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PATH DESCRIPTION OF TYPE B q-CHARACTERS

E. MUKHIN AND C. A. S. YOUNG

Abstract. We give a set of sufficient conditions for a Laurent polynomial to be the q-character

of a finite-dimensional irreducible representation of a quantum affine group. We use this result to

obtain an explicit path description of q-characters for a class of modules in type B. In particular,

this proves a conjecture of Kuniba-Ohta-Suzuki.

1. Introduction

The category of finite-dimensional representations of quantum affine groups has received a lot of

attention in the past several decades. Its fascinating structure has been studied by many authors

who used a variety of methods: algebraic e.g. [CP94a, CH10, Her07, Her06, FR98, FM01], geometric

e.g. [Nak01, VV02, Nak04], combinatorial e.g. [JS10, LSS10], and analytic e.g. [BR90, KOS95].

The full list of the literature on this subject is immense. However, in sharp contrast to the case of

affine Lie algebras, where irreducible finite-dimensional representations are just tensor products of

evaluation modules, the quantum case is far from being understood. In particular, there is still no

formula for dimensions of simple modules, no description of the restriction functor to the quantum

groups of finite type, and no tensor product decomposition rules.

Our approach uses a combination of representation-theoretical and combinatorial arguments.

The main tool is the theory of q-characters which was set up by [FR98, FM01]. Let g be a simple Lie

algebra, I the set of nodes of the Dynkin diagram of g, and q ∈ C
∗ not a root of unity. Similar to the

usual weight theory, finite-dimensional Uq(ĝ)-modules have the l-weight decomposition according

to the action of the commutative algebra of Cartan current generators. The q-character encodes

this decomposition in terms of formal variables (Yi,a)i∈I,a∈C∗ . The q-characters give an injective

ring homomorphism from the Grothendieck ring of finite-dimensional Uq(ĝ)-modules [FR98] to the

ring of Laurent polynomials in the (Yi,a)i∈I,a∈C∗ .

The q-characters are in some sense more rigid than the usual characters. In particular, in

many cases the q-character of a simple Uq(ĝ)-module can be computed recursively by an algorithm

[FM01] starting from its highest l-weight. The algorithm works for the class of Kirillov-Reshetikhin

modules, see [Nak04, Nak03] for ADE types, [Her06] for other types. It also works for some minimal

affinizations [Her07]. However, the straightforward application of the algorithm is known to fail in

some cases – see for instance example 5.6 of [HL10], and [NN08].

In this paper, we prove that a certain finite set of conditions guarantees that the algorithm of

[FM01] produces the correct q-character; see Theorem 3.4. To the best of our knowledge, it is the

first criterion which uses no representation-theoretical information about the module at all, thus

making the problem strictly combinatorial.
1
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Of course, the conditions of Theorem 3.4 do not apply in general. In particular, q-characters

appearing this way are thin and special, meaning that all l-weight spaces are one-dimensional and

there is a unique dominant l-weight. For example, in type A, by [NT98] the theorem handles exactly

the modules corresponding to skew Young diagrams, where the q-characters are known explicitly.

We reproduce these results using our methods to illustrate and motivate the main ideas. However,

there are many examples in other types where Theorem 3.4 can be used to obtain new results.

In this paper we apply it to a class of simple modules in type B which we call snake modules.

The snake modules include all Kirillov-Reshetikhin modules, minimal affinizations and modules

parameterized by skew Young diagrams, and many others.

The definition of snake modules (§4) is a natural generalization of the definition of minimal

affinization in the following sense. Recall that a tensor product of two fundamental modules,

L(Yi,a) ⊗ L(Yj,b) is irreducible for all but a finite set of values of a/b ∈ C
∗. In particular there is

one value, of the form qsij , sij ∈ Z>1, for which the simple quotient L(Yi,aYj,aqsij ) is the minimal

affinization. The integers sij are known in all types [CP95, CP96a, CP96b]. In the regular cases,

the highest monomials of general minimal affinizations have the form
∏

t Yit,at such that at+1/at =

qsit,it+1 and it form a monotonic sequence with respect to the standard ordering of the Dynkin

diagram. Minimal snake modules are the simple modules whose highest monomials have the form∏
t Yit,at such that at+1/at = qsit,it+1 (without the monotonicity conditions). In type B we also can

weaken the condition at+1/at = qsit,it+1 in such a way that Theorem 3.4 still applies; we call the

resulting simple modules snake modules.

The second main result of the present paper is Theorem 6.1, which gives a closed form for the q-

character of any snake module in type B. Theorem 6.1 states, in particular, that snake modules are

thin and special. The q-character is given in terms of a system of non-overlapping paths, introduced

in §5.

The q-characters for a subset of snake modules corresponding to skew diagrams have been con-

jectured in [KOS95], see also [NN06], motivated by their study of the spectra of solvable vertex

models. Their conjectured answer is given in three equivalent forms: skew Young tableaux, paths

(different from the ones in this paper) and determinants of Jacobi-Trudi type. We use Theorem

6.1 to settle this conjecture.

This paper is structured as follows. The necessary details about quantum affine algebras and

their finite-dimensional representations are recalled in Section 2. Section 3 is devoted to proving

Theorem 3.4, on the q-characters of thin special Uq(ĝ)-modules. In the remainder of the paper we

specialize to types A and B. In Section 4 we define snakes and snake modules. Section 5 sets up

the definitions of paths, and establishes a series of lemmas about these paths. These allow us, in

Section 6, to prove Theorem 6.1 which gives a closed form for the q-character of any snake module.

Finally, in Section 7 we relate our paths to the skew Young tableaux and use Theorem 6.1 to prove

the Kuniba-Ohta-Suzuki conjecture.
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2. Background

2.1. Cartan data. Let g be a complex simple Lie algebra of rank N and h a Cartan subalgebra

of g. We identify h and h∗ by means of the invariant inner product 〈·, ·〉 on g normalized such that

the square length of the maximal root equals 2. Let I = {1, . . . , N} and let {αi}i∈I be a set of

simple roots, with {α∨
i }i∈I and {ωi}i∈I , the sets of, respectively, simple coroots and fundamental

weights. Let C = (Cij)i,j∈I denote the Cartan matrix. We have

2 〈αi, αj〉 = Cij 〈αi, αi〉 , 2 〈αi, ωj〉 = δij 〈αi, αi〉 .

Let r∨ be the maximal number of edges connecting two vertices of the Dynkin diagram of g.

Thus r∨ = 1 if g is of types A, D or E, r∨ = 2 for types B, C and F and r∨ = 3 for G2. Let

ri =
1
2r

∨ 〈αi, αi〉. The numbers (ri)i∈I are relatively prime integers. We set

D := diag(r1, . . . , rN ), B := DC;

the latter is the symmetrized Cartan matrix, Bij = r∨ 〈αi, αj〉.

Let Q (resp. Q+) and P (resp. P+) denote the Z-span (resp. Z≥0-span) of the simple roots and

fundamental weights respectively. Let ≤ be the partial order on P in which λ ≤ λ′ if and only if

λ′ − λ ∈ Q+.

Let ĝ denote the untwisted affine algebra corresponding to g.

Fix a q ∈ C
∗, not a root of unity. Define the q-numbers, q-factorial and q-binomial:

[n]q :=
qn − q−n

q − q−1
, [n]q! := [n]q [n− 1]q . . . [1]q ,

[
n

m

]

q

:=
[n]q!

[n−m]q! [m]q!
.

2.2. Quantum Affine Algebras. The quantum affine algebra Uq(ĝ) in Drinfeld’s new realization,

[Dri88] is generated by x±i,n (i ∈ I, n ∈ Z), k±1
i (i ∈ I), hi,n (i ∈ I, n ∈ Z\{0}) and central elements

c±1/2, subject to the following relations:

kikj = kjki, kihj,n = hj,nki,

kix
±
j,nk

−1
i = q±Bijx±j,n,

[hi,n, x
±
j,m] = ±

1

n
[nBij ]qc

∓|n|/2x±j,n+m, (2.1)

x±i,n+1x
±
j,m − q±Bijx±j,mx

±
i,n+1 = q±Bijx±i,nx

±
j,m+1 − x±j,m+1x

±
i,n,

[hi,n, hj,m] = δn,−m
1

n
[nBij]q

cn − c−n

q − q−1
,

[x+i,n, x
−
j,m] = δij

c(n−m)/2φ+
i,n+m − c−(n−m)/2φ−

i,n+m

qri − q−ri
,

∑

π∈Σs

s∑

k=0

(−1)k

[
s

k

]

qri

x±i,nπ(1)
. . . x±i,nπ(k)

x±j,mx±i,nπ(k+1)
. . . x±i,nπ(s)

= 0, s = 1−Cij ,
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for all sequences of integers n1, . . . , ns, and i 6= j, where Σs is the symmetric group on s letters,

and φ±
i,n’s are determined by the formula

φ±
i (u) :=

∞∑

n=0

φ±
i,±nu

±n = k±1
i exp

(
±(q − q−1)

∞∑

m=1

hi,±mu±m

)
. (2.2)

There exist a coproduct, counit and antipode making Uq(ĝ) into a Hopf algebra.

The subalgebra of Uq(ĝ) generated by (ki)i∈I , (x±i,0)i∈I is a Hopf subalgebra of Uq(ĝ) and is

isomorphic as a Hopf algebra to Uq(g), the quantized enveloping algebra of g. In this way, Uq(ĝ)-

modules restrict to Uq(g)-modules.

2.3. Finite-dimensional representations and q-characters. A representation V of Uq(ĝ) is of

type 1 if c±1/2 acts as the identity on V and

V =
⊕

λ∈P

Vλ , Vλ = {v ∈ V : kiv = q〈αi,λ〉v}. (2.3)

In what follows, all representations will be assumed to be of type 1 without further comment. The

decomposition (2.3) of a finite-dimensional representation V into its Uq(g)-weight spaces can be

refined by decomposing it into the Jordan subspaces of the mutually commuting φ±
i,±r defined in

(2.2), [FR98]:

V =
⊕

γ

Vγ , γ = (γ±i,±r)i∈I,r∈Z≥0
, γ±i,±r ∈ C (2.4)

where

Vγ = {v ∈ V : ∃k ∈ N, ∀i ∈ I,m ≥ 0
(
φ±
i,±m − γ±i,±m

)k
v = 0} .

