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Abstract: Neonatal services, which provide care to babies born with medical complications, are under 

financial pressures in the United Kingdom (UK). The services are heavily regulated affecting efficiency. 

One possible solution is to reduce the Length of Stay (LoS) of babies and allow a degree of doctors’ 

clinical judgment to make decisions. 

The aim of this paper is to determine the impact of using clinical judgment on neonatal services 

performance. To achieve this aim, a System Dynamics (SD) model was built and validated in a UK 

neonatal unit. The model was used initially to evaluate the impact of LoS reduction on performance 

as clinical judgment policies were rejected by participants. The counterintuitive results led to a 

behavioural change and participants accepted clinical judgment policies, which the results indicated 

should lead to considerable performance improvement. Results’ implications and SD’s modelling 

ability to foster learning and alter participants’ perceptions and behaviour are discussed.  
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Introduction 

New born babies with health complications, or health risks due to premature birth (gestation period 

under 37 weeks), or low birth weight (under 2500g) need to be treated in special neonatal units (Demir 

et al, 2014). In the United Kingdom (UK), neonatal services are part of the National Health Service 

(NHS). These services are under pressure due to a sharp upward trend in demand as around 13% of 

births in the UK require neonatal care (Boyle et al, 2015; Asaduzzaman et al, 2009). The number of 

neonatal admissions in the NHS has increased from 61,372 in 2007 to 94,145 in 2013 and then to 

110,997 in 2015 requiring a total of 1,157,091 care days (RCPCH, 2016; NDAU 2015, 2010). This 

increase is driven by higher birth rates and the developments in medical technologies, which allow 

treatment of more complex medical conditions even for babies born very prematurely (Boyle et al, 

2015; Battin et al, 2012). 

 

This high demand is impacting the functioning of neonatal units whose capacity has become 

chronically saturated. Data collected over a 6-month period in 2006-2007 indicate that neonatal units 

in the UK were closed to new admissions for an average of 24 days and 1 in 10 units exceeded their 

capacity for intensive care for more than 50 days during that period (Asaduzzaman et al, 2011).  A 

recent document by BLISS, the prenatal charity in the UK, reported that a third of neonatal units had 

an occupancy rate of 80% with 9% reaching 100%, and 70% of intensive care units had an occupancy 

rate above the recommended safe level (BLISS, 2015). 

 

There are no signs that this situation is going to improve as the fiscal austerity policies imposed by 

consecutive UK governments affected the funding allocated to the NHS. The 2015 BLISS report 

highlights a difficult situation regarding the level of neonatal resources as 64% of neonatal units do 

not have enough nurses and two thirds do not have enough medical staff to meet national standards 

on safe staffing levels (BLISS, 2015).  

 

These challenges are exacerbated by the fact that care pathways and treatment procedures in 

neonatal services are heavily regulated and exclude any judgment on them by medical staff regardless 

of their experience and seniority. The regulation includes, for example, the definition of neonatal care 

categories, the medical conditions associated with each care category, the types of neonatal care 

units, and the different groups of clinical staff involved in neonatal care delivery (BAPM, 2010; DoH, 

2009).   
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A new born baby admitted to a neonatal care unit is allocated to one of three care categories. These 

are, in ascending order of severity: (i) Special Care (SC), those who cannot be provided with care at 

home and need to be in hospital for breathing and heart rate checks; (ii) High Dependency Care (HDC), 

those who need continuous monitoring because they require breathing help or intravenous feeding, 

and (iii) Intensive Care (IC), those with very complex health problems needing, for example, breathing 

through mechanical ventilation. 

 

Two areas of regulation in this multi care category structure have been found to create management 

complexities in neonatal units (Demir et al, 2014). First, the duration of the treatment (known as 

Length of Stay (LoS)) cannot be reduced regardless of the improvement in the clinical condition of the 

baby. Second, some treatment outcomes involve transfer between care categories. For example, 

some babies in the HDC care category do not leave the unit following treatment. They are, instead, 

moved to the SC care category or the IC care category. These cases can go through a number of 

treatment cycles between the three care categories spending the full LoS each time a transfer from 

one care category to another occurs. Consequently, the total time they spend in the unit includes all 

the LoS durations of the care categories they transit through until they leave the unit. This rigidity 

causes high occupancy rates and saturation of capacity and highlights the need for more streamlined 

care pathways to improve operational efficiency and cope with demand. 

