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Abstract 

In this paper, a fundamental solution for the Mindlin plate theory with damping is derived in 

the Laplace transform domain first time. The applications of this fundamental solution are 

demonstrated by the method of fundamental solution (MFS). All variables in the time 

domain can be obtained by the Durbin’s Laplace transform inversion method. Numerical 

examples demonstrate the accuracy of the method of fundamental solution and comparisons 

have been made with analytical solutions. To model the cutting machining process, a moving 

concentrated force on the plate has been investigated. The proposed MFS is shown to be 

simple to implement and gives satisfactory results for the shear deformable plate under 

dynamic loads with damping.   
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1. Introduction 

In metal cutting, the effects of the cutting forces are extremely important as this can 

mean a difference between successful/unsuccessful machining. The cutting forces give rise 

to the dynamic response experienced in both the workpiece and tool/machine. This response 

can either be stable or unstable (regenerative severe vibration known as chatter). Surface 

dimensional error is also induced by the deflection of the workpiece or tool. In the interest of 

achieving higher material removal rates, optimum cutting conditions are required. It is due to 

this reason that there have been quite a number of studies in the literature into the response 

of the workpiece and tool to the cutting forces. 

The cutting force system experience in milling is highly nonlinear and complex. A 

range of models both analytical and numerical modes have been proposed in the literature to 

predict the cutting forces, some of which are sometimes tool and workpiece geometry and 

material dependent. One of the most favoured approaches to predicting the cutting force in 

milling is to assume the force is proportional to the uncut chip thickness (see Tlusty and 

MacNeil [1]). Altintas and Engin [2] gave a general definition of the model for different 

tools and Gradisek et al. [3] furthered his work. The proportionality constants are known as 

the cutting force coefficients. These are either obtained through Merchant force definitions 

for (as shown by Altintas [4]) or through mechanistic approach (Gradisek et al. [3]). Either 

of these methods have lead to very good predictions of the cutting forces acting on the 

tool/workpiece (Altintas [4]). 

To model plate structures, we have two main theories: classical thin plate theory 

(Kirchhoff’s theory) and the shear deformable plate theory (Mindlin-Reissner’s theory). 

Numerical methods to solve plate problems, such as the finite element method and boundary 

element method, have been well developed since the past decades for both thin and thick 

plate problems. Apparently, the Kichhoff’s theory ignores the effect of shear deformation 

through the thickness and therefore the elasticity waves are not able to be captured accurately.  

Ratchev et al. [5] proposed a finite element to model the error in machining of thin wall 

through the deflection induced by the cutting forces. The finite element is used to obtain the 

dynamic response of the workpiece during cutting. Tsai and Liao [6] also developed a finite 

element model to predict the dimensional error induced by the cutting force model. The 

finite element method was also used by Bravo et al. [7] to obtain the dynamic properties of 
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the workpiece for different modes and these properties were used to obtain the dynamic 

response to the cutting force. 

The boundary integral formulation was introduced to reduce the dimensionality of a 

problem by Simogliana in elasticity theory (see the most comprehensive review of the 

boundary element method by Cheng et al [8]). For shear deformable Reissner/Mindlin’s 

plates, the boundary integral equation method was reported by Vander Weeën [9] for static 

problems. Ante et al [10,11] firstly derived the fundamental solution for Reissner plate in the 

frequency domain and demonstrated its application for dynamic problems. Later, the direct 

boundary element formulation for Reissner/Mindlin's plate bending under dynamic loads 

was presented by Wen et al [12], in which the fundamental solutions of displacement and 

traction in the Laplace transform domain were derived using displacement potential 

functions. Recently, the fundamental solutions for a Mindlin plate resting on an elastic 

foundation were derived by Wen [13] and the method of fundamental solution was 

demonstrated. In their work, the behaviour of the three flexural waves, i.e. slow flexural, fast 

flexural and thickness shear waves, was studied comprehensively. Chen et al [14] derived 

the general and the fundamental solutions of varied orders of thin plate, Berger plate, and 

Winkler plate. These solutions can be used for the multiple reciprocity BEM, dual 

reciprocity BEM etc.  