If dim(Vγ) > 0, γ is called an l-weight of V . For every finite-dimensional representation of Uq(ĝ),

the l-weights are known [FR98] to be of the form

γ±i (u) :=

∞∑

r=0

γ±i,±ru
±r = qdegQi−degRi

Qi(uq
−1)Ri(uq)

Qi(uq)Ri(uq−1)
,

where the right hand side is to be treated as a formal series in positive (resp. negative) integer

powers of u, and Qi and Ri are polynomials of the form

Qi(u) =
∏

a∈C∗

(1− ua)wi,a , Ri(u) =
∏

a∈C∗

(1− ua)xi,a ,

for some wi,a, xi,a ≥ 0, i ∈ I, a ∈ C
∗. Let P denote the free abelian multiplicative group of

monomials in infinitely many formal variables (Yi,a)i∈I,a∈C∗ . P is in bijection with the set of l-

weights γ of the form above according to

γ = γ(m) with m =
∏

i∈I,a∈C∗

Y
wi,a−xi,a

i,a . (2.5)

We identify elements of P with l-weights of finite-dimensional representations in this way, and

henceforth write Vm for Vγ(m). Let ZP = Z

[
Y ±1
i,a

]
i∈I,a∈C∗

be the ring of Laurent polynomials

in (Yi,a)i∈I,a∈C∗ with integer coefficients. The q-character map χq [FR98] is then the injective
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homomorphism of rings

χq : Rep(Uq(ĝ)) −→ Z

[
Y ±1
i,a

]
i∈I,a∈C∗

defined by

χq(V ) =
∑

m∈P

dim (Vm)m.

Here Rep(Uq(ĝ)) is the Grothendieck ring of finite-dimensional representations of Uq(ĝ).

For any finite-dimensional representation V of Uq(ĝ), we let

M (V ) := {m ∈ P : m is a monomial of χq(V )} .

For each j ∈ I, a monomialm =
∏

i∈I,a∈C∗ Y
ui,a

i,a is said to be j-dominant (resp. j-anti-dominant)

if and only if uj,a ≥ 0 (resp. uj,a ≤ 0) for all a ∈ C
∗. A monomial is (anti-)dominant if and only if

it is i-(anti-)dominant for all i ∈ I. Let P+ ⊂ P denote the set of all dominant monomials.

If V is a finite-dimensional representation of Uq(ĝ) and m ∈ M (V ) is dominant, then a non-zero

vector |m〉 ∈ Vm is called a highest l-weight vector, with highest l-weight γ(m), if and only if

φ±
i,±t |m〉 = |m〉 γ(m)±i,±t and x+i,r |m〉 = 0, for all i ∈ I, r ∈ Z, t ∈ Z≥0.

A finite-dimensional representation V of Uq(ĝ) is said to be a highest l-weight representation if

V = Uq(ĝ) |m〉 for some highest l-weight vector |m〉 ∈ V .

It is known [CP94a, CP94b] that for each m ∈ P+ there is a unique finite-dimensional irreducible

representation, denoted L(m), of Uq(ĝ) that is highest l-weight with highest l-weight γ(m), and

moreover every finite-dimensional irreducible Uq(ĝ)-module is of this form for some m ∈ P+.

Also for each m ∈ P+, there exists a highest l-weight representation W (m), called the Weyl

module, with the property that every highest l-weight representation of Uq(ĝ) with highest l-weight

γ(m) is a quotient of W (m) [CP01].

A finite-dimensional Uq(ĝ)-module V is said to be special if and only if χq(V ) has exactly one

dominant monomial. It is anti-special if and only if χq(V ) has exactly one anti-dominant monomial.

It is thin if and only if no l-weight space of V has dimension greater than 1. In other words, the

module is thin if and only if the (φ±
i,±r)i∈I,r∈Z≥0

are simultaneously diagonalizable with joint simple

spectrum. A finite-dimensional Uq(ĝ)-module V is said to be prime if and only if it is not isomorphic

to a tensor product of two non-trivial Uq(ĝ)-modules [CP97].

Let χ : Rep(Uq(g)) → ZP be the Uq(g)-character homomorphism. Let wt : P → P be the

homomorphism of abelian groups defined by wt : Yi,a 7→ ωi. Extend the map wt by linearity to

ZP → ZP . Then the following diagram commutes [FR98]:

Rep(Uq(ĝ)) ZP

Rep(Uq(g)) ZP

χq

χ

res wt

where res : Rep(Uq(ĝ)) → Rep(Uq(g)) is the restriction homomorphism.
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Define Ai,a ∈ P, i ∈ I, a ∈ C
∗, by

Ai,a = Yi,aqriYi,aq−ri

∏

Cji=−1

Y −1
j,a

∏

Cji=−2

Y −1
j,aqY

−1
j,aq−1

∏

Cji=−3

Y −1
j,aq2

Y −1
j,a Y −1

j,aq−2. (2.6)

Let Q be the subgroup of P generated by Ai,a, i ∈ I, a ∈ C
∗. Let Q± be the monoid generated by

A±1
i,a , i ∈ I, a ∈ C

∗. Note that wtAi,a = αi. There is a partial order ≤ on P in which m ≤ m′ if

and only if m′m−1 ∈ Q+. It is compatible with the partial order on P in the sense that m ≤ m′

implies wtm ≤ wtm′.

We have [FM01] that for all m+ ∈ P+,

M (L(m+)) ⊂ m+Q
−. (2.7)

For all i ∈ I, a ∈ C
∗ let ui,a be the homomorphism of abelian groups P → Z such that

ui,a(Yj,b) =




1 i = j and a = b

0 otherwise.
(2.8)

Let v be the homomorphisms of abelian groups Q → Z such that

v(Aj,b) = −1.

Note that the (Ai,a)i∈I,a∈C∗ are algebraically independent, so v is well-defined.

For each j ∈ I we denote by Uqrj (ŝl2
(j)) the copy of Uqrj (ŝl2) generated by c±1/2, (x±j,r)r∈Z,

(φ±
j,±r)r∈Z≥0

. Let

βj : Z
[
Y ±1
i,a

]
i∈I;a∈C∗

→ Z

[
Y ±1
j,a

]
a∈C∗

be the ring homomorphism which sends, for all a ∈ C
∗, Yk,a 7→ 1 for all k 6= j and Yj,a 7→ Yj,a. For

each j ∈ I, there exists [FM01] a ring homomorphism

τj : Z
[
Y ±1
i,a

]
i∈I;a∈C∗

→ Z

[
Y ±1
j,a

]
a∈C∗

⊗ Z

[
Z±1
k,b

]
k 6=j;b∈C∗

,

where (Z±1
k,b )k 6=j,b∈C∗ are certain new formal variables, with the following properties:

i) τj is injective.

ii) τj refines βj in the sense that βj is the composition of τj with the homomorphism Z[Y ±1
j,a ]a∈C∗⊗

Z[Z±1
k,b ]k 6=j;b∈C∗ → Z[Y ±1

j,a ]a∈C∗ which sends Zk,b 7→ 1 for all k 6= j, b ∈ C
∗.

iii) In the diagram

Z

[
Y ±1
i,a

]
i∈I;a∈C∗

Z

[
Y ±1
j,a

]
a∈C∗

⊗ Z

[
Z±1
k,b

]
k 6=j;b∈C∗

Z

[
Y ±1
i,a

]
i∈I;a∈C∗

Z

[
Y ±1
j,a

]
a∈C∗

⊗ Z

[
Z±1
k,b

]
k 6=j;b∈C∗

τj

τj

(2.9)

let the right vertical arrow be multiplication by βj(A
−1
j,c ) ⊗ 1; then the diagram commutes if

and only if the left vertical arrow is multiplication by A−1
j,c .
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2.4. Affinizations of Uq(g)-modules. For µ ∈ P+, let V (µ) be the (unique up to isomorphism)

simple Uq(g)-module with highest weight µ. L(m), m ∈ P+, is said to be an affinization of

V (µ) if wtm = µ [Cha95]. Two affinizations are said to be equivalent if they are isomorphic as

Uq(g)-modules. Let [[L(m)]] denote the equivalence class of L(m), m ∈ P+. For each λ ∈ P+

define Dλ := {[[L(m)]] : wtm = λ}, the set of equivalence classes of affinizations of V (λ). Any

finite-dimensional Uq(g)-module V is isomorphic to a direct sum of finite-dimensional simple Uq(g)-

modules; for each λ ∈ P+ let [V : V (λ)] denote the multiplicity of V (λ) in V . There is a partial

order ≤ on equivalence classes of affinizations in which [[L(m)]] ≤ [[L(m′)]] if and only if for all

ν ∈ P+ either

(i) [L(m) : V (ν)] ≤ [L(m′) : V (ν)], or

(ii) there exists a µ ∈ P+, µ ≥ ν, such that [L(m) : V (µ)] < [L(m′) : V (µ)].

For all λ ∈ P+, Dλ is a finite poset [Cha95]. A minimal affinization of V (λ), λ ∈ P+, is a minimal

element of Dλ with respect to the partial ordering [Cha95]. Thus a minimial affinization is by

definition an equivalence class of Uq(ĝ)-modules; but we shall refer also to the elements of such a

class – the modules themselves – as minimal affinizations.

3. Thin special q-characters

3.1. Thin simple Uq(ŝl2) modules. Theorem 3.4 below gives conditions which, if satisfied, guar-

antee that a given set of monomials M is the q-character of a thin special simple finite-dimensional

Uq(ĝ)-module. In the proof we shall need the following lemma concerning thin special simple

finite-dimensional Uq(ŝl2)-modules.

Lemma 3.1. Let g = sl2. Let m ∈ P. There exists M ∈ P+ such that L(M) is thin and

m ∈ M (L(M)) if and only if, for all a ∈ C
∗, |u1,a(m)| ≤ 1 and u1,a(m) − u1,aq2(m) 6= 2. If such

an M exists it is unique and exactly one of the following holds for all a ∈ C
∗.

(i) u1,a(m) = 1, u1,aq2(m) = 0, and mA−1
1,aq ∈ M (L(M))

(ii) u1,a(m) = 1, u1,aq2(m) = 1, and mA−1
1,aq ∈ M (W (M)) \ M (L(M))

(iii) u1,a(m) = −1, u1,aq−2(m) = 0, and mA1,aq−1 ∈ M (L(M))

(iv) u1,a(m) = −1, u1,aq−2(m) = −1, and mA1,aq−1 ∈ M (W (M)) \ M (L(M))

(v) u1,a(m) = 0, and mA−1
1,aq /∈ M (W (M)) and mA1,aq−1 /∈ M (W (M)).

