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Positive geometries provide a purely geometric point of departure for studying scattering
amplitudes in quantum field theory. A positive geometry is a specific semi-algebraic
set equipped with a unique rational top form—the canonical form. There are known
examples where the canonical form of some positive geometry, defined in some kinematic
space, encodes a scattering amplitude in some theory. Remarkably, the boundaries of
the positive geometry are in bijection with the physical singularities of the scattering
amplitude. The Amplituhedron, discovered by Arkani-Hamed and Trnka, is a prototypical
positive geometry. It lives in momentum twistor space and describes tree-level (and
the integrands of planar loop-level) scattering amplitudes in maximally supersymmetric
Yang-Mills theory.

In this dissertation, we study three positive geometries defined in on-shell momen-
tum space: the Arkani-Hamed–Bai–He–Yan (ABHY) associahedron, the Momentum
Amplituhedron, and the orthogonal Momentum Amplituhedron. Each describes tree-level
scattering amplitudes for different theories in different spacetime dimensions. The three
positive geometries share a series of interrelations in terms of their boundary posets
and canonical forms. We review these relationships in detail, highlighting the author’s
contributions. We study their boundary posets, classifying all boundaries and hence all
physical singularities at the tree level. We develop new combinatorial results to derive
rank-generating functions which enumerate boundaries according to their dimension.
These generating functions allow us to prove that the Euler characteristics of the three
positive geometries are one. In addition, we discuss methods for manipulating canonical
forms using ideas from computational algebraic geometry.
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Chapter 1

Introduction

“Evolution goes beyond what went before, but because it must embrace what went
before, then its very nature is to transcend and include and thus it has an inherent
directionality, a secret impulse, toward increasing depth, increasing intrinsic value,
increasing consciousness. In order for evolution to move at all, it must move in
those directions — there’s no place else for it to go!”

Wilber, A Brief History of Everything (20th Anniversary Edition) [9]

It is difficult to overstate the success of the Standard Model (SM) in its appli-
cations to fundamental particle physics. It describes interactions between normal

matter’s most primitive pieces, providing a unifying framework for three of nature’s four
fundamental forces. Moreover, it predicts a wide variety of phenomena with unparalleled
precision. Most notably, it predicted the existence of the Higgs boson [10–12] 48 years
before its discovery in 2012 [13, 14]. Thus the SM has earned the epithet of “the most
successful scientific theory ever” [15].

The SM is an example of a quantum field theory (QFT). Its origins1 date back to
Dirac’s 1927 publication “Quantum theory of emission and absorption of radiation” [19].
The theory of quantum fields combines the probabilistic perspective of quantum mechanics
with Einstein’s special theory of relativity [20]. The foundations of QFT include the
following triumvirate:

• Causality: Each spacetime point has an associated light cone which designates the
region of causal influence. In particular, causally connected events are timelike-
separated (i.e. one event is in the past/future light cone of the other).

• Locality: Two spacetime points interact via a carrier (i.e. a particle or wave) that
1For a historical account of the development of QFT, see [16], the first chapter of [17], [18], and

references therein.
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mediates the interaction.

• Unitarity: The probabilities of outcomes associated with a quantum event sum to
unity.

To define a QFT, one specifies a Lagrangian density2. The latter depends only on local
operators as per the locality principle. Local operators refer to finite combinations of
products of quantum fields and their derivatives evaluated at the same spacetime point.
The principle of causality requires that commutators between spacelike-separated local
operators vanish. The Lagrangian density determines the QFT’s dynamics via a path
integral which averages over all quantum field configurations. It is then (relatively)
straightforward to obtain observables from the Lagrangian density as covered in standard
textbooks; see [17, 21, 22] for details.

There are two types of observables in high-energy particle physics: cross-sections and
decay rates. The former is especially relevant for accelerator-based experiments, such as
those conducted at the Large Hadron Collider. Both observables depend on (the squared
modulus of) scattering amplitudes which constitute the central quantities of interest
in this dissertation. Roughly speaking, a scattering amplitude (or simply amplitude)
gives the probability for one state of particles — with prescribed momenta and other
quantum numbers — to evolve into another via some scattering process. Wheeler [23]
and Heisenberg [24], independent of each other, introduced the scattering matrix (or
simply S-matrix ), a unitary matrix collecting amplitudes associated with pairs of initial
and final states. In perturbative calculations, one expands the S-matrix in powers of the
coupling constant which appears in the Lagrangian density, producing an asymptotic series.
One designates the lowest-order terms in the expansion as “tree-level”, while “loop-level”
describes higher-order contributions; these adjectives refer to different Feynman diagram
topologies introduced below. In this dissertation, I will focus exclusively on tree-level
amplitudes.

After the complexification of momenta, amplitudes become complex functions with a
complicated singularity structure. But the principles of locality and unitarity provide strin-
gent constraints. Locality dictates the location of singularities, while unitarity determines
their behaviour. Let us consider tree-level amplitudes, for example. Locality produces
simple poles corresponding to on-shell momenta. Unitarity requires the associated residues
to factorise as a pair of amplitudes involving fewer particles.

In 1949, Feynman introduced a pictorial bookkeeping procedure for calculating ampli-
2While this definition is (believed to be) too restrictive in general, the study of the S-matrix restricts

us to QFTs which admit a Lagrangian density.
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tudes, expressing them as a sum of Feynman diagrams [25]. His approach quickly became
what Kuhn would describe as the dominant paradigm [26]. Kaiser articulates [27], “Since
the middle of the 20th century, theoretical physicists have increasingly turned to this
tool to help them undertake critical calculations. Feynman diagrams have revolutionised
nearly every aspect of theoretical physics.”

While ubiquitous, Feynman diagrams have drawbacks, often obfuscating the ampli-
tude’s simplicity and structure. Feynman diagrams introduce virtual particles correspond-
ing to off-shell degrees of freedom to maintain locality and unitarity. Unfortunately, this
causes computational complexity to compound: the number of Feynman diagrams for an
amplitude rapidly grows with external particle number. This growth in the number of
summands is an artefact frequently not reflected in the final result. Parke and Taylor
famously demonstrated this point in 1986 by proposing a concise all-multiplicity formula
for maximally helicity violating (MHV) gluon amplitudes [28, 29]. MHV gluon amplitudes
are those involving all-but-two positive helicity gluons. Their work simplified multiple
pages3 of Feynman calculus into one line. The inability of the then-dominant paradigm
to account for these simplifications inspired the development of modern on-shell methods;
see [30, 32] for reviews.

The Britto–Cachazo–Feng–Witten (BCFW) recursion relations for tree-level ampli-
tudes [33, 34] (and their loop-level generalisations [35, 36]) are a principal outcome of this
modern approach. They express amplitudes as a sum of on-shell diagrams. Unlike their
Feynman counterparts, they compute amplitudes directly in terms of on-shell processes.
On-shell diagrams identify “cells” in the non-negative Grassmannian4. The non-negative
Grassmannian generalises the projective simplex to the Grassmannian. This object has
been the subject of intense mathematical inquiry for the past 20 years [37–39]. On-shell
diagrams respect unitarity but not locality since they introduce spurious poles not present
in the final answer. Remarkably, spurious poles cancel in particular combinations, i.e.
those appearing in solutions to the BCFW recursion relations. But why these combina-
tions? While the locality principle ensures the cancellation of spurious poles, how does
this emerge from the non-negative Grassmannian?

The framework of positive geometries [40] presents a simple yet surprising solution to
this problem. A positive geometry is a non-empty closed semi-algebraic set. It admits a
unique non-zero top-dimensional rational form called the canonical form, satisfying some
recursive axioms. For some QFTs, there is a family of positive geometries, defined via

3The number of Feynman diagrams needed to calculate the n-particle MHV gluon amplitude equals
the number of dissections of a convex n-gon into triangles and quadrilaterals by non-intersecting diagonals
[30, 31].

4Often ambiguously referred to as the “positive Grassmannian” by physicists.
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positivity conditions in some on-shell kinematic space, whose canonical forms encode
amplitudes. In this setting, tilings, which are akin to “triangulations”, of the positive
geometry coincide with equivalent representations of the same amplitude; each tile in a
tiling corresponds to an on-shell diagram. This description restores manifest locality with
spurious poles corresponding to shared internal boundaries of some tiling. In addition,
the faces of the positive geometry encode the amplitude’s entire singularity structure. In
other words, locality and unitarity emerge as consequences of positivity in the kinematic
space without reference to quantum fields, strings, or any notion of spacetime evolution.

The prototypical example of such a family is the Amplituhedron5 Wn,k, discovered by
Arkani-Hamed and Trnka in 2014. It encodes tree-level amplitudes and (the integrands
of) loop-level planar amplitudes in N = 4 supersymmetric Yang-Mills (SYM) theory
[41]. The Amplituhedron generalises Hodges’s idea [42], interpreting the amplitude as the
volume of (the dual of) some canonical region in some space. The Amplituhedron was
initially defined as the image of the non-negative Grassmannian via a linear map [41],
providing a direct connection to on-shell diagrams. Later, Arkani-Hamed, Thomas, and
Trnka gave an equivalent definition directly in the space of so-called momentum twistor
variables demarcated by positivity conditions [43].

Around the time of the Amplituhedron’s discovery, Cachazo, He, and Yuan presented
an altogether contrasting characterisation of amplitudes: the Cachazo–He–Yuan (CHY)
formalism [44–47]. It originates from Witten’s twistor-string theory, which produced new
formulae for tree-level amplitudes in N = 4 SYM [48–50] and N = 8 supersymmetric
gravity [51–53]. The CHY formalism applies to massless scattering in a broad collection
of QFTs [44–47, 54, 55] in arbitrary spacetime dimensions [46]. It expresses amplitudes as
integrals over a space of worldsheet moduli. These integrals fully localise on the support of
the scattering equations. The scattering equations are a finite system of coupled equations
identifying points in the relevant worldsheet moduli space with on-shell kinematical
invariants in a many-to-one manner. There also exist CHY formulae for amplitude-like
objects, e.g. the Cachazo–Early–Guevara–Mizera (CEGM) amplitudes [56], that do not
have a known QFT description.

There are no CHY formulae for amplitudes in terms of momentum twistor variables.
However, there are examples of tree-level amplitudes described by families of positive
geometries, which also have a CHY representation. In this dissertation, we investigate
three theories which admit both descriptions. In particular, we study the Arkani-

5We adopt non-standard notation for the Amplituhedron to avoid confusion with the ABHY associa-
hedron. The notation Wn,k emphasises that the Amplituhedron encodes the expectation value of the
dual null polygonal Wilson loop usually denoted by Wn,k.



5

Figure 1.1: Venn diagram showing scattering amplitudes, positive geometries and the
CHY formalism.

Hamed–Bai–He–Yuan (ABHY) associahedron An [57], the Momentum Amplituhedron
Mn,k [58], and the orthogonal Momentum Amplituhedron Ok [59, 60]. All three positive
geometries express amplitudes in on-shell momentum space. The ABHY associahedron
encodes the tree-level S-matrix of bi-adjoint scalar (BAS) theory in terms of Mandelstam
invariants. The Momentum Amplituhedron, like the Amplituhedron, encodes the tree-
level S-matrix of N = 4 SYM but directly in terms of four-dimensional spinor-helicity
variables. Similarly, the orthognal Momentum Amplituhedron uses three-dimensional
spinor-helicity variables to describe tree-level amplitudes in Aharony–Bergman–Jafferis–
Maldacena (ABJM) theory. In each case, the relevant family of positive geometries
connects directly to its corresponding CHY representation via the scattering equations:
the momentum-space-based positive geometry is the image of a positive geometry in the
corresponding worldsheet moduli space via the scattering equations [60]. Fig. 1.1 displays
the qualitative overlap between scattering amplitudes, positive geometries and the CHY
formalism.

There are many examples of positive geometries relevant to high-energy physics which
are beyond the scope of this dissertation. The construction of ABHY, which describes
tree-level scattering between massless particles via cubic interactions, extends to higher
polynomial interactions via Stokes polytopes and the Accordiahedron [61–64], to multiple
fields [65], to massive particles [66], and even to loop-level via the Halohedron [67]
and cluster polytopes [68]. The Correlahedron [69] conjecturally encodes stress-energy
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correlators in planar N = 4 SYM. While it is not a positive geometry, it coincides with the
square of the Amplituhedron in a certain limit [70]. Aspects of positive geometries apply
more generally to conformal field theories, including the conformal bootstrap programme
[71]. The EFT-hedron places positivity bounds on the low-energy effective field theory
(EFT) expansion of amplitudes [72]. In cosmology, cosmological polytopes compute
contributions to the cosmological wavefunction for a class of toy models [73, 74]. For a
more comprehensive review of these and other developments, see [75, 76].

In this dissertation, we focus primarily on how the boundaries of positive geometries
encode information about physical singularities [2, 5]. Through this encoding, positive
geometries provide a natural mechanism for organising and classifying this information, an
intractable feat by traditional perturbative approaches. Moreover, it facilitates rigorous
analysis, stimulating novel pure mathematics research. For example, to enumerate the
physical singularities of tree-level amplitudes in N = 4 SYM, we derive new analogues
of the Exponential formula, a well-known theorem relevant for constructing generating
functions [77–79]. In particular, we derive analogues for series-reduced planar trees
and forests [4] and apply these results to the Momentum Amplituhedron [4] and the
orthogonal Momentum Amplituhedron [5]. In each case, we show that the poset of
physical singularities has Euler characteristic equal to one6. In addition, we describe
an intricate web of connections between the three above-mentioned positive geometries.
This web encompasses relationships between boundaries [2, 4, 5] and canonical forms
[3, 5, 60]. We also develop methods for manipulating canonical forms using ideas from
computational algebraic geometry [6]. These methods are useful not only for calculating
canonical forms but also for verifying relationships between them.

The framework of positive geometries marks the dawn of a “scientific revolution” that
transcends and includes the principles underpinning QFT. While bearing no resemblance
to its predecessor, the paradigm of positive geometries, using positivity alone, captures
the richness of scattering amplitudes in momentum space. In the remaining pages of this
dissertation, we explore some of the author’s contributions to this exciting new research
endeavour.

Section 1.1

Outline

There are two parts to this dissertation. Chapters 2 to 5 are technical, consisting primarily
of definitions and results. This presentation highlights some original contributions and

6This result, while mathematically interesting, has no known physical interpretation.
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serves as a primer for the dissertation’s latter half. Thereafter, Chapters 6 to 9 introduce
the three positive geometries investigated in this dissertation, emphasising their boundary
posets. In particular, we organise and classify boundaries, commenting on their physical
and mathematical significance. Along the way, we build an intricate web of connections
at the level of boundary posets and canonical forms. Chapter 9 completes this web and
speculates on additional strands for future work. The following paragraphs give further
details on the content of each chapter.

Chapter 2 reviews the framework of positive geometries and particular maps between
them called morphisms. Morphisms play a central role in this thesis and the literature,
with many physically motivated positive geometries defined via these maps. In this
chapter, we modify the original definition of morphisms, given in [40], to facilitate the
definition of morphism-induced boundaries. In addition, we describe an algorithm for
generating boundary posets via morphisms. This algorithm first appeared in [80] and was
later applied in [1, 2, 5]. Our presentation extracts core features from [80], expressing
them in general terms. Applications of the algorithm appear in Chapters 7 and 8.

In Chapter 3, we present results from enumerative combinatorics. These results,
developed in [4], facilitate the construction of generating functions, as demonstrated in [4,
5]. They are useful for enumerating acyclic labels such as tree-level Feynman/on-shell
diagrams. Moreover, they lead to the enumeration formulae presented in Chapters 6 to 8.
The tools developed in this chapter allow us to answer questions about the total number
of physical singularities and the poset’s Euler characteristic, for example.

We review the Grassmannian and the orthogonal Grassmannian in Chapter 4. Their
non-negative parts, defined in [37, 81–83], are central to Chapters 7 and 8 for the
definitions of theMomentum Amplituhedron and the orthogonal Momentum Amplituhedron,
respectively. We discuss the combinatorics of positroid cells [37] and orthitroid cells [84].
Grassmannian graphs [39] and orthogonal Grassmannian graphs [5] provide labels for these
cells. These graphs coincide with on-shell diagrams and are relevant to the investigations
of Chapters 7 and 8.

In Chapter 5, we study the problem of evaluating push forwards, an operation on
rational forms, via rational maps without needing to find local inverses. This problem is
relevant for determining the canonical forms of the Momentum Amplituhedron and the
orthogonal Momentum Amplituhedron, as discussed in Chapters 7 and 8, respectively.
We formulate this problem in the language of polynomials ideals and algebraic sets, and
present three solutions employing tools from computational algebraic geometry [6].

Chapter 6 concerns the Arkani-Hamed–Bai–He–Yuan (ABHY) associahedron and its
description of tree-level amplitudes in the bi-adjoint scalar (BAS) theory [57]. We outline
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its connection to the worldsheet associahedron via the scattering equations [57]. Then, as a
simple application of the results of Chapter 3, we derive a rank generating function which
enumerates its boundaries. The ABHY associahedron features prominently in Chapter 9.

In Chapter 7, we focus on the Momentum Amplituhedron. Its canonical form encodes
the tree-level amplitudes of N = 4 supersymmetric Yang-Mills theory (SYM) in terms
of four-dimensional spinor-helicity variables [58]. The Momentum Amplituhedron is
related to two positive geometries. It relates to the non-negative part of the four-
dimensional worldsheet moduli space [60]. In this case, the four-dimensional scattering
equations [85] define a morphism of positive geometries. The Momentum Amplituhedorn
is also the image of the non-negative Grassmannian via a linear map. The second
definition allows us to study the Momentum Amplituhedron’s boundary stratification
[2]. Remarkably, the boundaries admit a simple classification: they are in bijection
with contracted Grassmannian forests [4]. In fact, the boundary poset forms an induced
subposet of the positroid stratification. We give a rank generating function for Momentum
Amplituhedron boundaries and use it to show that the Momentum Amplituhedron’s Euler
characteristic is one [4].

We investigate the orthogonal Momentum Amplituhedron, the positive geometry
of Aharony–Bergman–Jafferis–Maldacena (ABJM) theory [59, 60], in Chapter 8. The
relevant on-shell momentum space consists of three-dimension spinor-helicity variables. It
relates to the worldsheet associahedron via the three-dimensional scattering equations [60].
Here orthogonal Grassmannian forests label the orthogonal Momentum Amplituhedron’s
boundaries [5]. This observation is analogous to the findings of Chapter 7. There are
two ways to characterise its boundary stratification. It is an induced subposet of the
orthitroid stratification. At the same time, it is an induced subposet of the Momentum
Amplituhedron’s boundary stratification. In this sense, the Momentum Amplituhedron
contains the orthogonal Momentum Amplituhedron. We present a rank generating function
for the boundaries using Chapter 3’s results and show that the Euler characteristic of
the orthogonal Momentum Amplituhedron is one [5]. We also define a diagrammatic
map from the worldsheet associahedron’s boundaries to the boundaries of the orthogonal
Momentum Amplituhedron [5]. This partial-order preserving map provides an alternative
heuristic for studying the physical singularities of ABJM.

In Chapter 9, we consider restricting the ABHY associahedron to specific spacetime
dimensions. We show how to obtain these restrictions starting from the Momentum
Amplituhedron [3] and the orthogonal Momentum Amplituheron. Chapter 9 introduces
additional strands in our web of connections, reflecting the shared singularity structure of
the various theories corresponding to vanishing planar Mandelstam variables. We also
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speculate on possible six-dimensional analogues of these results as the source of future
work.

Finally, this dissertation closes with some conclusions and an outlook on open research
problems in Chapter 10.



Chapter 2

Positive Geometries

The framework of positive geometries forms the foundation for this disser-
tation. In this chapter, we define positive geometries and their canonical forms,

summarising ideas from [40] relevant for later chapters. For a recent mathematical survey
of this topic, see [86]. Importantly, we define (categorical) morphisms between positive
geometries. In applications, morphisms facilitate the definition of new positive geome-
tries from old ones. We will encounter multiple examples of morphisms in Chapters 6
to 9, so we define them formally here. Our definition modifies the original definition of
Arkani-Hamed, Bai, and Lam in [40]. It allows for a general discussion about the image
of boundaries via morphisms. For physically relevant examples, boundaries correspond
to physical singularities of some S-matrix. In particular, we introduce the notion of
morphism-induced boundaries. This notion is pertinent to Chapters 7 and 8, where
we investigate the boundary stratifications of the Momentum Amplituhedron and the
orthogonal Momentum Amplituhedron, respectively.

Section 2.1

Positive Geometries and Canonical Forms

To understand the definition of positive geometries, we first need to define the residue
of a rational form. To this end, we introduce the following objects. Suppose X is a
d-dimensional complex variety1, ω is a rational d-form on X, and H is a hypersurface2 in
X. Let z be a holomorphic coordinate whose zero-set locally parametrises H. We say
that ω has a simple pole at H if

ω =
dz

z
∧ η + η′ (2.1)

1By “variety”, we mean an irreducible algebraic set.
2H is the zero-set of an irreducible polynomial.

10



2.1 Positive Geometries and Canonical Forms 11

for some (d− 1)-form η and d-form η′, both holomorphic on H. In this case, we define
the residue of ω at H as the following restriction:

ResH ω := η|H . (2.2)

This residue is a well-defined (d− 1)-form on H, independent of z, η, η′. If no such simple
pole exists, then the residue equates to zero.

For the remainder of this section, we assume X is defined over R, i.e. generated by
real homogeneous polynomials. We equip X(R), the real part of X, with the standard
topology. Let X≥0 be a non-empty closed semialgebraic set in X(R). We will assume
that X>0, the interior of X≥0, is an oriented d-dimensional manifold whose closure
recovers X≥0. Let ∂X≥0 be the boundary X≥0 \X>0. The symbol ∂X denotes the Zariski
closure of ∂X≥0 in X. Let C1, . . . , Cbd designate the irreducible components3 of ∂X. We
symbolize by Ci,≥0 the closure of the interior of Ci ∩ ∂X≥0 in Ci(R). Collectively, the
sets C1,≥0, . . . , Cbd,≥0 define the boundary components or facets of X≥0.

The pair (X,X≥0) is called a d-dimensional positive geometry if there exists a unique
non-zero rational d-form Ω(X,X≥0) on X called the canonical form, satisfying the
following recursive axioms [40]:

• If d = 0, then X is a point, X≥0 = X, and Ω(X,X≥0) = ±1 where orientation
determines the sign.

• If d > 0, then

(P1) Every boundary component (C,C≥0) of (X,X≥0) is a positive geometry of
dimension (d− 1).

(P2) Ω(X,X≥0) only has simple poles along the irreducible components of ∂X. For
each boundary component (C,C≥0) of (X,X≥0)

ResC Ω(X,X≥0) = Ω(C,C≥0) . (2.3)

Allowing X≥0 to be empty leads to the definition of pseudo-positive geometries. The
latter will, however, not feature in this dissertation. The variety X is called the embedding
space and X≥0 (resp., X>0) is called the non-negative part (resp., positive part) of X.
We will frequently omit the embedding space, referring to X≥0 as the positive geometry
and Ω(X≥0) as its canonical form. The leading residues of X≥0 — the non-zero d-fold
residues of Ω(X≥0) — are ±1. The orientation of each boundary component C≥0 of X≥0 is

3While we assume X is generically smooth along each Ci, see [86, Remark 3].



2.1 Positive Geometries and Canonical Forms 12

induced from X≥0; details about orientation can be found in [40]. Every positive geometry
appearing in the recursive definition of X≥0 — X≥0, its boundary components, their
boundary components, etc. — is called a boundary (stratum) or face of X≥0. Occasionally
we will refer to the boundary C≥0 (resp., C>0) as closed (resp., open).

The boundary stratification of X≥0 is the set of all boundaries of X≥0 denoted by
B(X≥0). It is a partially ordered set (poset) with the partial order �X defined via set
inclusion:

C �X D ⇐⇒ C ⊆ D . (2.4)

The proper boundary stratification of X≥0 is the set of positive codimension boundaries
of X≥0 denoted by P(X≥0) := B(X≥0) \ {X≥0}. For each boundary C≥0 of X≥0, let
B−1
X≥0

(C≥0) be the subset of B(X≥0) for which C≥0 is a boundary. We call B−1
X≥0

(C≥0) the
inverse boundary stratification of C≥0 in X≥0. The proper inverse boundary stratification
of C≥0 in X≥0 is given by P−1

X≥0
(C≥0) := B−1

X≥0
(C≥0) \ {C≥0}.

With a suitable definition for addition, positive geometries generalize to weighted
positive geometries [87]. Weighted positive geometries allow leading residues to have
arbitrary integer values. Their definition naturally extends to weighted pseudo-positive
geometries. While these categories are beyond the scope of this dissertation, we anticipate
that they formalise the notion of oriented sums discussed in [7].

Example 2.1 (The Standard Simplex). A classic example of a positive geometry is
the standard n-simplex (∆n,∆

≥0
n ) (see Fig. 2.1). The embedding space is the affine

hyperplane in Rn+1 defined as

∆n :=

{
(x1, . . . , xn+1) ∈ Rn+1 :

n+1∑

i=1

xi = 1

}
, (2.5)

while the non-negative part is given by

∆≥0
n := Rn+1

≥0 ∩∆n . (2.6)

The above notation, while unconventional4, highlights the standard n-simplex as a semi-
algebraic subset of some embedding space. The positive geometry inherits the standard
orientation of Rn+1. Its canonical form is given by

Ω(∆n,∆
≥0
n ) = d log

x1

x2
∧ d log

x2

x3
∧ · · · ∧ d log

xn
xn+1

. (2.7)

4The standard n-simplex is usually denoted by ∆n and not ∆≥0
n .
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Figure 2.1: The standard 3-simplex or tetrahedron with labelled vertices.

Equivalently, the standard n-simplex is the convex hull of all vectors in the standard
basis of Rn+1: ∆≥0

n = Conv(e1, . . . , en) where Conv(·) denotes the convex hull and ei

denotes the ith standard basis vector. Every boundary is the convex hull of some subset
of standard basis vectors. For brevity, we will identify the boundary Conv(ei1 , . . . , eip)

using the notation (i1 · · · ip) where {i1, . . . , ip} ⊆ [n+ 1]. Moreover, the partial order �∆

for B(∆≥0
n ) reads (i1 · · · ip) �∆ (j1 · · · jq) ⇐⇒ {i1, . . . , ip} ⊆ {j1, . . . , jq}. �

Section 2.2

Morphisms

Having defined positive geometries, we now define particular maps between them called
morphisms. To this end, we also introduce dissections and tilings. We will encounter
multiple examples of morphisms in Chapters 6 to 8. While our definition of morphisms
differs from the one in [40], it allows us to present a general algorithm for finding boundaries
in Section 2.4. For the remainder of this chapter, let (X,X≥0) and (Y, Y≥0) be positive
geometries of (possibly differing) dimensions.

A rational map Φ(X,X≥0) 99K (Y, Y≥0) between positive geometries is a rational map
Φ : X 99K Y between complex varieties, well-defined on each open boundary of X≥0, such
that Φ(X>0) = Y>0. The following definitions encapsulate those given in [4]. For each
boundary C≥0 of X≥0, let Φ(C≥0) denote the closure of Φ(C>0) in Φ(X)(R). We refer to
Φ(C≥0) as a Φ-induced stratum of Y≥0 and dim(Φ(C≥0)) as the Φ-dimension of C≥0.
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One can compute dim(Φ(C≥0)) using a chart/parametrisation as follows. Let dY
be the dimension of Y≥0 and suppose C≥0 is a dC-dimensional boundary of X≥0. Let
φ : U ⊂ C(R) → φ(U) ⊂ RdC and ψ : V ⊂ Y (R) → ψ(V ) ⊂ RdY be affine charts such
that C≥0 ∩ U ∩ Φ−1(V ) 6= ∅. If ψ ◦ Φ ◦ φ−1 is smooth on C≥0 ∩ U ∩ Φ−1(V ), then its
differential is a linear map whose rank gives dim(Φ(C≥0)).

Next, we introduce dissections and tilings as analogues of subdivisions and triangu-
lations from polytopal geometry. The following definition is motivated by one found in
[88]. Let I be a finite indexing set. We say a collection C = {Ci,≥0}i∈I ⊂ B(X≥0) is a
Φ-induced dissection of Y≥0 if the following conditions are met:

(D1) dim(Φ(Ci,≥0)) = dim(Y≥0) for every i ∈ I.

(D2) The images of distinct open boundaries in C are disjoint: Φ(Ci,>0) ∩ Φ(Cj,>0) = ∅
for i 6= j ∈ I.

(D3) The union of images of open boundaries in C is dense in Y≥0:
⋃
i∈I Φ(Ci,≥0) = Y≥0.

Clearly, {X≥0} constitutes a trivial Φ-induced dissection of Y≥0. In addition, if Φ|Ci,>0

is injective for every i ∈ I, then C is called a Φ-induced tiling of Y≥0. We will re-
fer to the elements of a Φ-induced tiling C as Φ-induced tiles. A tiling is said to be
orientation-preserving (resp., orientation-reversing) if ΦCi,≥0

is orientation-preserving
(resp., orientation-reversing) for every i ∈ I. In either case, we say that the tiling has
uniform orientation.

Finally, we define a morphism Φ : (X,X≥0)→ (Y, Y≥0) between positive geometries
as a rational map Φ(X,X≥0) 99K (Y, Y≥0), satisfying the following assumptions:

(M1) It admits at least one Φ-induced tiling of Y≥0.

(M2) Every Φ-induced tiling of Y≥0 has uniform orientation.

When X≥0 and Y≥0 have the same dimension, our definition coincides with that of [40].
To confirm this remark, consider the following argument. Axiom (M1) guarantees at least
one Φ-induced tiling of Y≥0. Note that for each boundary C≥0 of X≥0, dim(Φ(C≥0)) ≤
dim(C≥0). Since X≥0 and Y≥0 have the same dimension (by assumption), X>0 is the
only open boundary whose Φ-dimension equals dim(Y>0). Axiom (D1) implies that
{X≥0} is the only Φ-induced tiling of Y≥0. Consequently, Φ|X>0 : X>0 → Y>0 is an
orientation-preserving diffeomorphism according to axiom (M2). The latter implication
recovers the definition found in [40].
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(a) {(123)}. (b) {(124), (134)}.

Figure 2.2: Two Φ-induced tilings of ∆≥0
2 where Φ is given by (2.8). Fig. 2.2a is orientation-

reversing and Fig. 2.2b is orientation-preserving.

Example 2.2 (Morphisms). Consider the rational map Φ : (∆3,∆
≥0
3 ) 99K (∆2,∆

≥0
2 )

defined as

Φ(x1, x2, x3, x4) := (x1, x2 +
x4

2
, x3 +

x4

2
) . (2.8)

Fig. 2.1 depicts the domain. The rational map induces two tilings of ∆≥0
2 , namely {(123)}

and {(124), (134)} (see Fig. 2.2). The first tiling is orientation-reversing while the second is
orientation-preserving. Since both tilings have uniform orientation, Φ defines a morphism
of positive geometries. �

To summarise, a morphism is a map between positive geometries that generates at
least one tiling such that, on each tile, the map is an orientation-preserving (or orientation-
reversing) diffeomorphism. In subsequent chapters, we will encounter examples of positive
geometries defined via morphisms, including the Momentum Amplituhedron in Chapter 7
and the orthogonal Momentum Amplituhedron in Chapter 8. These examples motivate
the definitions presented in this section. In the next section, we consider the action of
morphisms on canonical forms via the pushforward operation. This operation makes
morphisms what they are in the category-theoretic sense: the pushforward of a canonical
form via a morphism is again a canonical form.
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Section 2.3

Pushforwards

The pushforward relates the canonical forms of two positive geometries connected via
a morphism. The operation consists of multiple pullbacks, so we will define pullbacks
and pushforwards in this section beginning with the former. Let M and N be complex
manifolds of the same dimension, let ω be a meromorphic form on M (not necessarily
top-dimensional), and let y be a point in N . Suppose ψ : N →M is a differentiable map
and let x = ψ(y). The pullback of ω via ψ, denoted by ψ∗ω, is the p-form on N defined
by

(ψ∗ω)(y) = ω(ψ(y)) . (2.9)

Said differently, the pullback operation simply evaluates ω on ψ. In the opposite direction,
suppose φ : M → N is a surjective meromorphic map of degree d. Then y has precisely
d pre-images under φ labelled φ−1({y}) = {x(α)}dα=1. For each α ∈ [d] there exists an
open subset Uα containing x(α) such that φ|Uα is invertible. Let ξ(α) := φ|−1

Uα
designate

the local inverse of φ restricted to Uα. The pushforward of ω via φ, denoted by φ∗ω, is
the meromorphic p-form on N defined by

(φ∗ω)(y) =
d∑

α=1

(ξ(α)∗ω)(y) =
d∑

α=1

ω(ξ(α)(y)) . (2.10)

Having modified the definition of morphisms found in [40], we need to clarify our
definition of the pushforward in this context. Given a morphism Φ : (X,X≥0)→ (Y, Y≥0),
let C = {Ci,≥0}i∈I be any tiling of Y≥0. For each i ∈ I, Φ|Ci,>0 : Ci,>0 → Φ(Ci,>0) is an
orientation-preserving diffeomorphism. We define the pushforward of Ω(X≥0) via Φ as

Φ∗Ω(X≥0) := sign(C)
∑

i∈I
Φ∗Ω(Ci,≥0) , (2.11)

where sign(C) = 1 (resp., sign(C) = −1) if C is orientation-preserving (resp., orientation-
reversing). Remarkably, Φ∗Ω(X≥0) = Ω(Y≥0) [40]: one can calculate the canonical form
of any morphism image via a pushforward. We will explore the pushforward operation
from a computational point of view in Chapter 5.