In recent years, there has been a growing interest in meshless method for the 

numerical solutions, see Atluri [15]. The method of fundamental solution is regarded as one 

of the mesh free methods since MFS does not require an elaborate discretisation of the 

boundary. The integrations over the boundary and domain are avoided successfully and the 

solutions in the interior of the domain are evaluated without extra treatments. The main idea 

of the MFS consists of approximating solutions by linear combination of fundamental 

solutions with respect to the source points, which are located outside the domain. This 

method was originally introduced by Kupradze et al. [16] and was successfully applied for 

solving a wide range of boundary value problems, when the fundamental solution is 

available for the governing partial deferential equations. The method of fundamental solution 

which was applied firstly to the Kirchhoff plate on a Winkler’s foundation was found by 

Wen [17-18]. A comprehensive review of MFS for two and three dimensions elasticity was 

given by Marin et al. [19] and for diffusion equations by Chen et al. [20].   
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The effect of impact dynamics in milling of thin-walled components was investigated 

both experimentally and numerically by Davies et al. [21]. An approximate technique called 

single-mode Galerkin projection was employed to obtain an ordinary differential equation 

that describes the workpiece dynamics. However, the effect of elasticity waves traveling in 

the plate can not be captured by using Kirchhoff plate theory. Further more, the influence of 

the movement of the cutter on the plate surface should be taken into account particularly for 

high speed machining, which makes the numerical modeling more difficult. To investigate 

elasticity waves due to cutting forces with higher accuracy, Reissner/Mindlin’s plate theory 

needs to be introduced as discussed in details by Wen et al. [12]. Considering the shortage of 

analytical and numerical investigation for the moving forces, this paper deduced the 

fundamental solution in the Laplace domain for moderate thick plate (Reisnner/Mindlin’s 

theory) with damping. These fundamental solutions can be used to derive the boundary 

element formulations directly. However, the applications of this fundamental solution in this 

paper are demonstrated only by MFS, one of the mesh free techniques, for a dynamic cutting 

force moving on the plate surface. The response due to a moving cutting force has shown to 

be significant. Comparisons are made with analytical solutions for a simply supported plate 

to demonstrate the accuracy and convergence of MFS. It is well known that there are still 

problems of stability and convergence for the method of fundamental solution and the 

inversion of the Laplace transformation too. However, we are still able to obtain stable 

solutions in the large range selections of free parameter particularly for the elasticity wave 

propagations. There are a large number of articles dealing with the stability of the MFS and 

the inversion techniques of the Laplace transformation.      

 

2. Fundamental solution for Mindlin’s plate with damping 

With the small motion assumption, the governing equations for deflection and 

rotations for moderate thick with dynamic load and damping force can be expressed, see 

Wen et al. [12], as 
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where q(t) is applied load in the domain and w (see Figure 1) denotes rotations with 

respecting to the axis x  and 3w  is the out-of-plane deflection, where Greek indices vary 

from 1 to 2. Parameter   denotes the shear coefficient ( 12/2  for Mindlin’s theory and  

6/5  for Reissner’s theory respectively), the bending stiffness of the plate 

)1(12/ 23  EhD , the shear modulus )1(2/   E  and h denotes the thickness of the 

plate,   is the density of the plate, E and   are elastic constants and c is the damping 

coefficient. The components of moment M  and shear forces Q can be written, in terms of 

displacements, as  
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in which   denotes the Kronecker delta function. Considering the Laplace transform of a 

function ),( tf x  
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where p is the parameter of the Laplace transformation. Applying the Laplace transform to 

the governing equations (1) results 
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It is apparent that the rotations and the deflection can be written in terms of three 

displacement potentials )3,2,1( kk , see Sih et al. [22] and Wen et al. [13], as 
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where non-dimensional parameters  are two roots in the following equation, for the 

Mindlin’s plate (i.e.  12/2 ), as 
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where 0  denotes the cut-off frequency hc /2 ,  /2 c  is the velocity of shear wave 

and non-dimensional damping coefficient /2ccc   . As in the Laplace domain, the 

parameter p is complex, thus the two roots of the above equation  are complex values in 

general. Substituting (5) into (4) gives the Helmholz type differential equations for 

displacement potentials as the following 
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For a symmetric problem with respecting to the axis 
1x  , the general solutions of the above 

equations can be obtained (see Wen et al. [12] for plate bending) by Fourier transformation 

as 
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kk s    and )(sAk  are unknown coefficients which are to be determined by 

boundary conditions for each point force. Therefore, we have the rotations and the deflection 

as follows 
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The components of moment M
~

 and shear forces Q
~

in transformed domain can then be 

obtained as   
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in which )( 10 zK represents the zero order modified Bessel function and 2
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general form of fundamental solutions for rotations and deflection ikU
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 in the Laplace domain 
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By the use of the property of modified Bessel functions, the fundamental solutions for the 

displacement fundamental solutions can be rewritten as  
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Then, the traction fundamental solutions are obtained from the relationships in (2) 
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where n  denotes the component of the outward normal vector to the boundary of the plate 

(Γ) and  nrr n ,,  .  

