
DRAFT. TO APPEAR IN IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, SPECIAL ISSUE “COMPUTATIONAL MODELLING OF EMOTION” 1

Embodied Robot Models for
Interdisciplinary Emotion Research

Lola Cañamero

Abstract—Due to their complex nature, emotions cannot be properly understood from the perspective of a single discipline. In this
paper, I discuss how the use of robots as models is beneficial for interdisciplinary emotion research. Addressing this issue through the
lens of my own research, I focus on a critical analysis of embodied robots models of different aspects of emotion, relate them to
theories in psychology and neuroscience, and provide representative examples. I discuss concrete ways in which embodied robot
models can be used to carry out interdisciplinary emotion research, assessing their contributions: as hypothetical models, and as
operational models of specific emotional phenomena, of general emotion principles, and of specific emotion “dimensions”. I conclude
by discussing the advantages of using embodied robot models over other models.

Index Terms—Emotion models, robot models of emotions, embodied emotions, affective cognition, affective interaction, autonomous
robots, human-robot interaction, embodied artificial intelligence, interdisciplinary research.
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1 INTRODUCTION

“This suggestion [...] would require tight collab-
orations between neuroscientists and roboticists in
order to be refined, but because of the very peculiar
characteristics of emotions, such an endeavor could
lead to important advances in robot [...] designs.
These advances in turn could lead to new insights
on the functions of emotions and would suggest
new avenues for research on their neural bases.”
(Jean-Marc Fellous, [35])

In this paper, I elaborate on the use of robots as models
in emotion research—where such models can originate in
different disciplines, have different levels of abstraction,
be about different aspects—and their value to foster in-
terdisciplinarity. Emotions provide an ideal framework for
inter- and cross-disciplinary research since, due to their
complex multi-faceted nature, they cannot be properly un-
derstood from the perspective of a single discipline. As I
argued in [20], such interdisciplinarity is key in order to
understand shared conceptual problems—such as mecha-
nisms underlying the involvement of emotions in cognition
and action, emotion elicitors, how emotions function as
“cognitive modes”, or the relation among emotions, value
systems, motivation, and action—and shared challenges and
goals for future research—what I called the “origins” and
grounding problem of artificial emotions, dissolving the
“mind-body” problem, untangling the “knot of cognition”
(the links between emotion and intelligence), and measuring
progress and assessing the contributions of emotions to our
systems. What can robot models contribute to investigate
such (and other) shared shared conceptual problems, and
to address shared challenges and research goals? Far from
attempting to provide a survey of robot and computational
models of emotions (for surveys, see e.g., [64], [69], [82], [84],
[85]), I will, on the contrary, address the use of robot models
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in interdisciplinary emotion research through the lens of
my own research, focusing on embodied robot models, in
a critical reflection on the interplay between my interest
in interdisciplinary research and my actual robot models.
However, some (but not all) of the discussions in this paper
will also apply to other approaches to emotion modeling
such as computer simulations or embodied virtual humans.

One of the key contributions that robot (and computa-
tional) models can make to emotion research is the possi-
bility to implement, test, extract and analyze assumptions
and consequences, and assess the scope and “usefulness”
of different conceptualizations, models and theories of emo-
tions. What can different approaches such as discrete “ba-
sic” emotions, emotion “dimensions”, dynamical systems,
etc, tell us about emotions? How do they “behave” when
implemented in robots situated in, and in interaction with
their environments? Such—at the same time scientific and
philosophical—preoccupations have been at the basis of
my own research on modeling emotions in autonomous
robots for over two decades. Although in all cases from
an embodied, situated and interactional perspective, at dif-
ferent points in time I have implemented (and combined)
different emotion models, trying to understand what we,
as scientists, and the robots, as embodied models, could
(and could not) do with them. Here I provide a selection
of models that, while not exhaustive, cover a wide range of
approaches. Whereas I group them under different labels, I
do not attempt to provide a classification of robot models
of emotions (classifications can be found in the above-
mentioned surveys), but to illustrate and discuss a number
of ways in which robot models can be used to carry out
interdisciplinary emotion research: as hypothetical models
(Section 2), as models of specific emotional phenomena (Sec-
tion 3), as models of general emotion principles (Section 4),
and as models of specific emotion “dimensions” (Section 5).
I conclude by discussing some of the features that make
embodied robot models of emotion particularly appropriate
to study emotions bridging interdisciplinary gaps.



DRAFT. TO APPEAR IN IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, SPECIAL ISSUE “COMPUTATIONAL MODELLING OF EMOTION” 2

2 ROBOTS AS HYPOTHETICAL MODELS

A sound theoretical speculation by neuroscientists or psy-
chologists regarding whether a robot could have emotions
[1], or how to build one that could have them [76], can
be very valuable to roboticists as a guide to develop
biologically-meaningful robots. I will argue that it can also
be very useful to help neuroscientists understand not only
the big, unresolved philosophical questions regarding the
nature of emotions and cognition from a different perspec-
tive, but also more concrete aspects of their models and the
criteria underlying them. Such models can provide theoret-
ical desiderata and help identify and define key properties
of the aspects of emotions being modeled. As neuroscientist
Ralph Adolphs puts it [1, page 9]:

“Could a robot have emotions? [...] we should
attribute emotions and feelings to a system only
if it satisfies criteria in addition to mere behavioral
duplication. Those criteria require in turn a theory of
what emotions and feelings are [...] I conclude with the
speculation that robots could certainly interact so-
cially with humans within a restricted domain (they
already do), but that correctly attributing emotions
and feelings to them would require that robots
are situated in the world and constituted internally
in respects that are relevantly similar to humans.
In particular, if robotics is to be a science that can
actually tell us something new about what emo-
tions are, we need to engineer an internal processing
architecture that goes beyond merely fooling humans
into judging that the robot has emotions.”

Adolphs raises many important issues—which I have
highlighted in italics—regarding the characterization of
emotions, their embodied and situated nature, and what
“robot emotions” need to address in order to make relevant
contributions to our understanding of emotions, and be part
of the affective sciences. We will see these issues reappear
in the other types of models—both theoretical and robot
models—discussed in the remainder of the paper. They
are important centuries-old philosophical (and scientific)
questions and a potentially powerful tool to make emotion
theorists critically think about what the key concepts of
their theory could really mean—what they entail, which
alternative types of mechanisms could underly them, what
they could have been like given different evolutionary / de-
velopmental / socio-cultural histories, etc. However, while
using sound criteria grounded in a theory is very important
to ascertain what emotions can be, we should be careful to
avoid a circular argument, defining emotions a priori as X,
Y and Z, then calling something that shows X,Y and Z an
emotion, to the exclusion of things that do not show X, Y
and Z. A way to avoid such dangers would be to use, not
only criteria stemming from the theory, but also from an
interdisciplinary “meta-analysis” [31], [61].