 

One possible way of achieving greater operational efficiency is to allow a degree of flexibility in 

neonatal treatment procedures by providing a space for medical staff to use their judgment. Clinical 

judgment is a long established feature of medical practice and doctors have always approached their 

profession by combining their knowledge, education, and experience when making decisions about 

the diagnosis of patients and the best course of treatment (Benner et al, 2009; Montgomery, 2006). 

For this reason, education and training methods have evolved significantly to enhance medical staff 

clinical judgment skills in order to improve the quality of medical practice (Fava et al, 2015; Lasater, 

2007). Clinical judgment is defined as “the application of information based on actual observation of 

a patient combined with subjective and objective data that lead to a conclusion” (Mosby, 2009). In 

the context of neonatal services, clinical judgment can influence a number of decisions to streamline 

care pathways. Examples include reducing the LoS for those transferred from HDC to SC, increasing 

the number of babies discharged following HDC treatment instead of transferring them to SC, and 

moving more babies to less severe care categories (for example from IC to SC rather than to HDC). An 

evaluation of the impact of such policies could provide evidence on whether the use of clinical 

judgment is worthwhile in neonatal services. 
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System Dynamics (SD) methodology is suitable to evaluate the impact of clinical judgment on 

operational efficiency and performance of neonatal services. SD is underpinned by Systems Thinking 

principles and is appropriate to represent systems involving feedback processes, time delays, and non-

linear relationships (Morecroft, 2015; Sterman, 2000). These characteristics are very common in 

health systems (Taylor and Dangerfield, 2005; Dangerfield, 1999) and this explains the recent upward 

trend of SD applications in healthcare (Chang et al, 2017; Brailsford et al; 2009). SD popularity stems 

also from its ability to capture the soft human behavioural aspects, which are very common in health 

contexts (Dangerfield, 2014; Taylor and Lane, 1998). SD combines qualitative and quantitative tools 

to evaluate and predict possible outcomes of policies and to facilitate organisational learning and 

knowledge elicitation among policy makers (Thompson et al, 2016; Andersen et al, 2007; Hämäläinen 

et al, 2013). 

 

The aim of this paper is to evaluate the impact of reducing LoS on neonatal services performance and 

determine if allowing doctors to use their clinical knowledge and judgment has an effect on this 

performance. The paper’s contribution is twofold: first, modelling of an important behavioural aspect 

of medical practice, which has been virtually untapped within the Operational Research (OR) discipline 

and, second, exploring this aspect in neonatal services, an area of healthcare significantly overlooked 

in past health OR related research. The paper starts with a literature review section followed by a 

description of the development and validation of the SD model. The following section focusses on the 

interventions and scenarios evaluated on the model and how the results led to group learning and 

shift in the consideration of policies. The paper concludes with a section discussing the implications of 

the results from academic and health policy perspectives.   

 

2. Literature Review 

 

2.1 Modelling of LoS in neonatal services: Neonatal services in the UK are part of the NHS and tasked 

with providing care to babies born prematurely or at term but with medical complications. The care 

pathways in neonatal units involve admission, assessment of severity and allocation to a care category, 

treatment, and associated outcomes. The LoS is regulated for every care category and, as some of the 

treatment outcomes involve a transition from one care category to another (for example from SC to 

HDC), the total time spent in a unit can include, in some cases, a number of care category LoS 

durations. 
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Given the influence of LoS on the performance of neonatal units in terms, for example, of the number 

of babies treated in a neonatal unit per year or the number of those refused entry because of a unit 

capacity saturation (Demir et al, 2014), a number of models were developed to explore the factors 

affecting LoS and how the latter influences performance. Lee et al (2001) developed a model 

representing the drivers of LoS in US neonatal services following the introduction of new guidance 

regulating the services. A similar research aim was explored through statistical modelling to determine 

the most important factors affecting neonatal LoS in many countries (Adebandji et al, 2015; 

Manktelow et al, 2010; Yau et al, 2003). Other research investigated the relationship between 

neonatal LoS and clinical outcomes such as discharge, death, and transfer to other care wards (Boyle 

et al, 2015) or its role in informing decisions such as capacity requirements (Asaduzzaman et al, 2009). 

Despite the richness of this research, its scope was limited to the estimation of LoS and did not 

investigate how it affects the performance of neonatal units. 