 

3. Method of fundamental solution in Laplace domain  

In the MFS, we distribute source points outside the physical domain in order to avoid 

the singularities of fundamental solution. By using the principle of superposition for linear 

elasticity, Wen [17-18] demonstrated the MFS for Kirchhoff plate resting on an elastic 

foundation subjected to static loads. As the superposition principle is still valid in the 

transformed domain, the approximate solutions of the displacement (deflection and rotations) 

and the resultants of moment and shear force in the Laplace domain at the boundary 

collocation point can be expressed as 
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where ,
~~ ,

~~
3  nQpnMp  )(~* Piw and )(~* Pip present the particular solutions in 

governing equation (4), P and Q denote the collocation and the source points shown in 

Figure 2 respectively and n

kc  the unknown densities of concentrated forces at source point n. 

In general, the number of collocation point on the real boundary cN is different from the 

number of source point outside of domain sN . The least square method needs to be utilized 

to determine all unknown densities if sc NN  . In this paper, the case sc NN   is considered 

only.  

In general, the applied load on the plate surface is a function of coordinate. However, 

if uniform and linear distributed loads are considered in the domain, i.e. 

22110 )()()(),( xtqxtqtqtq P         (28) 

where )( ),( 10 tqtq  and )(2 tq are time dependent functions only, we are able to obtain the 

particular solutions in the Laplace domain analytically as 

22110 )(~)(~)(~),(~ xpqxpqpqpq P         (29) 

where particular solutions of displacement can be obtained from the governing equation (4) 

and are given by 
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and the particular solutions for the moment and the shear forces are 
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Considering the displacement and traction boundary conditions of the plate, we have 

following linear algebraic equations: 


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                    (32) 

where iw
~

 and ip
~

are specified displacement and traction boundary values in the Laplace 

domain respectively, u  and   present the displacement and the traction boundaries 

(  u ). Thus a set of unknown intensity of point force can be obtained by solving the 

linear system in (32) in the Laplace domain for each Laplace parameter ....2,1,0 , Lkpk   

Although the MFS of linear algebraic equation is ill-conditioned, the stable and convergent 

solutions can be obtained by selecting a proper gap between collocation and source points. 

The accuracy and sensitivity respecting to the gap were examined by Wen et al. in the static 

state.  

In the Laplace domain, a total number of samples (L+1) in the transformation 

space kp are selected. The transformed variables are evaluated for these specified transform 

parameters. Then the variables in time domain can be determined by the Laplace inversion 

technique. Here, the method proposed by Durbin [24] is adopted. Demonstration of the 

Durbin’s Laplace transform inverse method was made by Wen et al. [25] for the elasticity 

wave propagations for two-dimensional problems. The formula of inversion is written as 
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12
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where )(
~

kpf denotes the transformed variable in the Laplace domain, the parameter of the 

Laplace transform Tikpk /2   )1( i . The selection of two free parameters   and 

T affects the accuracy of inversion slightly.  

 

4. Response of moving point forces on surface of infinite plate  

In the modern milling machining technology, high-speed milling processes can 

produce more accurate and repeatable results and reduce the costs of assembly and fixture 

storage by allowing for several separate components to be combined into a single, monolithic 
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machined part. Because of high-spindle speeds and high-slide accelerations, maintaining 

accuracy in high-speed machining requires the development of more accurate dynamic 

models of machines and cutting processes. Therefore, the effect of the impact of load motion 

with speed should be taken into account in the numerical modeling. Suppose a concentrated 

force P moving from origin (0, 0) to (b, 0) with speed V, shown in Figure 3, the point force 

can be described as 

bxxxq

bxVtxPxq





111

111

or    0                                       0)0,(

0                       )()0,( 
      (34) 