3 MODELS OF SPECIFIC EMOTIONAL PHENOMENA

Roboticists are interested in modeling specific emotional
phenomena to elaborate biologically-inspired mechanisms
that can be beneficial to improve the behavior of robots in
ways that are similar to biological systems. Robots have also

interested neuroscientists as potential testbeds for specific
emotional phenomena. An example is offered by Joseph
LeDoux, whose studies of fear processing in the amygdala
have been very influential in the robotics community. The
“processing approach” that he advocates [36] permitted him
to make significant advances in the neuroscience of emo-
tion by abandoning the old idea of the limbic system that
attempted to explain all emotions. Instead, he focused on
trying to unveil the mechanisms and circuits underpinning
a single emotion—fear—and its involvement in different
aspects of cognition, going beyond human emotions [36,
page 82]: “The processing approach allows us to study
unconscious emotional functions similarly in humans and
other animals.” And even in robots, as he draws on the
experience gained through his research in neuroscience to
offer advice for computational modeling [36, page 105]: “it
might be fruitful for computational models to approach the
problem of emotions by considering one emotion at a time
and to focus on how the emotion is operationalized without
losing the “big picture” of how feelings might emerge. This
approach has led to the discovery of basic principles that
may apply to other emotions as well as fear.” Some of these
principles are:

P1 Emotions involve primitive circuits conserved
across evolution.

P2 In some circumstances, cognitive circuits can func-
tion independently from emotions.

P3 There are two parallel routes of emotional process-
ing of a stimulus, one fast, the other slower and
modulates the fast route.

3.1 Robot Model Examples: Fear and the Amygdala

Several computational and robot models have been inspired
by such (and similar) principles. Examples include models
of fear conditioning [3], [67], [73], emotional learning [5],
reinforcement learning [95], or second-order conditioning
[68]. Such models present clear advantages from the robotics
perspective, as they add functionalities to robots that are
useful for their survival and interaction in dynamic, unpre-
dictable, social environments inhabited by humans. What
are the potential contributions of these models from the
perspective of neuroscience?

3.2 Discussion

While the fact that such models show that the (same)
principles extracted from the analysis of living systems
can be used for the purposes of synthesizing behavior
in artificial systems is already a very interesting result, a
fuller use of the robot models would target at “closing the
loop” by making some unique contribution arising from
the (interdisciplinary) use of robots. One such contribution
would be linked to the fact that robot models permit to
test different (e.g., alternative) hypotheses and compare the
behavior generated by them. Let us take an example from
the above principles—P3, the dual route of emotional pro-
cessing of stimuli. This hypothesis [59] has been influential
in computational and robot modeling of emotion—e.g., [67].
Although evidence is still found in favor of the dual route
in terms of separate brain “circuits” [45], this hypothesis
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is currently subject to debate, as alternative ones attribute
the difference between “fast” and “slow” processing to
differential processing of different (“low” or “high”) spatial
frequency information [94], or postulate “many-routes” [80],
drawing a more complex picture of emotional processing
that emphasizes the role of the cortex and its ability for
fast processing. Robot models would permit particularly
interesting and systematic comparisons of these hypotheses
to try to understand their relevance, plausibility, and per-
haps complementarity, when used to drive the behavior of
a robot under different environmental circumstances, tasks
and challenges.

An important issue that these models raise for interdis-
ciplinary research is the correspondence between biological
notions and computational constructs: which properties or
features allow us to call a computational construct “amyg-
dala”, “orbito-frontal cortex”, etc? Are the modeled proper-
ties sufficient to justify the use of the biological term? How
useful can such practice be? How misleading?

4 MODELS OF GENERAL EMOTION PRINCIPLES

Robots can also embed more abstract models of more gen-
eral functional properties and principles of emotion and
their interaction dynamics—modeling e.g., the roles of such
properties and principles in emotional regulation of agent-
environment interactions, or in different aspects of emotion-
cognition (including motivation and behavior) interactions.
This type of “functional modeling” using robots is not the
exclusive realm of roboticists and has also attracted interest
from psychologists and neuroscientists. Here I will consider
one example from each field and illustrate the counterpart
robot models with examples of my own work.

4.1 Regulation of Agent-Environment Interactions

Psychologist Nico Frijda adopts a functionalist view [40]
that considers action, motivation for action and action con-
trol as the main role of emotion, and specific emotions as
mechanisms to modify or maintain the relationships be-
tween an agent and its environment in different ways, e.g.:
blocking influences from environment (anger); protecting
the agent against these influences (fear); stopping or delay-
ing an active relation when the agent is not prepared for
it (sadness); diminishing risks of dealing with an unknown
and potentially noxious environment (anxiety).

In [40], Frijda proposed guidelines to implement a func-
tional model of emotions in a robot. From a functional point
of view, we need to identify and model the properties of
the structure of humans (e.g., autonomy, having limited en-
ergetic and processing resources, having multiple concerns,
or the use of signals for interaction with the environment)
and their environment (e.g., limited resources, uncertainty,
partly social) that are relevant to the study of emotions, and
that are shared by a structurally different “species”. This
would permit to build robots that “are situated in the world
and constituted internally in respects that are relevantly
similar to humans,” borrowing Ralph Adolphs’ words (cf.
Section 2), and can therefore be relevant models of emotions.
From such properties of humans and their environments,
Frijda posits the following functions of emotions:

F1 To signal the relevance of events for the concerns of
the system.

F2 To detect difficulties in solving problems posed by
these events in terms of assuring the satisfaction of
concerns.

F3 To provide goals for plans for solving these prob-
lems in case of difficulties, resetting goal priorities
and reallocating resources.

F4 To do this in parallel for all concerns.

Such functions are valid across structurally different
embodiments, architectures and environments. A system
possessing mechanisms that fulfill (some of) these roles can
thus be said to (partially) have emotions from a functional
point of view. However, functional models remain under-
specified regarding the underlying design and implemen-
tation mechanisms. Such underspecification raises many
conceptual and design issues [18], [19], [20] that provide
wonderful challenges and opportunities for theoretical and
empirical exploration and interdisciplinary collaboration.