Example 2.3 (Pushforwards). Let us compute Φ∗Ω(∆≥0
3 ) using the one-element tiling

{(123)}. The boundary (123) is an algebraic subset of ∆3 for which x4 = 0. Its canonical
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form is given by

Ω(123) = Res|x4=0Ω(∆≥0
3 ) = −d log

x1

x2
∧ d log

x2

x3
. (2.12)

The restriction of Φ to (123) is simply

Φ|(123)(x1, x2, x3, 0) = (x1, x2, x3) . (2.13)

Hence,

Φ∗Ω(∆≥0
3 ) = −Φ|(123)∗Ω(123) = Ω(∆≥0

2 ) , (2.14)

where the minus sign after the first equality appears because {(123)} is an orientation-
reversing tiling. Alternatively, we can use the two-element tiling {(124), (134)}. The
canonical forms for each tile are given by

Ω(124) = Res|x3=0Ω(∆≥0
3 ) = d log

x1

x2
∧ d log

x2

x4
, (2.15a)

Ω(134) = Res|x2=0Ω(∆≥0
3 ) = −d log

x1

x3
∧ d log

x3

x4
. (2.15b)

The restriction of Φ to each tile is given by

Φ|(124)(x1, x2, 0, x4) = (x1, x2 +
x4

2
,
x4

2
) , (2.16a)

Φ|(134)(x1, 0, x3, x4) = (x1,
x4

2
, x3 +

x4

2
) . (2.16b)

Consequently,

Φ∗Ω(∆≥0
3 ) = Φ|(124)∗Ω(124) + Φ|(134)∗Ω(134)

= d log
x1

x2 − x3
∧ d log

x2 − x3

2x3
− d log

x1

x3 − x2
∧ d log

x3 − x2

x2

= d log
x1

x2 − x3
∧ d log

x2

x3
= d log

x1

x2
∧ d log

x2

x3
= Ω(∆≥0

2 ) ,

(2.17)

as expected. �
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Section 2.4

Boundaries

In this section, we study the boundaries of positive geometries, focussing on how morphisms
repackage this information. We present a simple combinatorial algorithm that determines
the boundary stratification of any morphism image: given two positive geometries, where
one is the image of another via a morphism, and the latter’s boundaries are known, one
can recursively deduce the faces of the former. This algorithm first appeared in [80]. The
Momentum Amplituhedron and the orthogonal Momentum Amplituhedron were studied
using this method in [2, 5]. We review these applications in Chapters 7 and 8.

The following definition is inspired by a similar one given in [4]. For each proper
boundary C≥0 of X≥0, we call Φ(C≥0) a proper Φ-induced boundary (stratum) or face of
Y≥0 if it adheres to the following requirements:

(B1) The image of C>0 is not in the interior of Y≥0: Φ(C>0) ∩ Y>0 = ∅.

(B2) The Φ-dimension of every inverse boundary of C≥0 is larger than that of C≥0:
dim(Φ(C>0)) < dim(Φ(D>0)) for every D≥0 ∈ P−1

X≥0
(C≥0).

Let P [Φ](X≥0) designate the subset of proper boundaries of X≥0 corresponding to proper
Φ-induced boundaries of Y≥0 and declare B[Φ](X≥0) := P [Φ](X≥0)∪{X≥0}. We will refer
to Φ ◦ B[Φ](X≥0) (resp., Φ ◦ P[Φ](X≥0)) as the Φ-induced boundary stratification (resp.,
proper Φ-induced boundary stratification) of Y≥0. The following conjecture is central to
the analysis of Chapters 7 and 8, and implicitly assumed in [2, 5, 80].

Conjecture 2.1. The Φ-induced boundary stratification of Y≥0 equals the boundary
stratification of Y≥0:

Φ ◦ B[Φ](X≥0) = B(Y≥0) . (2.18)

The definition of Φ-induced boundaries is challenging to use in practice. In particular,
axiom (B1) is topological and non-trivially demonstrated, whereas the axiom (B2) is
a purely combinatorial condition and hence straightforward to verify. Fortunately, the
algorithm of [80] provides a practical solution which sidesteps the difficulties associated
with axiom (B1). The algorithm has two parts. The first step determines all Φ-induced
facets starting from any Φ-induced tiling. The second step builds on the previous step to
recursively find all higher codimension Φ-induced boundaries.
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To clarify the algorithm’s details, consider the following definitions. Let

B̃[Φ, δ](X≥0) := {C≥0 ∈ B(X≥0) : dim(Φ(C≥0)) = dim(Y≥0)− δ} , (2.19)

be the subset of boundaries of X≥0 of Φ-codimension-δ. For each boundary C≥0 of X≥0,
let

B̃−1
X≥0

[Φ, δ](C≥0) :=
{
D≥0 ∈ B−1

X≥0
(C≥0) : dim(Φ(D≥0)) = dim(Φ(C≥0)) + δ

}
, (2.20)

be the subset of inverse boundaries of C≥0 in X≥0 with Φ-dimension different from
dim(Φ(C≥0)) by δ. We say that C≥0 is Φ-maximal if B̃−1

X≥0
[Φ, 0](C≥0) = {C≥0}. We

hypothesise that B̃−1
X≥0

[Φ, 0](C≥0) always contains a unique Φ-maximal element called
the Φ-maximal cover of C≥0. Finally, let B[Φ, δ](X≥0) be the subset of B[Φ](X≥0) of
Φ-codimension-δ, i.e. Φ ◦ B[Φ, δ](X≥0) are codimensional-δ Φ-induced boundaries of Y≥0.
On the basis of Conjecture 2.1, we will omit the adjective “Φ-induced” in the following
discussion.

Having established the above definitions, we can now discuss the algorithm for
identifying the facets of Y≥0. To this end, let C be any tiling of Y≥0. All Φ-codimension-1
boundaries of tiles in C are possible candidates for facets. If a candidate C≥0 is a Φ-
codimension-1 boundary of two or more tiles, its image must lie in Y>0. In this instance,
Φ(C≥0) is called a spurious facet of Y≥0, in analogy with the definition of spurious facets
in polytopal subdivisions [40]. These candidates are excluded. Thereafter, we identify the
Φ-maximal covers of the remaining candidates with B[Φ, 1](X≥0). The argument for this
identification is as follows. If a candidate C≥0 is not Φ-maximal, Φ(C≥0) is necessarily
a subset of Φ(D≥0), the image of its Φ-maximal cover D≥0, and hence an a element of
some dissection of Φ(D≥0).

The method for determining higher codimension boundaries of Y≥0 is even simpler.
Suppose we know B[Φ, δ](X≥0) for some δ > 0. To determine B[Φ, δ + 1](X≥0), we
consider all elements in B̃[Φ, δ+ 1](X≥0) as possible candidates. If a candidate C≥0 is not
Φ-maximal, Φ(C≥0) must be a subset of the image of its maximal cover. Consequently,
we exclude all candidates which are not Φ-maximal. We further exclude any candidate
which is a boundary of only one element in B[Φ, δ](X≥0); such candidates correspond to
higher-codimension spurious boundaries of Y≥0. The remaining candidates (conjecturally)
give B[Φ, δ + 1](X≥0). The recursive application of this method terminates after a finite
number of iterations when B[Φ, δ + 1](X≥0) = ∅.

This algorithm is implemented in the Mathematica packages amplituhedronBound-
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Figure 2.3: Hasse diagram for B(∆≥0
3 ). The subscript on each label denotes the Φ-

dimension of the corresponding boundary where Φ is given by (2.8).

aries [1] and orthitroids [5] for the Momentum Amplituhedron and the orthogonal
Momentum Amplituhedron, respectively.

The subset B[Φ](X≥0) is an induced subposet [89] of B(X≥0), inheriting the partial
order �X on B(X≥0). This naturally extends to a partial order on Φ ◦ B[Φ](X≥0) as
follows:

Φ(C≥0) �X Φ(D≥0) ⇐⇒ C≥0 �X D≥0 , (2.21)

for all boundaries C≥0, D≥0 ∈ B[Φ](X≥0). With the above definition in mind, we
say that the Φ-induced boundary stratification of Y≥0 is an induced subposet of X≥0.
Furthermore, on the support of Conjecture 2.1 we speculate that the partial order on
B(Y≥0) coincides with the one it inherits from B(X≥0). We will, therefore, refer to the
boundary stratification of Y≥0 as an induced subposet of X≥0. In Chapters 7 and 8, we will
see that the boundary stratifications of the Momentum Amplituhedron and the orthogonal
Momentum Amplituhedron are induced subposets of the non-negative Grassmannian and
non-negative orthogonal Grassmannian, respectively. Before finishing this chapter, let us
apply the above algorithm to Example 2.2.

Example 2.4 (Boundaries). The above algorithm allows us to determine the Φ-induced
boundary stratification of ∆≥0

2 knowing the boundary stratification of ∆≥0
3 . Fig. 2.3

displays the Hasse diagram for B(∆≥0
3 ) together with the Φ-dimension of each boundary.

The Φ-dimension of each boundary is computed as follows. Consider (234), for example,
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where x1 = 0 and x2 + x3 + x4 = 1. Solving for x4 in terms of x2 and x3 yields the
following parametrisation for Φ(234):

Φ(234) = (0,
1

2
(1 + x2 − x3),

1

2
(1− x2 + x3)) . (2.22)

The corresponding Jacobian matrix is given by

∂Φ(234)

∂(x2, x3)
=

(
0 +1

2 −1
2

0 −1
2 +1

2

)
, (2.23)

from which we obtain

dim Φ(234) = rank
∂Φ(234)

∂(x2, x3)
= 1 . (2.24)

This result agrees with the fact that Φ maps (234) to a line segment.
Once every boundary’s Φ-dimension is known, we need a Φ-induced tiling of ∆≥0

2

to determine B[Φ, 1](∆≥0
3 ), the boundaries of ∆≥0

3 whose images are Φ-induced facets
of ∆≥0

2 . Let us choose the two-element tiling {(124), (134)}. The Φ-codimension-one
boundaries of each tile are given by

B̃[Φ, 1](124) = {(12), (14), (24)} , B̃[Φ, 1](134) = {(13), (14), (34)} . (2.25)

Since both tiles share (14) as a Φ-codimension-one boundary, it is spurious and hence
discarded. We then identity the Φ-maximal covers of the remaining candidates with
B[Φ, 1](∆≥0

3 ). Both (12) and (13) are Φ-maximal, whereas (234) is the Φ-maximal cover
of (24) and (34). Therefore

B[Φ, 1](∆≥0
3 ) = {(12), (13), (234)} . (2.26)

Next we determine B[Φ, 2](∆≥0
3 ), the boundaries of ∆≥0

3 whose images are the Φ-induced
vertices of ∆≥0

2 . To this end, consider

B̃[Φ, 2](1234) = {(1), (2), (3), (4)} . (2.27)

We discard (4) since it is the boundary of only one element in B[Φ, 1](∆≥0
3 ), namely (234).

The Φ-maximal covers of the remaining candidates give

B[Φ, 2](∆≥0
3 ) = {(1), (2), (3)} . (2.28)
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Figure 2.4: Hasse diagram for Φ ◦ B[Φ](∆≥0
2 ) where Φ is given by (2.8).

Fig. 2.4 displays the Hasse diagram for Φ ◦ B[Φ](∆≥0
3 ). Moreover, one can easily verify

that Φ ◦ B[Φ](∆≥0
3 ) = B(∆≥0

2 ). �

Section 2.5

Summary

In this chapter, we introduced the category of positive geometries (and their canonical
forms). We will encounter several examples of physically-relevant positive geometries,
including the ABHY associahedron in Chapter 6, the Momentum Amplituhedron in
Chapter 7 and the orthogonal Momentum Amplituhedron in Chapter 8. We then
introduced morphisms between positive geometries, extending the original definition of
Arkani-Hamed, Bai, and Lam in [40] to positive geometries of possibly differing dimensions.
This generalisation is motivated by the original Grassmannian-based constructions of
the Momentum Amplituhedron [58] and the orthogonal Momentum Amplituheron [59,
60], which we review in Chapters 7 and 8, respectively. We further explored the utility
of morphisms for calculating canonical forms and determining boundary stratifications.
Given two positive geometries related via a morphism, the canonical form of the image
is the pushforward of the domain’s canonical form. We will unpack the pushforward
operation in more detail in Chapter 5. We also formalised a crucial conjecture: the
boundary stratification of a morphism’s image coincides with the boundary stratification
induced by the morphism. In addition, we presented an algorithm for generating morphism-
induced boundary stratifications. We will review two applications of this algorithm in
Chapters 7 and 8. Concretely, we will see how this algorithm gives access to all physical
singularities of tree-level amplitudes in the relevant QFT. While this chapter provides
algorithmic tools for identifying morphism-induced boundaries, the next chapter develops
methods for systematically enumerating them.



Chapter 3

Elements of Enumerative
Combinatorics

The Exponential Formula is a classical result in enumerative combinatorics; see
e.g. [77–79]. It allows one to construct the (exponential) generating function for

any class of combinatorial objects built by choosing a partition and placing a structure
on each block which depends only on the block’s size. A generating function is a useful
book-keeping device for encoding an infinite sequence of numbers as coefficients of a
formal power series. There are several variants of the Exponential formula. They include
Speicher’s result for non-crossing partitions [90] and analogues for series-reduced planar
trees and forests. We focus on the latter two results in this chapter, following the
presentation of [4]. These results are relevant to Chapters 6 to 8, where we apply them
to derive rank generating functions for the boundaries of various positive geometries
in on-shell momentum space. We will also reuse some of this chapter’s definitions in
Chapter 4.

Section 3.1

Generating Functions

Given a field k, let k[[x]] denote the set of all (formal) power series in x over k. The
subset of all power series with zero constant term is designated by x k[[x]]. Under the
operation of functional composition, xk[[x]] forms a monoid where the identity element is
the power series x. Let f ∈ k[[x]] be a power series. The notation [xn]f(x) denotes the
coefficient of the monomial xn. A power series g ∈ k[[x]] is called a compositional inverse
of f if (f ◦ g)(x) = (g ◦ f)(x) = x, in which case we write g(x) = f 〈−1〉(x).

23
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One can iteratively determine the coefficients of a power series’ compositional inverse1

using the Lagrange inversion formula [77, Theorem 5.4.2]. In particular, let k have a zero
characteristic and let f ∈ xk[[x]] be a power series such that [x]f(x) is non-zero. Then
for positive integers k and n, we have that

n[xn]f 〈−1〉(x)k = k[xn−k]

(
x

f(x)

)n
. (3.1)

We will repeatedly use this formula in subsequent sections.

Section 3.2

Variations of the Exponential Formula

Many combinatorial objects are built by choosing a set of connected components and
placing some structure on each piece that depends only on the piece’s size. In this
case, if one can enumerate all possible placements of said structure based on size, then
the well-known Exponential Formula (see e.g. [77–79]) enumerates the resulting class of
combinatorial objects. Speicher formulated an analogue of the Exponential Formula that
applies to combinatorial objects built by choosing a non-crossing partition and placing a
structure on each block [90] (see also [77, Exercise 5.35b]). There are also analogues of
the Exponential Formula for series-reduced planar trees and forests [4]. In this section,
we review these results. We will use them in later chapters to enumerate the boundaries
of positive geometries (equivalently, the physical singularities of tree-level amplitudes).

3.2.1 Non-Crossing Partitions and Speicher’s Result

A non-crossing partition of [n] is a partition π of [n] into blocks B1, . . . , Bt satisfying the
following requirement: if a < b < c < d and B and B′ are blocks such that a, c ∈ B and
b, d ∈ B′, then B = B′. Alternatively, consider n points on a circle, labelled {1, . . . , n} in
order. Then π is a non-crossing partition of [n] if the convex hull of the points labelled
by each block in π produce non-overlapping polygons. Fig. 3.1 displays an example of a
non-crossing partition.

Let NCn denote the set of non-crossing partitions of [n]. Let HNC be a class of
combinatorial objects built by choosing a non-crossing partition and independently
placing some structure on each block. Let f be a function on Z>0 where f(d) enumerates
all possible placements of said structure on a block of size d. Then the generating function

1In Mathematica, one can use the built-in function InverseSeries to perform series reversion.
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Figure 3.1: The non-crossing partition {{1, 7, 8, 9}, {2}, {3}, {4, 5, 6}} of [9].

HNC(x) for HNC depends on the generating function F (x) for f as stated by Theorem 3.1.

Theorem 3.1 (Speicher’s analogue of the Exponential Formula [90]). Let k be a field.
Given some function f : Z>0 → k, define a new function h : Z>0 → k by

h(n) =
∑

π={B1,...,B`}∈NCn

f(#B1)f(#B2) . . . f(#B`) , (3.2)

where #Bi denotes the cardinality of block Bi. Define F (x) = 1 +
∑

n≥1 f(n)xn and
HNC(x) = 1 +

∑
n≥1 h(n)xn. Then

xHNC(x) =

(
x

F (x)

)〈−1〉
. (3.3)

3.2.2 Series-Reduced Planar Trees and Forests

In perturbative calculations, one usually expresses amplitudes as a sum of Feynman
diagrams or on-shell diagrams — graphs with additional data assigned to edges and vertices.
We will focus exclusively on tree-level amplitudes in this dissertation. Consequently, we
introduce planar trees and forests. These objects will be relevant for Chapters 4 and 6
to 8.

A planar graph Γ on n leaves is a graph with vertices V(Γ) and edges E(Γ), properly
embedded in a disk (and considered up to homeomorphism). It has n boundary vertices
(i.e. vertices of degree one) on the boundary of the disk labelled {1, 2, . . . , n} in clockwise
order. Let Vext(Γ) := {b1, b2, . . . , bn} denote the boundary vertices of Γ. The set of
internal vertices of Γ is designated by V int(Γ) := V(Γ) \ Vext(Γ). The internal vertices
of Γ must be path-connected to the boundary of the disk. The internal edges of Γ are
those which are non-adjacent to boundary vertices. Let E int(Γ) denote the set of internal



3.2 Variations of the Exponential Formula 26

Figure 3.2: A series-reduced planar tree on 9 leaves of type (2, 1, 1, 0, 0, 0, 0).

edges of Γ. The internal subgraph of Γ, denoted by Γint, is the graph with vertices
V(Γint) = V int(Γ) and edges E(Γint) = E int(Γ). A planar graph is called finite if it has a
finite number of vertices and edges. It is called series-reduced if it contains no internal
vertices of degree 2.

A planar forest is an acyclic planar graph while a planar tree is a connected planar
forest. The set of trees contained in a planar forest F is denoted by Trees(F ). Let Tn
(resp., Fn) denote the set of series-reduced planar trees (resp. forests) on n-leaves. Both
Tn and Fn are finite due to the restriction on the degrees of internal vertices. A tree
T ∈ Tn is said to be of type (r3, . . . , rn) if it has ri internal vertices of degree i. We denote
the subset of Tn of type r = (r3, . . . , rn) by Tn(r). Its size, denoted by tn(r) := |Tn(r)|,
is given by [4]

tn(r) =
(n+ |r| − 2)!

(n− 1)!r3! · · · rn!
. (3.4)

where |r| = ∑n
i=3 ri = r3 + . . .+ rn. An example of a series-reduced planar tree is shown

in Fig. 3.2.
With the above definitions established, we now consider two important analogues of

the Exponential Formula which we will frequently use in the following chapters.
Let Htree be a class of combinatorial objects built by choosing a series-reduced planar

tree in Tn and independently placing a structure on each internal vertex. Let f be a
function on Z≥3 where f(d) enumerates all possible placements of said structure on
an internal vertex of degree d. Then the generating function Htree(x) for Htree can be
obtained from the generating function F (x) for the function f as per Theorem 3.2.
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Theorem 3.2 (Series-reduced planar tree analogue of the Exponential Formula [4]). Let
k be a field. Given a function f : Z≥3 → k, define a new function h : Z≥3 → k by

h(n) =
∑

T∈Tn

∏

v∈Vint(T )

f(deg(v)) . (3.5)

Let F (x) =
∑

n≥3 f(n)xn and Htree(x) = x2 +
∑

n≥3 h(n)xn. Then

1

x
Htree(x) =

(
x− 1

x
F (x)

)〈−1〉
. (3.6)

The inclusion of x2 in Htree(x) reflects the unique tree in T2. Modifying Htree(x) by

Ĥtree(x) = h(1)x+Htree(x) , (3.7)

we can account for the unique tree in T1 (which has a single internal vertex). In this case,
h(1) = f(1) enumerates all possible structures that can be placed on the single internal
vertex.

The authors of [4] remark on the appearance of Theorem 3.2 in various references:
“for example, it fits naturally into the theory of species and is closely related to [78, page
168, Equation (18)]; it can also be reformulated using Schröder trees and viewed as a
combinatorial interpretation of Lagrange Inversion, see [79, Theorem 2.2.1].”

Example 3.1 (Feynman Diagrams for MHV Gluon Amplitudes). As a simple application
of Theorem 3.2, let us derive a generating function for the number of Feynman diagrams
needed to calculate the n-particle MHV gluon amplitude. The relevant Feynman diagrams
are series-reduced planar trees on n-leaves that have only trivalent and tetravalent internal
vertices. To this end, define the function f : Z≥3 → R by

f(d) :=





1, if d = 3 or 4

0, otherwise
, (3.8)

i.e. f only keeps track of trivalent and tetravalent internal vertices. Let F (x) and Htree(x)

be as they are in Theorem 3.2. Then F (x) = x3 + x4 and Htree(x) = x(x− x2 − x3)〈−1〉.
The first few coefficients in the power series for Htree(x) in x are given in Table 3.1. These
coefficients correctly count the relevant Feynman diagrams [30, 31]. �

Reference [4] gives a proof for Theorem 3.2, but one can also construct a proof along
the lines of [77, Exercise 5.35b] which we do below.
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n 4 5 6 7 8 9 10 11 12 13

[xn]Htree(x) 3 10 38 154 654 2871 12925 59345 276835 1308320

Table 3.1: The coefficient of xn in Htree(x) = x(x− x2− x3)〈−1〉, denoted by [xn]Htree(x),
gives the number of Feynman diagrams contributing to the n-particle MHV gluon ampli-
tude.

Alternative proof of Theorem 3.2. First we must check that the coefficient of x1 agrees
on both sides of (3.6). On the left-hand side, [x1] 1

xH(x) = [x2]H(x) = 1 by construction.
On the right-hand side, using (3.1) we obtain

[x1]

(
x− 1

x
F (x)

)〈−1〉
= [x0]

(
x

x− F (x)
x

)
= [x0]

(
1

1− F (x)
x2

)
= 1.

For n ≥ 3, the coefficient of xn−1 on the left-hand side of (3.6) is h(n). In (3.5), the
formula for h(n), the sum over trees T ∈ Tn can be re-expressed as a sum over trees
T ∈ Tn(r) multiplied by tn(r) for all tree types r = (r3, . . . , rn), i.e. all possible partitions
〈1r3 , . . . , (n− 2)rn〉 ` (n− 2). Consequently,

h(n) =
∑

〈1r3 ,...,(n−2)rn 〉`n−2

f(3)r3 · · · f(n)rn tn(r)

=
∑

〈1r3 ,...,(n−2)rn 〉`n−2

f(3)r3 · · · f(n)rn
(n+ |r| − 2)!

(n− 1)!r3! · · · rn!

=
∑

〈1r3 ,...,(n−2)rn 〉`n−2

(n+ |r| − 2)!

(n− 1)!
· 1

|r|! · f(3)r3 · · · f(n)rn
( |r|
r3, · · · , rn

)

=
1

n− 1

n−2∑

|r|=1

(
n+ |r| − 2

|r|

)
[xn−2]

(
F (x)

x2

)|r|

=
1

n− 1
[xn−2]

∞∑

|r|=0

(
n+ |r| − 2

|r|

)(
F (x)

x2

)|r|

=
1

n− 1
[xn−2]

(
1

1− F (x)
x2

)n−1

=
1

n− 1
[xn−2]

(
x

x− F (x)
x

)n−1

= [xn−1]

(
x− 1

x
F (x)

)〈−1〉
,
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where in the last line we used (3.1). �

Combining Theorems 3.1 and 3.2 produces Corollary 3.1, a series-reduced planar forest
analogue of the Exponential Formula [4]. It has the following interpretation. Suppose
Hforest is a class of combinatorial objects built by choosing a series-reduced planar forest
in Fn and independently placing a structure on each internal vertex. Let g be a function
on Z≥3 where g(d) enumerates all possible placements of said structure on an internal
vertex of degree d. Then the generating function Hforest(x) for Hforest can be obtained
from the generating function G(x) for the function g as per Corollary 3.1.

Corollary 3.1 (Series-reduced planar forest analogue of the exponential formula [4]).
Let k be a field. Given a function g : Z>0 → k, define a new function h : Z>0 → k by

h(n) =
∑

F∈Fn

∏

v∈Vint(F )

g(deg(v)) . (3.9)

Note that h(1) = g(1), and that g(2) is irrelevant for series-reduced planar forests. Let
G(x) =

∑
n≥3 g(n)xn and Hforest(x) = 1 +

∑
n≥1 h(n)xn. Then

xHforest(x) =

(
x

1 + Ĥtree(x)

)〈−1〉

=


 x

1 + h(1)x+ x
(
x− G(x)

x

)〈−1〉




〈−1〉

, (3.10)

where Ĥtree(x) is given by (3.7).

Section 3.3

Summary

The main results of this chapter are Theorem 3.2 and Corollary 3.1, which provide
procedures for finding the rank generating functions for any class of combinatorial objects
built from series-reduced trees and forests. In particular, they facilitate the counting of
Feynman diagrams and on-shell diagrams. We will employ these results in Chapters 6
to 8 to calculate rank generating functions for boundaries of various positive geometries
in on-shell momentum space. These rank generating functions effectively enumerate all
physical singularities of tree-level amplitudes according to some hierarchy. Crucially,
Theorem 3.2 and Corollary 3.1 allow us to bootstrap our calculations: we need only
categorise all possible structures on vertices as a function of vertex degree. In the following
chapter, we introduce the combinatorial objects relevant to Chapters 7 and 8.



Chapter 4

Grassmannian Spaces

The Grassmannian is a sophisticated mathematical object which generalises complex
projective space. It features prominently in the on-shell description of amplitudes in

various theories (see [38] and references therein). This chapter reviews the Grassmannian
and its orthogonal counterpart, the orthogonal Grassmannian, before introducing their non-
negative parts. The non-negative (orthogonal) Grassmannian admits a cell decomposition
labelled by (orthogonal) Grassmannian graphs. These non-negative parts are pertinent to
the Momentum Amplituhedron and the orthogonal Momentum Amplituhedron, as we
will explain in Chapters 7 and 8. Our discussion will focus on (orthogonal) Grassmannian
forests — acyclic (orthogonal) Grassmannian graphs — which label the boundaries
of the above-mentioned positive geometries. Using the results of Chapter 3, we will
enumerate Grassmannian forests (resp., orthogonal Grassmannian forests) in Chapter 7
(resp., Chapter 8) as a proxy for the boundaries of the Momentum Amplituhdron (resp.,
orthogonal Momentum Amplituhedron). This chapter also includes the covering relations
for (orthogonal) Grassmannian forests, which characterise the corresponding partial order.

Section 4.1

The Grassmannian

4.1.1 Definition

To define the Grassmannian, let k and n be positive integers such that k < n. The
Grassmannian Grk,n is the set of all k-dimensional linear subspaces of Cn. The complex
projective n-space Pn−1 = Gr1,n is a special case of the Grassmannian. Each element
V ∈ Grk,n can be represented by a full rank k×nmatrix (modulo invertible row operations)

30
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whose rows span V . Consequently,

Grk,n := {C ∈ Matk,n(C) : rank(C) = k} /GLk(C) , (4.1)

where GLk(C) acts on Matk,n(C) by left multiplication. The Grassmannian’s dimension
is given by

dim(Grk,n) = dim(Matk,n(C))− dim(GLk(C)) = k(n− k) . (4.2)

The notation [C] = GLk(C) ·C denotes an element in Grk,n represented by the matrix C.
We label the rows of C by C1, . . . , Ck ∈ Cn (i.e. using uppercase letters) and the columns
of C by c1, . . . , cn ∈ Ck (i.e. using lowercase letters).

The Plücker map embeds the Grassmannian Grk,n in P(∧k C) by mapping V = [C] ∈
Grk,n to [C1 ∧ · · · ∧Ck], the projective equivalence class of C1 ∧ · · · ∧Ck. This embedding,
known as the Plücker embedding, depends on the equivalence class and not on any
representative. It defines a natural choice of coordinates for Grk,n in P(∧k C) ∼= P(nk)−1.
To see this, let {ei}ni=1 be the standard basis for Cn and for each ordered set I ∈

([n]
k

)

define eI := ∧i∈Iei. Then

C1 ∧ · · · ∧ Ck =
∑

I∈([n]k )

pI(C)eI , (4.3)

where pI(C) is the maximal minor of C located in the column set I. These maximal
minors furnish projective coordinates for V called Plücker coordinates, independent of the
choice of representative (up to simultaneous rescaling by a constant). Consequently, we
write pI(V ) to mean pI(C). In the physics literature, pI(C) is often written as (i1, . . . , ik)

where I = {i1, . . . , ik}. We will adopt the latter notation in later chapters.
The Plücker embedding of Grk,n is an algebraic set in P(∧k C) ∼= P(nk)−1 defined by a

family of quadratic relations called the Plücker relations. In terms of Plücker coordinates,
these relations for V ∈ Grk,n are given by

k+1∑

`=1

(−1)` pI∪{jl}(V ) pJ\{j`}(V ) = 0 , (4.4)

where I ∈
( [n]
k−1

)
and J = {j1, . . . , jk+1} ∈

( [n]
k+1

)
are ordered sets.

The Grassmannian admits a decomposition into strata labelled by affine permutations
(or equivalently decorated permutations, as discussed later). An affine permutation f
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on [n] is a bijection f : Z → Z for which f(i + n) = f(i) + n and i ≤ f(i) ≤ i + n for
all i ∈ Z [91]. We say that f is (k, n)-bounded if

∑n
i=1(f(i) − i) = kn [91]. We can

associate a (k, n)-bounded affine permutation f to each element [C] ∈ Grk,n as follows
[37, 38, 91]. For each pair (i, j) ∈ Z2 define r(i, j) as the rank of the matrix with columns
ci, ci+1 . . . , cj if i ≤ j (the indices labelling the columns of C are understood modulo n)
and zero otherwise. For each i ∈ Z, define

f(i) := min{j ≥ i : r(i, j) = r(i+ 1, j)} . (4.5)

If ci is a zero vector, f(i) = i, and if ci is not in the span of the other columns of C,
f(i) = i+n. The positroid stratification of the Grassmannian Grk,n is the decomposition

Grk,n =
⊔

f

Π̊f , (4.6)

where Π̊f denotes the subset of Grk,n labelled by the affine permutation f . The positroid
variety Πf , the closure of Π̊f in Grk,n [40], is a complex projective variety [91] whose
dimension is given by [38]

dim(Πf ) =

(
n∑

i=1

r(i, f(i))

)
− k2 . (4.7)

4.1.2 The Non-negative Grassmannian

The real Grassmannian Grk,n(R) is the real part of Grk,n. The positive Grassmannian
Gr>0

k,n (resp., non-negative Grassmannian Gr≥0
k,n) is the semi-algebraic set of elements of

Grk,n(R) whose Plücker coordinates are all positive (resp., non-negative) [37]. Given a
(k, n)-bounded affine permutation f , the intersections

Πf,>0 := Gr≥0
k,n ∩ Π̊f , Πf,≥0 := Gr≥0

k,n ∩Πf , (4.8)

are called open and closed positroid cells, respectively [40]. Moreover, (Πf ,Πf,≥0) is
a positive geometry [40] whose canonical form was studied in [38, 91]. The authors
of [38] construct a particular parametrization for Πf using “BCFW bridges”. This
parametrization furnishes canonically positive coordinates for Πf,>0: they construct a map
Cf : Rd → Matk,n(R), where d = dim(Πf ) and [Cf (Rd)] ⊂ Πf , such that [Cf (α)] ∈ Πf,>0

if and only if α ∈ Rd>0. We refer the reader to [38] for further details. This canonically
positive parametrization is implemented in the Mathematica package positroids [92].
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Using canonically positive coordinates α = (α1, . . . , αd), the canonical form Ω(Πf,≥0) is
given by [38]

Ω(Πf,≥0) =
d∧

i=1

d logαi . (4.9)

Postnikov proved that the positroid cells of Gr≥0
k,n are in bijection with various combi-

natorial objects including so-called move-equivalence classes of reduced plabic graphs Γ

of type (k, n) [37]. The notion of plabic graphs was later generalized to Grassmannian
graphs, first implicitly in [38], and then formally in [39]. The latter reference establishes
a bijection between positroid cells of Gr≥0

k,n and refinement-equivalence classes of reduced
Grassmannian graphs Γ of type (k, n). Since they provide unambiguous labels for positroid
cells, we denote by ΠΓ,>0 (resp., ΠΓ,≥0) the open positroid cell (resp., closed positroid
cell) labelled by Γ.

4.1.3 Grassmannian Graphs, Trees and Forests

In this subsection, we introduce Grassmannian graphs. Then we define Grassmannian
trees and forests, which will feature prominently in Chapter 7. Most of the definitions
and results presented here paraphrase those of [39], unless otherwise stated.

A Grassmannian graph Γ on n leaves is a finite series-reduced planar graph, where
each internal vertex v is equipped with a non-negative integer h(v) called the helicity of
v, satisfying min{1,deg(v)− 1} ≤ h(v) ≤ max{1,deg(v)− 1}. If v is a boundary leaf, an
internal vertex of degree 1 connected to a boundary vertex, then h(v) ∈ {0, 1}, otherwise
1 ≤ h(v) ≤ deg(v) − 1. We say that v is of type (h, d) if h = h(v) and d = deg(v). We
refer to v as white if h(v) = 1, black if h(v) = deg(v) − 1, and generic otherwise. The
helicity of Γ is an integer, given by

h(Γ) :=
∑

v∈V int(Γ)

(
h(v)− deg(v)

2

)
+
n

2
. (4.10)

and bounded by 0 ≤ h(Γ) ≤ n. We say that a Grassmannian graph Γ on n leaves is of
type (k, n) if k = h(Γ).