Applying Laplace transformation over moving load above gives 

                       )()()0,(~
11

/

1
1 bxHxHe

V

P
xq

Vpx


       (35) 

where H(t) denotes Heaviside function. By the principle of superposition, the resultants of 

moment and shear force at location ),( 21 xx  can be written, in an integral form, as 

 dqxxTxxM

b

)0,(~),(
~

),(
~

0

21232122    

 dqxxTxxQ

b

)0,(~),(
~

),(
~

0

2133212          (36) 

in which the components of normal are .1,0 21  nn  Two observation points are selected as  

A ),10( aa  and B )1.0,10( aa , and the length for the moving force b is chosen as 20a , where a 

is the unit of length. Poisson's ratio is taken as 0.3, thickness h=0.1a and the two free 

parameters 0/5 t  and 080tT  , where 20 / cat   (unit of time). The total number of 

samples in the Laplace domain L=100 and the damping coefficient c=0. Three cases for 

different point force speed, i.e. 
22 5.0,2.0 ccV   and

2c , are investigated respective. Figures 4, 

5 and 6 show the variations of moment PtM /)(22
and shear force PatQ /)(2

at two 

observation points against the normalised time atc /2
. As the integrals in (36) are regular, the 

Gaussian integral scheme is employed directly and the relative error of criterion is selected to 

be 10
-6

. The following conclusions can be found from investigation: 

(1) before the arrival of elasticity waves (fast wave), the moment and shear force are zero 

as expected; 
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(2) the maximum values both for the moment and shear force occur about the 

time Vat /10 , i.e. when the point force moves to the nearest point of the 

observation points; 

(3) the maximum values both for the moment and shear force increase with increasing of 

moving speed of the point force; 

(4) the results for the moment and shear force are smooth against the normalised time for 

the lower speed of V and oscillation with high frequency occurs for high speed of V; 

(5) the moment and shear force decline to zero after time Vat /20 , i.e. whilst the point 

force disappears.  

In addition, the response of a moving concentrated moment (due to the distance between the 

middle plane and surface for a tangential cutting force along feeding direction) can be 

obtained in the same way. The moment and shear force in the panel are 

   dqxxTxxM

b

)0,(~),(
~

),(
~

0

21212122    

.  dqxxTxxQ

b

)0,(~),(
~

),(
~

0

2131212          (37) 

where ,2/)()0,( 111 hVtxFqxq    F is the tangential cutting force (in the time domain). 

 

5. Numerical examples 

5.1 A simply supported square plate under uniform load 

In this example, a simply supported square plate of length a )( 21 aa  and thickness h 

subjected to a uniform static load )(0 tHq  as shown in Figure 7 is analysed. The aim of this 

example is to demonstrate the accuracy and the stability of the MFS for a moderate thick 

plate. Collocation points and source points are distributed uniformly along each edge of the 

plate, as shown in Figure 8, where   presents the gap between collocation and source points 

and d is the distance between two collocation points. The solutions are convergent in the 

region of 10/2  d . More details for the optimal selections of the gap were discussed in 

[13]. In this example, .4/  d  Particular solutions for deflection and rotations under 

uniform loads are   ,0~ *

1 w 0~ *

2 w and )(/~~
0

*

3 hpcpqw   (where pqq /~
00  ), and all 

particular solutions for the moment and shear forces are zero. 
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Comparison has been made with analytical solution for the Kirchhoff’s plate theory. 

The analytical solution with damping has been deduced in Appendix A. Here Poisson’s 

ratio 3.0 and the thickness of plate h/a=0.05, 0.1 respectively. Total number of 

collocation point is taken as 84. Two free parameters for the Laplace inversion method 

0/5 t  and 080tT  . The variations of the normalised deflection
4

03 / aqDw at the centre of 

plate are plotted in Figures 8(a)(b) against the normalised atc /2
. Here two damping 

coefficients are considered, i.e. c=0 and ./10 2

2hacDc   At the beginning of time, the 

results by Mindlin’s and Kirchhoff’s plate theories are very close and gradually the gap 

between them is getting bigger due to the effects of shear deflection. It has been accepted 

that the solutions by the Mindlin’s plate theory is more accurate than that by Kirchhoff’s 

theory.  In addition, tt has been found that the similar degree of accuracy can be obtained for 

the irregular distribution of collocation points. Figures 8(a)(b) show the effect of damping 

coefficient on the deflection of the plate. With impact load, the plate starts to oscillate about 

the position of static load and the amplitude of oscillation reduces to zero rapidly as expected.   