4.1.1 Example: Basic Emotions with Specific Functions

Despite the fact that the initial computational model de-
signed by Frijda and his collaborators [42], [43] was de-
veloped within an appraisal and a classical artificial intel-
ligence (AI) perspective, the fact that the model is under-
specified has permitted to use the same principles in very
different computational and robot models. For example, I
used them in my early work [17] to model discrete ba-
sic emotions fulfilling the above functions in autonomous
agents designed from the opposite perspective of embodied
AI [14] and a “decentralized” view of intelligence [71]. This
model also integrated elements from ethological and neuro-
scientific models of behavior, motivation and emotion, par-
ticularly [29], [53], [59], [77], to implement their underlying
mechanisms and interaction dynamics. In this model, au-
tonomous agents (“animats” or simulated robots) inhabiting
a complex and dynamic two-dimensional action selection
environment had to constantly make decisions in real time
to interact and deal with the static and dynamic elements
of the environment in order to survive. The environment
(called “Gridland”), was populated by other moving agents
(both friendly conspecifics and unfriendly agents that could
attack, damage and “kill” the other agents) and containing
(dynamic) survival-related consumable resources, obstacles
obstructing availability of those resources, and other objects
of various shapes. The complex action selection architecture
of the agents included a (simulated) physiology—in effect a
complex dynamical system—of homeostatically-controlled
survival-related variables and modulatory “hormones”,
both generic (with global excitatory and inhibitory effects)
and specific (acting differentially on specific receptors) that
grounded the embodiment of the agents and other elements
of the architecture such as motivations, consummatory and
appetitive behaviors, and a number of basic emotions. In
this system, emotions fulfilled the general functions F1–F4 in
Frijda’s above list. In turn, through its triggering conditions
and its effects, each emotion was designed to have a specific
function, in line with basic emotions theory and Frijda’s
view of basic emotions as mechanisms to control agent-
environment interactions described above. Designed in such
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way, each basic emotion would normally contribute to the
good maintenance of homeostasis and to the agent’s behav-
ior selection; however, it could also have noxious effects
when its intensity was too high or displayed in the wrong
context—e.g., excessive anger could make the agent bump
into things and harm itself, or modify negatively specific
parameters of the ART neural network carrying out object
recognition, creating a “confused” state that could make the
robot interact with the “wrong” object.

4.1.2 Discussion
This kind of effort to synthesize and operationalize, in an
artificial agent, elements from various conceptual models,
offers opportunities for exploring the complementarities of
neuroscientific and psychological models—basic emotions
and an embodied approach that implements such emotions
in terms of a physiology-based dynamical system in the
Gridland example. It also allows us to manipulate numer-
ous parameters to make concrete predictions regarding, for
example, the adaptive value of various emotions in different
situations and contexts, their effects on survival, motiva-
tion, behavior, perception, memory, decision making, etc., of
agents interacting with their physical or social environment.

There are, however, questions that such models cannot
answer due to the selection and explicit design of specific
emotional subsystems with pre-defined functions. For ex-
ample, this model cannot explain how some traits of emo-
tions might emerge from, or be the side-effect of, other pro-
cesses; or what could be the minimal set of mechanisms that
would generate behavior that could be qualified (according
to some criteria) as “emotion-like”. Due to its complexity,
this model also makes it difficult to understand the behavior
of the system as a function of specific mechanisms or their
interactions. A model of emotions as “emergent phenom-
ena” would be more appropriate to study such questions.

4.2 Emotion Dynamics and Emergent Functionality
A very different type of functional approach is proposed
by neuroscientist Jean-Marc Fellous, according to whom,
understanding what emotions are involves understanding
what they are for. In his view [35], “one of the main func-
tions of emotions is to achieve the multi-level communica-
tion of simplified but high impact information.” Critizicing
models that posit specialized emotion brain centers, Fellous
advocates a view of emotions as dynamical patterns of
neuromodulations rather than patterns of neural activity
[34]. Neuromodulation provides a useful framework to un-
derstand how the main function of emotions is achieved
and, hence, how emotions arise, are maintained, and interact
with other aspects of behavior and cognition, as well as
other hard problems in emotion research. It also provides
a common framework to study emotions across species—
biological and artificial—from a functional stance, since the
specific way in which the function of emotions is achieved
depends on the specific details of the species and the
emotion at hand. Emotions as patterns of neuromodula-
tion affect the underlying neural circuitry in different ways
and to different degrees depending on the complexity and
properties of the circuitry. This theory has some important
consequences regarding the conceptualization of emotions
[35], for example:

C1 Emotion is not the product of neural computations
per se. The fact that some structures are more in-
volved in emotions than others results from both,
the fact that they are more susceptible to neuromod-
ulation, and their anatomical position.

C2 The coupling between an emotional (attractor) state
and a cognitive process (e.g., a specific memory)
does not presuppose that either has a predominant
or causal role. Emotion and cognition are integrated
and interdependent systems implemented by the
same brain structures rather than two different sets
of interacting brain structures. Emotion is related
to the state of neuromodulation of these structures
(pattern of activation of some neuromodulatory re-
ceptors), while cognition is related to the state of
information processing (neural activity).

C3 Neuromodulation occurs on a large range of time
scales, while neural activity is restricted to the mil-
lisecond time scales. This difference accounts, at
least in part, for the fact that emotions may signifi-
cantly outlast their eliciting conditions.

Based on this theory and its consequences for under-
standing biological emotions, Fellous offers explicit guide-
lines and constraints to model emotions in robots [35]:

G1 Emotions should not be implemented as separate,
specialized modules computing an emotional value
on some dimension. Such implementations cannot
handle some of the key aspects of emotions such as
the complexity of the emotional repertoire, its wide
time scales, and its interactions with cognition.

G2 Emotions should not simply be the result of cogni-
tive evaluations, as not all emotions are generated
cognitively, and such view does not capture the main
function of emotions—efficient multi-level transmis-
sion of simplified but high-impact information.

G3 Emotions should have their own temporal dynamics
and should interact with one another. Implementing
emotions as “states” does not capture those temporal
characteristics, which are key aspects of emotions
and may have functional consequences.