Proof. This follows from the known closed forms for the q-characters of all simple finite-dimensional

modules, and all Weyl modules, of Uq(ŝl2). Let ak ∈ C
∗, 1 ≤ k ≤ K ∈ Z>0, and consider

M =
∏K

k=1 Y1,ak ∈ P+. The Weyl module W (M) is isomorphic to a tensor product of fundamental

representations [CP01], and χq (W (M)) =
∏K

k=1(Y1,ak + Y −1
1,akq2

). The simple module L(M) is

isomorphic to a tensor product of evaluation modules [CP91], as follows. First recall that the set

Sr(a) :=
{
aq−r+1, aq−r+3, . . . , aqr−1

}
is called the q-string of length r ∈ Z≥0 centred on a ∈ C

∗, and

that two q-strings are said to be in general position if one contains the other or their set-theoretic

union is not a q-string. Let m
(r)
a := Y1,aq−r+1Y1,aq−r+3 . . . Y1,aqr−1 . There is a unique multiset of

q-strings in pairwise general position, say {Srt(bt) : 1 ≤ t ≤ T}, such that M =
∏T

t=1 m
(rt)
bt

. Then
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χq(L(M)) =
∏T

t=1 χq(L(m
(rt)
bt

)), where L(m
(r)
a ) is an evaluation module and

χq(L(m
(r)
a )) =

(
Y1,aq−r+1Y1,aq−r+3 . . . Y1,aqr−1

)
(
1 +

r−1∑

t=0

A−1
1,aqrA

−1
1,aqr−2 . . . A

−1
1,aqr−2t

)
. (3.1)

Note that thin simple finite-dimensional Uq(ŝl2)-modules are precisely those whose q-strings are, in

addition to being pairwise in general position, also pairwise disjoint. �

Corollary 3.2. A simple finite-dimensional Uq(ŝl2)-module is thin if and only if it is special. �

It is helpful to picture the set of monomials M (L(M)) of a thin Uq(ŝl2)-module χq(L(M))

as follows. Suppose there is an a ∈ C
∗ such that M (L(M)) ⊂ Z[Y ±1

1,aq2k
]k∈Z. Consider a one-

dimensional array of boxes, indexed by the integers, in which each box can be in one of three

states: it can be empty ( ), it can contain one black ball ( ), or it can contain one white ball ( ).

Given a monomial m ∈ M (L(M)) we place a black ball at each site k such that u1,aq2k(m) = 1,

a white ball at each site k such that u1,aq2k(m) = −1, and leave the rest empty, to reach some

configuration, for example

. . . . . . .

By Lemma 3.1, the pattern never occurs, and we can generate all other monomials of χq(L(M))

by repeatedly performing moves of the following two types:

(a) Remove a black ball from site k and fill the empty site k + 1 with a white ball: → .

(b) Remove a white ball from site k + 1 and fill the empty site k with a black ball: → .

In the present paper we identify, in types A and B, a class of representations, which we shall call

snake modules, §4, for which a generalization of this ball-and-box realization of monomials exists.

3.2. Effect of x±i,r on l-weight states. In the proof of Theorem 3.4 we shall also need the following

proposition, which is a quantum-affine analog of the familiar statement in the representation theory

of g, or of Uq(g), that if |ω〉 is a vector of weight ω ∈ P then x±i |ω〉 is either zero or has weight

ω ± αi.

Proposition 3.3. Let V be a finite-dimensional Uq(ĝ)-module and m,m′ ∈ M (V ). Let |m〉 ∈

ker
(
φ±
i (u)− γ(m)±i (u)

)
⊂ Vm for all i ∈ I. Then, for all j ∈ I, at least one of the following holds:

(1) there is an a ∈ C
∗ such that m′ = mAj,a (resp. m′ = mA−1

j,a), or

(2) for all r ∈ Z, when x+j,r |m〉 (resp. x−j,r |m〉 ) is decomposed into l-weight spaces, c.f. (2.4),

its component in Vm′ is zero.

Proof. The defining relations between x±j,r and hi,r, i ∈ I, (2.1) are equivalent to

(1− q±Bijuv)φ+
i (u)x

±
j (v) = (q±Bij − uv)x±j (v)φ

+
i (u),

(1/(uv) − q±Bij )φ−
i (u)x

±
j (v) = (q±Bij/(uv)− 1)x±j (v)φ

−
i (u)

where φ±
i (u) is as in (2.2) and x±j (v) is the formal Laurent series x±j (v) :=

∑
n∈Z x

±
j,nv

−n. Consider

for definiteness the case of x+j (v) (x−j (v) is similar). Let ( |m′, k〉 )1≤k≤dimVm′ be a basis of the
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l-weight space Vm′ . We have

x+j (v) |m〉 =

dimVm′∑

k=1

∣∣m′, k
〉
λk(v) + . . . ,

where “. . . ” indicates terms in other l-weight spaces and, for each k, λk(v) is a formal Laurent

series in v with complex coefficients. We can suppose that the basis ( |m′, k〉 )1≤k≤dimVm′ has been

chosen so that the action of the φ±
i,±r (mutually commuting on V ) is lower triangular, i.e. for all

(i, r) ∈ I × Z≥0 and 1 ≤ k ≤ dimVm′ ,

(φ±
i,±r − γ(m′)±i,±r)

∣∣m′, k
〉
∈ spank′>k{

∣∣m′, k′
〉
}. (3.2)

Suppose that statement (2) of the proposition is false. Then there is a k with 1 ≤ k ≤ dimVm′

such that λk(v) 6= 0. By considering the smallest such k we may assume that for all 1 ≤ ℓ < k,

λℓ(v) = 0. Now, since |m〉 ∈ ker
(
φ+
i (u)− γ(m)+i (u)

)
, we have

0 = (qBij − uv)x+j (v)
(
φ+
i (u)− γ(m)+i (u)

)
|m〉

=
(
(1− qBijuv)φ+

i (u)− (qBij − uv)γ(m)+i (u)
)
x+j (v) |m〉 .

By taking the |m′, k〉 component of this expression and using (3.2), we have

0 =
(
(1− qBijuv)γ+i (m

′)(u)− (qBij − uv)γ+i (m)(u)
)
λk(v). (3.3)

This must hold for all i ∈ I. For each i ∈ I, (3.3) is an equation of the form 0 = λk(v)
∑∞

n=0 u
n(b

(i)
n +

c
(i)
n v) for the formal Laurent series λk(v), with b

(i)
n , c

(i)
n ∈ C for all n ∈ Z≥0. Equivalently, for each

i ∈ I, it is a countably infinite set of first order recurrence relations on the series coefficients of

λk(v). There are non-zero solutions if and only if there is an a ∈ C
∗ such that b

(i)
n /c

(i)
n = −a for all

n ∈ Z≥0 and all i ∈ I. That is,

γ(m′)+i (u)
(
γ(m)+i (u)

)−1
= qBij

1− q−Bijua

1− qBijua
≡ γ(Aj,a)

+
i (u)

as an equality of power series in u, c.f. (2.6) and (2.5). Similar reasoning concerning φ− yields the

analogous statement for γ(Aj,a)
−
i (u). So we have (1), as required. �

3.3. Criteria for a correct thin special q-character. We can now state the first main result

of the paper.

Theorem 3.4. Let m+ ∈ P+. Suppose that M ⊂ P is a finite set of distinct monomials such that:

(i) {m+} = P+ ∩M;

(ii) For all m ∈ M and all (i, a) ∈ I×C
∗, if mA−1

i,a /∈ M then mA−1
i,aAj,b /∈ M unless (j, b) = (i, a);

(iii) For all m ∈ M and all i ∈ I there exists M ∈ M, i-dominant, such that

χq(L(βi(M))) =
∑

m′∈mZ[A±1
i,a

]a∈C∗∩M

βi(m
′).

Then

χq(L(m+)) =
∑

m∈M

m (3.4)
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and in particular L(m+) is thin and special.

Proof. We begin by establishing that (i) and (iii) together imply that

M ⊂ m+Q
−. (3.5)

Indeed, Property (i) states that for every monomial m 6= m+ in M there is an i ∈ I such that m is

not i-dominant. So there is an a ∈ C
∗ such that ui,aqri (m) < 0 and (by choice of a) ui,aq−ri (m) ≥ 0.

Property (iii) states that m is a monomial of the q-character of a thin simple finite-dimensional

Uqri (ŝl2
(i))-module. By Lemma 3.1, it must therefore be that ui,aqri (m

′) = −1, ui,aq−ri (m
′) = 0,

and mAi,a ∈ M. The relation (3.5) follows by recursion since M is assumed finite.

We now prove (3.4). For each n ∈ Z≥0 let Z[A−1
i,a ]

(>n)
(i,a)∈I×C∗ denote the ring (without identity)

of polynomials in the variables {A−1
i,a : (i, a) ∈ I × C

∗} whose monomials all have degree strictly

greater than n. To prove (3.4) it is sufficient to establish the following claim for all n ∈ Z≥0.

Claim: The equality (3.4) holds modulo m+Z[A
−1
i,a ]

(>n)
(i,a)∈I×C∗ .

We proceed by induction on n. The claim is true for n = 0 by (2.7) and (3.5). So for the

inductive step, let n ∈ Z>0 and suppose the claim is true for n− 1.

It follows from Proposition 3.3 that all monomials m′ in χq(L(m+)) such that v(m′m−1
+ ) = n are

of the form mA−1
i,a for some m ∈ M (L(m+)) with v(mm−1

+ ) = n− 1 and some (i, a) ∈ I ×C
∗. For

suppose not: then by Proposition 3.3, L(m+)m′ contains a highest l-weight vector and so generates

a proper submodule – a contradiction. Therefore by the inductive hypothesis all monomials m′ in

χq(L(m+)) such that v(m′m−1
+ ) = n are of the form mA−1

i,a for some m ∈ M with v(mm−1
+ ) = n−1

and some (i, a) ∈ I × C
∗. As we noted above, every monomial m′ in M such that v(m′m−1

+ ) = n

is also of the form mA−1
i,a for some m ∈ M with v(mm−1

+ ) = n− 1 and some (i, a) ∈ I × C
∗.

Consequently, it is enough to consider monomials of the form mA−1
i,a for some m ∈ M with

v(mm−1
+ ) = n − 1 and some (i, a) ∈ I × C

∗. Let M be the unique i-dominant monomial in

mZ[Ai,a]a∈C∗ ∩M. Property (iii) asserts that such an M exists (possibly m = M) and moreover

that χq(L(βi(M))) =
∑

m′∈mZ[A±1
i,a ]a∈C∗∩M

βi(m
′), so that the simple Uqri (ŝl2

(i))-module L(βi(M))

is thin. Since βi(m) is a monomial of a thin simple Uqri (ŝl2
(i))-module, Lemma 3.1 implies that

exactly one of the following three cases applies:

(I) ui,aq−ri (m) = 1, ui,aqri (m) = 0, and βi(mA−1
i,a ) ∈ M (L(βi(M))).

(II) ui,aq−ri (m) = 1, ui,aqri (m) = 1, and βi(mA−1
i,a ) ∈ M (W (βi(M))) \ M (L(βi(M))).

(III) ui,aq−ri (m) ≤ 0 and βi(mA−1
i,a ) /∈ M (W (βi(M))).