 

2.2 System Dynamics modelling in neonatal services: SD gained significant popularity and importance 

in health management in recent times. This is due to increased awareness that health contexts are 

dynamic, complex, and, very often, respond to policies and interventions in a counterintuitive way 

(Homer and Hirsch, 2006; Dangerfield, 1999). This created a need for more robust and evidence-based 

methodologies to inform policies in the health sector leading to a significant increase in the number 

of health related SD applications (Chang et al, 2017; Brailsford et al; 2009). SD represents the structure 

of healthcare contexts in the form of causality maps known as Causal Loop Diagrams (CLDs). Computer 

simulation models of the contexts are then developed using appropriate software (for example STELLA 

or Vensim) providing decision makers with a virtual environment to test the likely impact of policy 

interventions. Joint analysis of simulation results and CLDs has been found to stimulate decision 

makers’ learning and understanding of the complex nature of health contexts and how these are 

affected by the interventions (Monks et al, 2016). 

 

However, there are few SD models of neonatal services. Demir et al (2014) developed an SD model of 

a neonatal unit in the UK, which provides treatment to all care categories with a focus on the impact 

of LoS on some operational indicators such as the number of babies discharged, transferred to other 

hospital wards, and refused entry to the unit. In another study in Uganda, an SD model was developed 

to explore policy interventions aiming to reduce neonatal mortality (Rwashana-Semwanga et al, 

2016). The findings suggested that the combination of two interventions, namely, the provision of 

clean free delivery kits and free transportation vouchers to health facilities during emergencies was 

the most effective in reducing neonatal mortality. 
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2.3 Group model building and knowledge elicitation in SD: Group model building has been an integral 

part of SD since its early days. The reasons for this include the reliance of SD modellers on the 

knowledge of participants in the organisational context of the study and the importance of developing 

participants’ ownership so that findings from SD models are accepted and implemented (Rouwette et 

al, 2011; Vennix, 1999). This close relationship between SD modellers and participants is also 

important as SD tackles systems which behave in a counterintuitive manner. More often than not, SD 

models generate surprising results, which challenge participants’ knowledge and change their mental 

models and sense making of the systems in which they operate (Hämäläinen et al, 2013; Thompson 

et al, 2016; Andersen et al, 2007).  

 

These situations where participants are surprised and the ensuing changes in their mental models are 

referred to as learning instances. A wide range of studies found that this type of learning is universal 

and occurs regardless of the participants (university students, top management team in an 

organisation) or whether the SD model represents a real world context (an existing hospital) or a 

hypothetical one (a planned ophthalmology department which has not yet been built) (Thompson et 

al, 2016; Monks et al, 2016; Rouwette et al, 2011; Morecroft, 1992). 

 

Despite the established track record of SD models in facilitating learning and eliciting knowledge, it 

seems that the health sector has not benefited from the evidence generated. Although SD health 

research has expanded significantly in recent years, it is still focused on the evaluation of interventions 

and policies. This is surprising given the complex nature of health contexts, the team based approach 

to healthcare delivery and management, and the potential of SD to enhance learning in health 

settings.  

 

3. Model Development 

 

The model was developed in a big neonatal unit located in a densely populated area in the UK. The 

unit was equipped to treat babies in all three care categories. Babies admitted to the unit are mainly 

from its local area with some transferred from other units in the region if these are not equipped to 

treat babies in the HDC and IC categories. The unit was chronically saturated due to its reputation for 

high quality of care, and a considerable number of babies were refused admission because of non-

availability of resources to treat them. 
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A core team led by the head of the neonatal unit with the membership of a senior neonatal consultant, 

a senior academic in health systems, and an SD modeller was set up at the beginning of the project. 

The SD modeller, responsible for model building, was supported by members of the core team, who 

provided the necessary information and documents. Where input from other stakeholders (nurses, 

doctors, data managers) was required, access was facilitated by the head of the neonatal unit. The 

project lasted for 15 months and the core team had eight meetings to review the model building 

progress and agree on subsequent project activities. Additional meetings were organised on a 

quarterly basis to present the updated version of the model to the core team and stakeholders’ 

representatives, which kept them engaged in the project. The icon-based user friendly interface of the 

SD STELLA software was new and attractive to the participants in these meetings. They enquired about 

several aspects of the model and provided the modeller with comments, suggestions, and 

encouragements to continue the model building process. 