4.2.1 Robot Model Examples: Emergent Affect-Like Func-
tionality through Hormonal Modulation
Models of neuromodulation in robots span different as-
pects, such as increasing the plasticity and flexibility of the
robot controller [28], [90], improving its evolvability [33],
[78], improving its adaptation and survival by affecting
its action selection [38], [56], producing different emotion-
related behaviors (different functionalities) from the same
underlying controller [4], [22] or affecting its emotional and
cognitive development [11], [65], [66]. Let us have a look at
some of the models developed in my group that implement
emotions as “emergent functionality” [91], relating them to
the consequences and guidelines of the neuroscience model
proposed by Fellous. These simple models do not intend
to replicate the biological mechanisms in detail, but rather
capture and study in a more abstract way the dynamics of
(selected examples of) emotional modulation of the under-
lying “nervous system” of the robot. They hence model the
dynamics of some aspects of “affect-cognition” interactions,
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or rather of affective cognition, as I prefer to put it. I refer to
the mechanism implementing emotional modulation more
generally as “hormonal modulation” rather than strictly
“neuromodulation”. This choice reflects, on the one hand,
the fact that the distinction between hormones, neurohor-
mones and neuromodulators is not as clear-cut as tradition-
ally thought and, on the other hand, the fact that, in line with
[24], [25], I consider emotions as embodied, i.e., involving
different aspects the whole body in interaction with the
physical and social environment, rather than simply “sited”
in the brain or the nervous system.

(a) Modulation of Exteroception
The study reported in [4], using Lego robots and a

simplified version of the architecture and environment in
[17], investigated the adaptive value of affect—specifically
of motivation modulated by emotion—in decision making
in a “two-resource problem” (TRP), considered to be the
simplest action selection problem. In this scenario, an au-
tonomous robot needs to choose between two resources
that it needs to consume in order to survive, and do so
in a timely manner. Our environment consisted of a walled
arena with two types of static resources available—light and
dark patterns located on the floor and that the robot could
perceive when placed on top of them using infrared sensors.
Our robot was endowed with two internal survival-related
variables controlled homeostatically, giving rise to drives
that motivated it to look for, and consume, the appropriate
resource to satisfy the most urgent need. The most urgent
need changed dynamically as a function of the robot’s
interaction with and perception of the environment.

While a solitary robot could easily survive in the ini-
tial environment containing static and easily-available re-
sources, the inclusion of a second identical robot trying
to solve its own TRP in the same environment made the
problem harder for each robot, turning it into a “compet-
itive” TRP (CTRP). This was due to the fact that, since
robots had to be located on top of the resources to be
able to consume them, they limited resource availability
for the other robot when they were consuming or block-
ing access to them. The robots could not communicate
with each other and were not even “aware” that another
robot was present1. In such CTRP environment, robots en-
dowed with the same internal architecture as in the TRP
“died” easily, and the main causes that we identified were
goal obstruction—access to resources blocked by the other
robot—and overopportunism—excessive opportunistic con-
sumption of the less needed resource to the detriment of
the most pressing need, which could not be satisfied in
time. Such problems arose because the robots did not have
the capability to interact with the newly added dynamic
element—each other—in an appropriate way—in this case,
by having some sort of competition skills such as “flee-
fight” behavior. Instead of endowing the robots with such
competition skills explicitly (i.e., adding explicit competition
behaviors), we opted for modulating the same architecture
used in the TRP in order to give rise to different function-
ality adapted to the current situation. We also hypothesized

1. The robots could only perceive each other as “obstacles” through
their contact sensors when bumping into each other, exactly in the same
way they perceived the wall of the arena or any other 3D object.

that the problem might be regarded as an “attentional”
one: the robot was not paying attention to what it needed
to be paying attention to. Therefore, instead of directly
modulating the behavior, we modulated the perception of
the robot in order to change the overall behavior of the same
“perception-action loop.”

The addition of a simple synthetic hormone modulating
perception—a parameter influencing the incentive salience
[10] of the external stimuli—in the TRP architecture pro-
duced “flee-fight” behavior, providing some basic competi-
tion skills that allowed the robot to overcome the above-
mentioned problems of the CTRP, greatly improved its
adaptation and survival. The hormone was released as a
function of the internal state of the robot2, as follows. When
in high need, if the robot’s “risk of death” was high, the
hormone affected the perception of the non-relevant stimu-
lus (perceived through the infrared sensor) by diminishing
its salience; this often caused the robot not to stop over the
“wrong resource”. When in high need, if the “risk of death”
was low, tactile perception was affected—the readings of
the bumper sensors were not taken into account, causing
the robot not to reverse when bumping into something. The
effects of the hormone on perception through the infrared
sensor largely corrected the problem of overopportunism.
Its effect on the contact sensor produced behavior akin to
a “flee-fight” system, which addressed3 the “goal obstruc-
tion” problem, since when a robot bumped into another
robot that was blocking the targeted resource, if would
“push it” out if it had enough “stamina” (low risk of death),
due to the cancelation of the contact sensor, and would
move away and “abandon the goal” if it didn’t.

(b) Modulation of Interoception
Following an incremental approach, in [22] we increased

the complexity of the problem by changing the relation
between the two robots into an asymmetric “prey-predator”
one. The prey robot was now fitted with an additional
infrared sensor to detect the predator robot (which was
fitted with a infrared-emitting device), and with an addi-
tional touch sensor that, when activated, caused “internal
damage” measured by a new homeostatic variable and that
made the robot move in a different direction. The robot
could “heal” from internal damage inside a “nest” located
in one of the corners. The architecture of the “predator
robot” was identical to that used in the CTRP. Both robots
had the same motor capabilities (e.g., other things being
equal, they moved at the same speed). In this “Competi-
tive 3-Resource Problem” (C3RP), the prey robot was thus
confronted with three needs for which three resources were
available, and with an active threat. The architecture that

2. A combination of the intensity of the need and the risk of death
from failure to keep the homeostatic variables within their viability
limits, as captured by the quantitative metrics described in [4].

3. Note that the “pushing” behavior had a beneficial adaptive value
only when it was directed at the other robot in cases of “goal obstruc-
tion”; however, due to the limited perceptual capabilities of the robot,
such behavior could also happen at other points, either against the
other robot or against the wall or any other obstacle encountered. In
such cases, the behavior had no beneficial value, and could have either
no effect or a negative one—e.g., if the robot was locked in a corner
and kept bumping into the wall until it “died”, unable to satisfy its
need—and hence be dysfunctional, similarly to misdirected aggressive
behavior or “anger” in biological systems.
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successfully solved the CTRP was unsuccessful in this new
C3RP environment, primarily due to the fact that, when the
prey was attacked, it rarely managed to “get rid” of the
predator (due to their similar speeds) in order to either
reach the nest and heal, or attend to the other survival
needs. Increasing the “escape” speed of the prey was not a
satisfactory solution, since the prey would still be frequently
damaged and interrupted when attending to its other needs.