We shall now complete the inductive step by showing that in case (I),mA−1
i,a appears, with coefficient

exactly 1, on both sides of (3.4), while in cases (II) and (III), mA−1
i,a does not appear on either side

of (3.4).

First observe that

mA−1
i,aZ[Ai,b]

(>0)
b∈C∗ ∩ M (L(m+)) = mA−1

i,aZ[Ai,b]
(>0)
b∈C∗ ∩M,

by the inductive assumption, and that M is the unique i-dominant monomial in this set.

Now consider case (I). By Property (iii), mA−1
i,a ∈ M (note that βi is injective when restricted

to mZ[A±1
i,a ](i,a)∈I×C∗). By the injectivity and property (2.9) of the homomorphism τi we deduce
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that mA−1
i,a must be a monomial of χq(L(m+)). The coefficient of βi(mA−1

i,a ) in χq(L(βi(M))) is 1,

so therefore mA−1
i,a must have coefficient exactly 1 in χq(L(m+)), for if it appeared with a larger

coefficient it would not be part of a consistent Uqri (ŝl2
(i))-character.

Now consider case (II). By Property (iii), mA−1
i,a /∈ M. Hence by Property (ii), mA−1

i,aAj,b /∈ M

unless (j, b) = (i, a). If mA−1
i,aAj,b is not in m+Q

− then it is not in M (L(m+)) by (2.7). If mA−1
i,aAj,b

is in m+Q
− then v(mA−1

i,aAj,bm
−1
+ ) = n− 1 and we can use the inductive assumption. Therefore

mA−1
i,aAj,b /∈ M (L(m+)) unless (j, b) = (i, a). (3.6)

Now suppose, for a contradiction, that m′ := mA−1
i,a ∈ M (L(m+)). Then we can pick a non-zero

|m′〉 ∈ ker(φ±
i (u) − γ±i (m

′)(u)) ⊆ L(m+)m′ . By Proposition 3.3, for all r ∈ Z, x+j,r |m
′〉 = 0 for

all j 6= i, and x+i,r |m
′〉 ∈ (Lm+)m. If x+i,r |m

′〉 = 0 for all r ∈ Z then |m′〉 generates a proper

submodule in L(m+): a contradiction since L(m+) is simple. So for some r ∈ Z, x+i,r |m
′〉 is

non-zero and spans the one-dimensional (by the inductive assumption) l-weight space L(m+)m.

Therefore |m′〉 /∈ spanr∈Z x
−
i,r(L(m+)m), because L(βi(M)) is by definition irreducible, βi(m) ap-

pears in its q-character, and βi(m
′) does not. Now, if m′′ ∈ M (L(m+)) and j ∈ I are such

that |m′〉 ∈ spanr∈Z x
−
j,rL(m+)m′′ then wt(m′′) = wt(m′) + αj and hence v(m′′m−1

+ ) = n − 1.

So, by the inductive assumption, dim(L(m+)m′′) = 1, and thus Proposition 3.3 applies to any

|m′′〉 ∈ L(m+)m′′ . Hence, by (3.6), x−j,r |m
′′〉 has zero component in L(m+)m′ for all m′′ 6= m. So

|m′〉 /∈ spani∈I,r∈Z x
−
i,r(L(m+)): a contradiction.

Finally consider case (III). By Property (iii), mA−1
i,a /∈ M. Now mA−1

i,a is not i-dominant since

ui,aq−ri (mA−1
i,a ) = −1. But βi(mA−1

i,a ) is not in the q-character of the Weyl module W (βi(M)), and,

recall, M is the unique i-dominant monomial in mA−1
i,aZ[Ai,b]b∈C∗ ∩ M. Therefore mA−1

i,a cannot

appear in χq(L(m+)) because it is not part of a consistent Uqri (ŝl2
(i))-character.

This completes the inductive step, and we have therefore established the claim above, for all

n ∈ Z≥0, and hence the equality (3.4). Finally, it follows that L(m+) is manifestly thin, and it is

special by Property (i). �

It is very plausible that the conditions of Theorem 3.4 could be weakened: for example, we suspect

that (ii) could be dropped, and that (iii) could be replaced by the demand that mZ[A±1
i,a ]a∈C∗ ∩M

should be a consistent thin Uqri (ŝl2
(i))-character.

Let us stress that Theorem 3.4 requires no a priori knowledge about the representation L(m+).

One way to construct the setM of monomials is to use the q-character algorithm of [FM01]. Starting

with any dominant monomial m+, the algorithm – provided it does not fail, in the sense explained

in [FM01] – produces a Laurent polynomial, χFM(m+) ∈ ZP. It is then a finite computational

check to determine whether the monomials of χFM (m+) satisfy the conditions of Theorem 3.4. If

they do then

χFM (m+) = χq(L(m+)).

It they do not, then m+ does not fall within the scope of Theorem 3.4.

4. Snake modules in types A and B

In this section we introduce the class of modules to which the q-character formula of Theorem

6.1 below will pertain. We specialize to types A and B: henceforth, g is either aN or bN .
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Figure 1. Each of the points � (resp. �) is in snake position (resp. minimal snake
position) to the point marked ◦.
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4.1. Notation, and the subring Z[Y ±1
i,k ](i,k)∈X . We define a subset X ⊂ I × Z as follows.

Type A: Let X := {(i, k) ∈ I × Z : i− k ≡ 1 mod 2}.

Type B: Let X := {(N, 2k + 1) : k ∈ Z} ⊔ {(i, k) ∈ I × Z : i < N and k ≡ 0 mod 2}.

For the remainder of this paper, we pick and fix once and for all an a ∈ C
∗, and work solely with

representations whose q-characters lie in the subring Z[Y ±1
i,aqk

](i,k)∈X . It is helpful to define also

W := {(i, k) : (i, k − ri) ∈ X} (4.1)

for we have, as a refinement of (2.7), that for all m+ ∈ Z[Yi,aqk ](i,k)∈X

M (L(m+)) ⊂ m+Z[A
−1
i,aqk

](i,k)∈W .

Remark 4.1. For all m ∈ P+, L(m) is isomorphic to a tensor product of simple Uq(ĝ)-modules such

that for each simple factor L(m′) there exists an a ∈ C
∗ such that χq(L(m

′)) ∈ Z[Y ±1
i,aqk

](i,k)∈X . So

there is no loss of generality in restricting our attention to Z[Y ±1
i,aqk

](i,k)∈X .

From now on it is convenient to write, by an abuse of notation,

Yi,k := Yi,aqk , Ai,k := Ai,aqk , ui,k := ui,aqk

for all (i, k) ∈ I × Z (c.f. (2.8) for the definition of ui,aqk).

4.2. Snake position and minimal snake position. Let (i, k) ∈ X . Let us say that a point

(i′, k′) ∈ X is in in snake position with respect to (i, k) if and only if

Type A: k′ − k ≥ |i′ − i|+ 2.

Type B:

i = i′ = N : k′ − k ≥ 2 and k′ − k ≡ 2 mod 4

i < i′ = N or i′ < i = N : k′ − k ≥ 2|i′ − i|+ 3 and k′ − k ≡ 2|i′ − i| − 1 mod 4

i < N and i′ < N : k′ − k ≥ 2|i′ − i|+ 4 and k′ − k ≡ 2|i′ − i| mod 4.

The point (i′, k′) is in minimal snake position to (i, k) if and only if k′ − k is equal to the given

lower bound. The meaning of snake position is illustrated in Figure 1. Here, and subsequently, we

draw the images of points in X under the injective map ι : X → Z× Z defined as follows.

Type B: ι : (i, k) 7→





(2i, k) i < N and 2N + k − 2i ≡ 2 mod 4

(4N − 2− 2i, k) i < N and 2N + k − 2i ≡ 0 mod 4

(2N − 1, k) i = N.

(4.2)

Type A: ι : (i, k) 7→ (i, k).

(We define ι in type A purely in order to make certain proofs more uniform in what follows.)

4.3. Snakes and snake representations. We call a finite sequence (it, kt), 1 ≤ t ≤ T , T ∈ Z≥1,

of points in X a (minimal) snake if and only if for all 2 ≤ t ≤ T , (it, pt) is in (minimal) snake

position with respect to (it−1, kt−1). We call the simple module L(m) a (minimal) snake module if

and only if m =
∏T

t=1 Yit,kt
for some (minimal) snake (it, kt)1≤t≤T .
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The notion of snake position includes the correct position for minimal affinizations, but is more

general. For example, one sees that in type A4, (2, 3) and (3, 4) are both in snake position to (2, 1),

but so too is (3, 6). L(Y2,1Y2,3) and L(Y2,1Y3,4) are minimal affinizations of V (2ω2) and V (ω2+ω3)

respectively, but L(Y2,1Y3,6) is not a minimal affinization. Also, L(Y2,1Y3,4Y2,7) is a minimal snake

module but not a minimal affinization. In fact, by comparing it with the classification of minimal

affinizations in types A and B [Cha95, CP95], one can verify

Proposition 4.2. Let (it, kt) ∈ X , 1 ≤ t ≤ T , T ∈ Z≥1. The following are equivalent:

(1) L(
∏T

t=1 Yit,kt) is a minimal affinization

(2) (it, kt)1≤t≤T is a minimal snake and the sequence (it)1≤t≤T is monotonic. �

Thus we have the following nested classes of representations, in order of increasing generality:

KR modules ⊂ minimal affinizations ⊂ minimal snake modules ⊂ snake modules.

Remark. There is no upper bound on the gap k′ − k in the definition of snake position. Suppose

(it, kt) ∈ X , 1 ≤ t ≤ T is a snake of length T ∈ Z≥1. If ks+1 − ks is sufficiently large, for some

1 ≤ s < T , then L(
∏T

t=1 Yit,kt)
∼= L(

∏s
t=1 Yit,kt) ⊗ L(

∏T
t=s+1 Yit,kt). Thus snake modules need not

be prime. We shall see that minimal snakes are prime.

5. Paths and moves

5.1. Paths and corners. For each (i, k) ∈ X we shall define a set Pi,k of paths. For us, a path is

a finite sequence of points in the plane R
2. We write (j, ℓ) ∈ p if (j, ℓ) is a point of the path p. In

our diagrams, we connect consecutive points of the path by line segments, for illustrative purposes

only.

Paths of Type A. For all (i, k) ∈ X , let

Pi,k :=
{(

(0, y0), (1, y1), . . . , (N + 1, yN+1)
)

: y0 = i+ k, yN+1 = N + 1− i+ k,

and yi+1 − yi ∈ {1,−1} ∀0 ≤ i ≤ N
}
.

