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Abstract. The work outlined in this paper explores the influence of prior
knowledge and related experience (held in the form of weights) on the
generalisation performance of connectionist models. Networks were trained on
simple classification and associated tasks. Results regarding the transfer of
related experience between networks trained using back-propagation and
recurrent networks performing sequence production, are reported. In terms of
prior knowledge, results demonstrate that experienced networks produced their
most pronounced generalisation performance advantage over naïve networks
when a specific point of difficulty during learning was identified and an
incremental training strategy applied at this point. Interestingly, the second set
of results showed that knowledge learnt about in one task could be used to
facilitate learning of a different but related task. However, in the third
experiment, when the network architecture was changed, prior knowledge did
not provide any advantage and indeed when learning was expanded, even found
to deteriorated.

0. Introduction

Some complex tasks are difficult for neural networks to learn. In such circumstances
an incremental learning approach, which places initial restrictions on the network in
terms of memory or complexity of training data has been shown to improve learning
[1], [2], [3]. However, the purpose of the majority of networks is not simply to learn
the training data but to generalise to unseen data. Therefore, it can be expected, but
not assumed, that using incremental learning may also improve generalisation
performance.

The work reported in this paper extends upon the original work of Elman [3], in
which networks trained incrementally showed a dramatic improvement in learning. In
this paper three different ways of breaking down the complexity of the task are
investigated, with specific reference to generalisation performance. In the first
experiment an incremental training regime, in which the training set is gradually
increased in size, is evaluated against the standard method of presenting the complete
training set. In the second experiment the hypothesis that knowledge held in the
weights of a network from one task might be useful to a network learning a related



task, is explored. The third experiment completes the investigation by determining
whether knowledge transfer between networks such as those in the second
experiment, may prove beneficial to learning across different types of networks,
performing related tasks. The use of well-known learning rules (back-propagation and
recurrent learning) allows this work to complement previously mentioned earlier
work, allowing a more complete picture of learning and generalisation performance.

1. Experiment One: Investigating Prior Knowledge

The aim of this experiment was to compare the generalisation performance of
networks trained using incremental learning in which the input to the network is
staged (experienced networks), with equivalent networks initialised with random
weights (naïve networks). Networks were trained with the task of classifying static
depictions of four simple line-types as seen in Figure 1. Classification of the line-type
was to be made irrespective of its size and location on the input array. In order to
accomplish this task the network, must learn the spatial relationship of units in the
input and then give the appropriate output in the form of the activation of a single
classification unit on the output layer.

Horizontal Vertical Diagonal acute Diagonal obtuse

Fig. 1. Shows the four basic line-types which the network was required to classify.

1.1 Network Architecture

A simple feed-forward network consisting of an input layer of 49 units arranged as a
7x7 grid was fully connected to a hidden layer of 8 units, which was also connected to
an output layer of 4 units, each unit representing a single line type was used (see
Figure 2).

1.2 Training and Testing of Naïve Networks

A full set of patterns for all simple line-types of lengths ranging from 3 to 7 units, for
all locations upon the input grid, were randomly allocated to one of two equal-sized
training and testing sets (160 patterns per set). Three batches of networks (each
consisting of 10 runs) were initialised with random weights (naïve networks). The
first batch of networks was trained to classify two different line-types (horizontal and
vertical lines), the second three and the third, all four different line-types. All
networks were trained using back-propagation with the same learning rate (0.25) and
momentum (0.9) to the point where minimal generalisation error was reached. At this
stage the number of epochs that each network had taken to reach the stop-criterion of



minimal generalisation error was noted. These networks formed the basis of
comparison with experienced networks.

1.3 Training and Testing of Experienced Networks

These networks were trained using the same parameters as those used for naïve
networks. The training and testing of the four line-types was divided into three
increments, the first increment consisting of two line-types (horizontal and vertical
lines) with an additional line-type being added at each subsequent increment. The
network progressed from one increment to the next upon attaining minimal
generalisation error for the current increment. At this point the weights of the network
were saved and then used as the starting point for learning in the following increment,
patterns for the additional line-type were added along with an additional output unit
(the weights for the additional unit were randomly initialised).
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than an experienced network at the same stage. It seemed that the level of task
difficulty increased between the learning of three and four line-types. So the weights
from naïve networks trained with three line-types were used as a starting point for
training further networks upon four line-types, resulting in a two-stage incremental
strategy. This training regime resulted in a further improvement in generalisation
performance, with an average of 84.48%. A comparison of the results for the three
different training strategies implemented can be seen in Figure 3.
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2.1 Network Architecture

All networks consisted of the same input layer as used in Experiment One, a hidden
layer of 12 units and an output layer of 26 units.
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Fig. 4.  Shows the static input to the network of a vertical line of a length of five units and the
desired output of the network. Output is encoded in terms of movement from the starting point
along the x and y-axis. This form of thermometer encoding preserves issometry and is position
invariant [3].

2.2 Training and Testing

All networks were trained and tested in the same manner and using the same
parameters as those used in Experiment One. Naïve networks were initialised with a
random set of weights. For experienced networks, weights from networks producing
the best generalisation performance in Experiment One were loaded. Additional
connections required for these networks (due to an increase in the number of hidden
units) were initialised randomly. Generalisation performance was assessed.

2.3 Results

Naïve networks reached an average generalisation performance of 59.59%.
Experienced networks were substantially better, with an average generalisation
performance of 70.42%. This result as seen in Figure 5, clearly demonstrates the
advantage of related knowledge about lines and the spatial relationship of units on the
input grid in the production of displacement vectors.
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3. Experiment Three: Investigating Related Experience II

The aim of this experiment was to examine whether weights from a classification task
could be used to aid learning in a recurrent network required to carry out an extension
of the static task. Initially, a standard feed-forward network (as shown in Figure 2)
was trained to classify line-types of simple two-line shapes. Following this a recurrent
network [5] was trained to carry out this task in addition to generating the sequence in
which the line-segments for each shape would be produced if drawn (as shown in
Figure 6).
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Fig. 6. Shows an example of the input and output for the sequential shape classification task.
The input was a simple shape composed of two lines of different types. The output consisted of
two components. The static, identifying the line-types, and the sequential generating the order
of production. Networks used in Experiment One were trained to give the static output of the
task. Weights from these networks were then used by recurrent networks to produce both the
static and sequential outputs as shown above.

3.1 Training and Testing

Both naïve and experienced networks were trained on an initial sequence production
task, using simple shapes composed of diagonal line-types only.  Following this, the
initial task was extended for both networks to include shapes composed of horizontal
and vertical line-types.

3.2 Results

The generalisation performance of naïve and experienced networks for the initial and
extended task was assessed. Initially, comparison showed no notable difference
between naïve and experienced networks. However, performance deteriorated for
experienced networks with the addition of the extended task. This drop in
performance was attributed to a reduction in performance upon the initial task.
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