 

5.2 Rectangular plate with three edges built in and the fourth edge free 

In the manufacturing of wing box components, such as ribs and spars, we have many 

pockets which are separated by thin walls. Therefore, one typical numerical modelling is a 

rectangular plate )( 21 aaa  with three edges built in and the fourth edge free as shown in 

Figure 9. In this example, Poisson's ratio 6/1 and h/a=0.1. The total number of 

collocation point is taken as 84 and the number of samples in the Laplace domain L=100. 

Three loading cases are analysed in the following: 

(1) Uniform load )(0 tHq  in the domain     

In order to illustrate the accuracy of this method, finite element method (ABAQUS, 

v6.6-1) is used in this example. Young’s modulus E=10
4
N/mm

2
, 6/1 , a=1000mm, 

h=100mm, density of material 
5102857.4  kg/mm

3
, damping coefficient c=0.0857 

(Ns/mm) and pressure load 
2

0 N/mm1q . In total 2500 quadratic shell elements are used in 

the finite element modelling. To use the method fundamental solution, the particular solution 

is the same as that in Example 4.1. The variations of deflection 3w (mm) on the middle top 
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edge and centre of the plate are plotted in Figures 10 and 11 against the time t(s). It is clear 

that the frequencies of vibration for these two points are the same and the amplitudes of 

oscillation reduce to zero rapidly with damping effect. As can be seen, the results from the 

FEM and MFS models are in excellent agreement.  

(2) A moving point force        

Assume that there is a constant cutting force P moving from the left hand side to right 

hand side of the plate (dash line in Figure 7) and the dynamic load  ),()0,( 11 VtxPxq    

axa 4.04.0 1  . The particular solution can be selected as the solution in section 4, i.e. a 

moving point force in an infinite plane. To illustrate the effect of the moving speed of a 

concentrated force, two different velocities of moving force are applied in this example, i.e. 

2/cV 0.1 and 0.2 respectively. Three points A(-0.25a, 0.5a), B(0,0.5a) and C(0.25a, 0.5a) 

on the top of the plate are observed. The results in Figures 12(a)(b) and 13(a)(b) show the 

variations of the normalised deflection 
2

3 / PaDw  against the normalised time atc /2
 for the 

different speeds of moving force. In fact, the maximum deflection of the plate does not 

change much for different speed of the moving force. Arrival times of the elasticity wave to 

these observing points can be seen clearly from these figures. Due to the damping effect, the 

deflection declines to zero rapidly. This behaviour of damping in a plate with three edges 

built in and one edge free is very important for the cutting analysis of milling process and it 

can be used to determine the tool moving speed on the work piece. In addition, the maximum 

deflection can be found, for all cases, on the middle point B as expected. In fact, the cutting 

force is not constant and is a function of depth of machining. This depth depends on the 

deflection of the cutting point as well (non-linearity). This non linear dynamic phenomenon 

is deferred as future work.  

   

6. Conclusions 

In this paper, the fundamental solution for the Mindlin plates with damping was 

derived in the Laplace transform domain and the method of fundamental solution was 

demonstrated. Excellent agreement with analytical solution for a simply supported plate was 

achieved. As one of the mesh free techniques, the MFS has the most advantages of the mesh 

free method and demonstrates three major features in their computations: simplicity, 
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accuracy and efficiency. We can conclude with the following observations: (1) MFS is 

suitable for the shear deformable plate for dynamic problems with damping; (2) Constant 

cutting force moving on the plate surface can be simulated in the Laplace transform domain; 

(3) MFS is excellent for complex boundary constrain condition; (4) Disadvantages of the 

MFS are also evident, such as the fundamental solutions must be available for the problem 

and the optimized source point distribution needs to be investigated. Finally, the boundary 

integral formulations with these fundamental solutions can be derived directly.  
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Appendix A 

For the Kirchhoff’s plate theory, the governing equation with damping is 
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          (A.1) 

where w denotes the deflection of plate. Considering the boundary condition for a simply 

supported plate, the general solution can be written in the series form as 
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where 
1a and 

2a are width and height of a rectangular plate. Applying the Laplace transform 

to (1) yields 
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And the governing equation (1) gives 
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where mnq~ are the coefficients for double Fourier transformation to the applied load in the 

transform domain and can be obtained by 
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For a uniformly distributed load, i.e. pqxxqtHqxxq /),(~  then )(),( 021021  , we have 
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and deflection in the Laplace domain becomes 
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It is easy to obtain the solution of deflection in time domain as following 
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If damping coefficient satisfies 
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we can simplify the solution of deflection by 
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Otherwise, the deflection can be presented as 
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In addition for concentrated force acting at the point ),( 21 pp xx without motion, the analytical 

solution for the deflection in time domain can be obtained by 
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Legends 

Figure 1. Sign convention of displacement and internal forces. 