We define the sets Cp,± of upper and lower corners of a path p =
(
(r, yr)

)
0≤r≤N+1

∈ Pi,k to be

(c.f. Figure 2)

Cp,+ := {(r, yr) ∈ p : r ∈ I, yr−1 = yr + 1 = yr+1}

Cp,− := {(r, yr) ∈ p : r ∈ I, yr−1 = yr − 1 = yr+1} .

Paths of Type B. Pick and fix an ǫ, 1/2 > ǫ > 0. We first define PN,ℓ for all ℓ ∈ 2Z+ 1 as follows.

• For all ℓ ≡ 3 mod 4,

PN,ℓ :=
{(

(0, y0), (2, y1), . . . , (2N − 4, yN−2), (2N − 2, yN−1), (2N − 1, yN )
)

: y0 = ℓ+ 2N − 1, yi+1 − yi ∈ {2,−2} ∀0 ≤ i ≤ N − 2

and yN − yN−1 ∈ {1 + ǫ,−1− ǫ}
}
.
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Figure 2. In type A4: left, illustration of the paths in P2,1; centre and right, the
paths corresponding to two monomials of χq(L(Y2,1)).
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• For all ℓ ≡ 1 mod 4,

PN,ℓ :=
{(

(4N − 2, y0), (4N − 4, y1), . . . , (2N + 2, yN−2), (2N, yN−1), (2N − 1, yN )
)

: y0 = ℓ+ 2N − 1, yi+1 − yi ∈ {2,−2} ∀0 ≤ i ≤ N − 2

and yN − yN−1 ∈ {1 + ǫ,−1− ǫ}
}
.

Next we define Pi,k for all (i, k) ∈ X , i < N , as follows.

Pi,k :=
{
(a0, a1, . . . , aN , āN , . . . , ā1, ā0) : (a0, a1, . . . , aN ) ∈ PN,k−(2N−2i−1),

(ā0, ā1, . . . , āN ) ∈ PN,k+(2N−2i−1), (5.1)

and aN − āN = (0, y) where y > 0
}
.

These definitions are illustrated in Figures 3, 4 and 5.

For all (i, k) ∈ X , we define the sets of upper and lower corners Cp,± of a path p =
(
(jr, ℓr)

)
0≤t≤|p|−1

∈

Pi,k as follows:

Cp,+ := ι−1
{
(jr, ℓr) ∈ p : jr /∈ {0, 2N − 1, 4N − 2}, ℓr−1 > ℓr, ℓr+1 > ℓr

}

⊔ {(N, ℓ) ∈ X : (2N − 1, ℓ− ǫ) ∈ p and (2N − 1, ℓ+ ǫ) /∈ p},

Cp,− := ι−1
{
(jr, ℓr) ∈ p : jr /∈ {0, 2N − 1, 4N − 2}, ℓr−1 < ℓr, ℓr+1 < ℓr

}

⊔ {(N, ℓ) ∈ X : (2N − 1, ℓ+ ǫ) ∈ p and (2N − 1, ℓ− ǫ) /∈ p}.

where ι is the map defined in (4.2). Note that Cp,± is a subset of X .

We define a map m sending paths to monomials, as follows:

m :
⊔

(i,k)∈X

Pi,k −→ Z

[
Y ±1
j,ℓ

]
(j,ℓ)∈X

; p 7→ m(p) :=
∏

(j,ℓ)∈Cp,+

Yj,ℓ

∏

(j,ℓ)∈Cp,−

Y −1
j,ℓ . (5.2)

5.2. Lowering moves. Let (i, k) ∈ X and (j, ℓ) ∈ W. We say a path p ∈ Pi,k can be lowered at

(j, ℓ) if and only if (j, ℓ − rj) ∈ Cp,+ and (j, ℓ + rj) /∈ Cp,+. If so, we define a lowering move on p

at (j, ℓ), resulting in another path in Pi,k which we write as pA −1
j,ℓ , as follows.
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Figure 3. In type B4, illustration of the paths in: P4,3 (top left), P4,1 (top
right), P1,0 (bottom left), and P2,0 (bottom right).
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Moves of Type A. Let p ∈ Pi,k. Then p =
(
(i, yi)

)
0≤i≤N+1

where (yi)0≤i≤N+1 ∈ R
N+2. The upper

corners of p are the points (j, ℓ− 1) ∈ p such that ℓ = yj−1 = yj +1 = yj+1. The second condition,

that (j, ℓ+ 1) /∈ Cp,+, follows automatically and is thus redundant in type A. For each such upper

corner, we define pA −1
j,ℓ :=

(
(0, y0), . . . , (j − 1, yj−1), (j, yj + 2), (j + 1, yj+1), . . . , (N + 1, yN+1)

)
,

which is again a path in Pi,k. Pictorially, this is the move

j−1 j+1j

ℓ−1

ℓ+1

ℓ .

Moves of Type B. We first define the lowering moves on paths in PN,k, k ≡ 3 mod 4. Note that,

for all p ∈ PN,k, if (j, ℓ − rj) ∈ Cp,+ then (j, ℓ + rj) /∈ Cp,+, so, as in type A, the latter condition
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Figure 4. In type B4, the paths corresponding to three monomials of χq(L(Y4,1))
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is redundant in this case. For any p ∈ PN,k, we have p =
(
(0, y0), (2, y1), . . . , (2N − 4, yN−2), (2N −

2, yN−1), (2N − 1, yN )
)
for some (yi)0≤i≤N ∈ R

N+1. We define the lowering moves case-by-case:

i) If (j, ℓ − 2) ∈ Cp,+ for some j < N − 1, we have ℓ = yj−1 = yj + 2 = yj+1 and we define

pA −1
j,ℓ :=

(
(0, y0), . . . , (2j−2, yj−1), (2j, yj+4), (2j+2, yj+1), . . . , (2N−2, yN−1), (2N−1, yN )

)
.

ii) If (N − 1, ℓ − 2) ∈ Cp,+, we have ℓ = yN−2 = yN−1 + 2 = yN + 1 − ǫ and we define pA −1
j,ℓ :=(

(0, y0), . . . , (2N − 4, yN−2), (2N − 2, yN−1 + 4), (2N − 1, yN + 2− 2ǫ)
)
.

iii) If (N, ℓ− 1) ∈ Cp,+, we have ℓ = yN−1 = yN +1+ ǫ and we define pA −1
j,ℓ :=

(
(0, y0), . . . , (2N −

4, yN−2), (2N − 2, yN−1), (2N − 1, yN + 2 + 2ǫ)
)
.

In each case, pA −1
j,ℓ ∈ PN,k. Pictorially, these moves are:

i)

ℓ−2

ℓ+2

ℓ

j−1 j+1j

ii)

N−2 N−1 N N−1 N−2

ℓ−2

ℓ+2

ℓ iii)

N−2 N−1 N N−1 N−2

ℓ−2

ℓ+2

ℓ .

Next we define the lowering moves on PN,k with k ≡ 1 mod 4. Informally, these are simply

the mirror images of the moves above. For any p ∈ PN,k, we have p =
(
(4N − 2, y0), (4N −

4, y1), . . . , (2N + 2, yN−2), (2N, yN−1), (2N − 1, yN )
)
for some (yi)0≤i≤N ∈ R

N+1. We define the

lowering moves case-by-case:

i) If (j, ℓ − 2) ∈ Cp,+ for some j < N − 1, we have ℓ = yj+1 = yj + 2 = yj−1 and we define

pA −1
j,ℓ :=

(
(4N − 2, y0), (4N − 4, y1), . . . , (2j + 2, yj−1), (2j, yj + 4), (2j − 2, yj+1), . . . , (2N +

2, yN−2), (2N, yN−1), (2N − 1, yN )
)
.

ii) If (N − 1, ℓ − 2) ∈ Cp,+, we have ℓ = yN + 1 − ǫ = yN−1 + 2 = yN−2 and we define pA −1
j,ℓ :=(

(4N − 2, y0), (4N − 4, y1), . . . , (2N + 2, yN−2), (2N, yN−1 + 4), (2N − 1, yN + 2− 2ǫ)
)
.

iii) If (N, ℓ−1) ∈ Cp,+, we have ℓ = yN +1+ǫ = yN−1 and we define pA −1
j,ℓ :=

(
(4N−2, y0), (4N−

4, y1), . . . , (2N + 2, yN−2), (2N, yN−1), (2N − 1, yN + 2 + 2ǫ)
)
.
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Figure 5. In type B4, the paths corresponding to the monomials of χq(L(Y1,0)).
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In each case, pA −1
j,ℓ ∈ PN,k. That is, pictorially,

i)

ℓ−2

ℓ+2

ℓ

j−1j+1 j

ii)

N−2 N−1 N N−1 N−2

ℓ−2

ℓ+2

ℓ iii)

N−2 N−1 N N−1 N−2

ℓ−2

ℓ+2

ℓ .

Finally, for all (i, k) ∈ X with i < N , one has (c.f. 5.1) that every path p ∈ Pi,k is equivalent

to a pair (a, b) where a ∈ PN,k−(2N−2i−1) and b ∈ PN,k+(2N−2i−1). By construction, a and b can

share no upper corners. Thus the set of upper corners of p is a subset of the disjoint union of the

sets of upper corners of a and b. If p can be lowered at (j, ℓ), exactly one of a and b can be lowered

at (j, ℓ), and we define pA −1
j,ℓ to be given by whichever of the pairs

(
aA −1

j,ℓ , b
)
and

(
a, bA −1

j,ℓ

)
is

defined. It is here that the second criteria for it to be possible to lower p at (j, ℓ), namely that

(j, ℓ+ rj) /∈ Cp,+, is used, for it ensures that the condition on aN − āN in (5.1) is preserved.

5.3. Raising moves. Let (i, k) ∈ X and (j, ℓ) ∈ W. We say a path p ∈ Pi,k can be raised at (j, ℓ)

if and only if p = p′A −1
j,ℓ for some p′ ∈ Pi,k. If p′ exists it is unique, and we define pAj,ℓ := p′.

It is straightforward to verify that p can be raised at (j, ℓ) if and only if (j, ℓ + rj) ∈ Cp,− and

(j, ℓ− rj) /∈ Cp,−.

5.4. The highest/lowest path. For all (i, k) ∈ X , define p+i,k, the highest path to be the unique

path in Pi,k with no lower corners. Equivalently, p+i,k is the unique path such that:

Type A : (i, k) ∈ p+i,k

Type B, i < N : ι(i, k) ∈ p+i,k

Type B, i = N : (2N − 1, k)− (0, ǫ) ∈ p+N,k.

Define p−i,k, the lowest path, to be the unique path in Pi,k with no upper corners. Equivalently, p−i,k
is the unique path such that:

Type A : (N + 1− i, k +N + 1) ∈ p−i,k

Type B, i < N : ι(i, k + 4N − 2) ∈ p−i,k

Type B, i = N : (2N − 1, k + 4N − 2) + (0, ǫ) ∈ p−N,k.

