WiGlove : A Passive Dynamic Orthosis for Home-based Post-stroke Rehabilitation of Hand and Wrist
Stroke survivors often experience varying levels of motor function deficits in their hands affecting their ability to perform activities of daily life. Recovering their hand functions through neurorehabilitation is a significant step in their recovery towards independent living. Home-based rehabilitation using robotic devices allows stroke survivors to train at their convenience independent of factors such as the availability of therapists’ appointments and the need for frequent travel to outpatient clinics. While many robotic solutions have been proposed to address the above concerns, most focus on training only the wrist or the fingers, neglecting the synergy between the two. To address this, the WiGlove was co-designed to allow hemiparetic stroke survivors to train both the wrist and fingers in the comfort of their homes. The central hypothesis of this work is to investigate if a device designed using user-centred methods featuring aspects of usability such as easy donning and doffing and wireless operation, can act as a feasible tool for home-based rehabilitation of the hand and wrist following stroke. In order to aid this investigation, we tackled this task in three stages of usability and feasibility evaluations. Firstly, healthy participants tried the current state of the art, the SCRIPT Passive Orthosis, as well as the WiGlove, in a counterbalanced, within-subject experiment and attested to WiGlove’s improvement in several aspects of usability such as ease of don/doffing, suitability for ADL, unblocked natural degrees of freedom, safety and aesthetic appeal. Subsequently, a heuristic evaluation with six stroke therapists validated these improvements and helped identify issues they perceived to potentially affect the device’s acceptance. Integrating this feedback, the updated WiGlove was subjected to a six-week summative feasibility evaluation with two stroke survivors, with varying levels of impairment, in their homes without supervision from the therapists. Results from this study were overwhelmingly positive on the usability and acceptance of the WiGlove. Furthermore, in the case of the first participant who trained with it for a total of 39 hours, notable improvements were observed in the participant’s hand functions. It showed that even without a prescribed training protocol, both participants were willing to train regularly with the WiGlove and its games, sometimes several times a day. These results demonstrate that WiGlove can be a promising tool for home-based rehabilitation for stroke survivors and serve as evidence for a larger user study with more participants with varying levels of motor impairments due to stroke. The findings of this study also offer preliminary evidence supporting the effectiveness of training with the WiGlove, particularly in the case of the first participant, who exhibited a significant reduction of tone in the hand as a result of increased training intensity. Owing to the participant’s satisfaction with the device, it was requested by him to extend his involvement in the study by using the WiGlove for a longer duration which was facilitated.
Item Type | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords | Rehabilitation robotics; orthosis; post-stroke rehabilitation; Home-based; Medical robotics; Tele-rehabilitation; Wearable devices; Usability analysis |
Date Deposited | 18 Nov 2024 11:11 |
Last Modified | 18 Nov 2024 11:11 |
-
picture_as_pdf - 18055232 VELMURUGAN Vignesh Final Version of PhD Submission.pdf