoneme-based 

(speaker-independent) full-band HMM of the corresponding digit. Table 1 presents the results of this 

study in terms of EER for SB-MFBOs. According to these results, single frame and word are the most 

and the least effective recombination levels respectively. A set of experimental study conducted using 

SB-MFCCs also led to similar results. 

 

A possible reason for the above order of effectiveness and for not realising the benefits of relaxing the 

time-synchrony assumption is that the duration between the consecutive time-resynchrony points is 
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too long. In such case, due to the extensive use of partial information, the time-warping paths become 

less reliable. It was thought that this problem could, to a certain extent, be overcome by selecting a 

merging level slightly higher than a single frame. Of course such levels might not necessarily be the 

ideal time-resynchrony points. However, they would provide a certain degree of freedom in choosing 

the time-warping paths of different sub-bands.  

 

In order to investigate this idea experimentally, a set of verification tests were carried out by 

incrementing the merging level from 1 to 10 frames. The results of this study are summarised in 

Figure 7. These results confirm that a better verification accuracy can be achieved by using the 

suggested approach. However, the merging level which yielded the best performance varied conside-

rably depending on the utilised utterance text (see the tabulation at the bottom of figure). Because of 

this, it was decided to use the single-frame-level merging for the remaining parts of the experimental 

work to keep the verification algorithm as simple and efficient as possible.  

 

4.4. Experimental investigations with the DBSW technique 

For this part of the experimental investigation, the effect of the time-localised anomalies was simu-

lated by adding an arbitrarily chosen narrow band noise (0-600 Hz) to randomly set time-regions of 

each test utterance. The net duration of contamination in each test utterance was kept close to 1/3 of 

its length. Moreover, the signal to noise ratio (SNR) was maintained at a pre-determined level. The 

number of sub-bands used was four.  

 

i) Baseline experiments 

The first set of experiments was aimed to investigate the effectiveness of the sub-band HMM (SB-

HMM) approach in the log spectral domain. For this purpose, SB-MFBOs were chosen and the 

DBSWs were applied (Section 2.1(iii)). The results of this study are given in Figure 8. In order to 

perform a meaningful comparison, the figure also includes the results obtained under similar experi-

mental conditions using three other techniques. These techniques are the standard full-band HMM 
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(FB-HMM), FB-HMM with unconstrained cohort normalisation (FB-HMM  + UCN) and, SB-HMM 

with SNR-based h weights (SB-HMM + SNRW). In the case of FB-HMM  + UCN, the cohort size was 

set to 2. This choice was based on the empirical evidence provided in [2]. Moreover, the SNR-based 

weights used in the case of SB-HMM + SNRW were determined according to equation (13). This is 

because the utterances adopted in the experiments were relatively shorter in duration and the noise 

used to contaminate them was reasonably stable. 

 

The robustness of the SB-HMM + DBSW method is clearly evident from these result (it can be seen 

that the response of this method across the considered SNR is relatively flat). The figure also shows 

that by incorporating the UCN in the FB-HMM method the effect of time and frequency anomalies 

can be compensated to some extent. Furthermore, the SB-HMM + SNRW technique appears to work 

reasonably well in normalising the effect of applied interference. This may be expected, because the 

contamination here is due to additive noise. It should, however, be emphasised that this method, 

unlike the SB-HMM + DBSW and FB-HMM + UCN techniques, cannot be very useful for minimising 

the effects of such causes of mismatch as the speaker generated variation. 

 

ii) Experiments with SB-/MFCCs 

In the next part of the investigation, the above experiments were repeated using SB-MFCCs. The 

results of this study are given in Figure 9. A comparison of these results with those in Figure 8 indi-

cates that, for both full and sub-band systems, MFCCs perform better than MFBOs. It is also observed 

that the SB-HMM + DRW method again exhibits a relatively flat response across the considered SNR 

range. However, the overall performance of the FB-HMM + UCN is noticeably better than that of the 

SB-HMM + DRW approach. Based on this it can be concluded that in the considered sub-band based 

speaker verification procedure, the sub-band cepstral parameters do not capture all the spectral 

information contained in the full-band cepstral parameters that are effective for speaker verification.  

 

Figure 9 also shows the results obtained using the SSFCS and MSBSA techniques (Sections 3.1 and 

3.2), which were developed to tackle this particular deficiency of the sub-band cepstrum. In the case 
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of SSFCS, a 4-sub-band system was chosen whereas in the case of MSBSA, sub-band-systems 2 – 4 

were used. These results clearly indicate that MSBSA is more effective than all the considered appro-

aches. It should be, however, noted that the SSFCS technique, which achieves noticeably better 

performance than the FB-HMM+UCN method, is computationally less expensive than the MSBSA 

approach.   