5.5. Non-overlapping paths. Let p, p′ be paths. We say p is strictly above p′, and p′ is strictly

below p, if and only if

(x, y) ∈ p and (x, z) ∈ p′ =⇒ y < z.

We say a T -tuple of paths (p1, . . . , pT ) is non-overlapping if and only if ps is strictly above pt for

all s < t. Otherwise, for some s < t there exist (x, y) ∈ ps and (x, z) ∈ pt such that y ≥ z, and we

say ps overlaps pt in column x.

For any snake (it, kt) ∈ X , 1 ≤ t ≤ T , T ∈ Z≥1, let us define

P(it,kt)1≤t≤T
:= {(p1, . . . , pT ) : pt ∈ Pit,kt , 1 ≤ t ≤ T , (p1, . . . , pT ) is non-overlapping } .
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Lemma 5.1. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
. Suppose (i, k) ∈ Cpt,± for some t, 1 ≤ t ≤ T . Then

(i) (i, k) /∈ Cps,± for any s 6= t, 1 ≤ s ≤ T , and

(ii) (Type A) (i, k) /∈ Cps,∓ for any s, 1 ≤ s ≤ T

(Type B) if (i, k) ∈ Cps,∓ for some s, 1 ≤ s ≤ T , then s = t± 1 and i = N .

Proof. This follows from the definition of non-overlapping paths. Examples of the last part (pairs

non-overlapping paths in type B which share a common corner) are shown in Figure 7. �

Thus, for any (p1, . . . , pT ) ∈ P(it,kt)1≤t≤T
and any (j, ℓ) ∈ W, at most one of the paths can

be lowered at (j, ℓ) and at most one of the paths can be raised at (j, ℓ). We can therefore speak

without ambiguity of performing a raising or lowering move at (j, ℓ) on a non-overlapping tuple of

paths (p1, . . . , pT ) ∈ P(it,kt)1≤t≤T
, to yield a new tuple (p1, . . . , pT )A

±1
j,ℓ .

Lowering moves on tuples of non-overlapping paths can introduce overlaps. However, we have

the following lemma which gives information about how such overlaps arise.

Lemma 5.2. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
. Let t, 1 ≤ t ≤ T , and (j, ℓ) ∈ W be such that the path pt can be lowered at (j, ℓ).

This move introduces an overlap if and only if there is an s, t < s ≤ T , such that ps has an upper

corner at (j, ℓ+ rj) or a lower corner at (j, ℓ− rj).

Similarly, let t, 1 ≤ t ≤ T , and (j, ℓ) ∈ W be such that the path pt can be raised at (j, ℓ). This

move introduces an overlap if and only if there is an s, 1 ≤ s < t, such that ps has a lower corner

at (j, ℓ − rj) or an upper corner at (j, ℓ+ rj).

Proof. This is seen by inspection of the definitions above of paths and moves. We sketch the distinct

cases, up to symmetry, in type B. In most cases the overlap occurs at an upper corner (j, ℓ+ rj) of

ps:
j+1 j j−1N−1 N N−1 N−2N−1 N N−1

.

The exception is when the upper corner (j, ℓ − rj) of pt is also a lower corner of ps, which can

happen only when j = N – c.f. Lemma 5.1 and Figure 7:

N−1 N N−1

.

�

Remark 5.3. This property of our tuples of paths is vital for the validity of Lemma 5.13 and hence

of Theorem 6.1 below. Informally speaking, it means that the first overlap between paths always

corresponds, in the q-character, to an illegal lowering step in some Uq(ŝl2) evaluation module. That
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is, in the ball-and-box picture of thin Uq(ŝl2)-modules (§3.1) it always corresponds to trying to

perform an illegal move → or → . It should be noted that Lemma 5.2 would not

hold if the definition of snake position (§4.2) in type B were widened by dropping the conditions

on k − k′ mod 4. For example, consider ((N, 1), (N, 5)). The first overlap between in a path in

P(N,1) and a path in P(N,5) is not necessarily of the type in Lemma 5.2,

and could thus correspond to a legal lowering step → in the q-character.

Our definitions of paths and moves are so constructed that we have

Lemma 5.4. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
. If (p′1, . . . , p

′
T ) = (p1, . . . , pT )A

±1
j,ℓ , where (j, ℓ) ∈ W is any point at which (p1, . . . , pT )

can be raised/lowered, then
∏T

t=1 m(p′t) = A±1
j,ℓ

∏T
t=1 m(pt). �

5.6. Properties of moves and paths. The rest of this section is concerned with establishing

some facts about the relationship between paths and monomials.

Given any two paths p = (xr, yr)1≤r≤n and p′ = (xr, y
′
r)1≤r≤n, n ∈ Z>0, in Pi,k we say p is

weakly above (resp. weakly below) p′ if and only if yr ≤ y′r (resp. yr ≥ y′r) for all 1 ≤ r ≤ n. We

also define

top(p, p′) := (xr,min(yr, y
′
r))1≤r≤n. (5.3)

The three following lemmas are proved by inspection.

Lemma 5.5. Any path p ∈ Pi,k is uniquely defined by its set of lower corners. �

Lemma 5.6. Suppose p and p′ are paths in Pi,k such that p is weakly below p′. If p 6= p′ then

there is a (j, ℓ) ∈ W such that p can be raised at (j, ℓ) and pAj,ℓ is weakly below p′. �

Lemma 5.7. For all p, p′ ∈ Pi,k, top(p, p
′) ∈ Pi,k and top(p, p′) is weakly above both p and p′. �

Now we have

Lemma 5.8. Let p and p′ be paths in Pi,k. Then p can be obtained from p′ by a sequence of moves

containing no inverse pair of raising/lowering moves.

Proof. By applying Lemma 5.6 a finite number of times we construct a sequence s of distinct

points in W such that, starting with p, performing raising moves at these points, in order, yields

top(p, p′). Similarly, we construct a sequence s′ of raising moves taking p′ to top(p, p′); by reversing

this sequence, we have a sequence of lowering moves taking top(p, p′) to p′. It is enough to show

that s and s′ have no element in common.

Suppose for a contradiction the point (j, ℓ) ∈ W occurs in both s and s′. Let p̃ be the path

obtained by performing, on p, raising moves at the points in s preceding (j, ℓ), in order. Similarly,
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let p̃′ be the path obtained by performing, on p′, raising moves at the points in s′ preceding (j, ℓ), in

order. Then top(p, p′) = top(p̃, p̃′). But both p̃ and p̃′ have a lower corner at (j, ℓ + rj). Therefore

top(p̃, p̃′) has a lower corner at (j, ℓ + rj), while top(p, p′) does not: a contradiction. �

Lemma 5.9. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1. Let (p1, . . . , pT ) and

(p′1, . . . , p
′
T ) be tuples of non-overlapping paths in P(it,kt)1≤t≤T

. Then (p1, . . . , pT ) can be obtained

from (p′1, . . . , p
′
T ) by a sequence of moves containing no inverse pair of raising/lowering moves,

such that no move introduces any overlaps.

Proof. For each t, 1 ≤ t ≤ T , let st (resp. s′t) be the finite sequence of points at which we must

perform raising moves on pt (resp. p
′
t) to reach top(pt, p

′
t), by repeated application of Lemma 5.6.

Then the following is a sequence of moves obeying the requirements of the lemma. We first perform

raising moves (at the points in s1, in order) on p1 to reach top(p1, p
′
1), then on p2 (at the points in s2,

in order) to reach top(p2, p
′
2) and so on until we raise pT to top(pT , p

′
T ). Then we perform lowering

moves (at the points in s′T , in reverse order) on top(pT , p
′
T ) to reach p′T , then on top(pT−1, p

′
T−1)

(at the points in s′T−1, in reverse order) to p′T−1 and so on until we lower top(p1, p
′
1) to p1. This

ordering of the moves ensures that at no step do any two paths overlap. By Lemma 5.8, st ∩ s′t = ∅

for all t, 1 ≤ t ≤ T . It remains to check that st ∩ s′u = ∅ for all distinct 1 ≤ t 6= u ≤ T . Suppose for

a contradiction that (j, ℓ) ∈ st ∩ s′u, for some 1 ≤ t 6= u ≤ T . Without loss of generality suppose

t < u. Let (x, y) := ι(j, ℓ + rj). Then p′u has a lower corner at (j, ℓ + rj) and top(pu, p
′
u) does not.

So top(pu, p
′
u), and hence pu, contains a point (x, y′), y′ < y. But pt also has a lower corner at

(j, ℓ+ rj), i.e. it contains the point (x, y). So pu and pt overlap in column x: a contradiction since

pt and pu are non-overlapping. �

Lemma 5.10. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (jr, ℓr), 1 ≤ r ≤

R, a sequence of R ∈ Z≥0 points in W. For all (p1, . . . , pT ) ∈ P(it,kt)1≤t≤T
and (p′1, . . . , p

′
T ) ∈

P(it,kt)1≤t≤T
, the following are equivalent:

(i)
∏T

t=1 m(p′t) =
∏T

t=1 m(pt) ·
∏R

r=1 A
−1
jr,ℓr

(ii) there is a permutation σ ∈ SR such that
(
(jσ(1), ℓσ(1)), . . . , (jσ(R), ℓσ(R))

)
is a sequence of

lowering moves that can be performed on (p1, . . . , pT ), without ever introducing overlaps, to

yield (p′1, . . . , p
′
T ).

Proof. That (ii) implies (i) follows from Lemma 5.4. To see that (i) implies (ii), note that since

(p1, . . . , pT ) ∈ P(it,kt)1≤t≤T
and (p′1, . . . , p

′
T ) ∈ P(it,kt)1≤t≤T

, Lemma 5.9 states that there is a

sequence of moves that takes (p1, . . . , pT ) to (p′1, . . . , p
′
T ) without introducing overlaps and without

ever performing a move and its inverse. By Lemma 5.4 and the fact that the (Aj,ℓ)(j,ℓ)∈W are

algebraically independent, these moves must indeed be lowering moves at the points (jr, ℓr)1≤r≤R

arranged in some order. �

Corollary 5.11. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1. The map

P(it,kt)1≤t≤T
→ Z[Y ±1

j,ℓ ](j,ℓ)∈X ; (p1, . . . , pT ) 7→
T∏

t=1

m(pt)

is injective.
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Figure 6. Illustration of the definition, §5.5, of overlapping paths in type B4. By
Theorem 6.1, L(Y4,1Y4,3) contains the monomial (Y1,8Y

−1
3,12Y4,11)(Y4,9Y

−1
2,12) (left) but

not the monomial (Y1,8Y
−1
3,12Y4,11)(Y

−1
4,15) (right). Note that the latter is disallowed

despite the fact that no paths intersect, because the would-be upper path contains,
in the column corresponding to the short node, a point below a point of the would-be
lower path.
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Figure 7. Illustration of Lemma 5.1. By Theorem 6.1: L(Y2,0Y2,4) contains the

monomial (Y4,3Y4,9Y
−1
3,10)(Y3,8Y

−1
4,9 Y

−1
4,15) = Y4,3Y

−1
3,10Y3,8Y

−1
4,15 (left) and L(Y4,1Y4,3)

contains the monomial (Y −1
3,14Y4,13)(Y1,8Y

−1
4,13) = Y1,8Y

−1
3,14 (right). In such cases it

is possible for a factor Y −1 from a given path cancel a factor Y in a path strictly
above. But in no case can a Y −1 from a given path cancel a Y from a path strictly
below.
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Proof. This is the case R = 0 in Lemma 5.10. �

Lemma 5.12. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
. Let m =

∏T
t=1 m(pt). If mA−1

i,k not of the form
∏T

t=1 m(p′t) for any (p′1, . . . , p
′
T ) ∈

P(it,kt)1≤t≤T
, then neither is mA−1

i,kAj,ℓ unless (j, l) = (i, k).