We again treated this problem on the perceptual side of
the loop—interoceptive perception, in this case: the problem
could be solved if perception had an effect on the robot’s be-
havior before damage was caused. We explored the temporal
properties of hormonal modulation and introduced another
hormone that affected the perception of the level of damage,
and had a slower decay. Following [74], a “gland” regulated
release and amount of hormone present as a function of
sensory inputs (distal perception of the predator via the
infrared) and hormone decay. The perception of the level
of damage, instead of being the “raw value”, was mediated
by the amount of hormone in the system. The effects and
temporal dynamics of this hormone made the prey robot to
start perceiving some level of internal damage (increasing
as a function of the proximity of the prey and of the fre-
quency and recency of previous attacks), and therefore start
avoiding the predator, before the predator was too close,
thus surviving more easily. This system can be regarded as
a simple model of phenomena underlying the anticipatory
role of “anxiety”.

4.2.2 Discussion
These robot models meet many of the conceptual conse-
quences and guidelines provided by Fellous’ model, and
notably the above-mentioned C1–C3, G1–G3. Due to their
simplicity and transparency, this type of models provide
an excellent framework to test neuroscientific hypotheses
and related predictions incrementally in a highly controlled
way. They foster identification and isolation of a small
number of key variables to be studied and high control of
the parameters used. This permits us to focus on detailed
investigations of the interactions among different elements of
the system—where system = robot + (physical and social)
environment—and carry out a detailed quantitative and
qualitative analysis of the system from “inside” and “out-
side” at different “levels” (e.g., “physiological”, behavioral,
interactional), as well as analyzing the interactions among
such levels using methods and metrics from different dis-
ciplines. Finally, the use of autonomous robots interacting
among themselves can be very valuable to single out key
aspects of the interaction that cannot be isolated when one
of the interaction partners is a human.

5 MODELS OF SPECIFIC EMOTION “DIMENSIONS”
Modeling emotions in terms of dimensions [70] allows us
to generate a very rich palette of affective states and ex-
pressions [8], [13], [69], well suited for subtle, varied and
prolonged interactions with humans. However, this com-
plexity can also pose problems if our goal is to understand
the mechanisms and processes underlying emotions, since
each of those dimensions are abstract “umbrella terms” that
group—and blur differences among—a number of different

mechanisms and phenomena. To overcome this problem, a
possibility offered by robot models but generally not avail-
able with humans, are single-dimension models. Such models
allows us to investigate questions such as how much (and
which aspects of) emotion can be conveyed and perceived
using arousal only or valence only.

Below, I discuss single-dimension embodied robot mod-
els based on specific roles of pleasure and arousal. These
two dimensions are thought to provide different types of
“information” about the world and our interactions with it:
pleasure/valence is generally linked to information about
value, whereas arousal would provide information about
urgency or importance [92].

5.1 Pleasure-Based Robot Models
Like in biological systems, for autonomous robots that need
to survive and interact in their environments, pleasure (or
its functional robot equivalent) can provide signals to assess
the positive or negative quality of the perceived stimuli, the
behavior being executed, or the interaction with others. In
my group, we have developed robot models of different
roles of pleasure, where “pleasure” was used, for example,
as a signal to learn object affordances in the context of
decision making [26], to improve internal homeostasis and
adaptation to the environment [27], [63], or to convey a
positive message in human-robot interaction contexts [23].
Following the approach adopted in [17], in the above mod-
els, pleasure was modeled in terms of release of simulated
hormones that affect different aspects of the underlying
robot architecture—in the above examples, the learning al-
gorithms, the motivational decision-making model, and the
expressive behavioral elements, respectively. In its simplest
form, in these models and other related work in robotics
(e.g., [44], [48], [55]), pleasure, associated with positive
valence, was a “signal” (a modulating parameter), linked
to the satisfaction of (survival-related or social) needs. In
humans, however, pleasure is much more complex and has
multiple sources, roles and forms [41], to the extent that it
would be more accurate to talk about “pleasures” [9]. Can
robot models contribute to the understanding of the com-
plexities underlying pleasure, and how? In the remaining of
this section, I will discuss two main types of contributions
that embodied robot models can make to our understand-
ing of pleasure: (1) contributions to the clarification and
discussion of cross-cutting interdisciplinary research ques-
tions, and (2) concrete examples of operationalization and
experimental testing of specific models and hypotheses.

5.1.1 Robot Models and Research Questions
(a) The nature of pleasure: one or many?

Many definitions of pleasure have been provided, re-
flecting its multi-faceted nature, multiple meanings, and the
multiple mechanisms underlying various types of pleasure
[9]. Frijda [41], for example, distinguishes among categories
such as sensory pleasure, non-sensory likings, pleasures of
achievement, pleasures of gain and relief, social pleasure,
activity pleasures, or esthetic pleasures. Overarching the dif-
ferent views, however, we can identify a common element,
also found in lay and dictionary definitions: the “liking”,
“positive affect”, or enjoyment that produces a tendency
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to continue the ongoing activity causing the enjoyment.
Can we reconcile these two meanings—general “liking” and
specific types of pleasure—in robot models?

(b) The relation between pleasure and emotion

Some consider pleasure as an emotion—e.g., one of the
earliest forms of emotion that evolved [77]—others as “a
constituent quality of certain emotions as well as a trigger
for certain emotions” [30, page 76]. The term “pleasure” is
often used to denote a positive (subjective) hedonic quality,
an affective sensation or feeling of pleasantness grounded in
the body. To some, pleasure has both sensory and affective
elements [72], whereas for most, pleasure is the affective
component of sensing [16], [58], a “gloss” [41] of sensory
processing. How can robot models help us to “dissect” these
complex relations?

(c) The relation between pleasure, valence and usefulness

How do we go from “liking” something to “wanting” it?
Although the interactions between hedonic quality, positive
affect, and valence can be very complex [60], pleasure is
often associated with positive valence and utility: pleasure
would have biological “utility”—adaptive value, evolution-
ary usefulness—signaling that stimuli are beneficial [15],
[77] and promoting their acceptance [39]. This view is
common in homeostasis-based models [60], where pleasure
is largely related to need satisfaction, and in models of
conditioned learning that view pleasure as “reward”, both
in humans [86] and in robots [27], [44], [55]. However,
robot models can also be used to implement and investigate
other types of pleasure and their relation to valence and
usefulness.