The above definition, taken from [4], modifies Postnikov’s original definition [39] in
two aspects. Firstly, it disallows degree two internal vertices. Secondly, it restricts the
helicity of a vertex v to exclude 0 and deg(v) except when v is a boundary leaf. As a
consequence of these changes, Grassmannian forests (defined later) are automatically
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reduced (also defined later).
To each Grassmannian graph Γ, one can assign a collection of one-way strands. A

one-way strand α in Γ is a directed path that either starts and ends at boundary vertices,
or forms a closed path in Γint. It is defined according to the following rules-of-the-road.
For each internal vertex v ∈ Vint(Γ) of degree d, with adjacent edges labelled e1, . . . , ed in
clockwise order, if α enters v through the edge ei, it exits v through the edge ej where
j = i + h(v) (mod d). We say that a Grassmannian graph Γ is reduced if its one-way
strands satisfy the following requirements:

(1) There are no strands forming closed loops in Γint.

(2) All strands in Γ are simple curves without self-intersections. The only exceptions are
strands bi → v → bi where v ∈ V int(Γ) is a boundary leaf adjacent to the boundary
vertex bi.

(3) Any pair of strands α 6= β cannot have a bad double crossing, a pair of vertices
u 6= v such that both α and β pass from u to v.

The following definition is taken from [37, 93]. A decorated permutation π on [n] is
a bijection π : [n] → [n] with fixed points coloured either black or white. We denote a
black fixed point (loop) i by π(i) = i and a white fixed point (coloop) i by π(i) = i. An
anti-excedance of π is an element i ∈ [n] for which i is a white fixed point or π−1(i) > i.
We say that π is of type (k, n) if it has k anti-excedances.

Given a reduced Grassmannian graph Γ on n leaves, one can assign a decorated
permutation πΓ on [n]. For each i ∈ [n], if the one-way strand that starts at the boundary
vertex bi ends at a different boundary vertex bj , then πΓ(i) = j. Otherwise, i is a
fixed point of πΓ, coloured according to the colour of the boundary leaf v adjacent to bi.
Moreover, since the number of anti-excedances of πΓ equals the helicity of Γ, πΓ is of type
(k, n) where k = h(Γ). A complete reduced Grassmannian graph Γ of type (k, n), with
0 < k < n, is one whose decorated strand permutation is given by σΓ(i) = i+ k (mod n)

for all i ∈ [n].
Given two Grassmannian graphs Γ and Γ′, we say that Γ refines Γ′ (and that Γ′

coarsens Γ) if Γ can be obtained from Γ′ by a repeatedly applying the following operation:
replace an internal vertex of type (h, d) by a complete reduced Grassmannian graph of
type (h, d). The refinement order on Grassmannian graphs is the partial order �ref where
Γ �ref Γ′ if Γ refines Γ′. We say that Γ′ covers Γ, denoted by Γ ≺·ref Γ′, if Γ′ covers Γ

in the refinement order. Two Grassmannian graphs Γ and Γ′ are refinement-equivalent
if they are in the same connected component of the refinement order �ref. Moreover,
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two reduced Grassmannian graphs Γ and Γ′ are refinement-equivalent if and only if their
decorated permutations coincide.

The remaining definitions and results come from [4]. An acyclic Grassmannian
graph is called a Grassmannian forest and a connected Grassmannian forest is called a
Grassmannian tree. A Grassmannian forest is automatically reduced since it contains no
internal cycles. Given a Grassmannian tree T on n leaves, we have that

n =
∑

v∈V int(T )

deg(v)− 2(|V int(T )| − 1) = 2 +
∑

v∈V int(T )

(deg(v)− 2) . (4.11)

Substituting (4.11) into (4.10), we find that its helicity can be expressed as

h(T ) =
∑

v∈V int(T )

h(v)− (|V int(T )| − 1) = 1 +
∑

v∈V int(T )

(h(v)− 1) . (4.12)

The refinement-equivalence class of a Grassmannian tree (resp., forest) only contains
Grassmannian trees (resp., forests) since vertices connected via a path remain so after
refinements/coarsenings and these operations never introduce cycles. Consequently,
restricting the refinement order to Grassmannian trees (resp., forests) is well-defined. This
restriction can be equivalently formulated as follows. Given two Grassmannian forests F
and F ′, we say that F ′ coarsens F (and that F refines F ′) if F ′ can be obtained from F

by applying a sequence of vertex contraction moves : contract two adjacent internal white
vertices (or two adjacent internal black vertices) into a single white (or black) vertex, as
demonstrated in Fig. 4.1. A Grassmannian forest is said to be contracted or maximal if
it is maximal with respect to the refinement order. Each refinement-equivalence class
of Grassmannian trees (resp., forests) contains a unique contracted Grassmannian tree
(resp., forest) which provides a canonical choice of representative for that equivalence
class. Note that a Grassmannian forest is contracted if and only if it has no adjacent
white or black vertices.

Let GGr
k,n be the set of refinement-equivalence classes of reduced Grassmannian graphs

of type (k, n). Since positroid cells of Gr≥0
k,n are in bijection with elements of GGr

k,n, the
partial order on closed positroid cells defined by set inclusion translates to a partial order
on GGr

k,n, which we denote by �Gr. Let FGr
k,n ⊂ GGr

k,n be the set of refinement-equivalence
classes of Grassmannian forests of type (k, n). Then (FGr

k,n,�Gr) is an induced subposet of
(GGr
k,n,�Gr). The covering relations for (FGr

k,n,�Gr) are given (without proof) in Fig. 4.2.
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7→

(a) Contracting adjacent white vertices.

7→

(b) Contracting adjacent black vertices.

Figure 4.1: Vertex contraction moves. Shaded regions represent unaffected graph compo-
nents.

Section 4.2

The Orthogonal Grassmannian

4.2.1 Definition

Fix k and n to be positive integers for which k ≤ bn2 c where b·c denotes the floor operation.
Let 〈·, ·〉 : Cn×Cn → C be a non-degenerate symmetric bilinear form. For n > 2k, the
orthogonal Grassmannian OGrk,n is the subset of all k-dimensional subspaces of Cn

isotropic with respect to 〈·, ·〉 [94]:

OGrk,n := {[C] ∈ Grk,n : 〈Ca, Cb〉 = 0 for all a, b ∈ [k]} . (4.13)

Since 〈·, ·〉 is symmetric, the isotropy condition produces k(k + 1)/2 constraints. Conse-
quently,

dim(OGrk,n) = dim(Grk,n)− k(k + 1)

2
=
k(2n− 3k − 1)

2
. (4.14)

This dissertation focusses on the case when n = 2k. In this case, the algebraic set
defined in (4.13) has two irreducible isomorphic components, and OGrk,2k denotes one
of them [94]. Let us begin by examining the two components of (4.13). One can always
choose a basis {ei}ni=1 for Cn such that

ηij := 〈ei, ej〉 , (4.15)

defines a diagonal matrix η with diagonal entries either ±1. Fix p to be an integer such
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≺·Gr

(a) Covering relation for a generic vertex w with helicity 2 ≤ hw ≤ deg(w) − 2. Here deg(u) +
deg(v) = deg(w) + 2 and hu + hv = hw + 1.

≺·Gr

(b) Covering relation for a white vertex.

≺·Gr

(c) Covering relation for a black vertex.

≺·Gr

(d) Covering relation for adjacent boundary vertices.

Figure 4.2: Covering relations for FGr
k,n with respect to �Gr. Shaded regions represent

unaffected graph components. Labels inside vertices denote helicities.

that 0 ≤ p ≤ n and let P ∈
(

[n]
p

)
. Assume that the diagonal entries of η are given by

ηii =





+1 if i ∈ P
−1 otherwise

, (4.16)

for each i ∈ [n]. Let I = {i1, . . . , ik} ∈
([n]
k

)
be any ordered k-element subset of [n] and

let I ′ = {i′1, . . . , i′k} denote the complement [n] \ I regarded as an ordered set. Then for
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each element [C] ∈ OGrk,2k, the isotropy condition 〈Ca, Cb〉 = 0 reads

0 =
∑

i∈I
CaiηiiCbi +

∑

i′∈I′
Cai′ηi′i′Cbi′ , (4.17)

where ηii′ = 0 for i ∈ I and i′ ∈ I ′. By moving the summation over I to the left-hand
side of (4.17) and taking the determinant of both sides, we obtain

pI(C)2|−η|I,I = pI′(C)|η|I′,I′ , (4.18)

where the vertical bars | • |A,B denote the minor in the row set A and the column set B.
Substituting

|−η|I,I = (−1)|P∩I| , |η|I′,I′ = (−1)|P
′∩I′| = (−1)k−p+|P∩I| , (4.19)

into (4.18) yields

pI(C) = ±eiπ(k−p)pI′(C) . (4.20)

The choice of sign in (4.20) defines the two components of (4.14). To extend Postnikov’s
definitions of positivity and non-negativity to the orthogonal Grassmannian, one must fix
the sign together with p so that all the maximal minors of C can consistently be real and
positive. These conditions are met by choosing the positive branch and setting p = k. For
concreteness, we adopt the convention of [81, 82] and let η = diag(+1,−1, . . . ,+1,−1).
Consequently, the orthogonal Grassmannian OGrk,2k is defined as [83]

OGrk,2k :=

{
V ∈ Grk,n : pI(V ) = p[n]\I(V ) for all I ∈

(
[2k]

k

)}
, (4.21)

and it has dimension

dim(OGrk,2k) =
k(k − 1)

2
. (4.22)

The positroid stratification of Grk,2k induces a decomposition of OGrk,2k, the orthitroid
stratification1. It was first observed in [81, 82], and latter proven in [83], that the induced
strata of OGrk,2k are labelled by matchings of [2k] points on a circle. We define a matching
permutation on [2k] to be a permutation on [2k] expressible as the product of k disjoint
two-cycles. Matchings of points on a circle are naturally in bijection with matching

1This terminology was coined in [5].
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permutations. Moreover, we define an matching affine permutation on [2k] to be an affine
permutation on [2k] which descends to a matching permutation on [2k] modulo 2k. Then
the orthitroid stratification of OGrk,2k is given by

OGrk,2k =
⊔

f

O̊f , (4.23)

where O̊f := OGrk,2k ∩ Π̊f denotes the subset of OGrk,2k labelled by the matching affine
permutation f . Moreover, we define the orthitroid variety Of to be the closure of O̊f in
OGrk,2k.

4.2.2 The Non-negative Orthogonal Grassmannian

Let OGrk,2k(R) denote the real orthogonal Grassmannian, the real part of OGrk,2k. The
positive orthogonal Grassmannian OGr>0

k,2k is defined as

OGr>0
k,2k := OGrk,2k(R) ∩Gr>0

k,2k , (4.24)

and the non-negative orthogonal Grassmannian OGr≥0
k,2k is defined as [81–83]

OGr≥0
k,2k := OGrk,2k(R) ∩Gr≥0

k,2k . (4.25)

For every matching affine permutation f on [2k], the intersections

Of,>0 := OGr>0
k,2k ∩ O̊f , Of,≥0 := OGr≥0

k,2k ∩Of , (4.26)

are called open and closed orthitroid cells, respectively. We claim that (Of ,Of,≥0) is a
positive geometry.

The non-negative orthogonal Grassmannian was first introduced in [81], to describe am-
plitudes in N = 6 Aharony–Bergman–Jafferis–Maldacena (ABJM) theory. Its orthitroid
stratification was studied in [82, 84], and later in [83]. The non-negative orthogonal
Grassmannian plays a central role in the construction of the orthogonal Momentum
Amplituhedron in Chapter 8.

As a counterpart to [38], the authors of [84] conjecture a canonically positive
parametrization for Of using “BCFW bridges”. They devise a map Cf : Rd → Matk,2k(R),
where d = dim(Of ) and [Cf (Rd)] ⊂ Of , which furnishes canonically positive coordinates
for Of,>0: [Cf (t)] ∈ Of,>0 if and only if t ∈ Rd>0. Their parametrization is reviewed in [5]
and implemented in the Mathematica package orthitroids [5]. The expression for the
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canonical form Ω(Of,≥0) in terms of canonically positive coordinates t = (t1, . . . , td) is
given by [84]

Ω(Of,≥0) =
d∧

i=1

d log(tanh(ti)) . (4.27)

4.2.3 Orthogonal Grassmannian Graphs, Trees and Forest

In analogy with the non-negative Grassmannian, the orthitroid cells of the non-negative
orthogonal Grassmannian are in bijection with various combinatorial objects, including a
special subset of refinement-equivalence classes of reduced Grassmannian graphs called
orthogonal Grassmannian graphs or OG graphs [5]. In this section, we introduce OG
graphs together with OG trees and forests. The latter are essential to the analysis of
Chapter 8.

The following definitions are taken from [5]. An orthogonal Grassmannian graph or OG
graph of type k is a Grassmannian graph Γ of type (k, 2k) satisfying deg(v) = 2h(v) > 2

for every internal vertex v. This restriction on internal vertices is compatible with (4.10)
since it implies h(Γ) = n

2 = k. Given a reduced OG graph Γ of type k, the associated
decorated permutation πΓ on [2k] is always a matching permutation and hence carries no
decoration. Thus, we will refer to πΓ as the associated matching permutation.

An orthogonal Grassmannian forest or OG forest is an acyclic OG graph and an
orthogonal Grassmannian tree or OG tree is a connected OG forest. OG forests are auto-
matically reduced because the same property holds for Grassmannian forests. Moreover,
OG forests are unique with respect to the refinement order �ref (defined for Grassmannian
graphs). Consequently, each OG forest uniquely defines a matching permutation, and
vice versa.

Let GOGr
k be the set of refinement-equivalence classes of reduced OG graphs of type

k. Since orthitroid cells of OGr≥0
k,2k are in bijection with elements of GOGr

k , the partial
order on closed orthitroid cells defined by set inclusion translates to a partial order on
GOGr
k , which we denote by �OGr. Let FOGr

k ⊂ GOGr
k be the set of OG forests of type k.

Then (FOGr
k ,�OGr) is an induced subposet of (GOGr

k ,�OGr). The covering relations for
(FOGr

k ,�OGr) are given (without proof) in Fig. 4.3. What is more, (GOGr
k ,�OGr) is an

induced subposet of (GGr
k,2k,�Gr) and (FOGr

k ,�OGr) is an induced subposet of (FGr
k,2k,�Gr),

where �OGr is understood to descend from �Gr through the intersection defined in (4.25).
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≺·Gr

(a) Covering relation for a vertex w with helicity
hw > 2. Here hu + hv = hw + 1.

≺·Gr

(b) Covering relation for a vertex with helicity
equal to 2.

Figure 4.3: Covering relations for FOGr
k with respect to �OGr. Shaded regions represent

unaffected graph components. Labels inside vertices denote helicities.

Section 4.3

Summary

In this chapter, we introduced two auxiliary positive geometries. They are the non-
negative Grassmannian and the non-negative orthogonal Grassmannian. Their boundary
stratifications are well-known [37, 39, 81–84] and classified in terms of Grassmannian
graphs [38, 39] and orthogonal Grassmannian graphs [5]. In Chapters 7 and 8, we will
define new, physically-relevant positive geometries in terms of these positive geometries
via morphisms. In particular, the (orthogonal) Momentum Amplituhedron is the image of
the non-negative (orthogonal) Grassmannian. We will use the cell decomposition of the
non-negative (orthogonal) Grassmannian and the outputs of Chapter 2 (see Conjecture 2.1)
to determine the boundaries of the (orthogonal) Momentum Amplituhedron. Anticipating
the results of Chapters 7 and 8, we have focussed on (orthogonal) Grassmannian forests
which are acyclic (orthogonal) Grassmannian graphs. They inherit a partial order with
covering relations presented in Figs. 4.2 and 4.3. These covering relations mimic the
expected factorisation channels of tree-level amplitudes in N = 4 SYM and N = 6 ABJM.
Chapters 7 and 8 further discuss this connection in detail.



Chapter 5

Pushforwards

In Chapter 2, we introduced morphisms between positive geometries and defined the
pushforward of canonical forms via morphisms. The utility of this operation is that

the pushforward of a canonical form is again a canonical form. This chapter addresses the
problem of performing pushforwards in practice. Operationally, the pushforward involves
finding the local inverses of a surjective meromorphic map. The pullback of each local
inverse is then added together to give the pushforward. The local inverses are solutions to
a system of polynomial equations, i.e. points in the zero-set of some polynomial ideal. In
general, they are impossible to write down in a closed form, which prompts an important
question: “Is it possible to compute the pushforward of a rational form via a surjective
meromorphic map without needing to determine its local inverses?” This question is
answered affirmatively in [6]. In this chapter, we review the results of [6], presenting
three methods based on ideas from computational algebraic geometry for calculating
pushforwards. These tools allow for the efficient evaluation of pushforwards in Chapters 6
to 9.

To illustrate the above-mentioned difficulty of finding local inverses, consider the
following example. Let X = Y = C. Define X≥0 = [a, b] and Y≥0 = [a2, b2] as intervals in
R where a < b are positive real numbers. Both (X,X≥0) and (Y, Y≥0) are 1-dimensional
positive geometries with canonical forms given by

Ω(X≥0) =
(b− a)dx

(x− a)(x− b) , Ω(Y≥0) =
(b2 − a2)dy

(y − a2)(y − b2)
, (5.1)

respectively. The two positive geometries are related via the rational map

Φ : X 99K Y, x 7→ y = x2 , (5.2)

which defines a morphism. In particular, Φ(X>0) = Y>0 and Φ|X>0 : X>0 → Y>0 is an

42
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orientation-preserving diffeomorphism. There are two local inverses,

Ξ(1) : Y → U, y 7→ x =
√
y , Ξ(2) : Y → X \ U, y 7→ x = −√y , (5.3)

where U := {x ∈ X : x = 0 or 0 ≤ Arg(x) < π} and X≥0 ∈ U . Notice that neither
of the local inverses are meromorphic. The pushforward of Ω(X≥0) via Φ, denoted by
Φ∗Ω(X≥0), is the sum of the pullbacks of Ω(X≥0) via the local inverses of Φ:

Φ∗Ω(X≥0) =
(

Ξ(1)
)∗

Ω(X≥0) +
(

Ξ(2)
)∗

Ω(X≥0)

=
(b− a)d(

√
y))

(
√
y − a)(

√
y − b) +

(b− a)d(−√y)

(−√y − a)(−√y − b)

=
(b2 − a2)2

√
yd(
√
y)

(y − a2)(y − b2)

=
(b2 − a2)dy

(y − a2)(y − b2)

= Ω(Y≥0) .

The square-roots appearing in intermediate steps of the above computation disappear
from the final answer, demonstrating a general phenomenon: the pushforward of a
rational form via a surjective meromorphic map is always a rational form, despite the
non-meromorphicity of its local inverses.

Section 5.1

Mathematical Preliminaries

This chapter studies the problem of pushing forward rational forms using computational
algebraic geometry. By reformulating morphisms as ideals inside polynomial rings over
fraction fields, this problem is amenable to the powerful tools of Gröbner bases and their
applications to elimination theory. We will assume familiarity with basic notions relating
to Gröbner bases as presented in [95].

5.1.1 Morphisms as Ideals

Let x := (x1, . . . , xm) and y := (y1, . . . , yn) be tuples of indeterminates where m and n
are positive integers. Designate by C(y)[x] the ring of polynomials in x whose coefficients
are complex rational functions in y. Any polynomial h ∈ C(y)[x] can be regarded as a
map h : C(y)

m → C(y) defined by x 7→ h(x), where C(y) denotes the algebraic closure
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of C(y). Moreover, for each x ∈ C(y)
m
, h(x) ∈ C(y) defines a map h(x) : Cn → C by

y 7→ h(x)(y). We will often want to restrict h, specifically the coefficients of h, to some
particular value for y. Given a point y ∈ Cn for which all coefficients of h are analytic,
let h(•)(y) be the polynomial in C[x] defined by x 7→ h(x)(y).

For our purposes, we can think of x (resp., y) as coordinates in an affine chart of the
embedding space X (resp., Y ) associated with some positive geometry (X,X≥0) (resp.,
(Y, Y≥0)) of dimension m (resp., n). For example, x could represent coordinates for some
worldsheet moduli space (see Chapters 6 to 8) and y could represent coordinates for
some kinematic space. In this case, the two are related via some twistor-string map or
version of the scattering equations. The graph of any morphism (restricted to a tile) can
always be expressed as a complete intersection ideal in C(y)[x], i.e. an ideal generated by
precisely m polynomials in C(y)[x]. Since our ideal lives in C(y)[x], we can always choose
generators from C[y][x]: polynomials in x whose coefficients are complex polynomials (as
opposed to rational functions) in y. Suppose f1, . . . , fm ∈ C[y][x] generate the complete
intersection ideal

I := 〈f1, . . . , fm〉 ⊂ C(y)[x] . (5.4)

Let F := (f1, . . . , fm) collect the generators of I into an m-tuple. For each y ∈ Cn, define

I(y) := 〈f1(•)(y), . . . , fm(•)(y)〉 ⊂ C[x] . (5.5)

The zero-set of I(y), denoted by Z(I(y)), is given by

Z(I(y)) := {ξ ∈ Cm : h(ξ)(y) = 0 for all h ∈ I(y)} , (5.6)

and the radical of I(y), denoted by
√
I(y), is defined as

√
I(y) := {h ∈ C[x] : hr ∈ I(y) for some r ∈ Z>0} . (5.7)

We say that I(y) is zero-dimensional if Z(I(y)) consists of finitely many points, and
radical if I(y) =

√
I(y). Let YF ⊂ Cn denote the subset of y-variables for which I(y) is

both zero-dimensional and radical. We will refer to points in YF as generic y-variables.
Suppose that YF is a non-empty Zariski open set. Then we will refer to I as a zero-
dimensional radical ideal, meaning that I(y) is a zero-dimensional radical ideal for generic
y-variables.
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The zero-set of I, denoted by Z(I), is given by

Z(I) :=
{
ξ ∈ C(y)

m
: h(ξ) = 0 for all h ∈ I

}
. (5.8)

The points in Z(I) are functions of y and non-singular for generic y-variables. We will
assume (for generic y-variables) that these points are non-degenerate (i.e. they have
multiplicity one) and enumerate them by Z(I) = {ξ(α)}dα=1.

5.1.2 Notation and Conventions

To streamline our presentation, let us collect a few definitions and establish notation.
A monomial in x is an expression of the form xα = xα1

1 · · ·xαmm where α := (α1, . . . , αm)

∈ Zm≥0. A monomial ordering � on the polynomial ring C(y)[x] is a total well-ordering
on monomials in x, compatible with multiplication: if xα � xβ then xα+γ � xβ+γ for all
γ ∈ Zn≥0.

Recall that I is a zero-dimensional radical complete intersection ideal in C(y)[x].
The leading monomial of a polynomial in I is the largest monomial with respect to �.
Moreover, the leading coefficient of a polynomial in I is the coefficient of the leading
monomial and the leading term is the term corresponding to the leading monomial. There
are three monomial orderings which will be particularly useful later. To this end, declare
x1 � · · · � xm and let α, β ∈ Zm≥0.

• Lexicographic (lex) order: xα �lex x
β if the leftmost non-zero entry of α − β is

positive. Otherwise xβ �lex x
α.

• Graded lexicographic (grlex) ordering: xα �grlex xβ if
∑m

i=1 αi >
∑m

i=1 βi, or if∑m
i=1 αi =

∑m
i=1 βi and the leftmost non-zero entry of α− β is positive. Otherwise

xβ �grlex x
α.

• Graded reverse lexicographic (grevlex) ordering: xα �grevlex x
β if

∑m
i=1 αi >

∑m
i=1 βi,

or if
∑n

i=1 αi =
∑n

i=1 βi and the rightmost non-zero entry of α − β is negative.
Otherwise xβ �grevlex x

α.

A Gröbner basis for I, with respect to a monomial ordering �, is a finite generating
set for I. It has a special property: the leading term of every (non-zero) polynomial in I
is divisible by the leading term of some polynomial in the Gröbner basis. We designate
the unique reduced Gröbner basis for I with respect to � by G�(I) (or simply G).

Since |Z(I)| = d, the quotient ring Q := C(y)[x]/I is a d-dimensional commutative
algebra over C(y). Let B�(I) (or simply B) denote the set of all monomials in x that
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are indivisible by the leading terms of G. This forms a basis for Q called the standard
basis: every element of Q can be represented as a C(y)-linear combination of monomials
in B. Moreover, every element of C(y)[x] can be canonically assigned to an element
of Q via the division algorithm with respect to G. We enumerate the elements of the
standard basis by B = {eα}dα=1. Importantly, they are monomials in x and independent
of y. Given a polynomial h ∈ C(y)[x], let hG denote the normal form of h, i.e. the
remainder of h on division by G. Then hG =

∑d
α=1 hαeα for some choice of coefficients

h1, . . . , hd ∈ C(y). Alternatively, hG = h · e where h := (h1, . . . , hd) and e := (e1, . . . , ed).
Lastly, [h] = [h

G
] ∈ Q for every h ∈ C(y)[x].

5.1.3 Pullbacks and Pushforwards

With the above definitions and notation, let us review the pullback and pushforward
operations in terms of x and y. Fix I ∈

(
[m]
p

)
for some 0 ≤ p ≤ m and let ω be a rational

p-form

ω(x) := ω(x)
∧

i∈I
dxi , (5.9)

where ω is some rational function in C(x). Suppose ψ : Cn → Cm is a differentiable map
from y-variables to x-variables. Then the pullback of ω via ψ is the p-form defined by

(ψ∗ω)(y) := ω(ψ(y)) = ω(ψ(y))
∧

i∈I
dψi(y) = ω(ψ(y))

∑

J∈([n]p )

∣∣∣∣
∂ψ

∂y

∣∣∣∣
I,J

∧

j∈J
dyj , (5.10)

where ∂ψ/∂y is the m× n Jacobian matrix of partial derivatives ∂ψi/∂yj (with i ∈ [m]

and j ∈ [n]) and |∂ψ/∂y|I,J denotes the minor of ∂ψ/∂y in the row set I and the column
set J .

We can recast the above pullback as a pushforward via an ideal which implicitly
defines a meromorphic map ψ. To this end, let J be a zero-dimensional radical complete
intersection ideal in C(y)[x] whose zero-set is a singleton. Then for generic y-variables,
the Shape Lemma (see Theorem A.1) implies that the Gröbner basis Glex(J ) with respect
to lex order has the shape

Glex(J ) = {x1 − ψ1(y), . . . , xm − ψm(y)} , (5.11)

where ψ := (ψ1, . . . , ψm) is an m-tuple of rational functions in C(y). Consequently, the
zero-set of J is given by Z(J ) = {ψ}. This motivates the following definition. The
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Figure 5.1: The map φ : Cm → Cn takes x to y = φ(x).

pushforward of ω via J , denoted by J∗ω, is defined by

(J∗ω)(y) := (ψ∗ω)(y) = ω(ψ(y)) , (5.12)

and coincides with (5.10).
Going in the direction opposite to ψ, let φ : Cm → Cn be a meromorphic map of

degree d from x-variables to y-variables; see Fig. 5.1. Let y be a point in the image of φ.
Then y has d preimages labelled φ−1({y}) = {x(α)}dα=1. For each α = 1, . . . , d there exists
an open neighbourhood Uα containing x(α) such that φ|Uα is invertible. Let ξ(α) := φ|−1

Uα
.

The local inverse maps are depicted in Fig. 5.2. Then the pushforward of ω via φ is a
rational p-form defined by

(φ∗ω)(y) =

d∑

α=1

(ξ(α)∗ω)(y) =
∑

J∈([n]p )

d∑

α=1


ω(ξ(α)(y))

∣∣∣∣∣
∂ξ(α)

∂y

∣∣∣∣∣
I,J


∧

j∈J
dyj , (5.13)

where ∂ξ(α)/∂y is the m×n Jacobian matrix of mixed partial derivatives ∂ξ(α)
i /∂yj (with

i ∈ [n] and j ∈ [m]).
This chapter’s primary focus is pushing forward rational forms via ideals obtained as

the graph of some morphism between positive geometries. To this end, let I be the ideal
in C(y)[x] from before. The pushforward of ω via I, denoted by I∗ω, is defined by

(I∗ω)(y) :=
∑

ξ∈Z(I)

(ξ∗ω)(y) , (5.14)
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Figure 5.2: For each point y in the image of φ there are d local inverse maps ξ(α) := φ|−1
Uα

:

φ(Uα)→ Uα such that x(α) = ξ(α)(y) ∈ Uα.

Figure 5.3: The zero-set Z(I) = {ξ(α)}dα=1 consists of d maps in C(y)
m

which take y to
ξ(α)(y).

where Z(I) is a finite subset of C(y)
m

consisting of maps from y-variables to x-variables;
see Fig. 5.3. Comparing (5.14) and (5.12), the pullback is a special case of the pushforward;
in the former case, the zero-set contains a single point, while the zero-set in the latter
case is a reducible algebraic set.

Eq. (5.14) contains a sum over all points in the zero-set of I. In general, it is impossible
to determine this zero-set in closed form, thereby prompting the following analogue of
an earlier question: “Is it possible to compute the pushforward of a rational form via an
ideal without needing to determine its zero-set?”

The special case of pushing forward rational functions (rational 0-forms) has been
studied in the scattering amplitudes literature in the context of the CHY formalism. At
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least two approaches can be generalised to rational forms [6]. The approaches employ
ideas from computational algebraic geometry; the first uses companion matrices [96–98]
while the second uses the duality of global residues [99]. By rephrasing the problem of
pushing forward rational forms in terms of pushing forward rational functions, the above
methods can be readily applied. To this end, let us reformulate (5.14). Applying the
chain rule to (5.14) yields

(I∗ω)(y) =
∑

J∈([n]p )


 ∑

ξ∈Z(I)

ω(ξ)

∣∣∣∣
∂ξ

∂y

∣∣∣∣
I,J


 ∧

j∈J
dyj , (5.15)

where ∂ξ/∂y is the m× n Jacobian matrix of mixed partial derivatives ∂ξi/∂yj ∈ C(y)

(with i ∈ [m] and j ∈ [n]). The minors of ∂ξ/∂y can be judiciously rewritten using the
following observation. Since f`(ξ(y)) = 0 for each ` ∈ [m] and ξ ∈ Z(I), we have that

0 =
df`
dyj

=
∂f`
∂yj

+
∂f`
∂ξi

∂ξi
∂yj

=⇒ ∂f`
∂ξi

∂ξi
∂yj

= −∂f`
∂yj

, (5.16)

and hence

∣∣∣∣
∂ξ

∂y

∣∣∣∣
I,J

= (−1)p

∣∣∣∣∣

(
∂F

∂x
(ξ)

)−1 ∂F

∂y
(ξ)

∣∣∣∣∣
I,J

, (5.17)

where ∂F/∂x is the m×m Jacobian matrix of partial derivatives ∂f`/∂xi ∈ C(y)[x] (with
`, i ∈ [m]) and ∂F/∂y is them×n Jacobian matrix of partial derivatives ∂f`/∂yj ∈ C(y)[x]

(with j ∈ [n]). The matrix ∂F/∂x is assumed invertible for generic y. Substituting (5.17)
into (5.15) leads to the master equation

(I∗ω)(y) =
∑

J∈([n]p )

(I∗ωI,J)(y)
∧

j∈J
dyj , (5.18)

where

ωI,J(x) := (−1)p ω(x)

∣∣∣∣∣

(
∂F

∂x

)−1 ∂F

∂y

∣∣∣∣∣
I,J

∈ C(y)(x) . (5.19)

In summary, we have reduced the problem pushing forward a rational p-form ω to
pushing forward the rational functions ωI,J ∈ C(y)(x). In the next three sections, we
present three methods for computing I∗ωI,J . To demonstrate the application of each
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method, let us establish the following running example.

Example 5.1 (Pushforwards via Brute Force). Let n = 2 and m = 3. Let I be generated
by F := (f1, f2) = (y1x1 + y2x2, y3x

2
2 − 1). Clearly I(y) is zero-dimensional provided y1

and y3 are non-zero. Hence, YF = C3 \{y1 = 0 or y3 = 0}. The zero-set of I is easily
determined and given by

Z(I) =

{(
y2

y1
√
y3
,− 1√

y3

)
,

(
− y2

y1
√
y3
,

1√
y3

)}
. (5.20)

The points in Z(I) are supported on YF . Let us consider pushing forward the rational
2-form

ω(x) = ω(x) dx1 ∧ dx2 , ω(x) =
1

x1x2
. (5.21)

In fact, ω is a d log-form which can be thought of as the canonical form of the positive
geometry (X,X≥0) where X = C2 and X≥0 is the positive quadrant in R2. Since we
know Z(I), we can directly push ω forward via I: using (5.14) we obtain

(I∗ω)(y) =
dy1 ∧ dy3

y1y3
− dy2 ∧ dy3

y2y3
. (5.22)

Let us verify this result using (5.18), the master equation. The Jacobian matrices relevant
for this calculation are given by

∂F

∂x
=

[
y1 y2

0 2y3x2

]
,

∂F

∂y
=

[
x1 x2 0

0 0 x2
2

]
. (5.23)

Unsurprisingly, ∂F/∂x is invertible if and only if y ∈ YF because det(∂F∂x ) = 2y1y3x2.
The coefficients ωJ := ω[2],J , calculated using (5.19), are given by

ω{1,2}(x) = 0 , ω{1,3}(x) =
1

2y1y3
, ω{2,3}(x) =

x2

2y1y3x1
. (5.24)

Pushing each of them forward via I, i.e. summing over all points in Z(I), we obtain

(I∗ω{1,2})(y) = 0 , (I∗ω{1,3})(y) =
1

y1y3
, (I∗ω{2,3})(y) = − 1

y2y3
, (5.25)

in clear agreement with (5.22). �
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Section 5.2

Pushforwards via Companion Matrices

Our first method uses companion matrices. Companion matrices help sidestep the problem
of determining Z(I). This method was first employed (in the scattering amplitudes
literature) in the context of the CHY formalism [96–98]. Companion matrices represent
polynomial multiplication as an endomorphism on the quotient ring Q = C(y)[x]/I. Let
G be a Gröbner basis for I and let B be the associated standard basis. For each i ∈ [m],
multiplication by xi in C(y)[x] induces an endomorphism on Q via the division algorithm
with respect to G:

C(y)[x]→ C(y)[x], h 7→ xih

Q → Q, [hG ] 7→ [xih
G
]

modulo G (5.26)

In the standard basis, this endomorphism is represented by a matrix Ti ∈ Matd,d(C(y))

whose components are given by

zieα
G = (Ti)αβeβ , (5.27)

where repeated indices are implicitly summed. The matrix Ti is called the ith companion
matrix of I [100]. The companion matrices of I mutually commute, because multiplication
in the polynomial ring is commutative. Consequently, they generate a commutative
subalgebra 〈T1, . . . , Tm〉 ⊂ Matd,d(C(y)) isomorphic to Q:

〈T1, . . . , Tm〉 → Q, Ti 7→ [xi
G ] . (5.28)

Stickelberger’s Theorem (see Theorem A.2) informs us that (for generic y-variables) Z(I)

is the set of vectors of simultaneous eigenvalues of the companion matrices of I:

Z(I) =
{
ξ ∈ C(y)

m
: (∃ v ∈ C(y)

d \ {0}) (Ti)αβvβ = ξivα for all i ∈ [m]
}
. (5.29)

Moreover, Corollary A.1 states that (for generic y-variables) the companion matrices
of I are simultaneously diagonalizable. Let T := (T1, . . . , Tm) collect the companion
matrices of I into an m-tuple. Take any rational function r ∈ C(y)(x). From the above
considerations, r(T ) is well-defined and similar to a diagonal matrix with diagonal entries
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given by r(ξ) for ξ ∈ Z(I). Consequently,

(I∗r)(y) = Tr (r(T (y))(y)) . (5.30)

In other words, provided we know the companion matrices of I (which requires a Gröbner
basis computation), we can push forward any rational function via I using (5.30). In
particular,

(I∗ωI,J)(y) = Tr
(
ωI,J(T (y))(y)

)
. (5.31)

In this way, the problem of pushing forward ω via I is reduced to simple linear algebra.