 

The SD modelling process started by developing the qualitative map (in the form of a CLD) of the 

neonatal unit structure. This was followed by the building of the SD simulation model portraying the 

unit care pathways including admission, initial clinical status check, assignment to a care category, 

treatment processes and outcomes, resources, and the rules governing the evolution of babies in the 

unit. Feedback and comments during the core team and quarterly review meetings led to the 

refinement and improvement of the CLD and the simulation model before they were approved by all 

participants. 

  

The care pathways represented in the model follow the recommended national rules and standards 

(BAPM, 2010; DoH, 2009) and the professional consensus among the neonatal clinical community. 

Upon admission, a clinical check takes place and the baby is allocated to one of the care categories. 

The admission rate depends on the number of babies born per day, the fraction of these needing 

neonatal care, and the effect of cot availability on admission. The admission rate equation is as follows 

 

                   (1)t tADR BRN FNC ECAR=    

Where 

ADRt: Admission rate per day [babies/day]. 

BRNt: Number of babies born per day [babies/day]. 

FNC: Fraction of babies needing neonatal care [Dimensionless]. 

ECAR: Effect of cot availability on admission [Dimensionless]. 
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The effect of cot availability on admission represents a managerial rule, which reduces the number of 

babies admitted as the number of cots occupied increases and the unit nears saturation. This rule is 

represented by the following decreasing non-linear function (See Figure 1) 

 

( )            (2)tECAR f FRCOT=  

Where 

FRCOTt: Fraction of cots used [Dimensionless]. 

 

FRCOTt represents the fraction of the number of cots used to the total number of cots available in the 

unit.  

 

Following allocation to a care category (SC, HDC, IC), the baby enters a treatment phase lasting for a 

period equal to the established care category LoS. Treatment outcomes can be death, discharge home, 

transfer to hospital wards outside the unit, transfer to other neonatal units, or transition to another 

care category. Regarding the latter outcome, transitions can take place (depending on the clinical state 

at the end of the treatment) from SC to HDC or IC, from HDC to SC or IC, and from IC to HDC or SC (see 

Figure 2 for a high level structure of the care pathways). An example of one of the stock and flow 

diagrams (HDC) is presented in Figure 3. 

 

The treatment rate (the number of babies treated daily) depends on the LoS and the availability of 

resources. The treatment rate equation is as follows 

 

, ,  , ,( )                (3)

{ , , }

t j t j t jTRT Min TLOS TRES

j SC HDC IC

=


 

Where 

TRTt,j: Treatment rate for babies in care category j [babies/day]. 

TLOSt,j: Treatment rate allowed by the LoS for babies in care category j [babies/day]. 

TRESt,j: Treatment rate allowed by resources for babies in care category j [babies/day]. 

 

TLOSt,j reflects the fact that clinical regulations and established processes require that babies stay in 

the treatment phase for the whole LoS regardless of the level of resources in the neonatal unit. As a 

result, the TLOSt,j equation is as follows: 
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,
,                                (4)

{ , , }

t j
t j

j

NBAB
TLOS

LoS

j SC HDC IC

=



 

Where 

NBABt,j: Number of babies in care category j needing treatment [babies]. 

LoSj: Length of stay for babies in care category j [days]. 

 

TRESt,j represents the treatment rate allowed by resources and, as such, reflects the effect of resources 

availability on the daily treatment capacity. Resources required for treatment include nurses, doctors, 

and cots (BAPM, 2010). There are 3 categories of doctors: consultants, specialist registered, and senior 

officer, who can treat all categories but with different ratios of doctors to babies. Similarly, nurses are 

grouped into support nurses, who can treat SC babies only, non-specialist nurses, who can treat SC 

and HDC babies, and specialist nurses, who can treat babies in all the three care categories. As it is the 

case for doctors, the ratio of nurses to babies is also regulated for every category of nurses. There are 

two types of cots: (i) SC cots adequate for SC only and (ii) IC cots adequate for all categories.  

 

As an example, the treatment rate allowed by resources for HDC babies is presented in equation (5).  

 

, , , ,( , , )              (5)t HDC t HDC t HDC t HDCTRES Min NUR DOC COT=  

Where 

TRESt,HDC: Treatment rate allowed by resources for HDC babies [babies/day]. 

NURt,HDC: Nurses treatment rate for HDC babies [babies/day]. 

DOCt,HDC: Doctors treatment rate HDC babies [babies/day]. 

