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Item-by-item sampling for promotional purposes 

Neil H. Spencer* and Lindsey Kevan de Lopez 

Statistical Services and Consultancy Unit, Hertfordshire Business School, University of 

Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, United Kingdom 

 

Abstract: In this paper we present a method for sampling items that are checked on a pass/fail basis, with 

a view to a statement being made about the success/failure rate for the purposes of promoting an 

organisation’s product/service to potential clients/customers. Attention is paid to the appropriate use of 

statistical phrases for the statements and this leads to the use of Bayesian credible intervals, thus it exceeds 

what can achieved with standard acceptance sampling techniques. The hypergeometric distribution is used 

to calculate successive stopping rules so that the resources used for sampling can be minimised. Extensions 

to the sampling procedure are considered to allow the potential for stronger and weaker statements to be 

made as sampling progresses. The relationship between the true error rate and the probabilities of making 

correct statements is discussed. 
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1. Background 

Undertaking hypothesis testing in a sequential manner, building up a sample until sufficient data 

have been collected, has much of its origins in the work of Wald [14]. Often used in a quality 

control context, these methods are designed to minimise the number of items examined before a 
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decision is made. This can be particularly important in the context of inspections which destroy 

the item concerned or make it unusable or unsellable in order for a judgement to be made as to 

whether it is of acceptable quality or not. Outside quality control, sequential procedures have also 

been used in a variety of other settings such as in clinical trials to minimise the number of patients 

that need to undergo arduous or potentially dangerous procedures or medication (e.g. [15]), in 

animal experimentation to minimise the number of subjects that might experience degrees of 

suffering (e.g. [6]), in psychology to minimise the number of people that are needed for the 

successful assessment of complex interventions (e.g. [7]), in auditing to minimise the sample 

required to achieve a desired precision (e.g. [9]). In all these examples, sequential sampling 

methodologies are being used in order to obtain good sample data at minimum economic or social 

cost without compromising the subsequent statistical analysis. There are a number of books 

devoted to the subject (e.g. [11, 13]). 

Since Wald’s introduction of the sequential probability ratio test (SPRT), further methodological 

developments have taken place to extend its use and provide for a variety of different situations 

where sequential analysis is advantageous. These range from developments of methods for 

examining decision making in psychology (e.g. [1, 12]) to advances for its use in biological 

applications (e.g. [5, 8]) to progress in clinical trials (e.g. [3, 16]) to adaptations for business and 

industry (e.g. [2, 4]). The extent is so vast that it is not practical to give a reasonable summary 

here. However, there are two reasons why existing methodologies are not applicable to the 

situation given in this paper. Firstly, most sequential analysis techniques assume that the items 

tested come from a large (potentially infinite) population (relative to the number of items tested) 

and can thus use approximations that take advantage of this. Here, we have a finite population and 

the sample tested may be a sizeable proportion of this, meaning that it would not be appropriate to 



use these approximations. Secondly, the analysis must produce a Bayesian credible interval rather 

than a hypothesis test or confidence interval which are typically the result of a sequential analysis. 

The motivation for this paper is the scenario where an organisation wishes to obtain an estimate 

of the true proportion of unacceptable items in a population and use this for promotional purposes 

(and other objectives). That is, it wishes to promote its product or services by showing potential 

clients/customers that the probability of unacceptable items is very low. In this paper we use the 

example of identifying incorrect records in a database but equally valid scenarios could be faulty 

products from a manufacturing process, incorrect diagnoses from medical images, substandard 

customer interactions in a call centre, etc. 

In section 2, we discuss the statistical measure that is relevant to the probability statement required. 

In section 3 we address the methodology and in section 4 we demonstrate an implementation of 

the methodology. The issue of prior probabilities is discussed in section 5 and extensions to the 

sampling procedure are discussed in section 6. The issue of there being multiple stopping points 

(and hence multiple opportunities to make a false statement) is dealt with in section 7 and 

conclusions are given in section 8. 