5.1.2 Example: Robot Model of “Pleasure(s)”

The study in [63] was designed to model and experimentally
test the above issues in the context of decision making
(action selection) in a motivationally autonomous robot that
must survive in its environment, as follows.

(a) Concerning the nature of pleasure, the study combines
the broad definition of pleasure as “liking” that produces a
tendency for the robot to continue the ongoing activity caus-
ing the “liking”, and the idea of the multiple meanings and
roles of pleasure, by focusing on two different contexts in
which such “liking” can take place in a survival-related de-
cision making problem: linked to the satisfaction of survival-
related physiological needs, or as a purely hedonic quality
not directly linked to need satisfaction.

(b) The relation between pleasure and emotion/affect was
conceptualized in terms of the affective component of sens-
ing and, following my longstanding approach, modeled in
terms of hormone release and modulation of motivation-
related perception. This modulation of motivation-related
perception through pleasure provides a link between “lik-
ing” and “wanting”, as it changes the attentional effort [87],
or the incentive salience [10], of the stimuli. In Pessoa’s
words [79, page 190]: “At the perceptual level, items with
affective/motivational content act as if they had increased
salience, which improves performance if they are task rele-
vant but impairs it if they are task irrelevant.”

(c) Finally, regarding the link between pleasure and valence,
often conceptualized in terms of “usefulness” and “reward”

in affective neuroscience, psychology, and robotics, in [63]
we depart from the idea that pleasure is necessarily linked
with reward—in the same way as value is not necessar-
ily linked with reward [57]—or with signaling biological
usefulness, opening the door to the investigation of the
role of other types of pleasure not directly related with the
satisfaction of needs [41], in addition to pleasure stemming
from need satisfaction. At the same time, we set to investi-
gate whether hedonic quality (just “liking”, “pure pleasure”
unrelated to need satisfaction) might also play a role in
motivation [39], [41].

For our pleasure study, we used the humanoid robot
Nao, since we developed our pleasure model with the
intention to include it in the Nao-based Robin companion
robot [23]. In a simple “two-resource problem” (TRP) ac-
tion selection task, the robot had to timely alternate be-
tween searching for and consuming two survival-related
resources—small colored balls representing “water” and
“food”—distributed around a walled environment in dif-
ferent ways in the different experimental conditions tested.
Consuming those resources had associated different levels
and types of pleasure in the various experimental conditions
that we investigated, as we will see below.

Our robot’s decision-making architecture builds on our
model of “core affect” around a “physiology” that must
be maintained within permissible limits for the robot to
“survive”—remain “viable” and operational in its environ-
ment. Its main elements are two homeostatically-controlled
essential variables (energy and hydration, replenished by
consuming the appropriate resource), two motivations
(hunger and thirst, modeled as functions combining the
perception of internal physiological deficits and of relevant
elements of the environment), and a number of behavioral
systems that permit the robot to walk around, recover from
falls, and look for and consume the resources to satisfy its
motivations and correct physiological needs. In addition,
this architecture includes a model of pleasure as a mech-
anism that acts on motivations—and hence on the decision
making process—by modulating the perception of external
stimuli. We modeled three kinds of pleasure:

1) A modulatory “pleasure hormone” dynamically
released as a function of satisfaction of homeo-
static needs, thus signaling an improvement in
the interaction with the environment and fostering
“openness”—i.e., increasing the interaction with the
environment or continuing an interaction that is
going well. Indirectly, this type of pleasure could be
regarded as a signal of the “utility” of the elements
of the environment.

2) In some of the experimental conditions, different
fixed values of “pleasure hormone” were used as
control conditions to compare with the “pleasure
hormone” that fluctuated as a function of need
satisfaction. Such fixed values can be thought of as
background levels of hormones unaffected by inter-
actions with the environment, as hormone-releasing
chemicals (e.g., drugs) artificially added into the
system, or as pathological conditions.

3) Additional hormone (a constant amount) was re-
leased linked to the execution of consummatory
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behaviors of “eating” or “drinking” in one of the
experiments. This additional release was unrelated
to the satisfaction of needs, and corresponded to
what we called “purely hedonic” pleasure.

We conducted three sets of experiments to assess the
effect of these different types of pleasure under different
environmental conditions. In the experiments, we varied
the environments in terms of abundance, availability and
symmetry of two resources (e.g., both resources equally
abundant or scarce, one of the resources abundant, the other
scarce, both equally or unequally accessible), as well as the
pleasure associated with the resources (equally with both,
and more, or different types of, pleasure associated with the
abundant or with the scarce).

5.1.3 Discussion
We compared the behavior of robots whose pleasure hor-
mones, released under different circumstances, play differ-
ent roles, and measured them in terms of management of
the viability of the robots “internal milieu” (in terms of
maintenance of the homeostatically-controlled internal vari-
ables) and in terms of observable behavior. In all cases, the
pleasure hormone acted on the “assignment of value” to the
perceived resources, modifying their incentive motivational
salience. In this way, pleasure also modulated how likely
the robot was to interact with the perceived stimuli. Our
results indicated that pleasure, including pleasure unrelated
to need satisfaction, had adaptive value (“usefulness”) for
homeostatic management in terms of improved viability
and increased flexibility in adaptive behavior.

Regarding improved viability, we found that the extent
to which the different “types” of pleasure were adaptive
or maladaptive depended on the features of environment
and the demands it posed on the task, in addition to the
“metabolism” of the robot. Whereas in some (“easy”) en-
vironmental conditions, maximizing pleasure improved the
viability of the robot, in others, a constant moderate level
of pleasure (unrelated to need satisfaction) gave the best
viability, yet in other, more “difficult” environments with
asymmetric availability of resources, the addition of “purely
sensory” pleasure associated with the scarce resource im-
proved the viability of the robot.

Increased behavioral flexibility was observed particu-
larly in terms of management of the trade-off between op-
portunism (taking advantages of the opportunities offered
by the environment to satisfy a need that is not the most
urgent at that point in time) and persistence (continuing
working on a “goal” in order to satisfy a need). Notably, we
found that pleasure allowed the robot to manage persistence
and opportunism independently, and hence to display them
in the appropriate context. This is important, for example, in
situations where opportunism has a penalty but increased
persistence is beneficial, and where an asymmetry in the
availability of resources results in the need to consume each
of the resources in different ways in order to achieve good
management of homeostasis.