COTt,HDC: Cots treatment rate HDC babies [babies/day]. 

 

NURt,HDC represents the total number of HDC babies, which can be treated by the nurses every day. 

Similarly, DOCt,HDC and COTt,HDC represent the same number for doctors and cots respectively. The 

minimum condition in equation (5) reflects the fact that the treatment rate allowed by resources, 

which represents the daily treatment capacity, is determined by the least available resource in the 

unit.  

 

As an illustration, NURt,HDC is determined by the total number of nurses in the unit, the daily fraction 

of time allocated by nurses to treatment activities, the maximum number of babies a single nurse can 
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treat, and the fraction of treatment capacity allocated to HDC babies. The equation for NURt,HDC is as 

follows 

2

, , ,      

1

         

( )  (6)

                   { , }

t HDC i i i HDC t HDC

i

NUR A B C D

i SPE NSP

=

=   




 

 

Where 

Ai: Total number of nurses of category i in the unit [Nurses]. 

Bi: Daily fraction of time allocated by nurses of category i to treatment activities [fraction/day]. 

Ci, HDC: Ratio of nurses of category i to HDC babies [babies/nurse]. 

Dt,HDC: Fraction of nurses treatment activities allocated to HDC babies [dimensionless]. 

SPE: Specialist nurses. 

NSP: Non specialist nurses. 

 

The model captures the performance of the unit through a set of performance indicators representing 

the throughput from the unit (the number of babies leaving the unit following treatment), and the 

unit ability to cope with demand represented by the number of cases of refused admission due to unit 

capacity saturation. 

 

4. Model parameters and validation 

 

The data used to populate the model was collected from national regulatory sources and members of 

the project core team. National regulatory sources provided data such as doctors and nurses ratios to 

babies. The core team members made information available on the established LoS for each care 

category, the number of doctors, nurses, cots in the unit, the fraction of time allocated by doctors and 

nurses to treatment activities, and the rules governing admission to the unit. 

  

Following inclusion of data in the model, validation tests (Sterman, 2000) were performed with the 

active involvement of the core team members and stakeholders’ representatives. The qualitative map 

and the variables included in the model were confirmed in a validation workshop. The model 

equations were verified by the modeller and checked for dimensional consistency. A list of the 

variables included in the model was presented during the validation workshop to check that every 

variable was meaningful and that no dummy variables were included in the model. Extreme conditions 

tests (for example the death of all babies following treatment) were performed on the model and the 
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results were consistent with expectations. The last validation test focused on checking the model 

ability to replicate past observed data. This test covered a number of variables and the model 

predictions were very close to real world observations. As an example, the results of this test regarding 

the cumulative number of SC babies discharged are presented in Figure 4.  

 

5. Scenario Analysis and Results 

 

5.1 Selection of simulation scenarios 

 

At the project start, the core team agreed that its aim is to evaluate the impact of reducing LoS on the 

unit performance. Therefore, the initial set of scenarios excluded any reference to clinical judgment 

(Table 1). Following model validation, a workshop involving the core team members and stakeholders’ 

representatives was held to present and discuss the simulation results. 

 

As the simulation generated counterintuitive results and following their explanation with the help of 

a CLD (more of this later), the workshop participants considered the possibility of allowing doctors to 

use their clinical judgment if this did not alter significantly the current pathways. Three policies were 

identified and agreed by the participants. These are as follows:  

 

Policy 1: Reduce the number of babies transferred from HDC to SC by 50%. These are instead 

discharged home, transferred to other units, or transferred to other wards in the hospital with an 

equal proportion for each outcome. 

 

 Policy 2: In addition to policy 1, the number of babies transferred from IC to SC is reduced by 50%. 

They are instead discharged home, transferred to other units, or transferred to other wards in the 

hospital with an equal proportion for each outcome. 

 

Policy 3: In addition to policy 2, the number of babies transferred from IC to HDC is reduced by 25%. 

These are instead discharged home, transferred to other units, or transferred to other wards in the 

hospital with an equal proportion for each outcome. 

 

The simulation model was adjusted to represent these 3 policies (Table 2) and the initial set of 

scenarios (Table 1) was simulated under each of the three policies.  
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5.2 Simulation results 

 

As described earlier, the neonatal unit performance is measured by its throughput and ability to cope 

with demand. Throughput refers to the number of babies leaving the unit following successful 

treatment and is represented through the performance indicators “Cumulative Number of Babies 

Discharged Home (BDH)”, “Cumulative Number of Babies Transferred to Other Units (BTO)”, and 

“Cumulative Number of Babies Transferred to other Wards in the Hospital (BWH)”. The unit ability to 

cope with demand is represented by the “Cumulative Number of Babies Refused Entry (BRE)”. 