2. Choice of statistical measure 

A natural form of wording for a statement that an organisation may want to make for promotional 

purposes (while retaining mathematical rigour) is “There is a 95% probability that the true 

proportion of incorrect records is less than 5%”. Neither a hypothesis testing approach nor a 

confidence interval can provide a statement of this type but this can be accomplished with a one-

sided Bayesian credible interval. It is thus a form of analysis which can yield such an interval that 

is employed in this paper. 



The issue of monetary cost is sometimes included in sequential sampling methodologies. This can 

be the case when cost can be easily expressed in monetary terms but in many situations, costs are 

not so easily represented. This is the case for the examples of clinical trials and animal 

experimentation given in section 1 and is also true for promotional purposes where the cost of 

making an incorrect claim is in terms of reputation. As a result, methods which require an 

expression of monetary cost cannot be used here. 

3. Methodology 

We define the size of the population to be N records, the unknown number of incorrect records in 

the population to be R, the size of the sample examined to be n records and the number of incorrect 

records in the sample to be r. 

For a desired maximum error of N
R *  and the requirement to make a statement that there is at 

least a  %α1100   probability of the true error rate being no more than this, we want to find R* 

such that the following probability statement is true where the probability of the number of 

incorrect records in the population (R) is conditional upon the number of incorrect records in the 

sample (r), taking into account the sample size (n) and the population size (N). 
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Under an assumption of equal prior probabilities (examined further below), we have 

    *,;Pr,;Pr pNnRNnR   for all R, R  (i.e. the probability of R incorrect records in the 

population is constant for all values of R). This allows a simplification of the above formula, giving 
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In the denominator of this fraction we have the sum of probabilities of observing r incorrect records 

in the sample under different conditions: conditional on the number of incorrect records in the 

population (R’), given the sample size (n) and the population size (N). We are operating under a 

system governed by the hypergeometric distribution and it can be shown empirically that 
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Thus, for r = 0, 1, 2, ..., we want to identify n0, n1, n2, … which are the smallest n such that 
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The above calculations for the Bayesian credible interval are such that the required sample size 

cannot be known before sampling begins. One cannot know how many incorrect records will have 



been identified after a particular number of cases have been sampled and thus the required sample 

size will have to be monitored as sampling proceeds and updated whenever an incorrect case is 

found. As an incorrect record could be found at any point in the sampling, monitoring must be on 

a case by case basis and sequential sampling, a form of acceptance sampling (see, for example, 

[10]) is thus being undertaken. 

In acceptance sampling, items from the batch are chosen randomly and sequentially on an 

individual basis and either judged to be faulty or not. If no faulty items are identified then the 

sampling will stop after a prescribed number of items have been investigated and the batch will be 

declared to be of acceptable quality. If one or more faulty items are identified then the sampling 

continues. Eventually the number of faulty items relative to the number of items inspected will 

trigger a stopping criteria and the batch accepted or rejected. Alternatively the number of samples 

inspected will reach a predetermined maximum and a default decision made to accept or reject the 

batch. 

There are two reasons why the acceptance sampling approach is not appropriate in this paper. The 

first concerns the construction of the stopping rule which, in acceptance sampling, comes from the 

Sequential Probability Ratio Test (SPRT) developed in [14]. This is based on the binomial 

distribution which is a good approximation to the hypergeometric distribution when N is large 

relative to n. However, in the scenario described in this paper, it cannot be assumed that N will be 

large relative to n, and thus we cannot use the method of [14]. 

The second reason returns us to the rigour with which we wish to make a probability statement 

about the population. Above, we have shown that using the Bayesian credible interval allows us 

to make the probability statement desired. By contrast, acceptance sampling methods are not 



designed for this purpose. They are used with the intention of deciding whether or not a batch of 

items is of sufficient quality to be accepted and thus the question they are designed to answer is 

not the same as required here. As the main motivation of this paper is to use a methodology which 

is precisely aligned with the wording of the probability statement to be used, it is clear that despite 

parallels existing, these acceptance sampling techniques are not appropriate here. 