Example 5.2 (Pushforwards via Companion Matrices). Let us re-derive (5.25) using
(5.31). Without loss of generality, assume lex-order with x1 � x2. The Gröbner basis1 for
I is given by G = {x1 + y2

y1
x2, x

2
2 − 1

y3
} and the standard basis is given by B = {x2, 1}.

The companion matrices of I read

T1(y) =

[
0 − y2

y1y3

−y2
y1

0

]
, T2(y) =

[
0 1

y3

1 0

]
. (5.32)

Evaluating (5.31) on (5.24) and (5.32) then gives

(I∗ω{1,2})(y) = Tr[ω{1,2}(T (y))(y)] = 0 , (5.33)

(I∗ω{1,3})(y) = Tr[ω{1,3}(T (y))(y)] =
1

2y1y3
Tr[I2×2] =

1

y1y3
, (5.34)

(I∗ω{2,3})(y) = Tr[ω{2,3}(T (y))(y)] =
1

2y1y3
Tr[T−1

1 (y) · T2(y)] = − 1

y2y3
, (5.35)

in clear agreement with (5.25). �

Section 5.3

Pushforwards via Derivatives of Companion Matrices

The previous method evaluates the rational functions ωI,J on companion matrices. The
rational functions depend on the generators in F through two Jacobian matrices. Con-
sequently, ωI,J can be arbitrarily complicated, due to the multiplying minor in (5.19),
even if ω is relatively simple, posing a significant bottleneck. In this section, we present a

1For this example, the Gröbner basis is unchanged if we consider grevlex-order instead of lex-order.
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second method for pushing forward ω via I. The method also uses companion matrices,
but it avoids evaluating the multiplying minor in (5.19) on companion matrices. Instead,
it uses derivatives of companion matrices. We also present a novel algorithm for efficiently
determining companion matrix derivatives, developed with a view towards numerical
sampling.

By comparing (5.15) with our master equation in (5.18), we arrive at

(I∗ωI,J)(y) =
∑

ξ∈Z(I)

ω(ξ(y))

∣∣∣∣
∂ξ

∂y

∣∣∣∣
I,J

. (5.36)

We can uplift this equation to one involving companion matrices in the obvious way:

(I∗ωI,J)(y) = Tr


ω(T (y))

∑

σ∈Sp

sign(σ)
∂Tiσ(1)
∂yj1

· · ·
∂Tiσ(p)
∂yjp


 , (5.37)

where the sum is over the permutation group Sp, sign(σ) denotes the signature of σ,
I = {i1, . . . , ip} with i1 < · · · < ip and J = {j1, . . . , jp} with j1 < · · · < jp. Reference [6]
proves Eq. (5.37). The proof is non-trivial, because derivatives of companion matrices are
not guaranteed to simultaneously commute.

Example 5.3 (Pushforwards via Derivatives of Companion Matrices). Let us re-derive
(5.25) using (5.37). Recall that the companion matrices, calculated in Example 5.2, are
given by

T1(y) =

[
0 − y2

y1y3

−y2
y1

0

]
, T2(y) =

[
0 1

y3

1 0

]
. (5.38)

Their derivatives with respect to y-variables read

∂T1

∂y1
=


 0 y2

y21y3
y2
y21

0


 , ∂T1

∂y2
=

[
0 − 1

y1y3

− 1
y1

0

]
,

∂T1

∂y3
=

[
0 y2

y1y23

0 0

]
,

∂T2

∂y1
= 02×2,

∂T2

∂y2
= 02×2,

∂T2

∂y3
=

[
0 − 1

y23

0 0

]
.

(5.39)

Substituting (5.38) and (5.39) into (5.37) where ω(x) = 1
x1x2

, we find that

(I∗ω{1,2})(y) = Tr

(
ω(T (y))

(
∂T1

∂y1

∂T2

∂y2
− ∂T2

∂y1

∂T1

∂y2

))
= 0 , (5.40)
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(I∗ω{1,3})(y) = Tr

(
ω(T (y))

(
∂T1

∂y1

∂T2

∂y3
− ∂T2

∂y1

∂T1

∂y3

))
=

1

y1y3
, (5.41)

(I∗ω{2,3})(y) = Tr

(
ω(T (y))

(
∂T1

∂y2

∂T2

∂y3
− ∂T2

∂y2

∂T1

∂y3

))
= − 1

y2y3
, (5.42)

in clear agreement with (5.24). �

In many instances, (5.37) is more efficient to evaluate than (5.31). In general, ω is
significantly simpler than ωI,J , allowing for quicker evaluation on companion matrices.
Moreover, once ω(T (y)) is known, no further matrix inversions are needed for (5.37). The
major disadvantage of (5.37) is its dependence on companion matrix derivatives. If the
y-dependence of companion matrices is known, then such derivatives are straightforwardly
calculated. However, it is often intractable to determine the y-dependence of companion
matrices; often it is only possible to compute companion matrices for fixed numerical
values of y (i.e. sampling over finite fields). To remedy this limitation, we present an
algorithm for working out exact derivatives of companion matrices, suitable for numerical
sampling.

Fix j ∈ [n] and y ∈ YF . Regarding ∂x
∂yj

:= (∂x1∂yj
, . . . , ∂xm∂yj ) as an m-tuple of formal

expressions, let C[x, ∂x∂yj ] denote the ring of complex polynomials in x and ∂x
∂yj

. Furthermore,
let I(y) and Ij(y) denote the polynomial ideals

I(y) := 〈F (•)(y)〉 ⊂ C[x] , Ij(y) := 〈F (•)(y),
dF

dyj
(•)(y)〉 ⊂ C[x,

∂x

yj
] , (5.43)

where dF
dyj

:= (∂f1∂yj
+ ∂f1

∂xi
∂xi
∂yj

, . . . , ∂fm∂yj + ∂fm
∂xi

∂xi
∂yj

). Let G(y) (resp., Gj(y)) denote the unique
reduced Gröbner basis for I(y) (resp., Ij(y)) with respect to lex-order where ∂x1/∂yj �
· · · � ∂xn/∂yj � x1 � · · · � xn. We designate that standard basis for C[x]/I(y) (resp.,
C[x, ∂x∂yj ]/Ij(y)) by B(y) (resp., Bj(y)). Suppose Bj(y) = B(y) = {eα}dα=1. Then the ith

companion matrix of I evaluated at y is given by

xieα
Gj(y) = Ti(y)αβeβ , (5.44)

and its partial derivative with respect to yj , evaluated at y, can be extracted via

∂(xieα)

∂yj
− Ti(y)αβ

∂eβ
∂yj

Gj(y)

=
∂Ti(y)αβ
∂yj

eβ . (5.45)

On the left-hand side of (5.45), x-variables and standard basis elements are regarded as
implicit functions of yj . Importantly, the dividends on the left-hand sides of (5.44) and
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(5.45) are polynomials in C[x, ∂x∂yj ] while the right-hand sides are polynomials in C[x].
The validity of (5.44) and (5.45) can be understood as follows. Each generator in dF

dyj

defines a non-constant linear function in ∂x
∂yj

. Consequently, the mth elimination ideal of
Ij(y) is given by Ij(y) ∩ C[x] = I(y) and the Elimination Theorem (see Theorem A.3)
implies that Gj(y) ∩ C[x] = G(y). Since xieα is a monomial in C[x], division by Gj(y)

coincides with division by Gj(y) ∩ C[x] = G(y). Therefore, (5.44) computes the ith

companion matrix of I(y). Moreover, since division by Gj(y) is a continuous operation,
differentiating both sides of (5.44) with respect to yj produces (5.45).

Example 5.4 (Derivatives of Companion Matrices via the Elimination Theorem). Recall
that the companion matrices, calculated in Example 5.2, read

T1(y) =

[
0 − y2

y1y3

−y2
y1

0

]
, T2(y) =

[
0 1

y3

1 0

]
.

Their derivatives with respect to y-variables, shown in Example 5.3, are given by

∂T1

∂y1
=


 0 y2

y21y3
y2
y21

0


 , ∂T1

∂y2
=

[
0 − 1

y1y3

− 1
y1

0

]
,

∂T1

∂y3
=

[
0 y2

y1y23

0 0

]
,

∂T2

∂y1
= 02×2,

∂T2

∂y2
= 02×2,

∂T2

∂y3
=

[
0 − 1

y23

0 0

]
.

Let us re-derive these derivatives using (5.45), beginning with y1. In this case, the relevant
ideal is

I1 = 〈F, dF
dy1
〉 =

〈
y1x1 + y2x2, y3x

2
2 − 1, x1 + y1

∂x1

∂y1
+ y2

∂x2

∂y1
, 2y3x2

∂x2

∂y1

〉
. (5.46)

Its Gröbner basis with respect to lex-order is given by

G1 =

{
∂x1

∂y1
− y2

y2
1

x2,
∂x2

∂y1
, x1 +

y2

y1
x2, x

2
2 −

1

y3

}
. (5.47)

Notice that G1 ∩C[x1, x2] = G where G is the Gröbner basis for I from Example 5.2. The
standard basis for C[x1, x2,

∂x1
∂y1

, ∂x2∂y1
]/I1 associated with G1 is B1 = {x2, 1}, identical to

the standard basis B used in Example 5.2. With e := (x2, 1),

∂(x1e)

∂y1
− T1 ·

∂e

∂y1

G1
=




y2
y21y3
y2x2
y21


 , ∂(x2e)

∂yj
− T2 ·

∂e

∂y1

G1
=

[
0

0

]
, (5.48)
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from which we can be read off

∂T1

∂y1
=


 0 y2

y21y3
y2
y21

0


 , ∂T2

∂y1
= 02×2 , (5.49)

in clear agreement with (5.39). Derivatives of the companion matrices with respect to
other y-variables are similarly confirmed. �

Section 5.4

Pushforwards via Global Duality Theorem

Our third method for evaluating (5.18) does not use companion matrices, but uses
the duality of global residues. This involves constructing a dualizing inner product on
Q = C(y)[x]/I. Our method uses machinery from [101] applied to the CHY scattering
equations in [99].

5.4.1 Multi-Dimensional Residues

Let us begin by defining local and global residues. Consider any polynomial h ∈ C(y)[x].
Let ξ ∈ Z(I). Then ξ(y) ∈ Z(I(y)) for generic y. Let U(y) ⊂ Cm be an open
neighbourhood of ξ(y) which excludes all other points in Z(I(y)). The local residue of
h(•)(y) at ξ(y) with respect to the divisors in F (•)(y) is the multi-dimensional contour
integral [101]

ResF (•)(y),ξ(y)(h(•)(y)) :=
1

(2πi)m

∮

Γδ(ξ(y))
h(x)(y)

dx1 ∧ · · · ∧ dxm
f1(x)(y) · · · fm(x)(y)

. (5.50)

Here δ := (δ1, . . . , δm) ∈ Rm>0 is an m-tuple of parameters such that

Γδ(ξ(y)) := {x ∈ U(y) : |f`(x)(y)| = δ` for all ` ∈ [m]} , (5.51)

is a smooth real m-cycle, oriented by the m-form d arg(f1) ∧ · · · ∧ d arg(fm). Eq. (5.50)
naturally extends to a definition for ResF,ξ(h), the local residue of h at ξ ∈ Z(I) with
respect to the divisors in F . For generic y-variables, I is radical and the Jacobian matrix
∂F
∂x is non-degenerate on Z(I). Using Stokes’ theorem, ResF,ξ(h) evaluates to

ResF,ξ(h) =

∣∣∣∣
∂F

∂x
(ξ)

∣∣∣∣
−1

h(ξ) . (5.52)
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The global residue of h with respect to the divisors in F is the sum of all local residues
[101]

ResF (h) :=
∑

ξ∈Z(I)

ResF,ξ(h) . (5.53)

By combining (5.53) with (5.52), the pushforward of h via I can be expressed as

I∗h := ResF

(∣∣∣∣
∂F

∂x

∣∣∣∣h
)
. (5.54)

5.4.2 Global Duality Theorem

We can evaluate (5.54) by exploiting the Global Duality Theorem [101]. To this end, let
G be a Gröbner basis for I and let B = {eα}dα=1 be the associated standard basis. Then
the normal form of h, denoted by hG , provides a canonical representative for [h] = [h

G
] in

Q. On the support of Z(I), h and hG coincide:

h(ξ(y))(y) = h
G
(ξ(y))(y) for all ξ ∈ Z(I) . (5.55)

This observation motivates the definition of the following symmetric inner-product on Q:

〈•, •〉 : Q×Q → C(y); ([h1], [h2]) 7→ 〈[h1], [h2]〉 := ResF (h1h2) . (5.56)

For generic y-variables, 〈•, •〉 is non-degenerate by the Global Duality Theorem (see
Theorem A.5). Non-degeneracy guarantees a dual basis B∨ = {∆α}dα=1 for Q satisfying

〈eα,∆β〉 = δαβ . (5.57)

Since 1 ∈ Q, it can be decomposed in the dual basis:

1 =

d∑

α=1

µα∆α , (5.58)

for some choice of rational function coefficients µ1, . . . , µd ∈ C(y). Once these coefficients
are known, the pushforward of h via I can be calculated as

I∗h = 〈1,
(∣∣∣∣
∂F

∂x

∣∣∣∣h
)G
〉 =

d∑

α=1

µα

(∣∣∣∣
∂F

∂x

∣∣∣∣h
)

α

, (5.59)
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where (|∂F/∂x|h)1, . . . , (|∂F/∂x|h)d ∈ C(y) are the coefficients of (|∂F/∂x|h)
G
in the

standard basis.

5.4.3 Bezoutian Matrix

To decompose 1 in the dual basis, we need to know the dual basis. So, in this subsection,
we outline a procedure for determining the dual basis.

Let G be a Gröbner basis for I with respect to any graded monomial ordering (grlex,
grevlex, etc.) and let B = {eα}dα=1 be the associated standard basis. Let x̃ := (x̃1, . . . , x̃m)

be an m-tuple of auxiliary variables. The Bezoutian matrix B for I is an m×m matrix
with components given by

Bi,j :=
fi(x̃1, . . . , x̃j−1, xj , . . . , xm)− fi(x̃1, . . . , x̃j , xj+1, . . . , xm)

xj − x̃j
∈ C(y)[x, x̃] . (5.60)

Let G̃ denote the set obtained from G by replacing x with x̃. The remainder of det(B) ∈
C(y)[x, x̃] on division by G ∪ G̃ is given by [101]

det(B)
G∪G̃

=

d∑

α=1

eα(x)∆α(x̃) , (5.61)

from which we can read off the dual basis elements B∨ = {∆α}dα=1. The dual basis for
our running example is calculated below.

Example 5.5 (Dual Bases). From Example 5.2: G = {x1 + y2
y1
x2, x

2
2 − 1

y3
} and B =

{e1, e2} = {x2, 1}. Introducing auxiliary variables x̃ = (x̃1, x̃2), the Bezoutian matrix B
for I, calculated according to (5.60), is given by

B =

[
y1 y2

0 y3(x2 + x̃2)

]
. (5.62)

The remainder of detB on division by G ∪ G̃, expanded in the standard basis, is given by

detB
G∪G̃

= y1y3(x2 + x̃2) = (y1y3)e1 + (y1y3x̃2)e2 , (5.63)

from which we read off the dual basis: B∨ = {∆1,∆2} := {y1y3, y1y3x2}. Since ∆1 = y1y3

is independent of x, 1 decomposes as

1 = µ1∆1 + µ2∆2 = (y1y3µ2)x2 + (y1y3µ1) , (5.64)
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where µ1(y) = 1
y1y3

and µ2(y) = 0. �

5.4.4 Polynomial Inverses

To extend our analysis to rational functions we need to find representatives for rational
functions in Q. This brings us to the topic of polynomial inverses. Suppose q ∈ C(y)[x] is
a polynomial with no zeros in common with I, i.e. Z(〈q〉+ I) = ∅. By Hilbert’s Weak
Nullstellensatz (see Theorem A.4), there exists polynomials f̃1, . . . , f̃m and qinv in C(y)[x]

such that

f1f̃1 + . . .+ fmf̃m + qqinv = 1 . (5.65)

Here qinv (resp., q) is called the polynomial inverse for q (resp., qinv). The polynomial
inverse for q can be determined via a Gröbner basis computation; see [99, Algortihm 2].
Consider the ideal J = 〈F,wq − 1〉 ∈ C(y)[w, x] where w is a single auxiliary variable.
Define a block monomial ordering � which first compares the degrees of w, and breaks
ties using any graded monomial ordering (grlex, grevlex, etc.) on x. Then the Gröbner
basis G�(J ) contains a polynomial of the form w − qinv(x) where qinv is the polynomial
inverse for q in Q.

Let r ∈ C(y)(x) be a rational function where r(x) = h(x)
q(x) for some polynomials

h, q ∈ C(y)[x] and suppose q has no zeros in common with the generators of I. Then the
pushforward of r via I can be evaluated as

I∗r = 〈1,
(∣∣∣∣
∂F

∂x

∣∣∣∣hqinv

)G
〉 =

d∑

α=1

µα

(∣∣∣∣
∂F

∂x

∣∣∣∣hqinv

)

α

. (5.66)

where (|∂F∂x |hqinv)
1
, . . . , (|∂F∂x |hqinv)

d
∈ C(y) are the coefficients of (|∂F∂x |hqinv)

G
in the

standard basis.

Example 5.6 (Polynomial Inverses). Let I be the polynomial ideal defined in Ex-
ample 5.1. Suppose we want to know the polynomial inverse of q(x) = x1x2 in
Q = C(y1, y2, y3)[x1, x2]/I where q(x) is the denominator of the rational function
ω(x) = 1

x1x2
. Consider the ideal J = 〈f1, f2, wq − 1〉 ⊂ C(y1, y2, y3)[w, x1, x2]. Let

� be the block order that first compares the degrees of w and breaks ties using grevlex
order on x. Then the Gröbner basis G�(J ) contains the polynomial w + y1y3

y2
. Hence

qinv(x) = −y1y3
y2

is the polynomial inverse of q(x) in Q. �
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5.4.5 Pushforwards

Eq. (5.66) provides an alternative to companion matrix methods for pushing forward ωI,J
via I. There are some simplifications that occur for top-dimensional rational forms which
are worth noting. To this end, let p = m and define ωJ := ω[m],J where J ∈

(
[n]
m

)
. Then

using (5.19),
∣∣∣∣
∂F

∂x

∣∣∣∣ωJ = (−1)mω(x)

∣∣∣∣
∂F

∂y

∣∣∣∣
[m],J

, (5.67)

where |∂F/∂y|[m],J denotes the minor of ∂F/∂y in the column set J and the determinant
|∂F/∂x| disappears in the final result. Let ω(x) = h(x)/q(x) where h and q are polynomi-
als. Assume q has no zeros in common with I, i.e. Z(〈q〉+ I) = ∅. By combining (5.67)
with (5.66), we have the following formula:

I∗ωJ = (−1)m
d∑

α=1

µα

(∣∣∣∣
∂F

∂y

∣∣∣∣
J

hqinv

)

α

. (5.68)

Example 5.7 (Pushforwards via the Global Duality Theorem). Let us re-derive (5.25)
using (5.68). The relevant Jacobian matrices from Example 5.1 read

∂F

∂x
=

[
y1 y2

0 2y3x2

]
,

∂F

∂y
=

[
x1 x2 0

0 0 x2
2

]
.

In Example 5.5, we showed that µ1(y) = 1
y1y3

and µ2(y) = 0, while in Example 5.6, we
found that qinv(x) = −y1y3

y2
is the polynomial inverse of q(x) = x1x2. Using (5.68) we

obtain

(I∗ω{1,2})(y) = µ1

(∣∣∣∣
∂F

∂y

∣∣∣∣
{1,2}

qinv

)

1

= − 1

y2
(0)1 = 0 , (5.69)

(I∗ω{1,3})(y) = µ1

(∣∣∣∣
∂F

∂y

∣∣∣∣
{1,3}

qinv

)

1

= − 1

y2
(x1x2

2)1 =
1

y1y3
, (5.70)

(I∗ω{2,3})(y) = µ1

(∣∣∣∣
∂F

∂y

∣∣∣∣
{2,3}

qinv

)

1

= − 1

y2
(x3

2)1 = − 1

y2y3
, (5.71)

in clear agreement with (5.24). �
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Section 5.5

Summary

We have shown three methods for pushing forward rational forms via ideals. These
methods use elements of computational algebraic geometry and sidestep the problem of
determining zero-sets. Reference [6] discusses the relative pros and cons of each approach.
Together these methods provide novel conceptual and practical resources for calculating
pushforwards.

This work’s motivation comes from its application to positive geometries, specifically
for pushing forward canonical forms via morphisms. The results of this chapter apply
to canonical forms of old positive geoemtries (see Chapters 6 to 8) and new positive
geometries, including the conjectured “symplectic Momentum Amplituhedron” of [60].
Chapter 9 gives further details regarding this conjectured positive geometry.

Lastly, all three methods require a Gröbner basis computation which poses a significant
bottleneck for high-multiplicity examples or when working over fraction fields (as opposed
to sampling over finite fields). Improving the efficiency of Gröbner basis computations for
fraction fields would significantly strengthen our results. We leave this problem to future
research. It is also worthwhile investigating alternatives which do not depend on Gröbner
bases.



Chapter 6

The ABHY Associahedron

The ABHY associahedron is a positive geometry that captures the tree-level S-
matrix of bi-adjoint scalar theory. It is the simplest of the three positive geometries

studied in this dissertation. Its boundaries are in bijection with series-reduced planar
trees on n-leaves and capture all physical singularities of the corresponding S-matrix. The
ABHY associahedron relates to the worldsheet associahedron via the CHY scattering
equations. This connection between the CHY formalism and positive geometries is the
first of three examples explored in this dissertation. This chapter introduces the ABHY
associahedron, the worldsheet associahedron, and the CHY scattering equations. These
objects are also relevant for Chapters 7 to 9. This chapter also applies the results of
Chapter 3 to determine the rank generating function for the boundaries of the ABHY
associahedron. While this generating function is known, its derivation serves as a warm-up
exercise for the more complicated generating functions derived in Chapters 7 and 8. In
Chapter 9, we demonstrate a web of relationships between the canonical form of the
ABHY associahedron (restricted to particular spacetime dimensions) and the canonical
forms of the Momentum Amplituhedron and orthogonal Momentum Amplituhedron.

Section 6.1

The ABHY Associahedron

The Arkani-Hamed–Bai–He–Yan (ABHY) associahedron is a positive geometry whose
canonical form encodes tree-level amplitudes in general d-dimensions for bi-adjoint scalar
(BAS) theory [57]. First introduced in [47], BAS is a theory of massless scalars, transform-
ing in the adjoint representation of the product of two different colour groups U(N)×U(Ñ),
and it contains a single (cubic) interaction term. The n-particle tree-level amplitude
mtree
n can be decomposed into double partial amplitudes mtree

n [α|β] where α, β are two
colour orderings (permutations of [n]). In this chapter, we specialise to the case where

62
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α = (1, . . . , n) = β and we define mtree
n [1, . . . , n] := mtree

n [1, . . . , n|1, . . . , n]. This double
partial amplitude receives contributions from all n-particle planar tree Feynman diagrams
(i.e. series-reduced planar trees on n leaves with trivalent internal vertices), where each
diagram contributes the product of its propagators (the Mandelstam variables assigned
to each internal edge). Therefore, mtree

n [1, . . . , n] is a rational function of n-particle
Mandelstam variables.

The kinematic space of BAS is the space of (complex) Mandelstam variables for n-
particle scattering, which we denote by Kn. It is spanned by the two-particle Mandelstam
variables si,j := (pi + pj)

2 subject to n constraints imposed by momentum conservation:∑
j 6=i si,j = 0 for all i ∈ [n]. Consequently, it has dimension

dim(Kn) =

(
n

2

)
− n =

n(n− 3)

2
, (6.1)

for general d-dimensions. For d < n − 1, there are additional constraints which we
consider in Chapter 9. This chapter assumes d ≥ n− 1. A natural basis for Kn is given
by the planar Mandelstam variables, multi-particle Mandelstam variables defined by the
momenta of consecutive particles:

Xi,j := si,i+1,...,j−1 = (pi + pi+1 + . . .+ pj−1)2 , (6.2)

where 1 ≤ i < j ≤ n− δ1,i. Given a regular n-gon with vertices labelled {1, 2, . . . , n} in
clockwise order, one can visualise Xi,j as the diagonal between vertices i and j as depicted
in Fig. 6.1. Let Xn denote the set of all planar Mandelstam variables for n-particle
scattering.

The ABHY associahedron is defined as the intersection of two spaces: an affine
hyperplane and a non-negative region. The affine hyperplane Hn ⊂ Kn is defined by

Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j = ci,j for all 1 ≤ i < j ≤ n− 1 , (6.3)

where ci,j are positive constants. Equivalently, (6.3) requires si,j = −ci,j to be a negative
constant for 1 ≤ i < j ≤ n − 1. Counting the number of constraints, we find that the
dimension of Hn is

dim(Hn) = dim(Kn)−
(
n− 2

2

)
= n− 3 . (6.4)
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⇐⇒

Figure 6.1: Bijection between series-reduced planar trees on n leaves and dissections of a
regular n-gon. The labelling of leaves on the left corresponds to the labelling of polygon
edges on the right.

The non-negative region ∆n ⊂ Kn(R) is the semi-algebraic set cut out by

Xi,j ≥ 0 for 1 ≤ i < j ≤ n− δ1,i . (6.5)

The ABHY associahedron is the intersection An := Hn ∩∆n. It is an (n− 3)-dimensional
associahedron or Stasheff polytope [102, 103]. Its boundaries are enumerated by series-
reduced planar trees on n leaves. The 0-dimensional boundaries correspond to n-particle
planar tree Feynman diagrams where every internal vertex is trivalent.

The planar scattering form of rank n− 3 is defined as

ωABHY
n :=

∑

T

sign(T )
n∧

a=1

d logXia,ja , (6.6)

where the sum is over all n-particle planar tree Feynman diagrams and sign(T ) ∈ {±1} is
chosen separately for each T such that ωn is projectively invariant. The pair (Hn,An)

is a positive geometry whose canonical form Ω(An) is the pullback of ωABHY
n to Hn.

Moreover

Ω(An) = Ω(An)dn−3X , Ω(An) = mtree
n [1, . . . , n] , (6.7)

where dn−3X = dX1,3∧· · ·∧dX1,n−1 and Ω(An), the canonical function of An, is precisely
the double partial amplitude mtree

n [1, . . . , n]. We refer the reader to [57] for further details.
To clarify the above discussion, let us consider the simplest possible example, namely

four-particle scattering. In this case K4 is two-dimensional and spanned by the Mandel-
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Figure 6.2: The ABHY associahedron A4 for four-particle scattering as a red line segment.

stams X1,3 = s = (p1 + p2)2 and X2,4 = t = (p2 + p3)2. The affine hyperplane H4 ⊂ K4 is
the line s+ t = −u where u is a negative constant. Intersecting H4 with the non-negative
region ∆4 ⊂ K4(R) given by s, t ≥ 0 produces A4, a line segment, as depicted in Fig. 6.2.
The four-particle planar scattering form is given by

ωABHY
4 = d log

s

t
=
ds

s
− dt

t
. (6.8)

Pulling ωABHY
4 back to H4 (i.e. writing t = −s− u where u is a negative constant) yields

the canonical form

Ω(A4) =
ds

s
− d(−s− u)

t
=

(
1

s
+

1

t

)
ds , (6.9)

from which we read off the four-particle double partial amplitude mtree
4 [1, 2, 3, 4] = 1

s + 1
t .

Section 6.2

The Worldsheet Associahedron

The genus zero moduli space M0,n is the configuration space of n distinct punctures on
the Riemann sphere CP1 modulo SL2(C). Its real part M0,n(R) is the open string moduli
space, consisting of n distinct punctures on the real projective line RP1 modulo SL2(R).
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The positive moduli space is the positive part of M0,n(R) given by

M+
0,n := {(σ1, . . . , σn) ∈ Rn : σ1 < . . . < σn}/SL2(R) . (6.10)

LetM0,n(R) denote the well-known Deligne-Knudsen-Mumford compactification ofM0,n(R)

[104]. The worldsheet associahedron M′0,n(R) is an intermediate partial compactification
satisfying [105]

M0,n(R) ( M′0,n(R) ( M0,n(R) , (6.11)

whose boundary stratification is combinatorially equivalent to An [106]. The pair (M0,n,

M′0,n(R)) is a positive geometry [57] whose canonical form Ω(M′0,n(R)) is the Parke-Taylor
form, given by

ωWS
n :=

1

vol(SL2(R))

n∧

i=1

dσi
σi,i+1

, (6.12)

where σi,j := σi − σj . One can “gauge-fix” the SL2(R) redundancy in the definition
of M+

0,n by fixing the values of any three punctures. In the standard approach where
(σ1, σn−1, σn) = (0, 1,∞), the Parke-Taylor form reads

ωWS
n = − dσ2 ∧ · · · ∧ dσn−2

σ1,2σ2,3 · · ·σn−2,n−1
. (6.13)

Alternatively, M+
0,n can be regarded as the positive configuration space Conf(2, n)>0 [107]

— the positive Grassmannian Gr>0
2,n modded out by the torus action Rn>0 — parametrised

by matrices of the form
(

1 1 · · · 1

σ1 σ2 · · · σn

)
, (6.14)

where the punctures σ = (σ1, . . . , σn) ∈ Rn are ordered according to σ1 < . . . < σn. In
this case, the Parke-Taylor form can be expressed as

ωWS
n =

1

vol(SL2(R)×GL1(R)n)

n∧

i=1

d2xi
(ii+ 1)

, (6.15)

where X is a 2×n real matrix representing a point in Gr>0
2,n, the columns of X are labelled

by x1, . . . , xn ∈ R2, and (ii+ 1) denotes the maximal minor of X located in the column
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set {i, i+ 1}.

Section 6.3

The Scattering Equations

The scattering equations govern the scattering of n massless particles, connecting the
kinematic space Kn to the genus zero moduli space M0,n. They were originally presented
as a system of rational equations [45]

Ei :=
∑

j 6=i

si,j
σi,j

= 0 for 1 ≤ i ≤ n . (6.16)

Due to momentum conservation
∑

j 6=i si,j = 0, the scattering equations (of which there
are n) are Möbius invariant, so only n− 3 of them are linearly independent.

The CHY formalism expresses the double partial amplitude mtree
n [1, . . . , n] as an

integral over M0,n which localises on solutions to the scattering equations [47]:

mtree
n [1, . . . , n] :=

∫
ωWS
n

(
1∏n

i=1 σi,i+1

n∏

`=1

′δ(E`)

)
, (6.17)

where

n∏

`=1

′δ(E`) := σi,jσj,kσk,i
∏

`∈[n]\{i,j,k}

δ(E`) , (6.18)

is independent of the choice of i, j, k [45].
In [108], Dolan and Goddard recast the scattering equations as a system of polynomial

equations

h` :=
∑

I∈( [n]
`+1)

sIσI = 0 for 1 ≤ ` ≤ n− 3 , (6.19)

where σI :=
∏
i∈I σi. Applying the standard gauge where (σ1, σn−1, σn) = (0, 1,∞), (6.19)

is equivalent to

f` := lim
σ1→0

lim
σn−1→1

lim
σn→∞

h`
σn

= 0 for 1 ≤ ` ≤ n− 3 , (6.20)

a system of n− 3 polynomial equations for n− 3 punctures. In this form, the scattering
equations define a zero-dimensional complete intersection ideal In := 〈f1, . . . , fn〉 ⊂
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C[Xn][σ2, . . . , σn−2] whose zero-set contains (n− 3)! distinct points in M0,n [45, 108].
Remarkably, the interiors of the ABHY associahedron and the worldsheet associa-

hedron are diffeomorphic via the scattering equations [57]. Evaluating the scattering
equations on the affine hyperplane Hn defines the scattering equation map M0,n → Hn

which (conjecturally) restricts to a diffeomorphism M+
0,n → A◦n [57]. Consequently, the

scattering equations define a morphism between the positive geometries (M0,n,M
′
0,n(R))

and (Hn,An). Moreover, the pushforward of ωWS
n via the scattering equation map equals

ωABHY
n [57]:

(In)∗ω
WS
n :=

∑

σ∈Z(In)

ωWS
n (σ) = ωABHY

n . (6.21)

Using methods discussed in Chapter 5, one can evaluate (6.21) without needing to solve
the scattering equations explicitly.

