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Abstract 

The applicability of the Ray Tracing with Diffraction on Facets model is 

extended to particles with curved surfaces. This allows tests against T-matrix 

calculations for larger size parameters and modeling of light scattering by 

more realistic particle shapes, such as ice crystals with rounded edges. 
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1 Introduction 

The importance of ice and mixed-phase clouds to the earth-atmosphere radiation balance and climate 

is well established. However, despite extensive study, there is still a large uncertainty over the 

radiative properties of these clouds. This is partly due to inadequate theoretical models of light 

scattering by the constituent ice crystals of realistic shapes and sizes.  

Computations of light scattering properties for non-spheroidal particles based on exact methods 

like the Separation of Variables (SVM) Method, e.g. [1], T-matrix [2,3], Discrete Dipole Approximation 

(DDA) [4] have upper size parameter limits of applicability, depending on the method and the 

complexity of particle shape. This leaves a size parameter range that is covered neither by exact 

methods nor by Geometric Optics (GO). A modified Kirchhoff approximation (MKA) method has been 

introduced [5] to calculate far fields from classical Geometric Optics (GO) results, which encouraged 

the development of the Improved GO model [6]. The latter is, however, computationally expensive. 

For moderate values of the size parameter the Finite Difference Time Domain (FDTD) method can be 

used [7] but it too, puts severe demands on computational resources. Thus, despite its limitations, 

Geometric Optics (GO) combined with projected-area diffraction, e.g. [8], is still the most widely used 

model for moderate to large size parameters. Recently, diffraction on facets was introduced into a ray 

tracing model (Ray Tracing with Diffraction on Facets, RTDF) [9-11]. This method maintains the 

flexibility and computational efficiency of GO while producing much improved results. Given the rapid 

and flexible computation offered by ray-tracing based models, it is possible to create two-dimensional 

(2D) light scattering patterns for even very complex crystals. Such patterns provide much more 

information than azimuthally averaged scattering data such as a phase function. In contrast to 

standard GO, the RTDF model can produce such patterns not only for random (averaged) 

orientations but also for fixed ones. 2D scattering patterns have been correctly predicted by the RTDF 

model [10], and it is therefore expected to become a suitable tool for particle characterization, in 

particular since cloud probes now exist that characterize ice particles on the basis of 2D scattering 

patterns (e.g. [12]). A large proportion of ice crystals have curved as well as planar surface 

components, e.g. due to sublimation or melting. Other atmospheric particles, like mineral dust, are 

irregular. Their surfaces could be approximated as multifaceted objects. In this paper, the RTDF 

model is used to model scattering by ‘hybrid’ particles, the surface of which has both planar and 
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curved components. RTDF phase functions of circular cylinders and a sphere are compared with T-

matrix [13] or Mie theory, which are analytical techniques, and GO combined with projected area 

diffraction [8]. The effect of edge rounding on 2D scattering patterns of hexagonal columns is 

demonstrated.  

2 Method and results  

The RTDF model combines ray tracing with diffraction on flat facets. The model calculates diffraction 

using an approximation for the far-field direction of the Poynting vector. The angle of diffraction of a 

reflected or refracted ray is calculated from the ray’s proximity to the facet edges [11]. In the following, 

curved surfaces will be approximated by arrays of planar facets. As an example, the lateral surface of 

a circular cylinder will be approximated by a succession of thin strips. The approximation of a curved 

surface will improve with the number of plane facet elements, avoiding artificial sharp edges and 

therefore reducing artefact structures in the angular distribution of scattered light. Furthermore, a 

decrease of the angle between surface normals of neighbouring facets needs to be accompanied by a 

reduction of diffraction at these facets. In the following, the far field deflection angle φo calculated by 

RTDF [11] is multiplied by the sine of the angle γ between the normals of the neighbouring facets 

under consideration, if γ < 90°:  

 

 

This ensures that no diffraction takes place between coplanar facets. Full far field diffraction is applied 

between facets with normals which include an angle of 90° or larger. The ray-tracing component and 

the diffraction on projected cross section component are added, as in the original ray-tracing code by 