4. Implementation 

Above, it has been shown that to implement the sample strategy required to form the probability 

statement, for r = 0, 1, 2, ..., it is necessary to identify n0, n1, n2, … which are the smallest n such 
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Once sampling has commenced, if no incorrect records are found by the time n0 records have been 

inspected, the sampling will stop. If one incorrect record has been found after n0 records have been 

inspected then the sampling will continue until a total of n1 records have been inspected and, if no 

further incorrect records have been found, it will stop. This pattern could potentially continue until 

all N records in the population have been examined. However, it is probable that the stopping 

strategy would be adapted, as discussed in section 6, before this point. 

For example, if the requirement is for the statement “There is a 95% probability that the true 

proportion of incorrect records is less than 5%”, we have α = 0.05 and 05.0
*


N

R . If N = 300 

records then 15* R . Applying the above sample size calculations yields Table 1. It shows the 

minimum number of records that must be checked and if no incorrect records are discovered, the 

sampling stops and the statement is valid. If one incorrect record has been identified in the initial 

sample of 50, we see from the table that the sample size required has increased to 77. If this point 



is reached with no more incorrect records being identified then the sampling stops and the 

statement is valid. The procedure is additionally shown in graphical form in Figure 1. In this figure, 

if the combination of sample size and number of incorrect records reaches the line (including the 

part of the line running along the horizontal axis) then the sampling stops and the statement is 

valid. 

[TABLE 1 HERE] 

[FIGURE 1 HERE] 

5. Prior probabilities 

In sections 3 and 4, the calculations make an assumption of equal prior probabilities such that 

    *,;Pr,;Pr pNnRNnR   for all R, R  where R, R  are alternative numbers of incorrect 

records in the population, N is the size of the population and n is the sample size. 

An alternative assumption for the prior probabilities could be that smaller values of R are more 

probable than larger numbers. However, it is not unreasonable to suppose that there might be some 

systematic error in the record entry, due perhaps to an incorrect application of a recoding 

algorithm, inconsistency in accuracy over time or different individuals entering the data. In these 

circumstances, any value of R is now feasible and it is difficult to justify any particular assumption 

being made about the prior probabilities. However, the equal prior probabilities assumption can be 

seen as adopting a neutral position and is thus appropriate in this work. 

6. Extension to sampling procedure 

While the desired statement might initially be “There is a 95% probability that the true proportion 

of incorrect records is less than 5%”, clearly a preferable statement is “There is a 95% probability 



that the true proportion of incorrect records is less than 2%” (or some other figure smaller than 

5%). Additionally, if the number of incorrect records is such that the statement using 5% is not 

possible then a weaker statement using 10% may be possible. 

For each of the 2% and 10% statements, tables such as Table 1 can be constructed using the 

calculations of section 3. Figure 1 can be adapted to include additional lines for each alternative 

statement and this is shown in Figure 2. Whilst 50 is the minimum sample size needed to be able 

to make the 5% statement, if this position is reached with no incorrect records identified, the 

sampling could continue. If a sample size of 103 is reached with still no incorrect records then the 

2% statement can be made. However, if after proceeding beyond 50 an incorrect record is 

discovered before 77 records have been checked then the trace on the graph will go above the 5% 

statement line and sampling would have to continue until the trace again reaches it. Alternatively, 

if several incorrect records are found at a relatively early stage of the sampling, it may be decided 

that the 10% statement will be used or no statement at all will be made. 

[FIGURE 2 HERE] 

7. Multiple stopping points 

We have a series of potential stopping points and thus multiple opportunities for sampling will 

stop and a statement about the accuracy of the recording made. This is akin to the multiple testing 

problem in hypothesis testing when the probability of a Type II error occurring becomes inflated. 