 

4.5. Experimental studies using various types of noise 

The experimental results presented in the previous section clearly indicated that when the test utter-

ances were partially contaminated by one type of additive narrow band noise, the performance of 

MSBSA was superior to all other methods considered. This section details the experimental investiga-

tions conducted using various types of additive noise in order to scrutinise the effectiveness of the 

MSBSA technique further. In this study, the results obtained for the FB-HMM+UCN were assumed to 

be the baseline. Furthermore, the test utterances were contaminated over their entire duration by 

adding a selected type of noise to them in the time domain at a predetermined SNR of x dB (where x is 

10 unless specified otherwise).   

 

i) Experiments using narrow band noise types 

The first set of experiments was aimed to investigate the effect of speech contamination in different 

frequency bands on the considered speaker verification methods. For the purpose of this study, the full 

frequency range was divided into four regions, A1 ≡ (0 – 500 Hz), A2 ≡ (500 – 1000 Hz), A3 ≡ (1000 – 

2000 Hz) and A4 ≡ (2000 – 4000 Hz), which were equally spaced in the mel-scale. Each of these regions 

was in turn contaminated more heavily than the rest with filtered white noise and in each case a set of 

verification tests was conducted. Figure 10 shows the power spectra of the utilised types of noise and 

how they influence the average SNR in the frequency domain. The speaker verification error rates for 

the considered four types of noise are shown in Figure 11.  
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These results show that a heavy contamination of the signal in the high-frequency regions degrade the 

verification accuracy much more than that resulting from a heavy contamination of it in the low-

frequency regions (it is seen that the EER for the case of A4 is about 5.5% higher than that for the case 

of A1). This must be attributed to the fact that the high-frequency parts of the speech spectrum, which 

are inherently low in energy, are more effective for speaker verification than the low-frequency parts. 

These results also show that the considered MSBSA-based method is more effective when the low-

frequency regions are heavily contaminated. In this case, the reduction achieved in EER is about 30% 

of the corresponding baseline value. With this method, the lowest reduction in the EER (about 15% of 

the baseline value) is obtained when the A4 region is heavily contaminated. 

 

ii) Experiments using white and pink noise types 

In the next set of experiments, two commonly known types of noise, namely white and pink, were 

used in turn to contaminate the speech utterances. Figure 12 shows the power spectra of these noise 

types and their effects on the average SNR in the frequency domain. The results of the verification 

tests carried out in this part of the experimental investigation are presented in Figure 13. 

 

As expected, when the additive noise is white, the verification accuracies are lower than those in the 

case of pink noise. It is, however, interesting to note that, even with white noise, the considered 

MSBSA-based method achieves some reduction in the verification error rate. In this case, the 

reduction is about 4% of the baseline EER. This may be due to the fact that the low-frequency parts of 

the speech spectrum, which inherently contain more energy than the high-frequency parts, are less 

affected by white noise. As seen in Figure 12, the pink noise contaminates the region (0 – 600 Hz) 

more heavily than the rest of the spectrum. It is also observed that in the said region, pink noise 

energy is higher than that of white noise. On the other hand, in the high-frequency regions (> 2 kHz), 

pink noise level is about 10 dB less than that of white noise. Figure 13 shows that the EER for pink 

noise is about 10% less than that for white noise and the reduction in EER due to the use of MSBSA 

is about 8% of the baseline.  
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iii) Experiments using real noise types 

For the final part of the experimental investigation, the BT Piper database was chosen. This database 

contains various noise types, each recorded in a real-life situation using either a land or a cellular 

telephone. In order to provide a general coverage of this database the following noise types were used 

in the verification tests. 

1. Varied crowd noise in a shopping centre. 

2. Constant light chats and keyboard clicks in an office. 

3. Car travelling at 30 mph on a busy road with varied surface condition. 

4. Car travelling at 70 mph on a busy road with a constant surface condition. 

5. Crowd talk and occasional clatter in a restaurant. 

6. Background music. 

7. High-level variable babble in a pub. 

8. Pay phone at roadside  

9. Airport lounge with some light crowd noise and foot steps. 

10. Voices from TV and radio in the background 

 
In this study, prior to contaminating the test utterances, each noise type was scaled whilst maintaining 

its relative mean level in the noise data set. Here, unlike in the experiments reported so far, sequences 

of four digits were used in the verification tests. It was believed that this would simulate the practical 

situations more closely. In order to reduce the experimental load, only three four-digit-sequences were 

used. These sequences were determined in the following manner. Firstly, two mutually exclusive digit-

sets were selected arbitrarily to form two unique four-digit sequences. The remaining two digits and 

one chosen arbitrarily from each of the first two sequences were then used to form the third sequence. 