This study illustrates how a robot model can help ana-
lyze, operationalize and test, in a methodic and incremen-
tal way, hypotheses that cut across disciplines around the
still ill-understood affective “dimension” of pleasure—or

pleasures—and its different roles, underlying mechanisms,
and links to different contexts. Further studies could con-
tribute to a more systematic study of the roles of different
“pleasures” and their underlying mechanisms in animals
(including humans) and robots, moving beyond the view of
pleasure as “reward” and as a signal of the utility of the
stimuli that currently pervades neuroscience and robotics.

5.2 Arousal-Based Robot Models
Like pleasure, the notion of arousal is not univocal. In
psychology, it is traditionally an abstract notion associated
with general alertness, mobility, and readiness for action
[39], [53], [77], [79]. As a “dimension” of emotions, affective
arousal is generally associated with their level of “activity”
or intensity [83], and the multiple phenomena and mecha-
nisms grouped under this term have been blurred under the
assumption of physiological uniformity, as discussed in [24],
[39]. While physiological uniformity cannot be assumed,
we are still far from understanding the precise roles of
the different phenomena and mechanisms grouped under
“arousal”, and we cannot assume that they have clear-cut
specific roles. From a modeling point of view, a general
notion of affective arousal remains useful. However, when
studying how “affect” and “cognition” are interrelated in
affective cognition, we need to tease apart the different
roles that arousal (or different aspects of it) might play in
such interaction. A similar view is also espoused by some
researchers in the brain sciences4.

Let us discuss two of the aspects that we have explored
using robot models5 in collaboration with developmental
psychologists, in the context of the development of at-
tachment [12], [21], [93] between (human, chimpanzee and
robot) “infants” and their human caregivers, and its influ-
ence on cognitive and affective development.

5.2.1 Affective Arousal and Cognition
Arousal, and specifically affective arousal, influences cogni-
tive processes such as attention, memory, problem-solving
and learning [92]. Traditionally, this relation is thought to
have an inverted U-shape relation, in line with the “Yerkes-
Dodson law”: too low or too high levels of arousal are
thought to interfere negatively, whereas middle levels have
an “energizing” effect.

In embodied robots, arousal can be modeled as a pa-
rameter that indicates the level of “activity” of different
elements of the architecture and embodiment of the robot.
For example, the activity of a neural network as the robot
is learning can be used as an indication of alertness, the
activity of the sensors (highly or poorly stimulated) can

4. For example, Ferreira-Santos, discussing the role of arousal from
the perspective of the affective predictive coding paradigm, argues
that, to explain how arousal effects are triggered, different kinds of
prediction errors need to be considered [37].

5. To take into account different interaction dynamics, as well as to
avoid possible unwanted effects on the human perception of a specific
type of embodiment, these models were implemented in various robots
with very different embodiments and sensory-motor capabilities, such
as the wheeled Khepera and Koala robots from K-Team (www.k-
team.com), both of them fitted with rings of infra-red sensors around
their bodies, the legged dog-like robot Aibo developed by Sony (older
“third generation” versions from 2004) and humanoid Nao developed
by Aldebaran, both of which rely primarily on vision and touch sensors.
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contribute to the general arousal and alertness of the robot,
the “mismatch” between a prediction and a perception
(a prediction error) can be taken as a source of affective
arousal (e.g., “anxiety”) that will trigger corrective actions,
in line with affective and interoceptive predictive coding ap-
proaches [6], [7], [37], [88]. In some contexts, such parameter
can be taken as an indication of the “affective arousal” of
the robot, e.g., of its “agitation”, “uneasiness” or “distress”
that can affect, for example, the learning rate (or other
parameters) of a neural network or some other element of
the architecture of the robot. The “arousal” parameter can
then modulate the working of other elements of the robot
architecture, such as the learning rate of a neural network.

Regarding learning in the context of attachment, we
have, for example, studied the effects of novelty-induced
arousal in the learning of a “baby” (Aibo) robot that ex-
plored its environment with the help of a human “care-
giver”, and learned to categorize and memorize the features
of objects that it came across in this exploration [47]. In our
robot model, novelty (objects with as-yet unknown features
such as new colors or shapes, or presenting strong differ-
ences with previously encountered objects) increased the
arousal—modeled as an internal parameter—of the robot.
Two different mechanisms decreased arousal: (1) the “com-
forting” feedback provided by the human “caregiver”—
either tactile, by stroking the robot, or visual, by showing
her/his face in the visual field of the robot—decreased it
to a greater extent (at a faster rate), and (2) a slower decay
via self-regulation in the absence of human feedback for a
prolonged period of time. Humans with different caregiving
and interaction styles would provide different types of
feedback (e.g., primarily tactile, primarily visual, or both),
at different points (e.g., when “stress” caused by too much
novelty was signaled by the robot, or at specific moments
chosen by the human, such as when the robot seemed
“stuck” in front of an object, or as “reward” for apparent
progress in its exploration), and to different degrees (e.g.,
only initially to “bootstrap” the exploration of the robot or
through the entire exploration episode). The study reported
in [47] compared the effects of the feedback provided by
humans using different caregiving styles (“attentive” or
highly comforting and responsive to distress calls, versus
“independent”, letting the robot control its arousal by itself)
in the pace and type of learning of environments with
various degrees of novelty.

In other studies around arousal and learning, using
Nao humanoid robots this time, we have investigated, for
example, the role of arousal and its regulation to learn
“affective landmarks” (secure or dangerous areas) [48], to
learn tasks interactively [49], or as a “stress” signal for the
robot to assess the difficulty of a learning task and solicit
help from a human when the task was beyond its current
abilities [51].

These examples illustrate how robot models allow us
to assess the role(s) of arousal in “providing information”
about urgency or importance [92] in different tasks and
contexts.

5.2.2 Arousal Regulation in Interaction with Humans
Looking at the human side of the interaction, we have
investigated the effect that different ways of expressing and

regulating arousal by an autonomous robot can lead to the
formation of very different perceptions, ideas, narratives,
and “caregiving styles” in humans. For example, using the
above-mentioned playmat scenario from [47], we carried out
a 3–day study at the London Science Museum [46], [50] to
assess human responses to robots behaving according to dif-
ferent attachment profiles: “needy”—soliciting the human
often in a highly expressive manner when aroused while
exploring the playmat, using multiple modalities such as
flashing its LEDs, looking around for and at faces, and
barking—versus “independent”—not soliciting the human
and minimally expressive when aroused, and “focused” on
exploring the playmat.