Section 6.4

Rank Generating Function

We conclude this chapter with a derivation of a rank generating function for the boundaries
of the ABHY associahedron. Although the result is already known, its derivation serves
as a warm-up exercise for the generating functions encountered in Chapters 7 and 8.

Recall that the boundaries of the (n−3)-dimensional Stasheff polytope are enumerated
by series-reduced planar trees on n leaves. The dimension of a boundary can be calculated
as a function of corresponding tree as follows. Let T be a series-reduced planar tree
on n leaves. We denote by V int(T ) the set of internal vertices of T . The associahedron
dimension or A-dimension of T , denoted by dimA(T ), is defined as

dimA(T ) := n− 2− |V int(T )| =
∑

v∈V int(T )

(deg(v)− 3) , (6.22)

where

n = 2 +
∑

v∈V int(T )

(deg(v)− 2) . (6.23)

In particular, dimA(T ) depends only on the degrees of the internal vertices of T . Conse-
quently, we can use the series-reduced planar tree analogue of the Exponential formula
(see Theorem 3.2) to derive a rank generating function for the ABHY associahedron An.
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To this end, let r be the A-dimension of some T ∈ Tn and let q be an auxiliary variable
for keeping track of r in our rank generating function. Using (6.22), qr is given by

qr =
∏

v∈V int(T )

qdeg(v)−3 . (6.24)

Comparing the right-hand side of (6.24) with the definition for h(n) in (3.5), we are
motivated to define the following function f : Z≥3 → Q(q), d 7→ qd−3. Let h : Z≥3 → Q(y)

be defined in terms of f as in Theorem 3.2. Furthermore, let F (x) =
∑

d≥3 f(d)xd and
Htree(x) = x2 +

∑
n≥3 h(n)xn. It is easy to verify that F (x) is given by

F (x) =
x3

1− xq . (6.25)

Let GA(x, q) denote the rank generating function Htree(x), computed in terms of F (x)

according to Theorem 3.2. By solving the quadratic equation satisfied by the inverse of
x− 1

xF (x) with respect to x, we find the following expression for GA(x, q):

GA(x, q) =
x

2(q + 1)

(
1 + xq −

√
(1− xq)2 − 4x

)
. (6.26)

Therefore, the number of series-reduced planar trees on n leaves with A-dimension r is
equal to the coefficient [xnqr]GA(x, q). Eq. (6.26) implies that GA(x, q) is an algebraic
generating function of degree 2, satisfying the following quadratic equation

(1 + q)G2
A − x(1 + xq)GA + x3 = 0 . (6.27)

Having derived a rank generating function for An, we can verify that its Euler
characteristic, the coefficient of xn in GA(x,−1), is one. Assuming 1 − x > 0, we can
evaluate (6.26) at q = −1 using L’Hôpital’s rule

GA(x,−1) =
x

2
lim
q→−1

∂

∂q

(
1 + xq −

√
(1− xq)2 − 4x

)
=

x3

1− x =
∑

3≤n
xn , (6.28)

and every coefficient is equal to one.
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Section 6.5

Summary

While our focus in this chapter was the ABHY associahedron, there are three themes
which will carry over to Chapters 7 and 8, which we highlight now. Firstly, the ABHY
associahedron is a positive geometry defined in the on-shell momentum space relevant to
BAS. In particular, simple inequalities cut it out without any reference to BAS. Secondly,
this semi-algebraic set is the image of the worldsheet associahedron via the CHY scattering
equations. Said differently, it is the image of a positive geometry – the most obvious
choice – living in the CHY moduli space for BAS. This connection suggests that the
CHY formalism for other theories provides a natural point of departure for identifying
(suitable generalisations of) positive geometries in that theory’s appropriate kinematic
space. Thirdly, the boundary stratification captures the combinatorics of tree-level
amplitude singularities for BAS. Series-reduced planar trees on n leaves are well-known
labels for associahedron boundaries, so this last point is not as pertinent here as it will
be in Chapters 7 and 8. However, these combinatorial labels allowed us to determine an
algebraic rank generating function using the results of Chapter 3. Additionally, we were
able to prove that the associahedron has an Euler characteristic of one, as expected. In
Chapters 7 and 8, we will again see how, with suitable combinatorial labels for boundaries,
we can derive algebraic rank generating functions for the Momentum Amplituhedron and
the orthogonal Momentum Amplituhedron.



Chapter 7

The Momentum Amplituhedron

The Momentum Amplituhedron is this chapter’s focus. It is (conjecturally) a
positive geometry whose canonical form captures the tree-level S-matrix of N = 4

SYM. Unlike the Amplituhedron, which uses momentum twistors [41, 43], the Momentum
Amplituhedron encodes amplitudes using spinor-helicity variables [58]. It is rich with
physical information and mathematical detail. In this chapter, we give special attention
to the combinatorial structure of its boundaries, highlighting the results of [2, 4]. The Mo-
mentum Amplituhedron’s boundaries encode all singularities of the tree-level S-matrix for
SYM. Remarkably, the boundary stratification forms an induced subposet of the positroid
stratification. Recall that the positroid stratification is the boundary stratification of
the non-negative Grassmannian. In particular, Momentum Amplituhedron boundaries
are labelled by contracted Grassmannian forests, a special subset of a Grassmannian
graphs. Using this labelling, we derive an algebraic rank generating function from which
we prove that the Momentum Amplituhedron’s Euler characteristic is one. In addition
to studying the Momentum Amplituhedron’s boundaries, we also review its connection
to the worldsheet associahedron as investigated in [60]. In this case, the Momentum
Amplituhedron is the image of a positive geometry in the appropriate CHY moduli space
via the four-dimensional scattering equations.

Section 7.1

Maximally Supersymmetric Yang-Mills Theory

To maintain manifest locality and unitarity, the standard description of quantum field
theory introduces off-shell redundancy, causing computational complexity to cascade.
This drawback of Feynman diagrams obscures the inherent simplicity and structure of
the final result as famously demonstrated by Parke and Taylor [28, 29]. These issues
motivated the study of amplitudes in terms of on-shell building blocks; for two extensive

71
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reviews, see [30, 32].
The planar limit of maximally supersymmetric Yang-Mills theory (or N = 4 SYM)

has been a prime laboratory for the development of modern on-shell methods [30, 32].
Although supersymmetric, this theory has many important phenomenological applications.
For example, its tree-level S-matrix contains that of pure Yang-Mills theory which
describes gluons in the standard model of particle physics.

The spectrum of N = 4 SYM consists of a CPT self-dual supermultiplet containing 16

massless states. They transform as representations of the R-symmetry group SU(4) where
capitalized Roman indices take values 1, 2, 3, 4. The supermultiplet can be conveniently
collected into a single chiral on-shell superfield |η̃〉 by introducing four Grassmann variables
η̃I transforming in the anti-fundamental representation:

|η̃〉 = |1〉+ η̃I |12〉I +
1

2!
η̃I η̃J |0〉I,J +

1

3!
η̃I η̃J η̃KεIJKL|−1

2〉L +
1

4!
η̃I η̃J η̃K η̃LεIJKL|−1〉 ,

(7.1)

where |±1〉 is a gluon with helicity ±1 in the singlet representation, |+1
2〉I (resp., |−1

2〉L)
labels four gluinos (resp., anti-gluinos) with helicity +1

2 (resp., −1
2) transforming in

the fundamental (resp., anti-fundamental) representation, and |0〉I,J transforms in the
anti-symmetric representation and denotes six scalars.

An n-particle superamplitude An = An(|η̃1〉, . . . , |η̃n〉) describes the scattering on n
chiral on-shell superfields |η̃1〉, . . . , |η̃n〉. It can be expanded in terms of helicity sectors as
follows:

An =




A3,1 +A3,2 if n = 3
∑n−2

k=2 An,k if n ≥ 4
, (7.2)

where An,k has Grassmann degree 4k and helicity k. Each amplitude An,k is given a
unique designation: An,2 is the maximally-helicity-violating (MHV) amplitude, An,3 is
the next-to-maximally-helicity-violating (NMHV) amplitude, etc., with the exception of
An,n−2 which is referred to as the googly or MHV amplitude. More generally, An,k denotes
the Nk − 2MHV amplitude.

In planar N = 4 SYM, each amplitude An,k can be further expanded in the t’Hooft
coupling constant λ as follows:

An,k =

∞∑

`=0

λ`A
(`)
n,k , (7.3)
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where Atree
n,k := A

(0)
n,k is the tree-level amplitude and A(`)

n,k is the `-loop amplitude for ` > 0.
Each tree-level amplitude Atree

n,k can be further decomposed into partial amplitudes for
different colour orderings [109]. We will denote by Atree

n,k [1, . . . , n] the partial amplitude
associated with the standard colour ordering.

The predominant precursor to the development of positive geometries — the Amplituhe-
dron [41, 43], the Momentum Amplituhedron [58] and the loop Momentum Amplituhedron
[110] — is the Grassmannian description of amplitudes in planar N = 4 SYM. This picture
builds on the Britto–Cachazo–Feng–Witten (BCFW) recursions relations for tree-level
amplitudes [33, 34], and their loop-level generalization [35, 36]. There are Grassmannian
formulae for (the leading singularities of) amplitudes in planar N = 4 SYM with respect
to different kinematic spaces, including twistor variables [111, 112], momentum twistor
variables [113, 114], and spinor-helicity variables [38, 115]. These Grassmannian formulae
are given by contour integrals over the (complex) Grassmannian for some suitable choice
of integration contour. The contour integral evaluates to a sum of residues on particular
positroid cells. Each residue, referred to as an on-shell function and labelled by an on-shell
diagram, corresponds to an individual term in a solution to the BCFW recursion relations.
Different solutions to the BCFW recursion relations yield different representations for
(the leading singularities of) amplitudes. They correspond to different choices for the
integration contour and their equivalence in the Grassmannian picture stems from the
global residue theorem. The equivalence of different representations inspired Hodges to
conceptualise the NMHV tree-level amplitude as the volume of a polytope in momentum
twistor space where different solutions correspond to different triangulations [42]. The
Amplituhedron and other Grassmannian-related positive geometries generalize this idea
with different solutions corresponding to different positroid tilings.

In chiral on-shell superspace (λai , λ̃
ȧ
i |η̃Ai ), the chiral supersymmetric extension of D = 4

spinor-helicity space, the Grassmannian formula for the partial amplitude Atree
n,k [1, . . . , n]

reads [38]

Atree
n,k [1, . . . , n] =

∮

γ

dk×nCδk×2(Cλ̃T )δ(n−k)×2(C⊥λT )δk×4(Cη̃T )

vol GLk(C)
∏n
i=1(i, . . . , i+ k − 1)

, (7.4)

where the integration contour γ can be chosen using the BCFW recursion relations, for
example. To define the Momentum Amplituhedron, and to uplift partial amplitudes
from rational functions to rational forms [115], we need non-chiral on-shell superspace
(λai , λ̃

ȧ
i |ηai , η̃ȧi ). One can map the chiral description to the non-chiral setting by performing

a Fourier transform on half of the Grassmann variables, say from η̃3
i , η̃

4
i to η1

i , η
2
i [116].
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This breaks manifest R-symmetry, mapping (7.1) to a non-chiral on-shell superfield |η, η̃〉:

|η, η̃〉 = (η)2|+1〉 − (η̃)2|−1〉+ (η)2(η̃)2|0〉1,2 + ηaη̃ȧ|0〉5−a,ȧ + |0〉3,4
+(η)2η̃ȧ|+1

2〉ȧ + ηa|+1
2〉5−a − (η̃)2ηaεab|−1

2〉5−b − η̃ȧηaεȧḃ|−1
2〉ȧ .

(7.5)

In this non-chiral arena, (7.4) reads [115]

Atree
n,k [1, . . . , n] =

∮

γ

dk×nCδk×2(Cλ̃T )δ(n−k)×2(C⊥λT )δk×2(Cη̃T )δ(n−k)×2(C⊥ηT )

vol GLk(C)
∏n
i=1(i, . . . , i+ k − 1)

.

(7.6)

Via the replacement

ηai 7→ dλai , η̃ȧi 7→ dλ̃ȧi , (7.7)

the partial amplitude Atree
n,k [1, . . . , n] uplifts to rational form of degree (2(n − k), 2k)

in (dλ, dλ̃) which vanishes due to supersymmetric Ward identities [115]. However, by
stripping off d4q or d4q̃, where qa,ȧ :=

∑n
i=1 λ

a
i (dλ̃

ȧ
i ) and q̃

a,ȧ :=
∑n

i=1(dλai )λ̃
ȧ
i , one obtains

a non-vanishing rational form of degree 2n− 4. It is this rational form that becomes the
canonical form of the Momentum Amplituhedron.

Before defining the Momentum Amplituhedron, let us first discuss the singularities
of partial amplitudes in N = 4 SYM. This discussion will help us to identify these
singularities with the boundaries of the Momentum Amplituhedron.

Section 7.2

Amplitude Singularities

The behaviour of partial amplitudes in gauge theories under collinear (resp., soft) limits
is governed by universal functions which depend only on the particles which become
collinear (resp., the nearest neighbours of the soft particle); for an exposition on collinear
and soft gluons in Yang-Mills theory see [32] and references therein. In this section, we
present the super-splitting and the super-soft functions for N = 4 SYM, derived in [2].
There are two types of collinear limits: helicity-preserving and helicity-reducing types.
For soft limits, we confirm that only the gluons in the superfield have divergent behaviour
when becoming soft. The two types of soft limits arise from two consecutive collinear
limits of the same type. We will work in chiral on-shell superspace, and translate our
results to the non-chiral setup at the very end.
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Partial amplitudes become singular when the sum of adjacent external momenta goes
on-shell, i.e. P 2

i,j := (pi + pi+1 + . . . + pj)
2 → 0. On these multi-particle poles, partial

amplitudes factorise according to [30]

Atree
n,k [1, . . . , n]

P 2
i,j→0
−−−−→

k∑

k′=1

∫
d4η̃Pi,jA

tree
j−i+2,k′ [i, . . . , j, Pi,j ]

1

P 2
i,j

Atree
n−j+i,k−k′+1[−Pi,j , j + 1, . . . , i− 1] .

(7.8)

Collinear singularities are a special case of (7.8) where the momenta of two adjacent
particles become proportional. Without loss of generality, suppose particles 1 and 2

become collinear. Then the momentum P1,2 = p1 + p2 goes on-shell and (7.8) becomes

Atree
n,k [1, . . . , n]

P 2
1,2→0
−−−−→

2∑

k′=1

∫
d4η̃P1,2A

tree
3,k′ [1, 2, P1,2]

1

P 2
1,2

Atree
n−1,k−k′+1[−P1,2, 3, . . . , n] .

(7.9)

The sum runs over two contributions: the helicity of the remaining amplitude is preserved
when k′ = 1, whereas for k′ = 2 the helicity is reduced by one. The integration over η̃P1,2

aggregates all states exchanged in the factorisation channel. The collinearity condition

P 2
1,2 = (p1 + p2)2 = 2p1.p2 = 〈12〉[12] = 0 , (7.10)

can be satisfied by taking 〈12〉 → 0 or [12]→ 0. The independence of these two limits is
a consequence of three-particle special kinematics: on-shell three-particle amplitudes are
non-vanishing provided that angle and square brackets are independent. The independence
of spinor-helicity brackets is accomplished by considering complex momenta or changing
the spacetime signature to (2, 2). In particular, 〈12〉 → 0 parametrises the helicity-
preserving collinear limit, while [12] → 0 parametrises the helicity-reducing one. Let
0 ≤ z ≤ 1 denote the fraction of the total momentum P1,2 = p1 + p2 carried by p1. The
analysis of [2] concludes that

Atree
n,k [1, . . . , n]

〈12〉→0−−−−→
∫
d4η̃P1,2Split

tree
0 (z; η̃1, η̃2, η̃P1,2)Atree

n−1,k[−P1,2, 3, . . . , n] , (7.11)

where

Splittree0 (z; η̃1, η̃2, η̃3) :=
1√

z(1− z)
1

〈12〉
4∏

I=1

(η̃I3 −
√
zη̃I1 −

√
1− zη̃I2) , (7.12)



7.2 Amplitude Singularities 76

(a) 〈ii+ 1〉 = 0 (b) [ii+ 1] = 0

Figure 7.1: Collinear limits: a white trivalent vertex represents Splittree0 in Fig. 7.1a and
a black trivalent vertex denotes Splittree−1 in Fig. 7.1b.

is the helicity-preserving super-splitting function. One can obtain the Yang-Mills theory
splitting functions by expanding (7.12), focusing on terms proportional to say (η̃1)4.
Similarly

Atree
n,k [1, . . . , n]

[12]→0−−−−→
∫
d4η̃P1,2Split

tree
−1 (z; η̃1, η̃2, η̃P1,2)Atree

n−1,k−1[−P1,2, 3, . . . , n] , (7.13)

where

Splittree−1 (z; η̃1, η̃2, η̃3) :=
1√

z(1− z)
1

[12]

4∏

I=1

(η̃I1 η̃
I
2 −
√
zη̃I2 η̃

I
3 −
√

1− zη̃I3 η̃I1) , (7.14)

is the helicity-reducing super-splitting function. Again, one recovers the Yang-Mills
splitting functions by expanding (7.14), focusing on terms proportional to say (η̃1)4(η̃2)4.
These super-splitting functions, parametrised by 〈12〉 → 0 and [12]→ 0, represent two
physically distinct processes, depicted in Fig. 7.1.

As demonstrated, collinear limits are a special case of factorisation on two-particle
poles. Taking two consecutive collinear limits of the same type produces a soft limit. In
particular, the helicity-preserving soft limit is given by

Atree
n,k [1, 2, 3, . . . , n]

〈12〉,〈23〉→0−−−−−−−→ 〈13〉
〈12〉〈23〉A

tree
n−1,k[1, 3, . . . , n] , (7.15)

while the helicity-reducing soft limit is given by

Atree
n,k [1, 2, 3, . . . , n]

[12],[23]→0−−−−−−−→ (η̃2)4 [13]

[12][23]
Atree
n−1,k−1[1, 3, . . . , n] . (7.16)
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(a) 〈ii+ 1〉 = 0 = 〈ii− 1〉 (b) [ii+ 1] = 0 = [ii− 1]

Figure 7.2: Soft limits: a black or white boundary leaf depicts a soft particle arising from
two consecutive collinear limits involving angle or square brackets, respectively.

In both cases, the only divergent contribution comes from soft gluons: (7.15) comes solely
from the positive helicity gluon, while only the negative helicity gluon contributes to
(7.16). We depict these soft limits in Fig. 7.2.

To translate our results to non-chiral on-shell superspace, we perform a Fourier
transform on half of the Grassmann variables, from η̃3

i , η̃
4
i to η1

i , η
2
i , producing the super-

splitting functions

Splittree0 (z; η1, η2, η3, η̃1, η̃2, η̃3) = (7.17)

1√
z(1− z)

1

〈12〉
2∏

r=1

(ηr1η
r
2 −
√
zηr2η

r
3 −
√

1− zηr3ηr1)
2∏

ṙ=1

(η̃ṙ3 −
√
zη̃ṙ1 −

√
1− zη̃ṙ2) ,

Splittree−1 (z; η1, η2, η3, η̃1, η̃2, η̃3) = (7.18)

1√
z(1− z)

1

[12]

2∏

ṙ=1

(η̃ṙ1η̃
ṙ
2 −
√
zη̃ṙ2η̃

ṙ
3 −
√

1− zη̃ṙ3η̃ṙ1)

2∏

r=1

(ηr3 −
√
zηr1 −

√
1− zηr2) ,

and the soft limits

Atree
n,k [1, 2, 3, . . . , n]

〈12〉,〈23〉→0−−−−−−−→ (η2)2 〈13〉
〈12〉〈23〉A

tree
n−1,k[1, 3, . . . , n] , (7.19)

Atree
n,k [1, 2, 3, . . . , n]

[12],[23]→0−−−−−−−→ (η̃2)2 [13]

[12][23]
Atree
n−1,k−1[1, 3, . . . , n] . (7.20)
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M+
0,n Gr>0

2,n M̂n,k

Gr>0
k,n Mn,k

add

LG

I(4)
n

ΦM

ν
Veronese

map ΞM

Ψ
M

Figure 7.3: Web of connections between spaces associated with the Momentum Ampli-
tuhedron.

ωWS
n ω

WS(4)
n Ω(M̂n,k)

Ω(Gr≥0
k,n) Ω(Mn,k)

add

d log t

I(4)n

ΦM

〈ij〉Y = 〈ij〉
[ij]Ỹ = [ij]

Ψ
M

Figure 7.4: Web of connections between rational forms associated with the Momentum
Amplituhedron. Solid lines designate pushforwards.

Section 7.3

The Momentum Amplituhedron

As is the case for the Amplituhedron, the Momentum Amplituhedron admits two equivalent
definitions: either using an auxiliary Grassmannian [58] or directly in the kinematic space
of four-dimensional spinor-helicity variables [75]. The latter is the image of the former in
an affine chart. In this section, we present both definitions. We also relate the Momentum
Amplituhedron to Gr>0

2,n
∼= M+

0,n×P(Rn>0) via the four-dimensional twistor-string map of
[60]. This web of connections in depicted in Fig. 7.3. Throughout this section, we will fix
k and n to be positive integers for which 2 ≤ k ≤ n− 2.

7.3.1 Grassmannian Definition

Let us begin by establishing some definitions. Suppose a and b are integers such that
a ≤ b. A real b× a matrix is called positive if all of its maximal minors are positive. We
denote by Mat>0

b,a the set of all positive matrices in Matb,a(R). A matrix X ∈ Matb,a(R) is
called twisted positive if εI,[b]\I p[b]\I(X) > 0 for each I ∈

( [b]
b−a
)
, where εA,B = (−1)inv(A,B)

and inv(A,B) = #{(a, b) ∈ A×B : a > b} is the inversion number. The set of all twisted
positive matrices in Matb,a(R) is designated by Mat>0,τ

b,a .
Both positive and twisted positive matrices possess a twisted cyclic symmetry. If
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X̃ ∈ Mat>0

b,a has rows X̃1, . . . , X̃b and if we define X̃î
:= (−1)a−1X̃i, then the matrix with

rows X̃2, . . . , X̃b, X̃1̂ is also positive. Similarly, if X ∈ Mat>0,τ
b,a has rows X1, . . . , Xb and

if we define Xî
:= (−1)a−1Xi (as before), then the matrix with rows X2, . . . , Xb, X1̂ is

also twisted positive.
Lastly, given a point V in Grk,n with Plücker coordinates pI(V ) for I ∈

([n]
k

)
, its

orthogonal complement V ⊥ is a point in Grn−k,k with Plücker coordinates p[n]\I(V
⊥) =

ε[n]\I,I pI(V ) for I ∈
([n]
k

)
[117].

Towards defining the Momentum Amplituhedron, let Λ ∈ Mat>0,τ
n,n−k+2 be a twisted

positive matrix and let Λ̃ ∈ Mat>0

n,k+2 be a positive matrix. We refer to the pair (Λ, Λ̃)

as the kinematic data. Given a point [C] ∈ Grk,n, and its orthogonal complement
[C⊥] ∈ Grn−k,n, define Y := C⊥Λ and Ỹ := CΛ̃. The Momentum Amplituhedron
Mn,k := ΦM(Gr≥0

k,n) is the image of Gr≥0
k,n through the Momentum Amplituhedron map

[58]

ΦM : Grk,n → Grn−k,n−k+2 ×Grk,k+2, [C] 7→ ([Y ], [Ỹ ]) . (7.21)

Equivalently, the Momentum Amplituhedron Mn,k can be regarded as the closure of
M◦n,k := ΦM(Gr>0

k,n) in ΦM(Grk,n(R)) where M◦n,k is the interior of Mn,k. From the
above definition, it immediately follows thatMn,2 andMn,n−2 are diffeomorphic to Gr≥0

2,n.
Consequently, their boundary stratifications are combinatorially equivalent.

There are analogues of four-dimensional spinor-helicity brackets which define natural
coordinates for the Momentum Amplituhedron. Let ([Y ], [Ỹ ]) be a point in Grn−k,n−k+2×
Grk,k+2. For each i, j ∈ [n], we define the twistor coordinate

[ij]Ỹ := det(Ỹ1, . . . , Ỹk, Λ̃i, Λ̃j) , (7.22)

to be the determinant of the (k + 2)× (k + 2) matrix with rows Ỹ1, . . . , Ỹk, Λ̃i, Λ̃j and we
define the (dual) twistor coordinate

〈ij〉Y := det(Y1, . . . , Yn−k,Λi,Λj) , (7.23)

to be the determinant of the (n−k+2)× (n−k+2) matrix with rows Y1, . . . , Yn−k,Λi,Λj .
Moreover, for each I ⊂ [n], we define the Mandelstam variable SI(Y, Ỹ ) to be the following
quadratic polynomial in twistor coordinates:

SI(Y, Ỹ ) :=
∑

{i,j}∈(I2)

〈ij〉Y [ij]Ỹ . (7.24)
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A subset I ⊂ [n] is said to be cyclically consecutive (CC) if its elements, or the
elements of its complement in [n], denoted by I ′ = [n] \ I, are consecutive. The kinematic
data (Λ, Λ̃) must satisfy

SI(Y, Ỹ ) > 0 for all ([Y ], [Ỹ ]) ∈M◦n,k , (7.25)

for all CC subsets I ⊂ [n] with 2 ≤ |I| ≤ n− 2 .

This additional requirement ensures that the codimension-one boundaries ofMn,k encode
all factorisation channels of Atree

n,k [1, . . . , n] [58]. Using Mathematica it was checked in
[58] for n ≤ 10 that the following kinematic data satisfies (7.25):

(Λ⊥)i,A′ = iA
′−1 , Λ̃i,Ȧ = iȦ−1 , (7.26)

where i ∈ [n], A′ ∈ [k−2] and Ȧ ∈ [k+2]. Note that rows of Λ⊥ and Λ̃ are vectors lying on
moment curves. Since the combinatorial properties ofMn,k are conjecturally independent
of our choice of kinematic data, we omit explicit dependence on (Λ, Λ̃) throughout.

The twistor coordinates on Grk,k+2 ×Grn−k,n−k+2 are projectively well-defined, em-
bedding Grn−k,n−k+2 ×Grk,k+2 into CP(n2)−1×CP(n2)−1 where

dim
(
CP(n2)−1×CP(n2)−1

)
= (n− 2)(n+ 1) , (7.27)

is strictly larger than

dim (Grk,k+2 ×Grn−k,n−k+2) = 2n . (7.28)

Moreover, given a point V ∈ Grk,n mapped to a point ([Y ], [Ỹ ]) = ΦM(V ) ∈ ΦM(Grk,n),
it follows from the Cauchy-Binet formula that

[ij]Ỹ =
∑

I∈([n]k )

pI(V ) pI∪{i,j}(Λ̃) , 〈ij〉Y =
∑

J∈( [n]
n−k)

εJ,[n]\J p[n]\J(V ) pJ∪{i,j}(Λ) . (7.29)

For each point ([Y ], [Ỹ ]) ∈ Grn−k,n−k+2 × Grk,k+2, let Y ⊥ and Ỹ ⊥ represent the
orthogonal complements of [Y ] and [Ỹ ], respectively. The hypersurface of momentum
conservation is a codimension-4 algebraic subset of Grn−k,n−k+2 × Grk,k+2 defined as
P = 02×2 where

P := (Y ⊥ΛT )(Ỹ ⊥Λ̃T )T . (7.30)
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The identity

02,n−k = Y ⊥Y T = (Y ⊥ΛT )(C⊥)T , (7.31)

implies that [(C⊥)⊥] = [C] contains the row span of Y ⊥ΛT . Similarly, [C⊥] contains the
row span of Ỹ ⊥Λ̃T as demonstrated by the identity

02,k = Ỹ ⊥Ỹ T = (Ỹ ⊥Λ̃T )(C)T . (7.32)

Since Y ⊥ΛT and Ỹ ⊥Λ̃T span orthogonal subspaces, the Momentum Amplituhedron lies
on the hypersurface of momentum conservation [58].

Conjecturally, the Momentum AmplituhedronMn,k is a (2n− 4)-dimensional positive
geometry whose canonical form Ω(Mn,k) encodes the partial amplitude Atree

n,k [1, . . . , n] [58].
Moreover, the Momentum Amplituhedron map ΦM is (conjecturally) a morphism between
(Grk,n,Gr≥0

k,n) and (ΦM(Grk,n),Mn,k). Consequently, Ω(Mn,k) is the pushforward of
Ω(Gr≥0

k,n) via ΦM. Let C = {Πf,≥0}f∈F be a ΦM-induced tiling ofMn,k for some indexing
set F of affine permutations. For each f ∈ F , ΦM |Πf,>0

: Πf,>0 → ΦM(Πf,>0) is a
diffeomorphism and Ω(Πf,≥0) =

∧2n−4
i=1 d logαi as per (4.9). Then

Ω(Mn,k) = sign(C)
∑

f∈F
ΦM∗Ω(Πf,≥0) , (7.33)

where sign(C) = 1 (resp., sign(C) = −1) if C is orientation-preserving (resp., orientation-
reversing).

Wedging the canonical form Ω(Mn,k) of degree (2n− 4) with d4Pδ4(P ) produces a
top-form on Grn−k,n−k+2 ×Grk,k+2 multiplied by the canonical function Ω(Mn,k):

Ω(Mn,k) ∧ d4P δ4(P ) =
n−k∧

α=1

det(Y, d2Yα)
k∧

α̇=1

det(Ỹ , d2Ỹα̇) δ4(P ) Ω(Mn,k) . (7.34)

To extract the partial amplitude Atree
n,k [1, . . . , n] from Ω(Mn,k) we follow the prescription

given in [58, 75]. Introduce 2n auxiliary Grassmann parameters φαa and φ̃α̃ȧ where a, ȧ ∈ [2],
α ∈ [n− k] and α̇ ∈ [k] and define

(ΛT∗ )A,i =

(
λai
φαb η

b
i

)
, (Λ̃T∗ )Ȧ,i =

(
λ̃ȧi
φ̃α̇
ḃ
η̃ḃi

)
, (7.35)



7.3 The Momentum Amplituhedron 82

where A = (a, α) ∈ [n− k + 2] and Ȧ ∈ [k + 2]. Choose the reference points

Y∗ :=
(

0(n−k)×2 1(n−k)×(n−k)

)
, Ỹ∗ :=

(
0k×2 1k×k

)
. (7.36)

Then the partial amplitude Atree
n,k [1, . . . , n] is extracted via the following integral

Atree
n,k [1, . . . , n] =

∫
d2(n−k)φ ∧ d2kφ̃ δ4(P ) Ω(Mn,k)

∣∣∣
(Y,Ỹ ,Λ,Λ̃)→(Y∗,Ỹ∗,Λ∗,Λ̃∗)

. (7.37)

Alternatively, we can define the Momentum Amplituhedron as the intersection to two
spaces. Let Vn,k denote the set of points ([Y ], [Ỹ ]) in Grn−k,n−k+2 ×Grk,k+2 which lie
on the hypersurface of momentum conservation P = 02×2. Its real part is designated by
Vn,k(R). Define the winding space Wn,k as the set of points ([Y ], [Ỹ ]) in Grn−k,n−k+2(R)×
Grk,k+2(R) for which

〈ii+ 1〉Y > 0 for i ∈ [n− 1] and 〈n1̂〉Y > 0 , (7.38a)

var(〈12〉Y , 〈13〉Y , . . . , 〈1n〉Y ) = k − 2 , (7.38b)

[ii+ 1]Ỹ > 0 for i ∈ [n− 1] and [n1̂]Ỹ > 0 , (7.38c)

var([12]Ỹ , [13]Ỹ , . . . , [1n]Ỹ ) = k , (7.38d)

SI(Ỹ , Y ) > 0 for all CC subsets I ⊂ [n] with 2 ≤ |I| ≤ n− 2 , (7.38e)

where var counts the number of sign flips. It is conjectured that ΦM(Grk,n) equals Vn,k,
M◦n,k equals Vn,k ∩Wn,k, and that Mn,k equals the closure of Vn,k ∩Wn,k in Vn,k(R).
We have already established ΦM(Grk,n) ⊂ Vn,k whileM◦n,k ⊂ Vn,k ∩Wn,k is proven in
[58].

Let us illustrate some of the preceding discussion by considering the simplest possible
example, namely four-particle MHV scattering. Fix the kinematic data (Λ, Λ̃) where Λ is
a 4 × 4 twisted positive matrix and Λ̃ is a 4 × 4 positive matrix. The top-cell of Gr≥0

2,4

admits the following canonically positive parametrisation [58]

C =

(
1 α2 0 −α3

0 α1 1 α4

)
. (7.39)

In this coordinate patch, the canonical form for Gr≥0
2,4 is given by

Ω(Gr≥0
2,4) = d logα1 ∧ d logα2 ∧ d logα3 ∧ d logα4 . (7.40)

Since dim(Gr≥0
2,4) = 4 = dim(M4,2), the trivial dissection of M4,2 (i.e. the collection
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containing only the top-cell of Gr≥0
2,4) is the only tiling ofM4,2. There are various ways to

express the canonically positive parameters in terms of twistor coordinates. For example,
using (7.29) we have that

α1 =
〈12〉Y
〈13〉Y

, α2 =
〈23〉Y
〈13〉Y

, α3 =
〈34〉Y
〈13〉Y

, α4 =
〈14〉Y
〈13〉Y

. (7.41)

Hence, the pushforward of Ω(Gr≥0
2,4) via ΦM yields an expression involving only Y :

Ω(M4,2) = d log
〈12〉Y
〈13〉Y

∧ d log
〈23〉Y
〈13〉Y

∧ d log
〈34〉Y
〈13〉Y

∧ d log
〈14〉Y
〈13〉Y

. (7.42)

Equivalently, one can derive an expression involving only Ỹ which amounts to replacing
〈ij〉Y with [ij]Ỹ in (7.42). We refer the reader to [58] for further details.