Macke [8]. Calculations for diffraction at circular apertures showed however, that the existing 

subroutine for diffraction at polygonal apertures generates too high scattering contributions close to 

the forward direction for size parameters 2πa/λ smaller than about 100 (a is the effective radius of the 

aperture). This is because a singularity of the diffraction formula at direct forward scattering is 

approached. Therefore, in this work the projected cross section is approximated by a circular aperture 

of the same area, which should be adequate for particles with aspect ratios close to one, such as 

those investigated here. The RTDF results are compared with computations using T-matrix [13,14] or 
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Mie theory, respectively, which are analytical techniques, and GO combined with projected area 

diffraction [8]. For the GO calculations the same approximation for the projected cross sections as for 

RTDF was used.  

Fig. 1 shows randomized orientation phase functions for a circular cylinder with refractive index 

1.311 for size parameters x = 2πasph/λ equal to 20, 40, 80 and 120, where asph is the radius of a 

sphere with equivalent surface area. The aspect ratio of the column L/2a is 1, where L is the column 

length and 2a its diameter. Down to size parameters of about 20 the RTDF results approximate the T-

matrix calculations much better than GO over the whole angular range, and in particular in near exact 

forward and backscattering, in the halo region, and in the backscattering region. In agreement with 

the T-matrix calculations [13], the RTDF results show that size parameter 40 is too small to produce a 

pronounced 46° halo. Diffraction features appear slightly wider in RTDF than in the T-matrix results 

due to the approximation of diffraction during internal reflection and refraction steps by far field values 

(multiplied by sin γ according to eq.(1)), currently implemented in the RTDF model [11].  

Fig. 2 shows asymmetry parameters vs. size parameters as calculated by the T-matrix method, 

RTDF and GO. The T-matrix values oscillate between 0.738 and 0.797 due to interference effects 

which are currently not included in RTDF. The oscillation amplitude decreases and the average value 

of the envelopes (also shown in the graph) increases with size parameter. RTDF and GO-values are 

higher than the T-matrix average over the whole investigated range and increase with size parameter, 

too. For GO this increase is entirely due to reduced diffraction on the projected cross section area. 

The RTDF values are lower than those of GO and approach the latter at high size parameters, where 

little diffraction takes place at facets. RTDF is a better fit to the T-matrix values than GO, however a 

nearly constant difference between RTDF and T-matrix of about 0.009 over the whole investigated 

range remains. One should note that in general the asymmetry parameter is dominated by the 

comparatively high intensity in near forward scattering, but is less influenced by scattering features 

like halos occurring within lower intensity regions at higher scattering angles and therefore does not 

reflect the improvement of RTDF over GO in these regions. Scattering features away from the forward 

scattering peak can be detected by multi-angle measurements, e.g. using nephelometers [12] and 

can be used to classify particles (see below). 

Fig. 3 shows the phase function of a sphere of size parameter 50 (n=1.33) calculated by Mie 

theory using the code by Mishchenko et al. [15]. For RTDF and GO calculations the sphere was 
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approximated by 800, 1352 and 2592 facets (corresponding to 9, 7 and 5 angles between normals 

of adjacent facets, respectively). Apart from six triangular facets connecting at each of the poles, all 

facets are trapezoidal. As is well known, the GO phase function of a perfect sphere shows the primary 

and secondary rainbow peak separated by Alexander’s dark band (see e.g. [16]). Approximating a 

sphere by a facetted object has the effect of widening and merging the rainbow peaks, which are 

angles of minimum and maximum deviation. As to be expected, RTDF calculations result in even 

wider rainbow features. If the number of facets is large enough, RTDF results in a better 

approximation of the T-matrix result than GO, as can be seen in the example calculation for 2592 

facets. The shown comparisons of phase functions of cylinders and a sphere calculated by T-matrix 

and RTDF demonstrate the suitability of RTDF for modelling phase functions of particles of complex 

shape, for example crystals with rounded edges or mineral dust grains. 