In this way, the full digit-set was invoked in the experiments. The required speaker models for each of 

these sequences were obtained through a straightforward concatenation of the corresponding digit-

level HMMs that were generated and utilised in the previous experimental studies. Figure 14 shows 

the power spectra of the adopted types of real noise and how they influence the average SNR in the 

frequency domain. Figure 15 gives the average of the EERs obtained for the three four-digit-sequences 

as a function of the considered real noise types.  
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These results indicate that for all the considered real noise types, MSBSA performs better than the 

approach based on a combination of full-band HMM and UCN. As before, it is seen that MSBSA is 

more effective when the high-frequency parts of the spectra are less contaminated than the low-

frequency ones, and is less effective when the noise level is relatively flat over all the frequencies of 

interest. 

 

5. Conclusion 

This paper has been concerned with various issues related to the sub-band based text-dependent 

speaker verification. It has been shown how the sub-band analysis can be incorporated into the 

conventional speech feature extraction process to determine sub-band cepstral parameters. The 

investigations have indicated that for a sub-band system of S bands, the cepstral coefficients with the 

quefrency of p have a strong linear relationship to the (S×p)th full-band cepstral parameter. It has been 

shown experimentally that this means the conventional classification methods adapted to work with 

sub-band cepstral parameters may not be able to capture all the useful spectral information contained 

in the full-band cepstral parameters. To tackle this problem, two methods have been described. The 

first approach has been based on supplementing the sub-band cepstral coefficients with appropriate 

subsets of the full-band cepstral parameters. The second technique has involved the use of cepstral 

parameters generated from different sets of sub-band systems. Based on the experimental results it has 

been shown that the latter method is considerably more effective. The main drawback of this 

technique, however, is that it increases the computational complexity.  

 

The problem of incorporating the sub-band analysis into the conventional classification methods for 

text-dependent speaker verification has also been addressed. It has been indicated that an important 

issue in this context is the determination of a set of weights for emphasising the band-limited 

segments that are specific to the target speaker while de-emphasising or removing the contaminated 

ones. Three classes of methods for determining the required weights have been proposed and 

investigated. It has been demonstrated experimentally that out of these, only the methods based on 
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using competing speaker models are capable of introducing robustness against different types of time 

and/or frequency-localised anomalies in speech. 

 

The results of the experimental study have shown that the mid- and high-frequency sub-bands (1000-

2500 & 2500-4000 Hz) are more speaker specific than the low-frequency ones (100-1000 Hz). These 

results have also indicated that the use of a sub-band recombination level which is slightly higher than 

a single frame leads to a higher verification accuracy than that obtainable with any of the standard 

merging levels (i.e. frame, phone, word). 
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In order to conduct the MSBSA in the HMM framework, each registered speaker is represented by 

using { }
rSr

Rsrs
,....,2,1 

 ,....,2,1 , 
=
=λ  where λrs is the N-state, M-mixture, left-to-right HMM associated with the sth 

band of the rth sub-band-system which consists of Sr bands, and S1 = 1 (i.e. r = 1 corresponds to the 

full-band). The model parameters associated with each of these speaker representations are estimated 

using a set of L training utterances, {Ol}1=1,2,.…,L, where 
Tt,....,S,s

,....,R,r
lrs
t

l
t

r ,....,2,1   21
21}{

==
=









= oO  and lrs
to  is 

the set of cepstral coefficients chosen from the sth band in the rth sub-band system of the lth training 

utterance. Based on the discussion provided in Section 3.2, it is clear that for all (or at least some) 

values of r, lrs
to does not include all the cepstral parameters that would have been utilised in an 

analysis based solely on the rth sub-band system. This can lead to unreliable estimates for the model 

parameters. In order to tackle this problem a modified version of the Baum-Welch re-estimation pro-

cedure is used in this work [19]. In this approach, given the training utterance Ol, the probabilities 

),(ξ jil
t  and ),(γ mjl

t  are assumed to be equal for all the HMMs used to represent the target speaker 

and are computed collectively { ),(ξ jil
t  is the probability of being in state i at time t, and state j at 

time t+1, and ),(γ mjl
t  is the probability of being in state j using mth mixture component}. 