Figure 2. (a) Convention of traction on the boundary; (b) collocation (P) and source (Q) 

points. 

Figure 3. A moving force with speed V in the region ],0[1 bx   and observing points A and 

B. 

Figure 4. Normalized moment PtM /)(22
 and shear force PatQ /)(2

 at observing points A 

and B due to a moving force P with speed
22.0 cV  . 

Figure 5. Normalized moment PtM /)(22
 and shear force PatQ /)(2

 at observing points A 

and B due to a moving force P with speed
25.0 cV  . 

Figure 6. Normalized moment PtM /)(22
 and shear force PatQ /)(2

 at observing points A 

and B due to a moving force P with speed
2cV  . 

Figure 7. Simply supported square (a2/a1=1) subjected to the uniform pressure load q0 and 

distributions of collocation and source points: (a) geometry; (b) distributions of source and 

collocation points. 

Figure 8. Normalized moment 
4

03 / aqDw  at centre of simply supported plate subjected to a 

uniform load )(0 tHq . 

Figure 9. Rectangular plate with three edges built in and one edge free (a1/a2=1) subjected to 

a uniform pressure load q0, a concentrated force at the centre of plate and a moving force. 

Figure 10. Comparisons of the deflections 3w (mm) at points B and O for a plate with three 

edges built in and one edge free under uniform load )(0 tHq  without damping. 

Figure 11. Comparisons of the deflections 3w (mm) at points B and O for a plate with three 

edges built in and one edge free under uniform load )(0 tHq  with damping. 

Figure 12. Normalized moment 
2

3 / PaDw  at observing points B and D for a plate with three 

edges buildt in and one edge free under a concentrated force acting at the centre of 

plate )(tPH while the speed of moving force 1.0/ 2 cV : (a) without damping; (b) with 

damping hacDc 2

2/20 . 
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Figure 13. Normalized moment 
2

3 / PaDw  at observing points B and D for a plate with three 

edges buildt in and one edge free under a concentrated force acting at the centre of 

plate )(tPH while the speed of moving force 2.0/ 2 cV : (a) without damping; (b) with 

damping hacDc 2

2/20 . 
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Figure 1. Sign convention of displacement and internal forces. 
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Figure 3. A moving force with speed V in the region ],0[1 bx   and observing points A 

and B. 
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Figure 4. Normalized moment PtM /)(22
 and shear force PatQ /)(2

 at observing points A and 

B due to a moving force P with speed
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 at observing points A and 

B due to a moving force P with speed
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Figure 6. Normalized moment PtM /)(22
 and shear force PatQ /)(2

 at observing points A and 

B due to a moving force P with speed
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Figure 7. Simply supported square (a2/a1=1) subjected to the uniform pressure 

load q0 and distributions of collocation and source points: (a) geometry; (b) 
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Figure 8. Normalized moment 
4

03 / aqDw  at centre of simply supported plate subjected to a 

uniform load )(0 tHq . 
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Figure 9. Rectangular plate with three edges built in and one edge free (a1/a2=1) subjected to a 

uniform pressure load q0, a concentrated force at the centre of plate and a moving force. 
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Figure 10. Comparisons of the deflections 3w (mm) at points B and O for a plate with three 

edges built in and one edge free under uniform load )(0 tHq  without damping. 
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Figure 11. Comparisons of the deflections 3w (mm) at points B and O for a plate with three 

edges built in and one edge free under uniform load )(0 tHq  with damping. 
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Figure 12. Normalized moment 
2

3 / PaDw  at observing points B and D for a plate with three edges 

built in and one edge free under a concentrated force )(tPH acting at the centre of platewhile the 

speed of moving force 1.0/ 2 cV : (a) without damping; (b) with damping hacDc 2

2/20 . 
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Figure 13. Normalized moment 
2

3 / PaDw  at observing points B and D for a plate with three edges 

built in and one edge free under a concentrated force )(tPH acting at the centre of plate while the 

speed of moving force 2.0/ 2 cV : (a) without damping; (b) with damping hacDc 2

2/20 . 
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