As mentioned above, RTDF can be used to calculate 2D scattering patterns. Fig. 4a shows 

such patterns calculated for a hexagonal column of size parameter 2πa/λ, where a is the edge length 

of the basal facet, aspect ratio L/2a=3 and orientation described by Euler angles α=0°, ß=70°, γ=10°, 

as seen from the perspective of the incident beam. Fig. 4b shows the pattern for the same column but 

with rounded long edges of the prism facets. The circumscribing circle has a radius of 0.956a. 

Rounded edges are approximated by a succession of eight thin facets, each of which covers an 

angular segment of 1° around the long axis of the column. 

The main feature in both scattering patterns is the bright arc through forward scattering. In 

Fig. 4a three bright spots are situated on the arc. The central one is essentially due to rays entering 

through facet 4 and leaving through facet 7 (see Fig. 4a for facet numbers). The two outer ones are 

due to refraction through 60° prisms, entering through facets 5 and 3 respectively, and leaving 

through facet 7. The additional bright spots along the arc in Fig. 4b are due to rays passing through 

edge facets. The double features left and right of the central bright spot are due to rays entering 

through facet 4 and leaving through the (rounded) edge between facets 6 and 7, and rays entering at 

the edge between facets 3 and 4 and leaving through facet 7, respectively. The splitting of these 

spots is due to the approximation of the curved edge by a discrete number of plane facets. In Figs. 4a 

and b, the central spot on the arc is connected to one bright spot almost directly above, corresponding 

to refraction through facets 1 and 7. In Fig 4b, an additional bright spot slightly to the left of the 

previous one is due to rays refracted through facet 1 and the edge between facets 6 and 7. Below 
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each of the three maxima on the arc in Fig. 4a is another spot due to more complicated ray paths 

entering through facet 5, 4, and 3, respectively. (The central lower spot is stronger than the outer 

ones due to contributions by external reflection from facet 1.) In Fig. 4b spots corresponding to each 

additional intensity maximum along the arc caused by ray paths through edge facets can be found.  

3 Conclusion 

The RTDF model has been developed further to approximate curved surfaces by an array of planar 

facets and taking into account the angle between surface normals when calculating diffraction during 

ray-tracing. The enhanced RTDF model has been tested against T-matrix results for circular cylinders 

and against Mie theory for a sphere. The RTDF results approximate the exact calculations much 

better than GO over the whole angular range and in particular in near-exact forward and 

backscattering, and in the halo region. The modification of 2D scattering patterns by rounding the 

edges of pristine crystals has been demonstrated for a hexagonal column. The expansion of the 

applicability of the RTDF model towards particles with curved surfaces and ‘hybrid particles’, which 

have plane as well as curved surfaces is potentially useful for the calculation of the scattering 

properties of ice crystals of realistic shapes as well as of irregular particles like mineral dust grains 

and comparison with experimental data.  
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Captions of figures 

Figure 1: Randomized phase functions for circular cylinders with refractive index n = 1.311, aspect 

ratio L/2a = 1 and size parameters x = 2πasph/λ of (a) 20, (b) 40, (c) 80 and (d) 120, respectively, 

calculated using RTDF in comparison with T-matrix [13,14] and GO with projected area diffraction [8] 

results. 

Figure 2: Asymmetry parameters vs. size parameters as calculated by the T-matrix method, RTDF 

and GO. 

 

Figure 3: Phase function of a sphere of size parameter 50 and refractive index 1.33 calculated using 

Mie theory and phase functions calculated by RTDF and GO for sphere approximations with 800, 

1352 and 2592 facets, respectively. 

 

Figure 4: a) Orientation of a hexagonal column (α=0°, ß=70°, γ=10°) from the point of view of the 

incident light and scattering pattern projected into the forward facing hemisphere; the facets are 

numbered as shown. b) Schematic and scattering pattern for the same column as in Fig. a), but with 

rounded long edges of the prismatic faces.  
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Fig. 1a) 

Fig.1b) 
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Fig.1c) 

Fig.1d) 
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Fig.2 

Fig.3 
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Fig.4 

 