Proof. By Lemma 5.10, if mA−1
i,kAj,ℓ =

∏T
t=1 m(p′t) for some (p′1, . . . , p

′
T ) ∈ P(it,kt)1≤t≤T

then

(p′1, . . . , p
′
T ) is can be obtained from (p1, . . . , pT ), without ever introducing overlaps, by either

(i) lowering at (i, k) and then raising at (j, ℓ), or

(ii) raising at (j, ℓ) and then lowering at (i, k).

We assume that mA−1
i,k is not of the form

∏T
t=1 m(p′t) for any (p′1, . . . , p

′
T ) ∈ P(it,kt)1≤t≤T

. So, by

Lemma 5.4, either (a) it is not possible to lower (p1, . . . , pT ) at (i, k), or else (b) this is a valid

lowering move but one which introduces an overlap. Hence (i) is impossible. Now suppose (ii)

is possible: suppose the raising move at (j, ℓ) is on ps and the lowering move at (i, k) is on pt,

1 ≤ s, t ≤ T . If s 6= t then this requires that pt can be lowered at (i, k), so we must be in case (b):

i.e. there is an r such that when pt is lowered at (i, k) it overlaps with pr. If s /∈ {t, r} then, after

the raising move at (j, ℓ) on ps, it is still true that when pt is lowered at (i, k) it overlaps with pr.

If s = r then note that pt lowered at (i, k) overlaps with pr raised at (j, ℓ). Therefore in fact s = t,

i.e. both moves must be on the same path. One then sees, on inspection, that it is necessary that

(j, ℓ) = (i, k), as required. �

Lemma 5.13. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
. Pick and fix an i ∈ I. Let P ⊂ P(it,kt)1≤t≤T

be the set of those non-overlapping

tuples of paths that can be obtained from (p1, . . . , pT ) by performing a sequence of raising or lowering

moves at points of the form (i, ℓ) ∈ W. Then βi(
∏T

t=1 m(pt)) is the q-character of a thin simple

finite-dimensional Uq(ŝl2)-module.

Proof. Let m :=
∏T

t=1 m(pt). The monomial βi(m) satisfies the conditions given in Lemma 3.1

to be part of a thin simple finite-dimensional Uqri (ŝl2
(i))-module, let us call it V : the condition

|ui,ℓ(m)| ≤ 1 is by Lemma 5.1; the condition ui,ℓ−ri(m)−ui,ℓ+ri(m) 6= 2 holds because there cannot

be an upper corner at (i, ℓ− ri) and a lower corner at (i, ℓ+ ri) without paths overlapping. (So we

have that, in the language of the ball-and-box model of §3.1, the pattern never occurs.)

Now we argue that the elements of P are in bijection with the set M (V ) of monomials of χq(V ).

By the definition of lowering moves and Lemma 5.2, it is possible to lower (p1, . . . , pT ) at (i, ℓ)

if and only if

(i) (i, ℓ− ri) is an upper corner of some path in (p1, . . . , pT ) and

(ii) (i, ℓ− ri) is not a lower corner of any path in (p1, . . . , pT ), and

(iii) (i, ℓ+ ri) is not an upper corner of any path in (p1, . . . , pT ).

Lemma 5.10 states that the only way to produce a factor A−1
i,ℓ is to do the lowering move at (i, ℓ).

Hence

mA−1
i,ℓ ∈

∑

(p′1,...,p
′
T
)∈P

T∏

t=1

m(p′t) (5.4)
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if and only if (i), (ii) and (iii) hold; that is, c.f. (5.2), if and only if ui,ℓ−ri(m) = 1 and ui,ℓ+ri(m) = 0.

As Lemma 3.1 states, these are precisely the conditions under which

βi(mA−1
i,ℓ ) ∈ M (V ). (5.5)

Similar statements hold for raising moves. As we noted following Lemma 3.1, by a finite sequence

of moves of this type we obtain every monomial of χq(V ) and no others. We also, by definition,

generate all the elements of P and no other tuples of paths. �

Lemma 5.14. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1 and (p1, . . . , pT ) ∈

P(it,kt)1≤t≤T
.

If (p1, . . . , pT ) 6=
(
p+i1,k1 , . . . , p

+
iT ,kT

)
then

∏T
t=1 m(pt) is not dominant.

If (p1, . . . , pT ) 6=
(
p−i1,k1 , . . . , p

−
iT ,kT

)
then

∏T
t=1 m(pt) is not anti-dominant.

Proof. If (p1, . . . , pT ) 6=
(
p+i1,k1 , . . . , p

+
iT ,kT

)
then there exists t, 1 ≤ t ≤ T , such that pt 6= p+it,kt .

Therefore pt has at least one lower corner at, c.f. §5.4. Suppose it is at (i, k) ∈ X . If no path in

(p1, . . . , pT ) has an upper corner at (i, k) then
∏T

t=1 m(pt) is not dominant. Lemma 5.1 states that

the only way another path can have an upper corner at (i, k) without there being any overlaps is if

i = N and s = t− 1. Since s precedes t in the snake, ps cannot equal p+is,ks and must have a lower

corner at some (i′, k′) ∈ X , i′ 6= N . No path in (p1, . . . , pT ) can have an upper corner here, again

by Lemma 5.1. So the resulting factor Y −1
i′,k′ cannot be cancelled and

∏T
t=1 m(pt) is not dominant.

The argument for anti-dominant monomials is similar. �

6. The path formula for q-characters of snake modules

We are now in a position to state the second main result of the paper.

Theorem 6.1. Let (it, kt) ∈ X , 1 ≤ t ≤ T , be a snake of length T ∈ Z≥1. Then

χq

(
L

(
T∏

t=1

Yit,kt

))
=

∑

(p1,...,pT )∈P(it,kt)1≤t≤T

T∏

t=1

m(pt). (6.1)

The module L(
∏T

t=1 Yit,kt
) is thin, special and anti-special.

Proof. Let m+ :=
∏T

t=1 m(p+it,kt) be the highest monomial of χq(L(
∏T

t=1 Yit,kt
)). Define

M := {
T∏

t=1

m(pt) : (p1, . . . , pT ) ∈ P(it,kt)1≤t≤T
}.

We shall show that the conditions of Theorem 3.4 apply to the pair (m+,M). Indeed, Property

(i) follows from Lemma 5.14, Property (ii) is Lemma 5.12, and Property (iii) is Lemma 5.13.

Since, by Corollary 5.11,
∑

m∈M m =
∑

(p1,...,pT )∈P(it,kt)1≤t≤T

∏T
t=1 m(pt), the formula (6.1) and

the properties thin and special follow from Theorem 3.4. Anti-special then follows from Lemma

5.14. �

Example 6.2. In type B5, consider the simple module L(Y4,0Y5,5Y4,10). This is a minimal snake

module; its snake is shown on the left in Figure 8. By Theorem 6.1, its q-character includes the
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Figure 8. Illustration of Theorem 6.1 in type B5. Left: a minimal snake. Right:
a tuple of non-overlapping paths for this snake. See Example 6.2.
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monomial

Y −1
2,12Y5,7Y5,1Y5,13Y

−1
4,14Y2,10Y

−1
1,22Y5,15Y5,17Y

−1
4,18Y2,14,

which corresponds to the non-overlapping tuple of paths shown on the right in Figure 8.

7. Existing results and skew tableaux

In types A and B, Theorem 6.1 gives a closed form, in terms of non-overlapping paths, for the

q-character of the Uq(ĝ)-module L
(∏T

t=1 Yit,kt

)
where (it, kt)1≤t≤T is any snake whose elements lie

in the set X , c.f. §4. Let us define a subset Y ⊆ X by:

Type A: Y := X .

Type B: Y := {(i, k) ∈ I × Z : i < N and 2i− k ≡ 2 mod 4}.

Remark 7.1. In type B, the points of Y all lie strictly to the left (resp. right) of the column

corresponding to the short node, in the figures as drawn, when N ≡ 0 mod 2 (resp. N ≡ 1 mod 2).

In the existing literature, closed forms have been found or conjectured for the q-character of

L
(∏T

t=1 Yit,kt

)
whenever (it, kt)1≤t≤T is a snake whose elements lie in Y. In this section we describe

how the existing closed forms can be recovered as special cases of Theorem 6.1. The combinatorial

objects used in these closed forms are (or are equivalent to) skew tableaux.

In this paper, let us say that a skew diagram (λ/µ) is finite subset (λ/µ) ⊂ Z× Z>0 such that

(1) if (λ/µ) 6= ∅ then there is a j such that (j, 1) ∈ (λ/µ), and

(2) if (i, j) /∈ (λ/µ) then either ∀i′ ≥ i,∀j′ ≥ j, (i′, j′) /∈ (λ/µ) or ∀i′ ≤ i,∀j′ ≤ j, (i′, j′) /∈ (λ/µ).

If (i, j) ∈ (λ/µ) we say (λ/µ) has a box in row i, column j. By definition the left-most (i.e. lowest-

numbered) column containing a box is numbered 1. However, as a matter of convenience, we do
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not insist that the top-most (i.e. lowest-numbered) row containing a box is numbered 1, and we do

not regard skew diagrams related by a vertical shift as identical.

Define a set A (the alphabet) equipped with a total ordering < (alphabetical ordering) as follows:

Type A: A := I = {1, 2, . . . N,N + 1}, 1 < 2 < · · · < N < N + 1.

Type B: A := {1, 2, . . . , N, 0, N̄ , . . . , 2̄, 1̄}, 1 < 2 < · · · < N < 0 < N̄ < · · · < 2̄ < 1̄.