Performance is considered positive if throughput (BDH, BTO, BWH) is high and BRE is low. 

 

5.2.1 No use of clinical judgment (business as usual) 

 

The model was run for 1 year and the results from the initial set of scenarios (Table 1) came as a great 

surprise to the workshop participants, who were expecting significant performance improvement 

(Table 3: columns “business as usual”). Instead, the model showed that, under many scenarios, 

performance will drop as reflected by the decreasing values of BTO and the increasing values of BRE 

(the most important performance indicator for the participants). This created confusion and disbelief 

in the workshop and many participants commented that “the model must be wrong” and “how we are 

doing the right thing and getting the opposite results to expectations”. The modeller, who facilitated 

the workshop, explained that health contexts are a good example of dynamic complex systems and 

these tend to behave in a counterintuitive manner (Homer and Hirsch, 2006).  

 

To overcome the confusion and enhance confidence in the model, the modeller used a high level CLD 

(Figure 5) representing babies in the HDC category to explain the unexpected results (HDC was 

selected just as an example to illustrate the unit’s complexity). In the CLD, balancing loops B1 and B2 

represent the processes of admission and treatment of HDC cases whereas loops B3 to B6 represent 

their movement towards post-treatment outcomes (B3 to B6 are balancing loops because they reflect 

“depletion” processes from HDC once the treatment is completed). Reinforcing loops R1 and R2 

portray cycles of HDC babies transferred to SC (R1) and IC (R2) post HDC treatment who enter another 

treatment phase in these categories and then go back to HDC.  

 

Reduction of LoS increases HDC treatment rate. This gives more power to loop B2 and triggers two 

conflicting processes. First, loops B5 and B6 become stronger leading to a faster movement of babies 
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out of the unit, hence improving throughput. Second, loop B2 power is transmitted to B3 and R1, 

which increases the number of cases going through the cycle HDC to SC and back to HDC, and to loops 

B4 and R2 with the same consequences for the cycle HDC to IC and back to HDC. Dominance of the 

loops portraying the inner cycles in the unit (B3, B4, R1, and R2) increases the number of babies stuck 

inside the unit. This leads to higher occupation of cots and, therefore, in more babies being refused 

entry to the unit. 

 

5.2.2 Use of clinical judgment 

 

Simulation results of policies where clinical judgment is allowed (policy 1, 2, and 3) suggest that BDH 

decreases as clinical judgment is allowed and this trend is valid for all scenarios. However, a reverse 

trend is observed with respect to BTO and BWH, which increase as doctors are given the opportunity 

to exercise judgment. Regarding BRE, the shift to the new policies has a dramatic effect. The decline 

is moderate under policy 1 but becomes steep under policies 2 and 3 and this is valid for all scenarios 

as shown in Figure 6. The average reduction is 30%, 61%, and 72% under policies 1, 2, and 3 

respectively. The most significant reduction is achieved under scenario 4 reaching 46%, 64%, and 80% 

under policies 1, 2, and 3 respectively. As this scenario assumes reducing LoS for HDC by 3 days, it 

highlights the importance of HDC (the intermediate care category) as a key driver of the unit 

saturation. 

 

6. Discussion and Conclusion 

 

This paper focusses on an important area of health management, namely, the ability of doctors to use 

their clinical judgment, an important aspect of medical practice (Benner et al, 2009; Montgomery, 

2006).  Equally important is the medical context of the study as neonatal services attracted virtually 

no attention from the OR community despite the increased demand for neonatal care, the 

vulnerability of the patients, and the high treatment cost (BLISS, 2015; Demir et al, 2014;  

Asaduzzaman et al, 2009). This research is pertinent and comes at a time when the NHS faces 

unprecedented challenges to provide high quality care with less resources (Lafond and Charlesworth, 

2016). 