Adding adaptation to the equation, and based on the role
of sensitivity in attachment [32], in a later study [52] we
used the responsiveness of the humans to the expression of
needs and distress of the robot as a signal that permits the
robot to self-adapt—in terms of frequency and modality of
its responses—the regulation and expression of its arousal as
a function of the perceived interaction style of the human.
To test this model, we carried out three experiments using
three variants of a learning task in a complex environment
containing novel and incongruent objects, in which a Nao
robot had to learn the features of several objects located on
a table, as follows.

A first experiment investigated how different caregiv-
ing styles can be suited to different characteristics of the
strategies used to regulate stress in the “needy” and “inde-
pendent” robot profiles in an exploration task. Our results
showed that, to achieve the same results with the two robot
profiles, different caregiving styles were needed: the “in-
dependent” robot needed less interaction with the human
caregiver to progress in its exploration, whereas the “needy”
robot needed an almost constant presence and “comfort” of
the caregiver to progress in its learning with comparable
dynamics.

A second experiment investigated how different types
of interaction in a more demanding—more complex and
difficult to learn—and stressful environment might affect
differentially the cognitive and affective development of
the “infant” (robot)—namely its regulatory, exploratory and
learning patterns. Our results showed that the two robot
profiles exhibit different behavioral dynamics: the “needy”
robot, for which the comfort provided by the human de-
creased the arousal faster, stopped more often and spent
more time learning, whereas the “independent” robot, for
which the comfort provided lowered the level of arousal for
a longer time, showed longer exploration episodes.

A third experiment investigated the use of adaptation
to the responsiveness of the human caregiver as a suitable
mechanism for the robot to deal with real-time variations
in the caregiver’s availability to respond to regulatory be-
haviors, and to adapt to different caregivers. The adaptation
capability added to the architecture modulated the effect
of the comfort provided by the human by modulating the
parameters used to process the comfort received. Our results
showed that the robot could modify its own profile au-
tonomously along the “needy” – “independent” dimension:
more comfort made the robot lean toward the “needy”
profile, whereas unattended requests made the robot move
towards a more “independent” profile.
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5.2.3 Discussion
These studies, largely carried out in collaboration with
developmental emotion psychologists Kim Bard and Jacque-
line Nadel as part of interdisciplinary projects investigating
emotion development, provide examples of robot models
explicitly developed for interdisciplinary emotion research.
Our aim, beyond “designing agents to understand infants”
[81], was to develop cross-disciplinary models that could be
used to both, analyze emotional development in biological
systems, and synthesize affective robots. We have already
illustrated how models from psychology permitted us to
develop “useful” mechanisms for robots to learn and adapt
autonomously in interaction with humans. Let us now
illustrate how robot models fed back into psychology by
allowing to investigate novel topics, as well as “classical”
topics in novel ways.

Whereas the substantial developmental and comparative
psychology literature on attachment has mostly studied
“negative episodes” (distress, confusion, or fear) elicited
by the introduction of an element external to the dyad
under the “strange situation” paradigm [2], our models
allowed psychologists to investigate: (a) other, less studied,
situations—learning and exploration episodes—potentially
stressful due to the novelty of the environment and the
complexity of the objects and agents the infant can interact
with; and (b) how a human can positively influence the
exploration patterns and learning outcomes of a developing
“infant”—in this case a robot endowed with an attachment
subsystem.

A change of focus was also possible, beyond the tradi-
tional emphasis on the classification of “attachment styles”
and their supposedly distinctive features. Whereas the re-
sulting attachment bond can have different qualities (typ-
ically ranging from “secure” to “insecure” in attachment
theory), our interdisciplinary work goes in the direction
that there is no universal “golden standard” regarding a
caregiving style to achieve an attachment bond of high qual-
ity. Different styles can be more or less suited to different
characteristics of the infant (e.g., in terms of strategies used
to regulate stress) and viceversa, and are strongly influenced
by society and culture [54].

6 CONCLUDING REMARKS

In this paper, I have discussed the use of embodied robots as
models for interdisciplinary emotion research. To conclude,
I would like to reflect on some of the advantages that
embodied robot models offer over other models.

As models, robots present very different features to other
types of models such as computational models. Herbert Si-
mon [89] distinguished between models that simulate a sys-
tem by predicting its behavior and deriving consequences
from premises (e.g., a system for weather prediction), and
models that are a simulation of a system by embodying a
few key features of that system and being put to behave in
the same environment, governed by the same laws (e.g., a
satellite is not a simulation of a moon, it is a moon, the “real
thing”). I would argue that computational models of emo-
tions fall in the first category (e.g., a computational model
of emotions that predicts, and possibly generates, behavior
given a number of premises and appraisal operations), and

embodied autonomous robot models, such as those I have
discussed in this paper, in the second. According to Simon,
the first type of models are appropriate for understanding
systems with many parameters, for which it is difficult to
predict behavior without complex or extensive calculations,
whereas the second type can also be used as a source of
new knowledge to understand, by synthesis, the behavior
of poorly known systems. The choice between one or the
other type of model for (interdisciplinary) emotion research
will depend on the type of research questions under inves-
tigation. However, when interaction is at stake, embodied
autonomous robots present clear advantages.

As physical entities, autonomous robots engage humans
in more natural interactions than simulations and virtual
models. By “more natural” I mean that humans can use the
sensory-motor modalities and interactions that we normally
use with other humans and animals—such as tactile contact,
moving together, physically holding the robot—and in the
same physical space, in addition to other modalities—such
as voice or vision—that can also be used with virtual agents,
which do not share the same space with us.

Compared to other robot models of emotions, the spe-
cific type of embodied robot models that I have used
in my research—with “internal” as well as “external”
embodiment—address Adolphs’ recommendation (cf. Sec-
tion 2) that “if robotics is to be a science that can actually
tell us something new about what emotions are, we need
to engineer an internal processing architecture that goes
beyond merely fooling humans into judging that the robot
has emotions.” They also open the door to investigating
issues concerning the relations between “mind” and “body”
in emotion research, in line with LeDoux’s “processing
approach” and enactivist accounts of emotion [24].

Finally, as affectively autonomous agents with their own
needs, motivations, affective processes and interactions, that
engage and disengage in interaction with humans in a
coherent trade-off between attending to the human, being
social, and being independent, provide a meaningful inter-
action partner that is more easily perceived and treated as an
agent by us [23]. Such affectively autonomous robots could
also make contributions to psychology and neuroscience
well beyond the use of robots as passive perceptual stimuli,
allowing us to study emotions in interacting agents in
systematic and controlled ways.
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action selection environments with temporal dynamics. In P. Lió,
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