7.3.2 Kinematic Definition

The above definition can, however, be circumvented, and one can define the Momentum
Amplituhedron directly in the kinematic space of four-dimensional spinor-helicity variables.
Towards this goal, assume that the spacetime signature is (2, 2). In this case, spinor-
helicity variables are real and independent, and the Lorentz group is Spin(2, 2) = SL2(R)×
SL2(R). Let O(4)

n denote the kinematic space of n-particle spinor-helicity variables in four
dimensions. It is defined as

O(4)
n :=

{
([λ], [λ̃]) ∈ Mat2,n(R)

SL2(R)
× Mat2,n(R)

SL2(R)
:

n∑

i=1

λai λ̃
ȧ
i = 0

}
, (7.43)

where SL2(R) acts on Mat2,n(R) by left multiplication. Clearly O(4)
n has dimension

dim(O(4)
n ) = 2(dim(Mat2,n(R))− dim(SL2(R)))− 4 = 4n− 10 . (7.44)

It can be regarded as an algebraic subset of R4n since it can be equivalently defined
as the zero set of a polynomial ideal in R[λ, λ̃] := R[λ1

1, λ
2
1, . . . , λ

1
n, λ

2
n, λ̃

1
1, λ̃

2
1, . . . , λ̃

1
n, λ̃

2
n]

generated by the Schouten identities

〈ij〉〈kl〉+ 〈il〉〈jk〉+ 〈ik〉〈lj〉 = 0 , [ij][kl] + [il][jk] + [ik][lj] = 0 , (7.45)

together with the momentum conservation constraint
∑n

i=1 λ
a
i λ̃

ȧ
i = 0 for a, ȧ ∈ [2]. Let

O(4)
n (C) denote the complexification of O(4)

n .
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The Grassmannian is naturally covered by a family of (Zariski) open sets, each defined
as the set of all points for which a particular Plücker coordinate is non-vanishing. To
motivate the definition of the Momentum Amplituhedron in O(4)

n , consider the open set
U × Ũ ⊂ Grn−k,n−k+2 ×Grk,k+2 where

U := {V ∈ Grn−k,n−k+2 : p[n−k]+2(V ) 6= 0} , Ũ := {Ṽ ∈ Grk,k : p[k]+2(Ṽ ) 6= 0} .
(7.46)

Every point (V, Ṽ ) in U × Ũ admits a representative ([Y ], [Ỹ ]) of the form

Y :=
(
−yT 1(n−k)×(n−k)

)
, Ỹ :=

(
−ỹT 1k×k

)
, (7.47)

for some y ∈ Mat2,n−k(C) and ỹ ∈ Mat2,k(C). In fact, (7.47) furnishes a smooth affine
chart for U × Ũ . Moreover, there is a canonical choice of representative ([Y ⊥], [Ỹ ⊥]) for
the orthogonal complement (V ⊥, Ṽ ⊥) in U⊥ × Ũ⊥ given by

Y ⊥ :=
(

12×2 y
)
, Ỹ ⊥ :=

(
12×2 ỹ

)
, (7.48)

which defines a smooth affine chart for U⊥× Ũ⊥. This choice in (7.48) is canonical in the
sense that it relates the maximal minors of Y ⊥ and Ỹ ⊥ to those of Y and Ỹ , respectively,
as follows:

pJ(Y ⊥) = εJ,[n−k+2]\J p[n−k+2]\J(Y ) , pJ̇(Ỹ ⊥) = εJ̇ ,[k+2]\J̇ p[k+2]\J̇(Ỹ ) , (7.49)

for all J ∈
(
n−k+2

2

)
and J̇ ∈

(
k+2

2

)
. Given a point (V, Ṽ ) ∈ U × Ũ , define λ := Y ⊥ΛT and

λ̃ := Ỹ ⊥Λ̃T where λ is a function of y ∈ Mat2,n−k(C) and λ̃ is a function of ỹ ∈ Mat2,k(C).
This establishes the map

ΞM : U × Ũ → Mat2,n(C)×Mat2,n(C), (V, Ṽ ) 7→ (λ, λ̃) . (7.50)

Finally we can define an analogue of the Momentum Amplituhedron in (an affine chart
of) O(4)

n as per [75]. Let V̂n,k be the image of Vn,k ∩(U×Ũ) under ΞM and designate its real
part by V̂n,k(R). Define the winding space Ŵn,k as the image ofWn,k under ΞM. Then the
Momentum Amplituhedron M̂n,k is the closure of M̂◦n,k := V̂n,k ∩ Ŵn,k in V̂n,k(R) where
M̂◦n,k is the interior of M̂n,k. Every point (λ, λ̃) ∈ V̂n,k satisfies momentum conservation

and hence represents a point ([λ], [λ̃]) in O(4)
n (C) where [λ] = SL2(C)λ and [λ̃] = SL2(C)λ̃.

Moreover, for a point (V, Ṽ ) ∈ U × Ũ mapped to a point (λ, λ̃) = ΞM(V, Ṽ ), we have the
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following identification between twistor coordinates and spinor-helicity brackets [43]

〈ij〉Y = 〈ij〉 , [ij]Ỹ = [ij] , (7.51)

for all i, j ∈ [n] where Y and Ỹ are defined as per (7.47). Consequently, the winding
space Ŵn,k can be defined in analogy with (7.38): it is the set of points (λ, λ̃) in
ΞM(U(R)× Ũ(R)) for which

〈ii+ 1〉 > 0 for i ∈ [n− 1] and 〈n1̂〉 > 0 , (7.52a)

var(〈12〉, 〈13〉, . . . , 〈1n〉) = k − 2 , (7.52b)

[ii+ 1] > 0 for i ∈ [n− 1] and [n1̂] > 0 , (7.52c)

var([12], [13], . . . , [1n]) = k , (7.52d)

sI > 0 for all CC subsets I ⊂ [n] with 2 ≤ |I| ≤ n− 2 , (7.52e)

where for each I ⊂ [n]

sI :=
∑

{i,j}∈(I2)

〈ij〉[ij] , (7.53)

and var counts the number of sign flips. The canonical form Ω(M̂n,k) can be determined
using one of two approaches: either via the replacement

Ω(M̂n,k) = Ω(Mn,k)
∣∣∣
〈ij〉Y→〈ij〉,[ij]Ỹ→[ij]

, (7.54)

or using the inverse-soft construction of [115]. In this setting, the partial amplitude
Atree
n,k [1, . . . , n] can be obtained directly from Ω(M̂n,k) via [75]

Atree
n,k [1, . . . , n] = δ4(p)

(
Ω(M̂n,k) ∧ d4p

∣∣∣
dλai→ηai ,dλ̃ȧi→η̃ȧi

)
, (7.55)

where pa,ȧ :=
∑n

i=1 λ
a
i λ̃

ȧ
i .

Let us return to our four-particle MHV example. Applying (7.54) to (7.42) yields

Ω(M̂4,2) = d log
〈12〉
〈13〉 ∧ d log

〈23〉
〈13〉 ∧ d log

〈34〉
〈13〉 ∧ d log

〈14〉
〈13〉 . (7.56)

As written, Ω(M̂4,2) is a 4-form in dλ. Moreover, λ defines a 4-dimensional hypersurface
inside Mat2,4(R) (i.e. λ is a function of y ∈ Mat2,2(R)). Consequently wedging Ω(M̂4,2)
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with d4p = (λ̃dλT + λdλ̃T )4 is equivalent to wedging it with (λdλ̃T )4. After performing
the replacement in Eq. (7.55) and enforcing momentum conservation, one finds [58]

Atree
n,k [1, 2, 3, 4] =

δ4(p)δ4(q)δ4(q̃)

〈12〉〈23〉[12][23]
, (7.57)

where qa,ȧ :=
∑n

i=1 λ
a
i η̃
ȧ
i and q̃a,ȧ :=

∑n
i=1 η

a
i λ̃

ȧ
i .

7.3.3 D = 4 Twistor-String Map

One can also regard the Momentum Amplituhedron as the image of the non-negative
Grassmannian Gr≥0

2,n via the four-dimensional twistor-string map of [60]. Let Gr6=0
k,n denote

the subset of Grk,n for which all Plücker coordinates are non-zero. The map of interest
is defined on Gr6=0

2,n. Given a point in Gr6=0
2,n one can always choose a representative with

entries

X(t, σ) =

(
t1 t2 · · · tn

t1σ1 t2σ2 · · · tnσn

)
, (7.58)

where t = (t1, . . . , tn) ∈ Cn6=0 and σ = (σ1, . . . , σn) ∈ Cn is a tuple of distinct points. Let
us denote the Plücker coordinates of the matrix in (7.58) by (ij) = titjσj,i.

The Veronese map embeds Gr6=0
2,n in Gr 6=0

k,n as follows. Let Cν(t, σ) ∈ Matk,n(C) and
C⊥ν (t, σ) ∈ Matn−k,n(C) be matrices with entries1 given by

Cν(t, σ)α,i = tk−1
i σα−1

i , C⊥ν (t, σ)α̃,i = t̃n−k−1
i σα̃−1

i , (7.59)

where

t̃n−k−1
i :=

γtn−k−1
i∏

`∈[n]\{i}(i`)
, γn−k := (−1)(

n−k
2 )

∏

i<j∈[n]

(ij) . (7.60)

For each I ∈
([n]
k

)

pI(Cν(t, σ)) =
∏
i<j∈I(ij) , p[n]\I(C

⊥
ν (t, σ)) = ε[n]\I,I pI(Cν(t, σ)) . (7.61)

1Our definition for Cν(t, σ) differs from [60] and coincides with [118] so that [Cν(t, σ)] is independent
of the choice of representative for Cν(t, σ).
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The first identity in (7.61) is proven as follows:

pI(Cν(t, σ)) =
∏

i∈I
tk−1
i

∏

i<j∈I
σj,i =

∏

i<j∈I
titjσj,i =

∏

i<j∈I
(ij) ,

where the first equality follows from the well-known formula for the determinant of the
Vandemonde matrix of order k. To prove the second identity in (7.61), let I ′ = [n] \ I
and consider the following equality chain:

pI′(C
⊥
ν (t, σ)) =

∏

i∈I′
t̃n−k−1
i

∏

i<j∈I′
σj,i =

∏

i∈I′

t̃n−k−1
i

tn−k−1
i

∏

i<j∈I′
titjσj,i =

γn−k
∏
i<j∈I′(ij)∏

i∈I′
∏
`∈[n]\{i}(i`)

.

Rewriting the denominator as

∏

i∈I′

∏

`∈[n]\{i}

(i`) = (−1)(
n−k
2 )

∏

i<j∈I′
(ij)2

∏

i∈I′,j∈I
(ij) ,

and substituting γn−k into our expression for pI′(C⊥ν (t, σ)) yields the desired outcome.
Consequently, the Plücker coordinates of Cν(t, σ) and C⊥ν (t, σ) are well-defined. Then
ν : Gr2,n → Grk,n, [X(t, σ)] 7→ [Cν(t, σ)] and ν⊥ : Gr2,n → Grn−k,k, [X(t, σ)] 7→ [C⊥ν (t, σ)]

define rational maps sharing Gr 6=0
2,n as their domain. They satisfy

ν(Gr6=0
2,n) ⊂ Gr6=0

k,n , ν⊥(Gr6=0
2,n) ⊂ Gr6=0

n−k,n , (7.62a)

ν(Gr>0
2,n) ⊂ Gr>0

k,n , ν⊥(Gr>0
2,n) ⊂ Gr>0

n−k,n . (7.62b)

The former is called the Veronese map [118]. Moreover, Cν(t, σ)C⊥ν (t, σ)T = 0k×(n−k).
It is natural to decompose Gr>0

2,n as M+
0,n×P(Rn>0) where the positive moduli space

M+
0,n is parametrised by σ = (σ1, . . . , σn) ∈ Rn with σ1 < . . . < σn via (6.14) and P(Rn>0)

is parametrised by the homogenous coordinates [t] = [t1 : . . . : tn]. These homogeneous
coordinates can be regarded little group variables [3]. In this setting, the canonical form
Ω(Gr≥0

2,n) can be expressed as

ωWS(4)
n := ωWS

n ∧ Ω(P(Rn≥0)) = Ω(Gr≥0
2,n) , (7.63)

where ωWS
n = Ω(M′0,n(R)) is the Parke-Taylor form given by (6.12) and Ω(P(Rn≥0)) =∑n

i=1(−1)i+1
∧
j 6=i

dtj
tj
.

Finally, let Y (t, σ) := C⊥ν (t, σ)Λ and Ỹ (t, σ) := Cν(t, σ)Λ̃. The D = 4 twistor-string
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map is the rational map

ΨM : Gr2,n → Grn−k,n−k+2 ×Grk,k+2, [X(t, σ)] 7→ ([Y (t, σ)], [Ỹ (t, σ)]) , (7.64)

with domain Gr6=0
2,n. Composing ΨM with ΞM produces the D = 4 scattering equations of

[85]: the identities Ỹ ⊥(t, σ)Ỹ T (t, σ) = 02,k and Y ⊥(t, σ)Y T (t, σ) = 02,n−k imply

Cν(t, σ)λ̃T = 0 , C⊥ν (t, σ)λT = 0 . (7.65)

where λ is a function of y ∈ Mat2,n−k(C) and λ̃ is a function of ỹ ∈ Mat2,k(C). Mo-
mentum conservation λλ̃T = 02×2 implies that (7.65) contains only 2n− 4 independent
equations. By gauge-fixing any three σ-variables (e.g. (σ1, σn−1, σn) = (0, 1,∞)) and
any t-variable (e.g. tn = 1), (7.65) defines a zero-dimensional complete intersection
ideal I(4)

n ⊂ C(y, ỹ)[σ, t] whose zero-set contains En−3,k−2 distinct points in Gr6=0
2,n. Here

En−3,k−2 is an Eulerian number [44]. The restriction ΨM |Gr>0
2,n

: Gr>0
2,n → M◦n,k is a

bijection for k = 2 and k = n − 2, and there is strong numerical evidence to support
this claim also for 2 < k < n − 2 [60]; the authors of [60] have numerically checked
that for each point (λ, λ̃) in M̂◦n,k, out of the En−3,k−2 (generally complex) solutions
to the D = 4 scattering equations, there is always a unique point in Gr>0

2,n. Thus, the
D = 4 twistor-string map ΨM is (conjecturally) a morphism between (Gr2,n,Gr≥0

2,n) and
(ΦM(Grk,n),Mn,k). Consequently, the canonical form Ω(Mn,k) can be computed as the
pushforward of ωWS(4)

n via the D = 4 twistor-string map ΨM

Ω(Mn,k) = ΨM∗ ω
WS(4)
n . (7.66)

Equivalently, the canonical form Ω(M̂n,k) can be computed as the pushforward of ωWS(4)
n

via the D = 4 scattering equations

Ω(M̂n,k) = (I(4)
n )∗ω

WS(4)
n . (7.67)

Section 7.4

Boundary Stratification and Rank Generating Function

The boundaries of the Momentum AmplituhedronMn,k correspond to the singularities
of the partial amplitude Atree

n,k [1, . . . , n] [58]. In this section, we explore the boundary
stratification ofMn,k, summarising the results of [2, 4]; we characterise this boundary
stratification, derive a rank generating function for it, and prove thatMn,k has Euler
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(a) 〈ii+ 1〉Y = 0 (b) [ii+ 1]Ỹ = 0 (c) SI(Ỹ , Y ) = 0

Figure 7.5: Grassmannian graph labels for facets of the Momentum Amplituhedron.
Labels inside vertices denote helicities. In Fig. 7.5c, I = {i, i+ 1, . . . , j} is a cyclically
consecutive subset of [n] with 2 < |I| < n− 2 and k1 + k2 = k + 1.

characteristic one. In addition, we supply the covering relations for the Momentum
Amplituhedron.

Since the Momentum Amplituhedron map ΦM is (conjecturally) a morphism of
positive geometries, we speculate that the ΦM-induced boundary stratification ofMn,k is
the true boundary stratification. Thus, we will drop the epithet “ΦM-induced”. Moreover,
since the boundaries of Mn,k are images of positroid cells labelled by Grassmannian
graphs, we will enumerate the boundaries ofMn,k accordingly.

The facets of the Momentum Amplituhedron were first studied in [58]. They fall
into three classes: 〈ii+ 1〉Y = 0 and [ii + 1]Ỹ = 0 parametrise helicity-preserving and
helicity-reducing collinear limits, respectively, while SI(Ỹ , Y ) = 0 denotes a factorisation
channel for each cyclically consecutive I ⊂ [n] with 2 < |I| < n− 2. These three classes
are the analogues of the factorisation channels and the two collinear limit types discussed
in Section 7.2. All three are present for 2 < k < n− 2. For k = 2 (resp., k = n− 2) only
facets corresponding to helicity-preserving (resp., helicity-reducing) collinear limits exist.
To obtain the facets of the Momentum Amplituhedron, we apply the first algorithm of
Section 2.4 to any tiling2. (The BCFW recursion relations generate a class of tilings
called BCFW tilings.) These facets are labelled by the Grassmannian graphs depicted in
Fig. 7.5 [2]. Unsurprisingly, the Grassmannian graphs depicted in Fig. 7.5 are precisely
the on-shell diagrams for the singularities of the corresponding facets.

Higher codimension boundaries of the Momentum Amplituhedron can be generated
using the second algorithm of Section 2.4 which is implemented in the Mathematica

2In the physics literature, a tiling is often referred to as a “triangulation”.
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(a) 〈ii+ 1〉Y = 0 = 〈ii− 1〉Y (b) [ii+ 1]Ỹ = 0 = [ii− 1]Ỹ

Figure 7.6: Grassmannian graphs labels for codimension-two boundaries of the Momentum
Amplituhedron corresponding to soft limits. Labels inside vertices denote helicities.

package amplituhedronBoundaries [1]. Using this package, the boundary stratification
of Mn,k for all n ≤ 9 was synthesised in [2]. After careful analysis, the authors of [2]
suggested a pictorial characterisation for all boundaries. Their pictorial characterisation
was later reformulated in [4] as follows: ΦM(ΠΓ,≥0) is a boundary ofMn,k if and only if
Γ is a Grassmannian forest of type (k, n). Moreover, the boundary stratification ofMn,k

is an induced subposet of the postroid stratification of Gr≥0
k,n. Its covering relations are

depicted in Fig. 4.2.
At codimension two, one finds additional factorisations of complete subgraphs of

facet-labelling Grassmannian graphs as well as further collinear limits. A novel physical
singularity emerges at the intersection of facets corresponding to two consecutive collinear
limits of the same type. In this case, the Grassmannian graph contains a boundary
leaf, an internal vertex of degree 1 connected to a boundary vertex, detached from a
complete subgraph, see Fig. 7.6. The boundary leaf is coloured white (resp., black) in
the helicity-preserving (resp., helicity-reducing) case. These are exactly the soft limits
described in Section 7.2.

We conclude this section by deriving a rank generating function for enumerating the
boundaries of the Momentum Amplituhedron according to their dimension. The following
definitions, conjectures and results are taken from [4], unless otherwise stated.

One can associate a dimension to each refinement-equivalence class of Grassmannian
forests [2, 4] as follows. For each internal vertex v in a Grassmannian forest, define the
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statistic

m(v) :=





2 deg(v)− 4 , if v is generic

deg(v)− 1 , otherwise
. (7.68)

Then the Momentum Amplituhedron dimension orM-dimension of a Grassmannian forest
F , denoted by dimM(F ), is defined as

dimM(F ) :=
∑

T∈Trees(F )

dimM(T ) . (7.69)

where dimM(T ) is theM-dimension of a Grassmannian tree T given by

dimM(T ) :=




n− 1 , if n ≤ 2

1 +
∑

v∈V int(T )(m(v)− 1) , otherwise
. (7.70)

Given a Grassmannian tree T of type (k, n), if we replace the helicity of each internal
vertex v by deg(v) − h(v), we obtain a Grassmannian tree of type (n − k, n) by (4.12)
and (4.11). Consequently, this map gives aM-dimension-preserving bijection between
the Grassmannian forests of type (k, n) and type (n− k, n). Moreover,M-dimension is
an invariant of refinement-equivalence classes of Grassmannian forests. To prove this,
it is sufficient to show that theM-dimensions of refinement-equivalent Grassmannian
trees are the same. Without loss of generality, let T and T ′ be refinement-equivalent
Grassmannian trees where T ′ is obtained from T by applying a single vertex contraction
move, resulting in some non-generic internal vertex v∗ ∈ V int(T

′). Let V int(T )\V int(T
′) =

{v1, v2} be the two non-generic internal vertices whose contraction results in v∗. Clearly
deg(v∗) = deg(v1) + deg(v2)− 2. Then

1 + (m(v1)− 1) + (m(v2)− 1) = m(v1) +m(v2)− 1

= (deg(v1)− 1) + (deg(v2)− 1)− 1

= (deg(v1) + deg(v2)− 2)− 1

= deg(v∗)− 1 = m(v∗) = 1 + (m(v∗)− 1) ,

from which it follows that dimM(T ) = dimM(T ′). Finally, we conjecture that

dim(Φ(ΠF,>0)) = dimM(F ) , (7.71)
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for each Grassmannian forest F of type (k, n) [2, 4].
A rank generating function for the Momentum Amplituhedron was derived in [4] using

the results presented in Chapter 3. We quote the result below; its proof can be found
in the original paper. The number of contracted Grassmannian trees of type (k, n) with
M-dimension r is given by [xnykqr]GMtree(x, y, q) where

GMtree(x, y, q) = x
(

1 + y + yq C〈−1〉
x (x, y, q)

)
, (7.72)

with

C(x, y, q) =
x(1− x(1 + y)q2 − x2yq2(1 + q − q2)− x4y2q5(1 + q))

(1 + xq)(1 + xyq)(1− xq2)(1− xyq2)
, (7.73)

and the compositional inverse is with respect to the variable x. Moreover, the number
of contracted Grassmannian forests of type (k, n) with M-dimension r is given by
[xnykqr]GMforest(x, y, q) where

xGMforest(x, y, q) =

(
x

1 + GMtree(x, y, q)

)〈−1〉

x

, (7.74)

and the compositional inverse is with respect to the variable x. Equivalently,

[xn]GMforest(x, y, q) =
1

n+ 1
[xn]

(
1 + GMtree(x, y, q)

)n+1
. (7.75)

It was checked by the authors of [4] that this rank generating function reproduces all
results for [xnyk]GMforest(x, y, q) listed in Tables 1 and 2 of [2]. The results of [2] include as
high as (n, k) = (12, 2). Table 1 of [4] records [xnyk]GMforest(x, y, q) for all 4 ≤ n ≤ 12 and
for all 2 ≤ k ≤ bn2 c.

It follows from Eqs. (7.72) to (7.74) that GMtree(x, y, q) and GMforest(x, y, q) are algebraic
rank generating functions of degree 5 and 6, respectively, satisfying (B.1) and (B.2),
respectively.

As a corollary of Eqs. (7.72) to (7.75), the number of 0-dimensional boundary strata
ofMn,k is

(
n
k

)
, i.e. [xnykq0]GMforest(x, y, q) =

(
n
k

)
.

Based on the evidence given in [2], it was conjectured in [4] that

Mn,k =
⊔

F∈FGr
k,n

Φ(ΠF,>0) (7.76)

is a regular CW decomposition of Mn,k, where the disjoint union is over contracted
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Grassmannian forests of type (k, n). With this assumption, the Euler characteristic of
Mn,k, the coefficient of xnyk in GMforest(x, y,−1), is one, as was calculated in [4]. This
provides partial evidence that the Momentum Amplituhedron is homeomorphic to a closed
ball.

Section 7.5

Summary

The Momentum Amplituhedron connects two remarkable descriptions of tree-level ampli-
tudes in SYM. On the one hand, it is the image of the non-negative Grassmannian via
the Momentum Amplituhdedron map. On the other hand, it is the image of a positive
geometry in the appropriate CHY moduli space via the four-dimensional twistor-string
map. As we have seen in this chapter, the Grassmannian definition was integral in
determining the boundary stratification of the Momentum Amplituhedron. Knowing
the positroid stratification, we found the (induced) boundary stratification using the
algorithm from Chapter 2. The data shows that contracted Grassmannian forests are the
correct combinatorial labels for enumerating boundaries. The covering relations for con-
tracted Grassmannian forests are precisely the allowed factorisation channels of tree-level
amplitudes in SYM, thereby strengthening our results. Knowing the correct combinatorial
labels, we determined an algebraic rank generating function for the boundaries of the
Momentum Amplituhedron. In addition, we were able to use this generating function to
prove some mathematical statements concerning the Momentum Amplituhdron. In the
next chapter (Chapter 8), we will encounter a similar story for the orthogonal Momentum
Amplituhedron.



Chapter 8

The Orthogonal Momentum
Amplituhedron

The orthogonal Momentum Amplituhedron is the analogue of the Momentum
Amplituhedron relevant to three-dimensional physics; it is (conjecturally) a positive

geometry describing particle scattering in ABJM theory at the tree level [59, 60]. In
this chapter, we study the orthogonal Momentum Amplituhedron, repeating much of
the analysis of Chapter 7. Again, our principal focus is on physical singularities encoded
via the positive geometry’s boundary stratification. We will review the results of [5] and
explore this boundary stratification from two perspectives. On the one hand, it is an
induced subposet of the orthitroid stratification. Recall that the orthitroid stratification
is the non-negative orthogonal Grassmannian’s boundary stratification. Specifically,
orthogonal Grassmannian forests (acyclic orthogonal Grassmannian graphs) provide
combinatorial labels for orthogonal Momentum Amplituhedron boundaries. However,
these faces also relate to those of the worldsheet associahedron via a simple diagrammatic
map. We present a detailed analysis of both descriptions. Moreover, with a proper
combinatorial description of orthogonal Momentum Amplituhedron boundaries, we derive
an algebraic rank generating function using the results of Chapter 3 and deduce the Euler
characteristic.

Section 8.1

ABJM Theory

The theory of Aharony–Bergman–Jafferis–Maldacena (ABJM) [119, 120] is a three-
dimensional Chern-Simons matter theory withN = 6 supersymmetry. It is holographically
dual to M-theory on AdS4 × S7 and it serves as a toy model in condensed matter physics.

There are analogues in ABJM theory for many of the remarkable properties of N = 4

94
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SYM. The counterpart to SU(4|4) dual-superconformal symmetry (and its Yangian exten-
sion) of tree-level amplitudes in N = 4 SYM [121, 122] is OSp(6|4) dual-superconformal
symmetry [123–125]. There is a twistor-string-inspired formula for tree-level amplitudes
in ABJM theory [126] which resembles the well-known Rioban–Spradlin–Volovich–Witten
(RSVW) formula [48–50]. Moreover, the leading singularities of amplitudes in ABJM
theory can be expressed as contour integrals over the orthogonal Grassmannian [81, 82].
As before, the contour integrals represent a sum of residues. In this case, each residue
selects an orthitroid cell in the non-negative orthogonal Grassmannian labelled by an OG
graph.

The spectrum of ABJM theory consists of four complex scalars XI , four complex
fermions ψI , and their complex conjugates, represented by X̄I and ψ̄I , transforming in the
bi-fundamental representation of the colour group U(N)×U(N). The labels I = 1, . . . , 4

refer to the SU(4) R-symmetry group. These fields can be collected into two superfields,
defined as

ΦN=6 = X4 + ηAψ
A − 1

2!
ηAηBε

ABCXC −
1

3!
ηAηBηCε

ABCψ4 , (8.1)

Ψ̄N=6 = ψ̄4 + ηAX̄
A − 1

2!
ηAηBε

ABCψ̄C −
1

3!
ηAηBηCε

ABCX̄4 , (8.2)

where the indices A,B,C run over 1, 2, 3.
In three-dimension, the little group Z2 acts on the D = 3 on-shell superspace variables

(λai |ηi,A) as follows:

λai 7→ −λai , ηi,A 7→ −ηi,A . (8.3)

Under a little group transformation ΦN=6 is unchanged while Ψ̄N=6 changes sign. Ap-
plying (8.3) to the ith particle produces the following transformation law for tree-level
amplitudes:

Atree
n 7→





+Atree
n , if the ith particle is a scalar

−Atree
n , if the ith particle is a fermion

. (8.4)

Only amplitudes with even multiplicity are non-vanishing. Tree-level amplitudes can be
colour decomposed into partial amplitudes, for which there are only two classes:

Atree
2k [Ψ̄N=6

1 ,ΦN=6
2 , Ψ̄N=6

3 , . . . ,ΦN=6
2k ] , Atree

2k [ΦN=6
1 , Ψ̄N=6

2 ,ΦN=6
3 , . . . , Ψ̄N=6

2k ] . (8.5)

The Grassmann degree of partial amplitudes is 3k. In order to uplift partial amplitudes
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from rational functions to rational forms [115], it is convenient to work with an N = 4

description of ABJM theory [59, 60], obtained form the familiar N = 6 formalism via
SUSY reduction. In this new setup, there are four superfields given by

ΦN=4 := ΦN=6|η3→0 = X4 + ηaψ
a − η1η2X

3 , (8.6)

Φ̄N=4 :=

∫
dη3Ψ̄N=6 = X̄3 + ηaε

abψ̄b − η1η2X̄
4 , (8.7)

ΨN=4 :=

∫
dη3ΦN=6 = ψ3 + ηaε

abXb − η1η2ψ
4 , (8.8)

Ψ̄N=4 := Ψ̄N=6|η3→0 = ψ̄4 + ηaX̄
a − η1η2ψ̄3 , (8.9)

where η12 = −1. The N = 4 versions of amplitudes are obtained by the same SUSY
reduction: η3 → 0 for k particles and an integration over η3 is performed for the other k
particles. In this chapter, we focus on the partial amplitude

Atree
2k [1̄, 2, 3̄, . . . , 2̄k] := Atree

2k [Φ̄N=4
1 ,ΦN=4

2 , Φ̄N=4
3 , . . . ,ΦN=4

2k ] , (8.10)

whose Grassmannian description is given by

Atree
2k [1̄, 2, 3̄, . . . , 2̄k] (8.11)

=

∮

γ

dk×2kC

vol(GLk(C))

(1, 3, 5, . . . , 2k − 1)
∏k
i=1(i, . . . , i+ k)

δk×k(CηCT )δk×2(CλT )δk×2(CηT ) .

Replacing

ηai 7→ dλai , (8.12)

and stripping off d3q, where qa,b :=
∑2k

i=1 λ
a
i (dλ

b
i), one obtains a non-vanishing (2k − 3)-

form which is the canonical form of the orthogonal Momentum Amplituhedron.
In this chapter, we explore the orthogonal momentum amplituderon [59, 60] which

captures Atree
2k [1̄, 2, 3̄, . . . , 2̄k]. While there is no known loop-level analogue of the orthogo-

nal Momentum Amplituhedron, the all-loop integrand for the ABJM four-point amplitude
can be calculated from the all-loop Amplituhedron by projecting onto three-dimensional
kinematics [127].
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M+
0,2k Gr>0

2,2k Ôk

OGr>0
k,2k Ok

I(3)
2k

ΦO

ν
Veronese

map ΞO
Ψ
O

Figure 8.1: Web of connections between spaces associated with the orthogonal Momentum
Amplituhedron.

ωWS
2k Ω(Ôk)

Ω(OGr≥0
k,2k) Ω(Ok)

I(3)2k

ΦO

〈ij〉Y = 〈ij〉
Ψ
O

Figure 8.2: Web of connections between rational forms associated with the orthogonal
Momentum Amplituhedron. Solid lines designate pushforwards.

Section 8.2

The Orthogonal Momentum Amplituhedron

The definition of the orthogonal Momentum Amplituhedron parallels that of the Momen-
tum Amplituhedron. It can be defined inside a Grassmannian or directly in the kinematic
space of three-dimensional spinor-helicity variables [59, 60]. In this section, we review
these definitions. As was the case in Chapter 7, the former definition will facilitate an
efficient classification of all boundaries of the orthogonal Momentum Amplituhedron [5].
These faces correspond to all physical singularities of partial amplitudes in ABJM theory.
Moreover, the orthogonal Momentum Amplituhedron is related to the worldsheet moduli
space via the three-dimensional twistor-string map of [60]. Fig. 8.1 depicts the multiple
definitions of the orthogonal Momentum Amplituhedron. Throughout this section, we
will let k be an integer, greater than or equal to two.

8.2.1 Grassmannian Definition

Let Λ ∈ Mat>0

2k,k+2 be a positive matrix, called the kinematic data. Given an element [C] ∈
OGrk,2k, let Y := CΛ. The orthogonal Momentum Amplituhedron Ok := ΦM(OGr≥0

k,2k) is
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the image of OGr≥0
k,2k through the orthogonal Momentum Amplituhedron map [59, 60]

ΦO : OGrk,2k → Grk,k+2, [C] 7→ [Y ] . (8.13)

Equivalently, the orthogonal Momentum Amplituhedron Ok is the closure of O◦k :=

ΦM(OGr>0
k,2k) in ΦM(OGrk,2k(R)) where O◦k is the interior of Ok. By comparison, we see

that the orthogonal Momentum Amplituhedron can be viewed as half a Momentum Am-
plituhedron, projected onto three-dimensional kinematics [59]. Since O2 is diffeomorphic
to OGr≥0

2,4, their boundary stratifications are combinatorially equivalent.
Natural coordinates for the orthogonal Momentum Amplituhedron correspond to

analogues of three-dimensional spinor-helicity brackets. Let [Y ] be a point in Grk,k+2.
For i, j ∈ [n], define the twistor coordinate

〈ij〉Y := det(Y1, . . . , Yk,Λi,Λj) , (8.14)

as the determinant of the (k + 2)× (k + 2) matrix with rows Y1, . . . , Yk,Λi,Λj . For each
I ⊂ [2k], define the Mandelstam variable SI(Y ) as the following quadratic polynomial in
twistor coordinates:

SI(Y ) :=
∑

{i,j}∈(I2)

(−1)i+j+1〈ij〉2Y . (8.15)

The following additional restriction applies to the kinematic data Λ:

SI(Y ) > 0 for all [Y ] ∈ O◦k , (8.16)

for all CC subsets I ⊂ [2k] with 2 ≤ |I| ≤ 2k − 2 .