A skew tableaux T with shape (λ/µ) is then any map T : (λ/µ) → A that obeys the following

horizontal rule (H) and vertical rule (V):

Type A: (H) T (i, j) ≤ T (i, j + 1)

(V) T (i, j) < T (i+ 1, j).

Type B: (H) T (i, j) ≤ T (i, j + 1) and (T (i, j),T (i, j + 1)) 6= (0, 0)

(V) T (i, j) < T (i+ 1, j) or (T (i, j),T (i+ 1, j)) = (0, 0).

In type A these are the usual rules for a semi-standard skew tableaux. In type B, see [KOS95].

Let Tab(λ/µ) be the set of skew tableaux with shape (λ/µ).

Definition 7.2. Given a snake (it, kt)1≤t≤T whose elements lie in Y, define a set

(λ/µ)(it ,kt)1≤t≤T
:=

{
(s, t) ∈ Z× Z≥0 : 1 ≤ t ≤ T, t−

kt
2r∨

−
it − 1

2
≤ s ≤ t−

kt
2r∨

+
it − 1

2

}
.

Note that the bounds on s are indeed integers and that the top-most (i.e. lowest numbered) row

containing a box is row T − kT
2r∨ − iT−1

2 . (Recall r∨ = 1 in type A and r∨ = 2 in type B.)

Proposition 7.3. The map (it, kt)1≤t≤T 7→ (λ/µ)(it,kt)1≤t≤T
is a bijection from the set of snakes of

length T with elements in Y to the set of skew diagrams whose non-empty columns are 1, 2, . . . , T

and none of whose columns has more than N (resp. N − 1) boxes in type A (resp. type B).

Proof. By definition (λ/µ)(it ,kt)1≤t≤T
has, in each column t, 1 ≤ t ≤ T , a stack of it adjacent boxes,

the top-most of which is in row t− kt
2r∨ − it−1

2 , and no boxes elsewhere. It is clear that (it, kt)1≤t≤T

can be reconstructed from this set of boxes, so the map injective. To check (λ/µ)(it,kt)1≤t≤T
is a

skew diagram we must check that for each t, 1 ≤ t ≤ T − 1, the bottom box in column t is not

above the bottom box in column t + 1, and the top box in column t is not above the top box in

column t+ 1. These conditions are

kt+1 − kt ≥ (2 + it+1 − it)r
∨ and kt+1 − kt ≥ (2 + it − it+1)r

∨

respectively. This is exactly the definition of snake position for points (it, kt) and (it+1, kt+1) in Y,

c.f. Definition 4.2. So the map is onto the stated set of skew diagrams. �

Remark 7.4. (i) Minimal snakes (§4.2) in Y correspond to skew diagrams in which, for each

occupied column except the last, either the top-most box in that column is in the same row as

the top-most box in the next column, or the bottom-most box in that column is in the same

row as the bottom-most box in the next column. If the top- or bottom-most boxes in all the

columns are aligned in one row, then the corresponding module is a minimal affinization.

(ii) If a skew diagram has an empty column j then it describes the same representation as the

skew diagram in which each box to the right of column j is translated one step up and to the
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left, c.f. (7.1). So there is no loss of generality in considering only skew diagrams that have

no empty columns between occupied columns.

To each T ∈ Tab(λ/µ) we associate a monomial in Z[Y ±1
i,k ](i,k)∈X as follows:

M(T ) :=
∏

(i,j)∈λ/µ

T (i, j)
2r∨(j−i)

(7.1)

where

Type A: i k := Y −1
i−1,i+kYi,i−1+k, 1 ≤ i ≤ N + 1.

Type B: i k := Y −1
i−1,2i+kYi,2i−2+k , 1 ≤ i ≤ N − 1

N k := Y −1
N−1,2N+kYN,2N−3+kYN,2N−1+k

0 k := Y −1
N,2N+1+kYN,2N−3+k

N̄ k := Y −1
N,2N−1+kY

−1
N,2N+1+kYN−1,2N−2+k

ī k := Y −1
i,4N−2i+kYi−1,4N−2−2i+k , 1 ≤ i ≤ N − 1

with, by convention, Y0,k := 1 and YN+1,k := 1 for all k ∈ Z. Note that, in both types A and B,

{ i 0}i∈A are the monomials of q-character of the first fundamental representation, L(Y1,0). Compare

for example Figure 5 in type B4.

Proposition 7.5. Let (it, kt)1≤t≤T be a snake whose elements are in Y and (λ/µ) the corresponding

skew diagram as in Definition 7.2. There is a bijection P(it,kt)1≤t≤T
→ Tab(λ/µ); (p1, . . . , pT ) 7→

T(p1,...,pT ) between non-overlapping tuples of paths and skew tableaux such that

M(T(p1,...,pT )) =

T∏

t=1

m(pt). (7.2)

Proof. The required bijection is as follows:

Type A: For each t, 1 ≤ t ≤ T , pt is of the form pt =
(
(r, y

(t)
r )
)
0≤r≤N+1

. Let

St := {r ∈ A : y(t)r − y
(t)
r−1 = −1}.

By definition of Pit,kt , St consists of exactly it letters from the alphabet A. We enter

these letters in the boxes in column t, in alphabetical order, starting at the top box and

working downwards.

Type B: For each t, 1 ≤ t ≤ T , the path pt is given by a pair (at, āt) where at ∈ PN,kt−(2N−2it−1)

and āt ∈ PN,k+(2N−2i−1). Let at =:
(
(x

(t)
r , y

(t)
r )
)
0≤r≤N

and āt =:
(
(x̄

(t)
r , ȳ

(t)
r )
)
0≤r≤N

, and

define

St :=
{
r ∈ A : 1 ≤ r ≤ N, y(t)r − y

(t)
r−1 < 0

}

S̄t :=
{
r̄ ∈ A : 1 ≤ r ≤ N, ȳ(t)r − ȳ

(t)
r−1 > 0

}
.

Starting from the top box in column t and working downwards, we enter the letters in

St in alphabetical order. Then, starting from the bottom box in column t and working

upwards, we enter the letters in S̄t in reverse alphabetical order. The condition y
(t)
N > ȳ

(t)
N

in the definition of Pit,kt ensures that, in so doing, no box is filled twice. Finally we enter

the letter 0 into any boxes in (the middle of) column t that remain unfilled.
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For each t, 1 ≤ t ≤ T , this prescription places the paths in Pit,kt in bijection with the set of fillings

of the column t that obey the vertical rule (V) in the definition of skew tableaux above. It does so

in such a way that m(pt) =
∏

i:(i,t)∈(λ/µ) T(p1,...,pT )(i, t)
2r∨(t−i)

, from which (7.2) follows.

Finally, it is seen by inspection that the non-overlapping condition (§5.5) on the paths is equiv-

alent, in the special case that the points (it, kt)1≤t≤T lie in Y, to the horizontal rule (H) in the

definition of skew tableaux. �

Corollary 7.6. Let (it, kt) ∈ Y, 1 ≤ t ≤ T , be a snake. Then

χq

(
L

(
T∏

t=1

Yit,kt

))
=

∑

T ∈Tab(λ/µ)

M(T ) (7.3)

where (λ/µ) is the corresponding skew diagram according to Definition 7.2.

Proof. Given the preceding proposition, this is immediate from Theorem 6.1. �

In type A, Corollary 7.6 was previously known, at least in the Yangian case [NT98, Che87]. In

type B, Corollary 7.6 was previously known for those skew diagrams giving minimal affinizations

[Her07]; c.f. Remark 7.4 (i).

The right-hand side of (7.3) is the tableaux expression for the Jacobi-Trudi determinant in type A

or B. Corollary 7.6 thus confirms the conjecture made in [KOS95] (and, specifically in the language

of q-characters, in [NN06], Conjecture 2.2, part 1) that the type B Jacobi-Trudi determinant gives

the q-character of an irreducible representation of the quantum affine algebra.

Remark 7.7. (i) The paths in the present paper and those of [NN06] are a priori unrelated, and are

being used to solve distinct problems. Our paths are constructed to correspond to q-characters

of fundamental representations, and the notion of “non-overlapping” is designed to pick out

the q-character of the simple quotient of a suitably ordered tensor product of fundamental

factors. By contrast, the “non-intersecting” paths of [NN06] are used in deriving the skew

tableaux expression for the Jacobi-Trudi determinant, and originate in the Gessel-Viennot

path method for determinants [GV85].

(ii) For simplicity in stating Definition 7.2, we defined Y in type B to contain no points (N, k),

k ∈ Z. In fact the tableaux description extends to snakes in which such points occur in

neighbouring pairs: each such pair corresponds to a column with > N − 1 boxes. For ex-

ample L(YN,1YN,3+4k), k ∈ Z≥0 corresponds to a single column of N + k boxes. Thus, one

could replace “strictly” by “weakly” in Remark 7.1. Furthermore, [KOS95] define “hatched”

tableaux, which allow one to delete, from such a snake, exactly one point (N, k), thereby

describing some spin-odd representations.

7.1. Examples.

Example 7.8. In type A5, L(Y3,0Y3,2Y3,6Y1,10Y2,13Y4,23) is a snake module. Its snake is shown in

Figure 9(a). Its q-character includes the monomial

Y1,2Y
−1
2,3 Y3,2Y

−1
5,4 Y

−1
1,6 Y3,4Y

−1
5,6 Y3,6Y

−1
5,16Y

−1
2,17Y3,16Y

−1
5,18Y1,26Y

−1
2,27Y5,24. (7.4)
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Figure 9. See §7.1. In types A5, (a), and B5, (b): a snake whose elements lie in
Y and which therefore corresponds to a skew diagram (left), and a non-overlapping
tuple of paths for that snake (right).
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The non-overlapping tuple of paths corresponding to this monomial is also shown in Figure 9(a).

The skew diagram for this representation, and the skew tableau for the particular monomial (7.4),

are respectively
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Example 7.9. In type B5, L(Y4,−2Y3,4Y2,14Y3,20) is a snake module. Its snake is shown in Figure

9(b). Its q-character includes the monomial

Y5,−1Y
−1
4,14Y2,12Y

−1
3,14Y4,12Y

−1
5,19Y

−1
1,30Y4,22Y

−1
3,24Y

−1
1,34Y5,27Y

−1
5,31Y1,24. (7.5)
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The non-overlapping tuple of paths corresponding to this monomial is also shown in Figure 9(b).

Since the points of this snake all lie in Y, the monomials can equivalently be described by skew

tableaux. The skew diagram for this representation, and the skew tableau for the particular mono-

mial (7.5), are respectively

−2

−1

0

1

2

3

1 2 3 4

and

−2

−1

0

1

2

3

1 2 3 4

5
0
0
0

0
5̄
3̄

4
1̄

1
0
1̄

.
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