In practice, it is likely that before any sampling takes place, a decision will have been made as to 

the maximum number of records that are to be sampled. For the procedure illustrated in Figure 2 

this may well be a maximum of 103 records. This will enable the 2% statement to be made if there 

are no incorrect records identified but also allow the 5% statement to be made if there are 1 or 2 



incorrect records. If there are between 3 and 6 incorrect records identified, the 10% statement can 

be made. However, sampling may stop before 103 records have been investigated. The possible 

stopping points are outlined in Table 2. The bracketed phrases show repetitions of previous 

stopping criteria. 

[TABLE 2 HERE] 

The probability of making a statement can be calculated for different possible values of the true 

error rate, assuming the stopping points in Table 2. This is shown in graphical form in Figure 3 for 

the probability of making a statement at the 5% level or better. A similar graph could be 

constructed for the probability of making a statement at the 10% level or better. 

[FIGURE 3 HERE] 

The probability of making an incorrect statement for the circumstances described in Table 2 is 

shown to be small in Figure 3. For those true error rates greater than 5%, the probabilities of 

making a 5% statement are less than 10%. Penalties for incorrectly making a statement in the 

scenario described are not great. Indeed, the greater risk is that of not making a statement when 

the truth is that it could be made. For true error rates near to 5%, the probability of correctly 

deciding to make a statement are small. This is inevitably the case with these relatively small 

population and sample sizes. 

In other circumstances, the probability of correctly making a statement when the true error rate is 

less than 5% may be higher. However, at the same time, if the true error rate is above 5%, the 

probability of incorrectly making a statement will be higher. If this is judged to be a problem then 

the number of stopping points can be reduced. This can be done by removing the bracketed 



stopping points in Table 2. Then, for instance, rather than stopping if one incorrect record is 

identified at any of the sample sizes 78 to 100 inclusive, sampling would continue until sample 

size 101. This provides the opportunity for more than two incorrect records to be spotted in the 

interval 78 to 101 and thus the 5% statement could not be made. 

8. Conclusions 

In this paper we have described a sampling process that enables statements to be made about the 

accuracy of records in a database. Emphasis has been placed upon the validity of the wording of 

the statistical statements made in the statement and the defensibility of assumptions. We have also 

identified a variety of other situations in which a Bayesian credible interval is a more useful tool 

than the confidence interval that is produced from a random sampling procedure. The 

implementation of the procedure has been described and the issue of multiple stopping points 

meaning an increased probability incorrect statements being made has been addressed. 
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Figure 1. Stopping criteria for sampling scheme (5% statement). 



 

Figure 2. Stopping criteria for sampling scheme (10%, 5% and 2% statements). 



 

Figure 3. Probability of making 5% statement (or better) for different true error rates. 



Table 1. Sample size requirements for varying numbers of incorrect records in sample (5% 

statement). 

Number of 

incorrect 

records 

Minimum sample size for 

number of incorrect records 

for 5% statement 

 Number of 

incorrect 

records 

Minimum sample size for 

number of incorrect records  

for 5% statement 

0 50  8 215 

1 77  9 231 

2 101  10 246 

3 123  11 260 

4 144  12 272 

5 163  13 284 

6 181  14 293 

7 199  15 300 



Table 2. Stopping points with maximum sample size of 103. 

Sample size 
Stop and make 

2% statement if: 

Stop and make 

5% statement if: 

Stop and make 

10% statement if: 

Stop and make 

no statement if: 

0 to 66    

more 

than 

6 

incorrect 

67   3 incorrect 

68 to 76   3 incorrect 

77  1 incorrect 3 incorrect 

78  (1 incorrect) 3 incorrect 

79  (1 incorrect) 3 or 4 incorrect 

80 to 90  (1 incorrect) (3 or 4 incorrect) 

91  (1 incorrect) 3, 4 or 5 incorrect 

92 to 100  (1 incorrect) (3, 4 or 5 incorrect) 

101  1 or 2 incorrect (3, 4 or 5 incorrect) 

102  1 incorrect* 
3, 4, 5 or 6 

incorrect 

 

103 none incorrect 1 incorrect*   

 

* Would also stop here if 2 were incorrect but if this were the case then would have already 

stopped at sample size defined in previous line. 

 