 

Suppose the parameters of the HMM in the sth band of the rth sub-band system are denoted as follows:  

{ }MN
rs
jmMN

rs
jmMN

rs
jm

rs
NN

rs
ij

rs rsrsca ×××× ==== ][ ,][  ,][  ,][ UµCA Uµ  

where rs
ija  is the probability of transition from state i to j, and the parameters rs

jmc , rs
jmµ  and rs

jmU , 

which are associated with the mth mixture in state j, are the weight, p-dimensional mean vector and 

p×p covariance matrix respectively. The re-estimation formulas used in the model training can be 

expressed as follows 
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′ denotes the transpose operation.  

In equation (A.4), the values )(α il
t  and )(β 1 jl

t+ are the forward and backward probabilities associated 

with the lth vector sequence respectively. For the purpose of text-dependent speaker verification, the 

forward and backward probabilities are commonly computed using the following induction formulas. 
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with the initial conditions  

)()1( 111
ll b O=α  and 0)(1 =ilα , ,,...,3,2 Ni =  and (A.7) 
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with the initial conditions  

1)1( =l
Tβ  and ,0)( =il

Tβ  .,...,3,2 Ni =  (A.9) 

 
The computation of both forward and backward probabilities involve a large number of 

multiplications of numbers less than unity which, in practice, can cause arithmetic underflow 

conditions. In order to prevent this, the scaling procedure described in [15] can be adopted. In this 

case, the probability of generating Ol by the model set { }
rSs

Rrrs
,....,2,1  

  ,....,2,1  ,
=
=λ  Pl, (which is used in equation 

A.5) can be determined by using the associated scaling factors [15]. 
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In the above equations, )( l
tjb O  represents ∑ =

M

j
l
tjmjmc

1
)(Ob  and the probability ),( l

tjm Ob  which first 

appeared in equation (A.5), is estimated in the following manner 
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where N p is a p-dimensional Gaussian density function with the mean vector rs
jmµ  and the covariance 

matrix ,rs
jmU  rs

th  and r
tg  are weights that control the contribution of the different sub-band systems 

and their bands respectively  (for the purpose of the study presented in this paper both rs
th and 

r
tg were set to 1). 
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Figure 1: Sub-band based speaker verification system (S: number of sub-bands). 
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Figure 2: SB-HMM based speaker verification system that uses the sub-band 

model sets of the competing speakers to determine the h weights of the target 

speaker (I: number of registered speakers). 
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Figure 3: Possible representation of the full-band cepstral sequence with a que-

frency span of 1 – 12 in the MSBSA method (the circled full-band coefficients 

are used as supplementary parameters). 
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Figure 4: Four different sub-band systems are shown relative to the adopted 

critical filterbank configuration (SB n/N implies nth frequency band of an N-sub-

band system). 
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Figure 5: EER as a function of frequency for various sub-band systems (SBSN 

stands for sub-band system of N bands. The frequency span of each band is re-

presented as a flat line). 
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Figure 6: Effects of increasing the number of sub-bands on speaker verification 

for two different cases. 
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Figure 7: Dependence of the verification error rate on the spoken material and the 

recombination level (the flat lines represent the corresponding overall EERs). 
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Figure 8: EER as a function of SNR for four different approaches. The feature 

parameters used in this study were MFBOs and SB-MFBOs. 
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Figure 9: Relative performance of six different verification schemes as a function 

of SNR using MFCCs / SB-MFCCs.  
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Figure 10: Power spectra of four types of narrow band noise and their affect on 

the average SNR (In FWNn, FWN stands for filtered white noise and n implies 

the association of the frequency region An). 

Frequency (Hz) 
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Figure 11: Relative effectiveness of the considered MSBSA-based method for 

speaker verification as a function of additive narrow band noise. 
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Figure 12: Power spectra of two types of noise and their effects on the average 

SNR. 

Frequency (Hz)
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Figure 13: EERs for two different verification methods as a function of two 

types of additive noise. 
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Figure 14: Power spectra of different types of real noise and their effects on the 

average SNR (In RTNz, RTN stands for real noise type and z is the associated 

noise type number as given on page 25). 
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Figure 15: Results of the experiments carried out by contaminating the test 

utterances with different types of real noise (the flat lines represent the 

corresponding overall EERs). 
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Merging level Single-frame Phoneme Word 

EER (%) 13.8 14.7 15.4 
 

Table 1: EERs in verification tests for different recombination levels. 