The restriction ensures that the codimension-one boundaries of the Ok capture all
factorisation channels of partial amplitudes in ABJM theory [59, 60]. One option for
satisfying (8.16), as confirmed in [59] for k ≤ 5, is given by

Λi,A = xA−1
i , (8.17)

where i ∈ [2k], A ∈ [k], and x1 < . . . < xn are n real points. Note that the rows of
Λ are vectors lying on moment curves. Since the combinatorial properties of Ok are
conjecturally independent of our choice of kinematic data, we omit explicit dependence
on Λ throughout.

The twistor coordinates on Grk,k+2 are projectively well-defined, embedding Grk,k+2
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into CP(2k2 )−1 where dim(CP(2k2 )−1) = (2k + 1)(k − 1) > 2k = dim(Grk,k+2). Moreover,
given a point V ∈ OGrk,2k, mapped to a point ΦM(V ) = [Y ] ∈ Ok, it follows from the
Cauchy-Binet formula that

〈ij〉Y =
∑

I∈([2k]k )

pI(V ) pI∪{i,j}(Λ) . (8.18)

For each point [Y ] ∈ Grk,k+2, let Y ⊥ be a matrix representing the orthogonal comple-
ment. The hypersurface of momentum conservation is a codimension-3 algebraic subset
of Grk,k+2 defined as P = 02×2 where

P := (Y ⊥ΛT )η(Y ⊥ΛT )T , (8.19)

and η = diag(+1,−1, . . . ,+1,−1) is the non-degenerate symmetric bilinear form in-
troduced in Section 4.2.2. Eq. (8.19) defines 3 independent equations because P is a
symmetric 2× 2 matrix. From

0 = Y ⊥Y T = (Y ⊥ΛT )CT , (8.20)

it follows that the row span of Y ⊥ΛT is contained in [C⊥] = [Cη]. Since C is isotropic
with respect to η, Cη is too. Hence, the orthogonal Momentum Amplituhedron lies on
the hypersurface of momentum conservation [59, 60].

The orthogonal Momentum Amplituhedron Ok is (conjecturally) a (2k−3)-dimensional
positive geometry whose canonical form encodes the partial amplitude Atree

2k [1̄, 2, 3̄, . . . , 2k]

of ABJM theory [59, 60]. Moreover, the orthogonal Momentum Amplituhedron map
ΦM is (conjecturally) a morphism between (OGrk,2k,OGr≥0

k,2k) and (ΦM(OGrk,2k),Ok).
This implies that the pushforward of Ω(OGr≥0

k,2k) via ΦO equals Ω(Ok). To calculate this
pushforward, suppose C = {Of,≥0}f∈F is a ΦO-induced tiling of Ok for some indexing set
F of matching affine permutations. For each f ∈ F , ΦO |Of,>0

: Of,>0 → ΦO(Of,>0) is a
diffeomorphism and Ω(Of,≥0) =

∧2k−3
i=1 d log(tanh(ti)) as per (4.27). Then

Ω(Ok) = sign(C)
∑

f∈F
ΦO∗Ω(Of,≥0) . (8.21)

where sign(C) = 1 (resp., sign(C) = −1) if C is orientation-preserving (resp., orientation-
reversing).

To extract the partial amplitude Atree
2k [1̄, 2, 3̄, . . . , 2k] from Ω(Ok), we need the canon-
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ical function Ω(Ok). To determine the latter, we wedge Ω(Ok) with d3Pδ3(P ):

Ω(Ok) ∧ d3P δ3(P ) =

k∧

α=1

det(Y, d2Yα) δ3(P ) Ω(Ok) . (8.22)

Thereafter, we introduce 2k auxiliary Grassmann parameters φαa , where a ∈ [2] and
α ∈ [k], and we define

(ΛT∗ )A,i =

(
λai
φαb η

b
i

)
, (8.23)

where A = (a, α) ∈ [k + 2]. Choosing the reference point

Y∗ :=
(

0k×2 1k×k
)
, (8.24)

we extract the partial amplitude Atree
2k [1̄, 2, 3̄, . . . , 2k] as follows

Atree
2k [1̄, 2, 3̄, . . . , 2k] =

∫
d2kφ δ3(P ) Ω(Ok)

∣∣∣
(Y,Λ)→(Y∗,Λ∗)

. (8.25)

As with the Momentum Amplituhedron, we can equivalently define the orthogonal
Momentum Amplituhedron as the intersection of two spaces: the hypersurface of momen-
tum conservation and a winding space. To this end, let Vk be the set of points [Y ] in
Grk,k+2 which satisfy P = 02×2 and let Vk(R) be its real part. Define the winding space
Wk as the set of points [Y ] in Grk,k+2(R) satisfying

〈ii+ 1〉Y > 0 for i ∈ [n− 1] and 〈n1̂〉Y > 0 , (8.26a)

var(〈12〉Y , 〈13〉Y , . . . , 〈1n〉Y ) = k , (8.26b)

SI(Y ) > 0 for all CC subsets I ⊂ [n] with 2 ≤ |I| ≤ n− 2 , (8.26c)

where n = 2k and Λ1̂ = (−1)k+1Λ1. The symbol var counts the number of sign flips. Then
ΦM(OGrk,2k) = Vk, O◦k = Vk ∩Wk, and Ok is the closure of Vk ∩Wk in Vk(R). We have
already proven ΦM(OGrk,2k) ⊂ Vk and [59, 60] establishes O◦k ⊂ Vk ∩Wk. Nevertheless,
the above equalities remain conjectures.
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8.2.2 Kinematic Definition

In analogy with Momentum Amplituhedron, the orthogonal Momentum Amplituhedron
can be defined in the kinematic space O(3)

n of three-dimensional spinor-helicity variables:

O(3)
n :=

{
[λ] ∈ Mat2,n(R)

SL2(R)
:

n∑

i=1

λai ηi,jλ
b
j = 0

}
, (8.27)

where η = diag(+1,−1, . . . ,+1,−1). As usual, SL2(R) acts of Mat2,n(R) by left multipli-
cation. The dimension of O(3)

n is given by

dim(O(3)
n ) = dim(Mat2,n(R))− dim(SL2(R))− 3 = 2n− 6 . (8.28)

Equivalently, O(3)
n is the zero set of a polynomial ideal in R[λ] := R[λ1

1, λ
2
1, . . . , λ

1
n, λ

2
n]

generated by the Schouten identities

〈ij〉〈kl〉+ 〈il〉〈jk〉+ 〈ik〉〈lj〉 = 0 , (8.29)

and momentum conservation
∑n

i=1(−1)i+1λai λ
b
i = 0 for a, b ∈ [2]. Consequently, O(3)

n is
an affine algebraic subset of R2n. The complexification of O(3)

n is denoted by O(3)
n (C).

To motivate the kinematic space definition, recall that the Grassmannian Grk,k+2 is
naturally covered by (Zariski) open sets consisting of those points for which some Plücker
coordinate is non-zero. Consider the open set U ⊂ Grk,k+2 where

U := {V ∈ Grk,k+2 : p[k]+2(V ) 6= 0} . (8.30)

Given a point V in U , one can always choose a representative Y of the form

Y :=
(

1k×k −yT
)
, (8.31)

where V = [Y ], for some y ∈ Mat2,k(C). In fact, (8.31) furnishes a smooth affine chart
for U . A canonical choice of representative Y ⊥ for the point V ⊥ in U⊥ is given by

Y ⊥ :=
(
y I2×2

)
, (8.32)

where V ⊥ = [Y ⊥]. Eq. (8.32) defines a smooth affine chart on U⊥. It is chosen such that
the maximal minors of Y ⊥ are related to those of Y as follows:

p[2k]\I(Y
⊥) = ε[2k]\I,I pI(Y ) , (8.33)
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for all I ∈
(
k+2

2

)
. With these charts as hand, define the map

ΞO : U → Mat2,2k(C), V 7→ λ . (8.34)

where λ := Y ⊥ΛT . By construction, each point V in U ∩ Vk maps to a point λ = ΞM(V )

which satisfies ληλT = 02×2. Consequently, λ represents a spinor-helicity variable in
O(3)

2k (C) where [λ] = SL2(C)λ. Moreover, twistor coordinates and spinor-helicity brackets
coincide on U [43]:

〈ij〉 = 〈ij〉Y , (8.35)

for every i, j ∈ [2k] where λ = ΞM([Y ]).
Altogether, these observations motivate the following definition [59, 60]. Let V̂k be

the image of Vk ∩U under ΞO. Define the winding space Ŵk as the image of Wk under
ΞO; it consists of all points λ in ΞM(U(R)) satisfying

〈ii+ 1〉 > 0 for i ∈ [n− 1] and 〈n1̂〉 > 0 , (8.36a)

var(〈12〉, 〈13〉, . . . , 〈1n〉) = k , (8.36b)

sI > 0 for all CC subsets I ⊂ [n] with 2 ≤ |I| ≤ n− 2 , (8.36c)

where n = 2k and λ1̂ = (−1)n−k+1λ1. The symbol var counts the number of sign flips.
Then the orthogonal Momentum Amplituhedron Ôk is the closure of Ô◦k := V̂k ∩ Ŵk in
V̂k(R), the real part of V̂k, where Ô◦k is the interior of Ôk. The canonical form Ω(Ôk)
is given by (8.21) with twistor coordinates replaced by spinor-helicity brackets as per
(8.35):

Ω(Ôk) = Ω(Ok)
∣∣∣
〈ij〉Y→〈ij〉

. (8.37)

Finally, the partial amplitude Atree
2k [1̄, 2, 3̄, . . . , 2k] can be extracted directly from Ω(Ôk)

via the replacement

Atree
2k [1̄, 2, 3̄, . . . , 2k] = δ3(p)

(
Ω(Ôk) ∧ d3p

∣∣∣
dλai→ηai

)
. (8.38)

8.2.3 D = 3 Twistor-String Map

The three-dimensional twistor-string map relates the orthogonal Momentum Amplituhe-
dron Ok to the worldsheet moduli space M′0,2k(R) [60]. Towards defining this map,
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consider the Veronese map from Gr 6=0
2,n to Gr6=0

k,n where n = 2k. The orthogonality condi-
tions Cν(t, σ)ηCTν (t, σ) = 0k×k produces n−1 equations for n unknowns t = (t1, . . . , tn):

n∑

i=1

(−1)i+1tn−2
i σµ−1

i = 0 , (8.39)

where µ ∈ [n− 1]. The GL1(C) redundancy associated with the t-variables allows us to
fix one of them, say tn = 1, in which case

t2n−2
i := (−1)i

∏
j 6=n σn,j∏
j 6=i σi,j

, tn = 1 . (8.40)

Define X(σ) := X(t, σ) and Cν(σ) := Cν(t, σ) where the t-variables are fixed according
to (8.40). Then ν : M0,2k → OGr6=0

k,2k, [X(σ)] 7→ [Cν(σ)] is the Veronese map from M0,2k

to OGr6=0
k,2k [60]. The D = 3 twistor-string map is the rational map

ΨO : M0,2k → Grk,k+2, [X(σ)] 7→ [Y (σ)] , (8.41)

where Y (σ) := Cν(σ)Λ. The composition of ΨO and ΞO leads to the D = 3 scattering
equations of [44]

Cν(σ)λT = 0 , (8.42)

where λ is a function of y ∈ Mat2,k(C). Moment conservation ληλT = 02×2 implies that
(8.42) contains only 2k − 3 independent equations. By gauge-fixing any three σ-variables
(e.g. (σ1, σn−1, σn) = (0, 1,∞)), (8.42) defines a zero-dimensional complete intersection
ideal I(4)

2k ⊂ C(y)[σ]. Its zero-set contains E2k−3 distinct points in M0,n [44] where E2k−3

is the Euler zag number defined as

tan(x) =
∞∑

p=2

E2k−3x
2k−3

(2k − 3)!
= x+

2x3

3!
+

16x5

5!
+ · · · . (8.43)

Numerical evidence suggests that ΨO |M+
0,2k

: M+
0,2k → O◦k is a bijection [60]: for each point

λ in Ô◦k, there are E2k−3 (generally complex) solutions to the D = 3 scattering equations
of which only one is in M+

0,n. This naturally leads to the conjecture that the D = 3

twistor-string map ΨO is a morphism between (M0,n,M
′
0,n(R)) and (ΦM(OGrk,2k),Ok).

Recall that the canonical form of the worldsheet moduli space is the Parke-Taylor form
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ωWS
n = Ω(M′0,n(R)). Consequently, one can express the canonical form Ω(Ok) as

Ω(Ok) = ΨO∗ ω
WS
n , (8.44)

and the canonical form Ω(Ôk) as

Ω(Ôk) = (I(3)
n )∗ω

WS
n . (8.45)

Section 8.3

Boundary Stratification and Rank Generating Function

As discussed in Section 7.4, the boundaries ofMn,k are (conjecturally) enumerated by
contracted Grassmannian forests of type (k, n). Remarkably, an analogous claim exists
for the orthogonal Momentum Amplituhedron: the boundaries of Ok are (conjecturally)
enumerated by orthogonal Grassmannian forests or OG forests of type k [5]. In this
section, we summarise the results of [5], deriving a rank generating function for Ok and
using it to show that the Euler characteristic of Ok is one.

Our combinatorial description of the orthogonal Momentum Amplituhedron is based on
data for the ΦO-induced boundary stratification of Ok. Since the orthogonal Momentum
Amplituhedron map ΦO is conjectured to be a morphism of positive geometries, we
assume that the boundary stratification induced by ΦO is the boundary stratification
of Ok. Consequently, we will drop the phrase “ΦO-induced”. Moreover, we will label
boundaries of Ok using reduced OG graphs of type k since these labels enumerate
orthitroid cells in OGr≥0

k,2k.
For k > 2, the facets (codimension-one boundaries) of the orthogonal Momentum

Amplituhedron correspond to factorisation channels where odd-particle planar Mandel-
stams vanish [59, 60]. An exception occurs for k = 2: there are only two facets associated
with vanishing two-particle planar Mandelstams. Using the first procedure presented in
Section 2.4, which takes as input any tiling (e.g. any BCFW tiling), one can generate
the facets of Ok. Fig. 8.3 displays the OG graph labels for the facets of Ok. These OG
graphs are precisely the on-shell diagrams for the corresponding amplitude singularities.

To generate higher codimension boundaries, we recursively applying the second
algorithm appearing in Section 2.4. The Mathematica package orthitroids includes
an implementation thereof [5]. The authors of [5] used this package to analyse the
boundary stratification of Ok for all k ≤ 7. From their observations, they concluded the
following characterization: Φ(OΓ,≥0) is a boundary of Ok if and only if Γ is an OG forest
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(a) for k = 2: 〈ii+ 1〉Y = 0 (b) for k > 2: SI(Y ) = 0

Figure 8.3: OG graph labels for facets of the orthogonal Momentum Amplituhedron.
Labels inside vertices denote helicities. In Fig. 8.3b, I = {i, i+ 1, . . . , j} is a cyclically
consecutive subset of [2k], |I| is odd with 2 < |I| < 2k − 2, and k1 + k2 = k + 1.

Gr≥0
k,n

Mn,k

OGr≥0
k,2k Ok M′0,2k(R)

ΦM

ΦO

orthogonal
slice

orthogonal
slice

ΨO

(a) Boundaries

GGr
k,n FGr

k,n

GOGr
k FOGr

k T2k

restrict to

forests

restrict to

forests

restrict to
orthogonal
n = 2k

restrict to
orthogonal
n = 2k

diagrammatic map

OGr

(b) Labels

Figure 8.4: Web of connections between posets of boundaries and their corresponding
labels.

of type k. The boundary stratification of Ok is an induced subposet of the orthitroid
stratification of OGr≥0

k,2k and the corresponding covering relations are drawn in Fig. 4.3.
Combinatorially speaking, the boundary stratification of Ok is an induced subposet of

the boundary stratification ofM2k,k, by which we mean that (FOGr
k ,�OGr) is an induced

subposet of (FGr
k,2k,�Gr). This relationship is depicted in Fig. 8.4

The above characterization enables us to determine a rank generating function for the
orthogonal Momentum Amplituhedron, along the lines of [4]. To this end, let us define
the following statistic for OG forests. This statistic, motivated by empirical findings,
captures the ΦO-dimension of orthitroid cells. The orthogonal Momentum Amplituhedron
dimension or O-dimension of an OG tree T of type k is defined as

dimO(T ) :=





0 , if k = 1
∑

v∈V int(T )(deg(v)− 3) , otherwise
, (8.46)
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and the O-dimension of an OG forest F is the sum of the O-dimensions of the OG trees
in F :

dimO(F ) :=
∑

T∈Trees(F )

dimO(T ) . (8.47)

Crucially, it is conjectured that dim(Φ(OF,>0)) = dimO(F ).
Since each OG forest is a Grassmannian forest, it has aM-dimension. The relationship

between the two dimensional formulae is as follows. Given an OG tree T of type k, its
M-dimension, given by (7.70), equals

dimM(T ) =





1 , if k = 1

1 +
∑

v∈V int(T )(2 deg(v)− 5) , if k > 1
. (8.48)

Comparing (8.48) and (8.46), we have that

dimM(T ) = 2 dimO(T ) + | V int(T )|+ 1 . (8.49)

Moreover, theM-dimension of an OG forest F is related to its O-dimension via

dimM(F ) = 2 dimO(F ) + |Trees(F )|+ | V int(F )| . (8.50)

Knowing the O-dimension of all OG forests allows us to construct a rank generating
function for enumerating the boundaries of the orthogonal Momentum Amplituhedron
according to their dimensions, as done in [5]. From (8.46), it is clear that each internal
vertex v of an OG tree T contributes deg(v)− 3 to dimO(T ). Therefore, we define the
statistic f : Z≥3 → Q(q) which maps d, the degree of an internal vertex, to qd−3 when
d is even and 0 when d is odd. Suppose h : Z≥3 → Q(q) is defined in terms of f as in
Theorem 3.2. Let F (x) =

∑
d≥3 f(d)xd and H(x) = x2 +

∑
n≥3 h(n)xn. Then one can

concretely compute F (x) as

F (x) = q−3
∞∑

`=2

(xq)2` =
x4q

1− (xq)2
. (8.51)

From the proof presented in Section 3.2.2 for Theorem 3.2 we have that

h(n+ 2) =
1

n+ 1

n∑

j=1

(
n+ j

j

)
[xn]

(
F (x)

x2

)j
,
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where
(
F (x)

x2

)j
=
∞∑

`=0

(
j + `− 1

`

)
q2`+jx2(`+j) . (8.52)

Clearly [xn]x2(`+j) is non-zero only when n is even. For n = 2i, [x2i]x2(`+j) equals one
for ` = i− j provided i ≥ j since ` ≥ 0. Combining this information, one can explicitly
compute H(x) as

H(x) = x2

(
1 +

∞∑

i=1

h(2i+ 2)x2i

)
. (8.53)

Consequently, the number of OG trees of type k with O-dimension r is given by
[x2kqr]GOtree(x, q) where

GOtree(x, q) = x2


1 +

∞∑

i=1

i∑

j=1

1

i

(
2i+ j

2i+ 1

)(
i

j

)
q2i−jx2i


 , (8.54)

is H(x). Moreover, one can easily show that GOtree(x, q) is an algebraic rank generating
function of degree 3 satisfying

q(q + 1)(GOtree)
3 − q2(GOtree)

2x2 − GOtreex
2 + x4 = 0 . (8.55)

From Corollary 3.1, the number of OG forests of type k with O-dimension r is given by
[x2kqr]GOforest(x, q) where

xGOforest(x, q) =

(
x

1 + GOtree(x, q)

)〈−1〉

x

, (8.56)

and the compositional inverse is with respect to the variable x. Equivalently, by applying
the Lagrange inversion formula (3.1) we have that

[x2k]GOforest(x, q) =
1

2k + 1
[x2k]

(
1 + GOtree(x, q)

)2k+1
. (8.57)

It follows from (8.56) that GOforest(x, q) is an algebraic rank generating function of degree
4 satisfying

(x4 − q2x2)(GOforest)
4 + ((2q2 − 1)x2 + q(q + 1))(GOforest)

3

+ (x2 − q(q(x2 + 3) + 3))(GOforest)
2 + 3q(q + 1)GOforest − q(q + 1) = 0 .

(8.58)
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As an immediate corollary, the number of vertices (0-dimensional boundaries) of Ok
is 1

k+1

(
2k
k

)
, i.e. [x2kq0]GOforest(x, q) = 1

k+1

(
2k
k

)
. It was speculated in [5] that

Ok =
⊔

F∈FOGr
k

Φ(OF,>0) (8.59)

is a regular CW decomposition, where the disjoint union is over OG forests of type k.
Moreover, by calculating the coefficient of x2k in GOforest(x,−1), the authors of [5] showed
that the Euler characteristic of the orthogonal Momentum Amplituhedron is one. This
bolsters the hypothesis that the orthogonal Momentum Amplituhedron is homeomorphic
to a closed ball.

Section 8.4

Diagrammatic Map

The D = 3 twistor-string map is a diffeomorphism of the interiors of positive geometries
but not of their boundaries; the boundary stratification of the worldsheet associahedron
M′0,2k(R) differs from that of the orthogonal Momentum Amplituhedron Ok for all k > 2.
It is, however, conjectured that the twistor-string map “squashes” the boundaries of
M′0,2k(R) in a manner compatible with a simple pictorial rule [5]. In this section, we
describe the latter function.

Recall that the faces of M′0,n(R) are in bijection with Tn, the set of n-particle planar
tree Feynman diagrams (i.e. series-reduced planar trees on n-leaves). Let T be a tree in
Tn with boundary vertices labelled by 1, . . . , n in a clockwise fashion. Each internal edge
e ∈ E int(T ) partitions the boundary vertices into two cyclically consecutive subsets, A and
B, each of size at least two. Consequently, this partitioning associates the Mandelstam
variable sA = sB to e.

Set inclusion on the boundary stratification of M′0,n(R) translates as a partial order
�A on Tn. The covering relations, shown in Fig. 8.5, are defined as follows. Given
T1, T2 ∈ Tn, we say that T2 covers T1, denoted by T1 ≺·A T2, if T2 can be obtained from
T1 by contracting two adjacent vertices u, v ∈ V int(T1) into a single vertex w ∈ V int(T2)

where deg(u) + deg(v) = deg(w) + 2 and deg(u),deg(v) ≥ 3. Moreover, (Tn,�A) is a
graded poset since A-dimension satisfies

T1 ≺·A T2 =⇒ dimA(T2) = dimA(T1) + 1 . (8.60)

On the other hand, OG forests of type k, the set of which is designated by FOGr
k ,
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≺·A

Figure 8.5: Covering relations for Tn with respect to �A. Shaded regions represent
unaffected graph components. Here deg(u)+deg(v) = deg(w)+2 and deg(u),deg(v) ≥ 3.

enumerate the boundaries of Ok. As a subset of GOGr
k , FOGr

k inherits a partial order ≺OGr

from the orthitroid stratification of OGr≥0
k,2k. The inherited partial order is characterized by

the covering relations depicted in Fig. 4.3 and described as follows. Given Γ1,Γ2 ∈ FOGr
k ,

we write Γ1 ≺·OGr Γ2, saying that Γ2 covers Γ1, if Γ2 can be obtained from Γ1 in one of two
ways: either by replacing two edges belonging to a distinct trees in Γ1 with a single vertex
of degree four (ensuring that planarity is preserved), or by contracting two adjacent vertices
u′, v′ ∈ V int(Γ1) into a single vertex w′ ∈ V int(Γ2) where deg(u′) + deg(v′) = deg(w′) + 2.
Together with O-dimension, (FOGr

k ,�OGr) forms a graded poset because

Γ1 ≺·OGr Γ2 =⇒ dimO(Γ2) = dimO(Γ1) + 1 . (8.61)

Given a series-reduced planar tree T on 2k-leaves, define OGr(T ) by the following
ordered sequence of operations:

(O1) Remove all internal edges associated with even-particle Mandelstam variables.

(O2) Reduce all degree two vertices to single edges.

(O3) Remove all connected subgraphs that are not incident on any boundary vertex.

By construction, OGr(T ) is a series-reduced planar forest on 2k-leaves. In addition, each
of its internal vertices has even degree. The latter observation follows from the following
argument. Given an internal vertex v ∈ V int(T ), its incident edges can be labelled by
Mandelstam variables sA1 , . . . , sAd where d = deg(v) and A1, . . . , Ad forms a partition of
[2k]. Since |A1|+ . . .+ |Ad| is even, there must be an even number of blocks Ai for which
|Ai| is odd. Consequently, by removing all incident edges associated with even-particle
Mandelstam variables, step (O1) maps v to v′ which has even degree. If we declare the
helicity of each internal vertex v′ ∈ OGr(T ) to be h(v′) = deg(v′)/2, then OGr(T ) is a
OG forest of type k.
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Moreover, OGr : T2k → FOGr
k is surjective. Given a forest Γ ∈ FOGr

k , one can construct
a series-reduced planar tree on 2k-leaves such that OGr(T ) = Γ. To this end, add a vertex
vF to each face F of Γ (i.e. connected region separating elements of Trees(Γ)). For each
tree adjacent to F , add an edge from vF to an edge e in the tree (by inserting a vertex
somewhere along e) where e is chosen such that the graph remains planar. After reducing
all degree two vertices to single edges, the resulting graph is a tree T ∈ T2k whose image
under OGr is Γ.

Given trees T1, T2 ∈ T2k for which T1 ≺·A T2, one can easily show that OGr(T1) �OGr

OGr(T2). To this end, suppose T2 is obtained from T1 by contracting two adjacent vertices
u, v ∈ V int(T1) into a single vertex w ∈ V int(T2). Let e denote the internal edge between
u and v. We will restrict our attention to the subgraphs containing u, v, w and their
incident edges because the complements of these subgraphs are identical. Assume u, v, w
are mapped to u′, v′, w′ by step (O1). There are two outcomes to consider for OGr(T1).
If e corresponds to an odd-particle Mandelstam variable, it persists as an internal edge
of OGr(T1) and OGr(T2) can be obtained from OGr(T1) by contracting the adjacent
internal vertices u′, v′ along e to produce w′. Consequently, OGr(T1) ≺·OGr OGr(T2).

On the other hand, if e corresponds to an even-particle Mandelstam variable, then
OGr(T2) can be obtained from OGr(T1) by merging the internal vertices u′, v′ of distinct
trees in OGr(T1) to produce w′ where deg(w′) = deg(u′) + deg(v′). Let us inspect all
possibilities in turn.

• If deg(w′) = 0, i.e. w′ is removed by step (O3), then so are u′ and v′. Consequently,
OGr(T1) = OGr(T2).

• If deg(w′) = 4, then deg(u′), deg(v′) = 2, step (O2) replaces u′, v′ with single edges
and OGr(T1) ≺·OGr OGr(T2) by definition.

• If deg(u′) ≥ 4 and deg(v′) = 2, then step (O2) replaces v′ with a single edge and
OGr(T1) ≺OGr OGr(T2) follows from a sequence of covering relations sketched in
Fig. 8.6. By symmetry, the same conclusion holds for deg(v′) ≥ 4 and deg(u′) = 2.

• Finally, if deg(u′), deg(v′) ≥ 4, then OGr(T1) ≺OGr OGr(T2) follows from a sequence
of covering relations shown in Fig. 8.7.

Nevertheless, we always have that OGr(T1) �OGr OGr(T2). Consequently, OGr : T2k →
FOGr
k is partial-preserving:

T1 �A T2 =⇒ OGr(T1) �OGr OGr(T2) . (8.62)
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≺·OGr ≺·OGr

Figure 8.6: A sequence of covering relations establishing OGr(T1) ≺OGr OGr(T2) when
deg(u′) ≥ 4 and deg(v′) = 2. Shaded regions represent unaffected graph components.

≺·OGr ≺·OGr ≺·OGr

Figure 8.7: A sequence of covering relations establishing OGr(T1) ≺OGr OGr(T2) when
deg(u′), deg(v′) ≥ 4. Shaded regions represent unaffected graph components.

While the reverse implication is not proven, [5] postulates that the image of this diagram-
matic map is the entire poset (FOGr

k ,�OGr). In this sense, the boundary stratification of
Ok can be regarded as an induced subposet of the boundary stratification of M′0,2k(R).
This relationship is included in Fig. 8.4.

The above analysis bolsters the claim in [59, 60] that vanishing even-particle Man-
delstam variables correspond to higher-codimension faces of the orthogonal Momentum
Amplituhedron [5]. Assume k > 2. (For k = 2, Ok is one-dimensional and does not have
faces beyond codimension-one.) Consider any facet of M′0,2k(R). It is labelled by a planar
tree T on 2k-leaves with only two internal (adjacent) vertices u, v ∈ V int(T ), connected via
an internal edge e, where deg(u) + deg(v)− 2 = 2k and deg(u),deg(v) ≥ 3. Suppose u, v
are mapped to u′, v′ by step (O1). If e corresponds to an odd-particle Mandelstam variable,
then T and OGr(T ) are identical as graphs and dimO(OGr(T )) = dimA(T ) = 2k − 4, i.e.
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OGr(T ) labels a facet of Ok. Otherwise, e corresponds to an even-particle Mandelstam
variable. It is removed and OGr(T ) contains two disconnected trees. Consequently,
deg(u′) = deg(u)− 1 and deg(v′) = deg(v)− 1, which means that

dimO(OGr(T )) =





dimA(T )− 1 = 2k − 5 , if deg(u′) = 2 or deg(v′) = 2

dimA(T )− 2 = 2k − 6 , if deg(u′), deg(v′) ≥ 4
, (8.63)

i.e. OGr(T ) represents a codimension-two or three face of Ok. Our results corroborate
the findings of [59, 60] concerning physical singularities as boundaries of the orthogonal
Momentum Amplituhedron.

Section 8.5

Summary

The observations of this chapter mirror those of the previous chapter in multiple respects.
Firstly, the Grassmannian-based definition of the orthogonal Momentum Amplituhedron
facilitated a complete classification of tree-level physical singularities in ABJM in terms of
orthogonal Grassmannian (OG) forests. To this end, we used the results of Chapter 2. The
covering relations for OG forests, as displayed in Fig. 4.3, represent the allowed factorisation
channels of the tree-level S-matrix. Secondly, using the results of Chapter 3, we derived
an algebraic rank generating function for the boundaries of the orthogonal Momentum
Amplituhedron. From this, we proved that its Euler characteristic is one, as is the case for
the Momentum Amplituhedron. Thirdly, the orthogonal Momentum Amplituhedron is
the image of the worldsheet associahedron via the three-dimensional scattering equations.
The interiors of the two positive geometries are diffeomorphic. However, the scattering
equations squash some of the worldsheet associahedron’s boundaries. Reference [5]
conjectures a simple diagrammatic map for the combinatorial labels of faces, compatible
with the scattering equations. Again the scattering equations directly relate the CHY
descriptions of one theory (in this case, ABJM) to the corresponding Grassmannian
formulation.



Chapter 9

All Roads Lead to ABHY

The scattering equations relate the worldsheet associahedron to the Momentum
Amplituhedron and the orthogonal Momentum Amplituhedron – this is the thesis of

[60], which we discussed in Chapters 7 and 8. In particular, the pushforward of the Parke-
Taylor form (possibly augmented by a projectively well-defined rational form in little
group parameters) via the scattering equations (for a specific spacetime dimension) gives
the canonical form for each of the latter positive geometries; see (8.45) and (7.67). Let us
refer to the Momentum Amplituhedron and the orthogonal Momentum Amplituhedron as
the four- and three-dimensional Momentum Amplituhedron, respectively. In this chapter,
we consider going in the opposite direction. Starting with the canonical form of the D-
dimensional Momentum Amplituhedron, we recover the planar scattering form, restricted
to D dimensions. Remember that the canonical form of the ABHY associahedron is
a pullback of the planar scattering form. Our principal focus in this chapter is the
results of [3]. We present a detailed comparison of the canonical forms of the Momentum
Amplituhedron and the ABHY associahedron in two spaces. The first is the space of little
group invariants, and the second is a subvariety of the space of Mandelstam invariants
defined by Gram determinants conditions. The results of [3] suggest analogues for three
and six dimensions where the planar scattering form and the ABHY associahedron are
the common denominators. These findings originate from and highlight the common
singularity structures of tree-level amplitudes in different theories and different spacetime
dimensions. In this sense, all roads lead to the ABHY associahedron. As a by-product
of our analysis, we consider the implications of restricting the planar scattering form to
specific spacetime dimensions. Throughout this chapter, we denote the canonical form of
the D-dimensional Momentum Amplituhedron by Ω

(D)
n .

113
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D Lorentz Group Little Group Variables

3 SL2(R) Z2 λai
4 SL2(C) SO(2) ∼= U(1) λai , λ̃

ȧ
i

6 SL2(H) SO(4) ∼= SU(2)× SU(2) λAai

Table 9.1: Lorentz Group and Little Group for real momenta in (1, D − 1) spacetime
signature where D = 3, 4, 6.

Section 9.1

Kinematic Spaces

Let us begin by reviewing the kinematic spaces where canonical forms live and the
intermediary settings where we can compare them.

9.1.1 On-Shell Space

The success of modern on-shell methods hinges on having a “good” description of on-shell
dynamics, i.e. kinematic variables that trivialise the on-shell condition and transform
linearly under global symmetries of the theory. The spinor-helicity formalism, known
in D = 3, 4, 6 dimensions, is an example of a “good” description, parametrising massless
scattering. In (1, D − 1) spacetime signature, the Lorentz group is Spin(1, D − 1) and
the little group (for real momenta) is SO(D − 2); see Table 9.1. We denote the set of
spinor-helicity variables for n particles in D dimensions by O(D)

n . We refer to O(D)
n as

on-shell space; it is the bosonic part of on-shell superspace.
We have already encountered O(D)

n for D = 3, 4 in Chapters 7 and 8. In three
dimensions, the Lorentz group is Spin(1, 2) = SL2(R), the little group is Z2, and the
on-shell space is

O(3)
n :=



[λ] ∈ Mat2,n(R)

SL2(R)
:

n∑

i,j=1

λai ηi,jλ
b
j = 0



 , (9.1)

where η = diag(+1,−1, . . . ,+1,−1) and SL2(R) acts of Mat2,n(R) by left multiplication.
This is the kinematic space of the orthogonal Momentum Amplituhedron Ôk where
n = 2k. The dimension of O(3)

n is given by

dim(O(3)
n ) = dim(Mat2,n(R))− dim(SL2(R))− 3 = 2n− 6 . (9.2)
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Four-dimensional spinor-helicity variables are real and independent in (2, 2) spacetime
signature. In this case, the Lorentz group is Spin(2, 2) = SL2(R) × SL2(R), the little
group is R 6=0, and the on-shell space is

O(4)
n :=

{
([λ], [λ̃]) ∈ Mat2,n(R)

SL2(R)
× Mat2,n(R)

SL2(R)
:

n∑

i=1

λai λ̃
ȧ
i = 0

}
, (9.3)

with dimension

dim(O(4)
n ) = 2(dim(Mat2,n(R))− dim(SL2(R)))− 4 = 4n− 10 . (9.4)

The Momentum Amplituhedron M̂n,k lives in O(4)
n .

The spinor-helicity formalism in six dimensions was first developed by Cheung and
O’Connell in [128]. In (1, 5) spacetime signature, the Lorentz group is SL2(H) where H
denotes the quaternions [129]. It is isomorphic to SU∗(4) where ∗ indicates that the group
is pseudo-real [30]. The little group SU(2)× SU(2) acts on chiral and anti-chiral spinors.
Six-dimensional on-shell space can be parametrised solely in terms of chiral spinors λAai
(where A ∈ [4] and a ∈ [2]) according to

O(6)
n :=



[λ] ∈ Mat4×2,n(C)

SU∗(4)
:

n∑

i,j=1

λAai ηi,jλ
Bb
j = 0



 , (9.5)

where η is the symplectic matrix

η =

[
0 1k
−1k 0

]
. (9.6)

Since the momentum conservation constraint is anti-symmetric, the dimension of O(6)
n is

given by

dim(O(6)
n ) = dim(Mat4×2,n(C))− dim(SU∗(4))− 15 = 8n− 21 . (9.7)

There are known twistor-string/CHY-inspired formulae for scattering amplitudes in
six-dimensional theories [130–134] where the relevant moduli space is

M0,n

n
×
i=1



Wi ∈ Mat2,2(C) : det(Wi) =

∏

`∈[n]\{i}

σ`,i



 / SL2(C) . (9.8)



9.1 Kinematic Spaces 116

Its dimension is 4n − 6. Presumably, this moduli spaces has a preferred positive part
which constitutes a positive geometry with some canonical form which we denote by
ω

WS(6)
n . This reasoning lead the authors of [59, 60] to hypothesise the existence of the

“symplectic Momentum Amplituhedron”, a positive geometry in O(6)
n whose canonical

form Ω
(6)
n is the pushforward of ωWS(6)

n via the D = 6 scattering equations I(6)
n . Although

the six-dimensional analogue of the Momentum Amplituhedron is as-yet-unknown, we
include it in our analysis for completeness.

It is useful to note that Eqs. (9.2), (9.4) and (9.7) are summarised by the following
formula

dim(O(D)
n ) = 2(D − 2)n− D(D + 1)

2
. (9.9)

We will use this formula later on.

9.1.2 Little Group Invariant Space

The space of little group invariants is obtained by modding out the on-shell space by the
appropriate little group:

L(D)
n := O(D)

n / SO(D − 2) . (9.10)

Its dimension is given by

dim(L(D)
n ) = (D − 1)n− D(D + 1)

2
. (9.11)

We will denote coordinates on L(D)
n by ` ∈ Rdim(L(D)

n ). Eq. (9.11) is recoded in Table 9.2
for D = 3, 4, 6 and for small values of n. While the dimensions of L(D)

n and Kn coincide
for D ≤ n ≤ D + 1, dim(L(D)

n ) < dim(Kn) for n > D + 1. The origin of this inequality is
explored in Section 9.1.3.

In four dimensions, the appropriate little group is Rn6=0. It acts on spinor-helicity
variables via

λi 7→ tiλi , λ̃i 7→ t−1
i λ̃i , (9.12)

where t := (t1, . . . , tn) ∈ Rn6=0 is an n-tuple of little group parameters and ([λ], [λ̃]) ∈ O(4)
n .

Clearly dim(L(4)
n ) = 3n−10. Let ([λ′], [λ̃′]) be a point in L(4)

n . There are many options for
parametrising L(4)

n . One approach begins by focusing first on [λ′]. In particular, one can
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n 3 4 5 6 7 8 9 10

dim(Kn) 0 2 5 9 14 20 27 35

dim(L(3)
n ) 0 2 4 6 8 10 12 14

dim(L(4)
n ) N/A 2 5 8 11 14 17 20

dim(L(6)
n ) N/A N/A N/A 9 14 19 24 29

Table 9.2: Comparison of dimensions of L(D)
n and Kn for D = 3, 4, 6.

regard [λ′] ∈ Mat2,n(R)/SL2(R)/Rn6=0 as a point in M0,n with n− 3 degrees of freedom.
In this case, it is natural to employ the parametrisation of Fock and Gonchorov [135],
given by

λ′ :=

[
0 1 1 1 · · · 1

−1 0 1 1 + `1 · · · 1 +
∑n−3

i=1

∏i
j=1 `j

]
. (9.13)

Thereafter, λ̃′ requires 2n− 7 additional parameters: SL2(R) invariance removes three
degrees of freedom; momentum conservation eliminates four degrees of freedom and
introduces dependence on `1, . . . , `n−3. This defines a chart for L(4)

n referred to as the
extended Fock–Goncharov (FG) parametrisation in [3]. Moreover, any chart for L(4)

n

extends to a chart for O(4)
n via (9.12).

9.1.3 Gram Variety

The ABHY associahedron An lives in the Mandelstam space Kn, the space of (complex)
Mandelstam variables for n-particle scattering. The latter is paramatrised by n(n−3)

2

planar Mandelstam variables, the set of which we denote by Xn. In D dimension, there
can be at most D + 1 independent momenta. So for n > D + 1 there are additional
restrictions on Xn coming from the following Gram matrix

Gi,j := si,j = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 , (9.14)

where i, j ∈ [n]. Specifically, the principal minors of G of order D + 1 must vanish:

|G|I,I = 0 , for all I ∈
(

[n]

D + 1

)
, (9.15)

where |G|I,I denotes the minor of G located in the row and column set I. When n = D+1,
det(G) vanishes identically due to momentum conservation. Eq. (9.15) defines the Gram
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ideal

r(D)
n :=

〈
|G|I,I : I ∈

(
[n]

D + 1

)〉
⊂ C[Xn] . (9.16)

The letter “r”, written in fraktur font, stands for “restriction” as the vanishing of the
principal minors of G of order D + 1 restricts Xn. The Gram variety is the zero-set of
this ideal

G(D)
n := Z(r(D)

n ) ⊂ Kn . (9.17)

Its dimension is precisely the dimension of the appropriate little group invariant space

dim(G(D)
n ) = dim(L(D)

n ) . (9.18)

The difference between the dimensions of Kn and G(D)
n is

dim(Kn)− dim(G(D)
n ) =

(
n−D

2

)
. (9.19)

Let X (D)
n be a subset of Xn of size dim(G(D)

n ). Practically speaking, (9.15) allows us
to parametrize G(D)

n in terms of X (D)
n by eliminating the remaining planar Mandelstam

variables. This perspective motivates the definition of the following zero-dimensional
ideal

r̃(D)
n :=

〈
|G|I,I : I ∈

(
[n]

D + 1

)〉
⊂ C(X (D)

n )[Xn \ X (D)
n ] , (9.20)

called the modified Gram ideal where

|Z(r̃(D)
n )| =

(
n−D

2

)
. (9.21)

The size of Z(r̃
(D)
n ) for D = 3, 4, 6 and for small values of n is displayed in Table 9.3.

Section 9.2

Maps

The kinematic spaces of Section 9.1 relate to each other via particular maps. This web of
relations is depicted in Fig. 9.1. In this section, we define the maps between the kinematic
spaces which are later used to perform pullback and pushforward operations.
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n 3 4 5 6 7 8 9 10

| Z(r̃
(3)
n )| N/A 0 1 3 6 10 15 21

| Z(r̃
(4)
n )| N/A N/A 0 1 3 6 10 15

| Z(r̃
(6)
n )| N/A N/A N/A N/A 0 1 3 6

Table 9.3: Comparison of sizes of Z(r̃
(D)
n ) for D = 3, 4, 6.

O(3)
n

O(6)
n

M0,n ×SU(2)n M0,n M0,n ×Rn
6=0 O(4)

n

L(6)
n G(6)

n Kn G(4)
n L(4)

n

G(3)
n

g(3)
n

I(3)
n

In

add

LG

add

LG

I(4)
n

I(6)
n

g(6)
n

g(4)
n

r(4)n

r(6)n

r(3)n

r(3)n

r(3)n

r(4)n

o(6)
n

remove
LG

o(4)
n

remove
LG

k(6)
n

k(4)
n

Figure 9.1: Web of kinematic spaces and maps relating them.

As previously discussed, any chart for the little group invariant space L(D)
n extends

to a chart for the on-shell space O(D)
n . In general, we will denote this extension by the

rational map

o(D)
n : L(D)

n ×SO(D − 2)→ O(D)
n . (9.22)

In four dimensions, the extended FG parametrisation furnishes a chart for L(4)
n with

coordinates ` := (`1, . . . , `3n−10) ∈ R3n−10. Identifying L(4)
n with R3n−10, we have that

o(4)
n : L(4)

n ×Rn6=0 → O(4)
n , (`, t) 7→ ([λ], [λ̃]) , (9.23)

where λi = tiλ
′
i(`) and λ̃i = t−1

i λ̃′i(`). The rational map o(4)
n is invertible for t ∈ Rn>0 [3].

There are two obvious maps involving planar Mandelstam variables defined on L(D)
n .
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One of them maps L(D)
n to the Mandelstam space Kn:

k(D)
n : L(D)

n → Kn , ` 7→ Xn . (9.24)

Here ` ∈ Rdim(L(D)
n ) are coordinates on L(D)

n . Another relates L(D)
n to the Gram variety

G(D)
n :

g(D)
n : L(D)

n → G(D)
n , ` 7→ X (D)

n . (9.25)

Both are rational maps defined via Xi,j =
∑

i≤i′<j′<j〈i′j′〉[i′j′]. For g(D)
n , we restrict our

attention to those Xi,j contained in X (D)
n , a subset of Xn of size dim(G(D)

n ). The graph
of g(D)

n defines the following zero-dimensional ideal

g(D)
n :=

〈
Xi,j −

∑

i≤i′<j′<j
〈i′j′〉[i′j′] : Xi,j ∈ X (D)

n

〉
⊂ C(X (D)

n )[`] . (9.26)

In the next section, we will use g
(D)
n to perform pushforwards. In particular, (g(D)

n )∗ =

(g
(D)
n )∗. The degrees of k(D)

n and g(D)
n are non-trivial (i.e. larger than one) for n ≥ D + 1

[3].
Lastly, the modified Gram ideal r̃(D)

n ⊂ C(X (D)
n )[Xn \ X (D)

n ], defined in (9.20), relates
Kn to G(D)

n . It allows us to pushforward rational forms defined on Kn such as ωABHY
n .

Section 9.3

Rational Forms

The maps of Section 9.2 allow us to connect the canonical forms of different positive
geometries. In particular, they allow us to define rational forms on L(D)

n and G(D)
n related

in natural ways. In this section, we will focus on four dimensions, reviewing the results of
[3]. Some of these results were verified in [6] using the methods discussed in Chapter 5.

The Momentum Amplituhedron’s canonical form Ω
(4)
n,k := Ω(M̂n,k) is a rational form

on O(4)
n of degree 2n − 4. It is the pushforward of ωWS(4)

n := ωWS
n ∧ Ω(P(Rn≥0)) via the

D = 4 scattering equations (see Eq. (7.67)). The pullback of Ω
(4)
n,k via o(4)

n defines a
rational form in the variables ` = (`1, . . . , `3n−10) and t = (t1, . . . , tn). Empirical evidence
[3] indicates that

(o(4)
n )∗Ω

(4)
n,k = ω

(4)
n,k ∧ Ω(P(Rn≥0)) +O(dn−2t) , (9.27)
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where Ω(P(Rn≥0)) =
∑n

i=1(−1)i+1
∧
j 6=i

dtj
tj

is the canonical form on P(Rn≥0) and O(dn−2t)

denotes rational forms of degree at most n− 2 in dt. The terms inside O(dn−2t) depend
on the choice of chart for L(4)

n and are ignored. On the other hand, the reduced Momentum
Amplituhedron form ω

(4)
n,k is parametrisation independent and hence well-defined on L(4)

n .
Moreover, it is invariant under the action of the little group. Its degree is n− 3, because
deg Ω

(4)
n,k = 2n− 4 and deg Ω(P(Rn≥0)) = n− 1. The inverse-soft construction of [115] for

Ω
(4)
n,k can be used to recursively derive ω(4)

n,k as demonstrated in [3]. An all-multiplicity
expression for the reduced Momentum Amplituhedron form is known for MHV and MHV
sectors [3]:

ω
(4)
n,2 =

n−2∧

i=2

d log
〈1, i〉〈i+ 1, i+ 2〉
〈1, i+ 1〉〈i, i+ 2〉 , ω

(4)
n,n−2 =

n−2∧

i=2

d log
[1, i][i+ 1, i+ 2]

[1, i+ 1][i, i+ 2]
, (9.28)

where the spinor brackets are evaluated on L(4)
n .

The pullback of the planar scattering form ωABHY
n via k(D)

n produces

ω(D)
n := (k(D)

n )∗ωABHY
n , (9.29)

a well-defined (n− 3)-form on L(D)
n . Specialising to four-dimensions, ω(4)

n coincides with
the reduced Momentum Amplituhedron form (summed over all helicity sectors) [3]:

n−2∑

k=2

ω
(4)
n,k = ω(4)

n . (9.30)

Eq. (9.30) is the first of two foremost findings of [3]. It relates (the pullbacks of) the
rational forms associated with tree-level scattering in N = 4 SYM and BAS on L(4)

n .
The relationship stems from the fact that tree-level amplitudes in both theories have
factorisation channels given by the vanishing of planar Mandelstam variables. Fig. 9.2
illustrates (9.30) as a strand in a web of relations.

The Gram variety provides an additional arena for comparing the Momentum Ampli-
tuhedron form and the planar scattering form. Pushing forward ω(4)

n,k via g(4)
n (equivalently

g
(4)
n ) produces the following (n− 3)-form on G(4)

n :

ν
(4)
n,k := (g(4)

n )∗ω
(4)
n,k = (g(4)

n )∗ω
(4)
n,k . (9.31)
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Figure 9.2: Web of rational forms and maps relating them. Solid lines designate push-
forwards. Pullbacks are denoted by dotted lines. Black lines refer to relations already
established in the literature, red lines are conjectures, and blue lines depend on the
hypothetical symplectic Momentum Amplituhedron.

Correspondingly, the pushforward of ωABHY
n via r̃

(D)
n yields

ν(D)
n := (r̃(D)

n )∗ω
ABHY
n , (9.32)

a rational form on G(D)
n of the same degree. In four dimensions, ω(4)

n couples to
∑n−2

k=2 ν
(4)
n,k

through [3]

n−2∑

k=2

ν
(4)
n,k =

|Z(g
(4)
n )|

|Z(r̃
(4)
n )|

ν(4)
n . (9.33)

Eq. (9.33) serves as the second seminal discovery of [3]. It too is included in Fig. 9.2. The
ratio on the right-hand-side of (9.33) is given by

|Z(g
(4)
n )|

|Z(r̃
(4)
n )|

= 2− δn,4 . (9.34)

Eq. (9.34) was checked for 4 ≤ n ≤ 7 in [3]. It is a property of the pushforwards, not the
rational forms.
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Starting at n = 6, the leading singularities (i.e. iterated residues on simple poles that
produces numbers) of ν(4)

n,k include, but are not limited to ±1. Consequently, they cannot

be canonical forms of positive geometries defined in G(4)
n . They may, however, correspond

to weighted positive geometries, à la [87].
It seems reasonable to expect that relationships analogous to (9.30) and (9.33) exist

for the orthogonal Momentum Amplituhedron and the “symplectic Momentum Ampli-
tuhedron” (if it exists). A web of these conjectured connections is contained in Fig. 9.2,
building on the graphic in the conclusions of [60]. All pushforwards in Fig. 9.2 can be
calculated using the methods developed in Chapter 5.

Section 9.4

Summary

This chapter presented a network of interrelations between the various positive geometries
studied in this dissertation. In particular, we considered relationships between the canoni-
cal forms of the D-dimensional Momentum Amplituhedron and the ABHY associahedron
in two settings: the little group invariant space and the Gram variety. These relationships
are confirmed in four dimensions (see [3]), and we expect them to hold in three and
six dimensions. In the four-dimensional case, the restriction of the planar scattering
form to the Gram variety no longer has uniform leading residues [3], so it cannot be a
canonical form. Nevertheless, it correctly captures the physics of tree-level scattering in
four-dimensional BAS. This observation suggests a blueprint for describing scattering
amplitudes in more realistic theories as some restriction of some positive geometry.



Chapter 10

Conclusions and Outlook

Section 10.1

Summary

In this dissertation, we surveyed three intricately interrelated positive geometries:
the Arkani-Hamed–Bai–He–Yan (ABHY) associahedron, the (D = 4) Momentum

Amplituhedron, and the orthogonal (or D = 3) Momentum Amplituhedron. Each encodes
tree-level scattering amplitudes in on-shell momentum space: the ABHY associahedron
uses Mandelstam invariants; the three- and four-dimensional Momentum Amplituhedra
employ spinor-helicity variables in three and four dimensions, respectively. Although rele-
vant for different theories in different spacetime dimensions, the three positive geometries
share multiple connections between their boundary posets and canonical forms.

To synthesise and study the boundary stratifications of the three- and four-dimensional
Momentum Amplituhedra, we formalised several ideas in Chapter 2. We introduced the
notions of dissections and tilings induced by rational maps, generalising similar notions
found in [88]. We then modified the characterisation of morphisms to include rational maps
between positive geometries of possibly differing dimensions. This modification facilitated
the definition of morphism-induced boundaries (summarising definitions developed in [1,
2, 4, 5, 80]). Furthermore, we identified conjectures implicit in [1, 2, 4, 5, 80], including
the presumption that morphism-induced boundaries are actual boundaries.

In Chapter 7, we studied the Momentum Amplituhedron’s boundary stratification using
the aforementioned conjecture. This boundary stratification is an induced subposet of the
positroid stratification enumerated by contracted Grassmannian forests [2, 4]. Indeed, the
inherited partial order mimics the singularity structure of partial amplitudes in N = 4

supersymmetric Yang-Mills (SYM) theory. Fig. 4.2 displays the covering relations. We
found a similar characterisation for faces of orthogonal Momentum Amplituhedron in
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Chapter 8. In this case, the correct combinatorial labels are orthogonal Grassmannian
forests [5]. The covering relations, shown in Fig. 4.3, reflect the singularity structure
of partial amplitudes in Aharony–Bergman–Jafferis–Maldacena (ABJM) theory. The
boundary poset is an induced subposet of the orthitroid stratification [5]. It is also
an induced subposet of the Momentum Amplituhedron’s face poset, consisting of faces
labelled by orthogonal Grassmannian forests [5]. Thus, combinatorially speaking, the
Momentum Amplituhedron contains the orthogonal Momentum Amplituhedron. Fig. 8.4
summarises these connections.

Having precise diagrammatic descriptors for boundaries allowed us to engineer rank
generating functions using results developed in [4] and summarised in Chapter 3. As a
warm-up exercise, we used the series-reduced planar tree analogue of the Exponential
formula to deduce the rank generating function for the ABHY associahedron in Chapter 6.
In Chapter 7, we presented the Momentum Amplituhedron’s rank generating function [4].
Similarly, we deliberated over the rank generating function for the orthogonal Momentum
Amplituhedron [5] in Chapter 8. Both results use the series-reduced planar forest analogue
of the Exponential formula. In each case, the rank generating function implies that the
Euler characteristic is one.

The three positive geometries relate via the scattering equations to (appropriate
extensions of) the worldsheet associahedron, a positive geometry in the genus zero moduli
space [57, 60]; see Fig. 9.1. The scattering equations concretely connect the CHY formalism
in various dimensions to the framework of positive geometries. In each case, the scattering
equations define a morphism between the momentum space positive geometry and the
positive geometry in the space of worldsheet moduli; see Chapters 6 to 8. Pushing forward
(the appropriate extension of) the Parke-Taylor form via the scattering equations yields
the canonical form of the momentum space positive geometry.

In addition, the scattering equations in three dimensions provide an additional strand
in the web of combinatorial connections between boundary posets. Faces of the worldsheet
associahedron are in bijection with series-reduced planar trees. The same is true for the
ABHY associahedron. The authors of [5] conjecture that the three-dimensional scattering
equations squash the boundaries of the worldsheet associahedron in a manner compatible
with a simple partial-order-preserving pictorial rule; see Chapter 8. In this sense, the
orthogonal Momentum Amplituhedron descends from the worldsheet associahedron.
Fig. 8.4 includes this combinatorial connection.

We explored three methods from [6] in Chapter 5 for efficiently evaluating pushforwards.
They utilize tools from computational algebraic geometry — companion matrices and
the duality of global residues — to sidestep the problem of determining local inverses.
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Reference [6] discusses the relative strengths and weaknesses of each approach. The three
methods provide conceptual and practical resources for calculating pushforwards. They
are suitable for constructing canonical forms in Chapters 6 to 8 as well as for performing
pushforwards in Chapter 9.

In Chapter 9, we brought our discussion back to the ABHY associahedron, reviewing
the results of [3] and their extensions in [6]. To this end, we introduced D-dimensional
analogues of the space of little group invariants and the Gram variety. The latter arises
from so-called Gram determinant conditions on the space of Mandelstam invariants.
We discussed the different maps which connect these auxiliary arenas, as summarised
in Fig. 9.1. As observed in [3], the canonical forms of the ABHY associahedron and
the Momentum Amplituhedron are precisely related in these secondary settings. This
phenomenon reflects the fact that factorisation channels of tree-level amplitudes in bi-
adjoint scalar theory (BAS) and N = 4 SYM coincide. It is speculated in [6] that similar
comparisons hold for the orthogonal Momentum Amplituhedron. In effect, pulling back
onto the space of little group invariants undoes the scattering equations, while pushing
forward onto the Gram variety restricts the ABHY associahedron’s canonical form to
specific spacetime dimensions. Fig. 9.2 summarises the analysis of Chapter 9.

Section 10.2

Outlook

The work presented in this dissertation provides multiple directions for future research.
From a pure mathematics perspective, this dissertation makes several substantive claims
which require proof. The characterisation of (orthogonal) Momentum Amplituhedron
boundaries in terms of (orthogonal) Grassmannian forests rests on two conjectures:

• Morphism-induced boundaries coincide with actual boundaries;

• The algorithm developed in [80] and discussed in Chapter 2 determines all morphism-
induced boundaries.

With these assumptions, a complicated topological problem (determining the face poset
of a positive geometry) translates into a simple combinatorial one. These conjectures
have wide-ranging applications. In particular, they are relevant for proving that the
three-dimensional scattering equations “squash” the boundary poset of the worldsheet
associahedron in a manner compatible with the diagrammatic map presented in [5] (see
Chapter 8).
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Moreover, there are many unanswered questions concerning the boundary stratifica-
tions of the three- and four-dimensional Momentum Amplituhedra. For example, is the
poset thin and shellable? If so, it is Eulerian and the face poset of a regular CW complex
homeomorphic to a sphere [136]. Figs. 4.2 and 4.3 present the covering relations relevant
for proving these properties.

On a practical point, all three methods for pushing forward rational forms, developed
in [6] and presented in Chapter 5, use Gröbner bases. This dependency poses a significant
bottleneck for high-multiplicity examples or when working over fraction fields (as opposed
to sampling over finite fields). Improving the efficiency of Gröbner basis routines for
fraction fields would significantly strengthen our results. Alternatively, it will prove
invaluable to interface existing rational reconstruction algorithms (e.g. FiniteFlow [137]
and FireFly [138]) with ultra-efficient algorithms for calculating Gröbner bases over finite
fields (e.g. Faugère’s F4/F5 algorithms [139, 140]). It is also worthwhile investigating
methods for performing pushing forwards which do not require Gröbner bases.

There are also many potential future physics projects related to this dissertation.
Speculation on a D = 6 Momentum Amplituhedron [59, 60] warrants further investigation.
Its existence is natural from the perspective of theD = 6 scattering equations. (Recall that
the D = 3, 4 scattering equations define maps onto the D = 3, 4 Momentum Amplituhedra
[60].) One idea for defining a D = 6 Momentum Amplituhedron is to identify a suitable
positive geometry in the moduli space given by (9.8) and to study its image under the
D = 6 scattering equations. To this end, the pushforward techniques discussed in this
dissertation may prove useful. Alternatively, one can define the symplectic Momentum
Amplituhedron as the image of the symplectic Grassmannian via some morphism. In this
case, it is natural to expect that its boundaries are enumerated by suitable symplectic
analogues of Grassmannian forests.

So far, we have shone a spotlight on positive geometries relevant for tree-level ampli-
tudes. Recently, a loop-level version of the Momentum Amplituhedron was defined [110].
It is the spinor-helicity analogue of the Amplituhedron, describing the integrands of ampli-
tudes in planar N = 4 SYM. The loop Momentum Amplituhedron is not parity-symmetric
with respect to helicity because its definition builds on that of the loop Amplituhedron.
Nevertheless, it is desirable to analyse the loop Momentum Amplituhedron using the
methodologies of this dissertation: to investigate and combinatorially characterise its
boundary stratification; to consider analogues of its canonical form on the space of little
group invariants and the Gram variety, obtained via pullback and pushforward operations.
Furthermore, is it possible to define a parity-symmetric loop Momentum Amplituhedron
using knowledge about factorisation channels and forward limits?
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It is as-yet-unknown how to generalise the above constructions to non-planar loop
amplitudes. The integrands of non-planar loop amplitudes inN = 4 SYM have logarithmic
singularities and uplift to logarithmic differential forms [141]. The relevant combinatorial
labels are non-planar on-shell diagrams. There are some results for MHV amplitudes [142]
and six-particle NMHV amplitudes [143]. Reference [144] initiates a systematic study
of non-planar on-shell diagrams arising from non-adjacent BCFW shifts. Nevertheless,
further investigation is required to understand the connection between generic non-planar
on-shell diagrams and the Grassmannian.

On-shell diagrams exist for other theories too, including gravity [145–147] where
amplitudes are invariant under permutations of identical particles. Presently, there is
no positive geometry describing gravity, despite promising progress towards a putative
Gravituhedron [148]. This thesis provides tools for finding such a positive geometry (or
suitable generalisation thereof). In particular, one can use the methods of Chapter 5 to
pushforward the CHY integrand for some gravitational theory via the scattering equations
to produce some rational form in on-shell momentum space. The resulting rational form
will have non-trivial numerators and higher-order poles [146]. Reference [149] provides a
possible framework for dealing with these difficulties. Alternatively, one can use point-
splitting regularisation to obtain simple poles from higher-order poles. Nevertheless, we
leave this important pushforward calculation for a later publication.

Returning to the content of my thesis, the emergence of forest-like labels for boundaries
of the Momentum Amplituhedron and the orthogonal Momentum Amplituhedron, positive
geometries describing tree-level scattering amplitudes, is to be expected. In fact, it
bolsters our belief that they correctly capture the dynamics of the corresponding theories.
Perhaps combinatorics provides an appropriate point of departure for defining (suitable
generalisations of) positive geometries. Starting with an on-shell diagrammatic description
for the singularity structure of some S-matrix (supplemented with covering relations),
can one find a geometric realisation of the resulting poset in momentum space?

These questions, while beyond the scope of this dissertation, represent but a snapshot
of the research possibilities opened up through the paradigm of positive geometries.



Appendix A

Results from Computational
Algebraic Geometry

In this appendix, we enclose a handful of results from computational algebraic geometry.
These theorems are relevant for Chapter 5.

Theorem A.1 (Shape Lemma [100]). Let I be a zero-dimensional radical ideal in
C[x1, . . . , xm]. Suppose that all d complex roots of I have distinct xm coordinates. Then
the unique reduced Gröbner basis of I with respect to lex order (x1 � . . . � xm) has the
shape

Glex(I) = {x1 − q1(xm), . . . , xm−1 − qm−1(xm), r(xm)} , (A.1)

where r ∈ C[xm] has degree d and qi ∈ C[zm] has degree strictly less than d for each
i ∈ [m− 1].

Theorem A.2 (Stickelberger’s Theorem [100]). Let I be a zero-dimensional ideal in
C[x1, . . . , xm]. Then the zero-set of I is the set of vectors of simultaneous eigenvalues of
the companion matrices of I.

The following corollary can be found in [100], for example.

Corollary A.1. Let I be a zero-dimensional ideal in C[x1, . . . , xm]. The companion
matrices of I are simultaneously diagonalizable if and only if I is a radical ideal.

Theorem A.3 (Elimination Theorem [95]). Let I be an ideal in C[x1, . . . , xm] and let
G be a Gröbner basis for I with respect to the lex order where x1 � . . . � xm. Then for
every 0 ≤ ` ≤ m, G ∩ C[x`+1, . . . , xm] is a Gröbner basis for the `th elimination ideal
I ∩ C[x`+1, . . . , xm].
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Theorem A.4 (Hilbert’s Weak Nullstellensatz [95]). Let I be an ideal in C[x1, . . . , xm]

whose zero-set is empty. Then I = C[x1, . . . , xm].

Theorem A.5 (Global Duality Theorem [101]). Let I = 〈f1, . . . , fn〉 be a zero-dimensional
ideal in C[x1, . . . , xm], let Q = C[x1, . . . , xm]/I, let h ∈ C[x1, . . . , xm] and let Res(h)

denote the global residue of h with respect to the divisors f1, . . . , fm. Then the symmetric
inner-product 〈•, •〉 defined by

〈•, •〉 : Q×Q → C, ([h1], [h2]) 7→ 〈[h1], [h2]〉 := Res(h1h2) , (A.2)

is non-degenerate.



Appendix B

Algebraic Relations

The rank generating functions for contracted Grassmannian trees and forests presented
in Chapter 7 satisfy the following algebraic relations [4]:

0 = q(q + 1)(GMtree)
5 + qx(q2xy − 5q(y + 1)− 5(y + 1))(GMtree)

4 + x2(q(−3q2xy(y + 1)

+ q(10− y((x− 10)y + x− 19)) + y(10y + 21) + 10) + y)(GMtree)
3 + x3(q3xy(y(3y + 7)

+ 3) + q2(y + 1)(y(2(x− 5)y + 2x− 17)− 10)− q(y(y(−x+ 10y + 32) + 32) + 10)

− 3y(y + 1))(GMtree)
2 − x4(q3xy(y + 1)(y(y + 4) + 1) + q2(y + 1)(y((x− 5)y2 + 3(x

− 4)y + x− 12)− 5)− q(y + 1)(y(y(−x+ 5y + 16) + 16) + 5)− y(y(3y + 5) + 3))GMtree

+ x5(q3xy2(y + 1)2 − q2(y + 1)2(y(y(−x+ y + 2) + 2) + 1)− q(y(y(y(−x+ y(y + 5)

+ 10) + 10) + 5) + 1)− y(y + 1)(y2 + y + 1)) , (B.1)

0 = q(x− 1)x2y(xy − 1)(q(xy + x− 1) + x)(q(xy + x− 1) + xy)(GMforest)
6 + (q3x2y(xy

+ x− 1)(x(xy(y + 4) + x− 5(y + 1)) + 4) + q2(x(x(−(x3(y + 1)(y(y + 2)(y2 + 1)

+ 1)) + x2(y + 1)2(y(5y + 3) + 5)− 2x(y + 1)(y(5y + 7) + 5) + y(10y + 19) + 10)

− 5(y + 1)) + 1)− q(x2(y2 + y + 1)− 2x(y + 1) + 1)(x(x(x(y + 1)(y(y + 3) + 1)

− y(3y + 8)− 3) + 3(y + 1))− 1)− x2y(xy + x− 1)(x2(y2 + y + 1)− 2x(y + 1)

+ 1))(GMforest)
5 + (q3x2y(x2(y(3y + 7) + 3)− 9x(y + 1) + 6)− q2(x(x(5x2(y + 1)2(y2

+ y + 1)− x(y + 1)(y(20y + 31) + 20) + 30y2 + 57y + 30)− 20(y + 1)) + 5)

− q(x(x(x2(y(y(y(5y + 21) + 31) + 21) + 5)− 4x(y + 1)(y(5y + 11) + 5) + 30y2 + 63y

+ 30)− 20(y + 1)) + 5)− x2y(x2(y(3y + 5) + 3)− 6x(y + 1) + 3))(GMforest)
4 + (−10q(q

+ 1)x3y3 + (q + 1)x2y2((q(3q − 29)− 3)x+ 30q) + xy((q + 1)(q(3q − 29)− 3)x2

+ (q(q(57− 4q) + 63) + 3)x− 30q(q + 1))− 10q(q + 1)(x− 1)3)(GMforest)
3 + (q

+ 1)(q2x2y − 10q(xy + x− 1)2 − x2y)(GMforest)
2 − 5q(q + 1)(xy + x− 1)GMforest − q(q

+ 1) . (B.2)
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