 

The use of the SD methodology to address the research aims led to some interesting and surprising 

findings, which altered the collective understanding of the problem by the project stakeholders and 

participants and widened the scope of policies evaluated beyond what was agreed at the project 
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outset. Furthermore, this research provides a vivid example on how SD can generate new 

understanding, challenges established assumptions, enhances team learning, and guides policy 

making towards new directions  The project shows how exposure to and interaction with SD modelling 

can lead to significant shifts in positions, a key feature of behavioural OR (Hämäläinen et al, 2013).  

 

The results indicate that improving the performance of neonatal services requires a combination of 

LoS reduction and reconfiguration of care pathways by allowing doctors to use their clinical judgment. 

This is a good example on how the implementation of a single policy, however logical it may seem, 

does not lead to performance improvement and the objective can only be achieved if a number of 

policies are deployed simultaneously. This is a known characteristic of dynamically complex systems 

(such as health systems), which behave in a counterintuitive manner and defeat what may appear to 

be logical and intuitive interventions (Morecroft, 2015). 

 

From a care delivery perspective, the implementation of policies such as the ones discussed in this 

research, should not impact negatively on clinical outcomes and quality of care. The clinical teams 

(doctors, nurses) involved in neonatal treatment are highly qualified and experienced and, therefore, 

could be trusted to make decisions involving a degree of subjectivity, which is a core aspect of clinical 

judgment (Mosby, 2009). 

 

This research provides further evidence regarding the usefulness of SD to inform policy making. The 

model allowed rigorous evaluation of alternative policies and provided clear information regarding 

their expected outcomes. As such, the model prevented implementation of costly changes, which 

would have been in vain. The results show that success is only achieved if the rigidity of the care 

pathways is relaxed to a certain extent. Neonatal services policy makers need to find ways to 

reconciliate between the need for a regulated care process to protect vulnerable patients and trusting 

doctors to change their behaviour and exercise clinical judgment. 

 

Additionally, this research is an excellent example of SD’s ability to facilitate engagement with 

participants in real world contexts and change their behaviour and understanding of the systems in 

which they operate. The results of the initial LoS reduction policy were met with scepticism, disbelief, 

indeed hostility. As various SD tools were used to generate and explain the results, shock and 

resistance changed to a realisation that neonatal services are far more complex than what was 

originally assumed. This led to a more positive attitude when participants were asked to come up with 

suggestions for innovative policies. Once these policies were simulated and results determined, the 
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initial scepticism about SD turned into adoption of the results and the methodology. All participants 

in the project emerged from this modelling exercise with a much improved understanding of the 

complexity of neonatal care services, and the importance of communication and dialogue between 

the management and clinical staff to implement the changes suggested by the model findings. This 

gives credit to the ability of OR based projects to lead to situations where perceptions and views are 

altered, collective behaviour changed, and organisational learning fostered (Monks et al, 2016). 

 

This study can be expanded in a number of ways. The SD model could be widened to evaluate the 

impact of doctors’ clinical judgment on a neonatal network not just a single unit. Another possibility 

is to investigate the process and the factors facilitating the implementation of the clinical judgment 

policies in a heavily regulated context. It would also be important to determine the impact of these 

policies on quality of care and readmissions. 

 

This research demonstrates the potential of OR techniques to capture the important ‘soft behavioural 

variables’, which characterise the health sector. It also provides evidence of the ability of OR to engage 

health policy makers, enhance learning, and provide evidence for designing policies. This can only be 

welcomed in a sector where improving efficiency and quality of care are expected to be the dominant 

challenges in the future.      
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Table 1: Initial set of the scenarios simulated on the model 

 

 

 

SC: Special Care 

HDC: High Dependency Care 

IC: Intensive Care 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario Description

Scenario 0 Baseline. LoS (days): SC 11.75; HDC 6.41; IC 10.21.

Scenario 1 Reduce LoS by 1 day for SC Babies

Scenario 2 Reduce LoS by 3 days for SC Babies

Scenario 3 Reduce LoS by 1 day for HDC Babies

Scenario 4 Reduce LoS by 3 days for HDC Babies

Scenario 5 Reduce LoS by 1 day for IC Babies

Scenario 6 Reduce LoS by 3 days for IC Babies

Scenario 7 Reduce LoS by 1 day for SC, HDC, and IC Babies

Scenario 8 Reduce LoS by 3 days for SC, HDC, and IC Babies
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Table 2: Fraction of babies for all post- treatment outcomes 

(Eg. SC Discharge: Fraction of babies in the SC care category discharged following treatment) 

 

Treatment Outcome BAU Policy 1 Policy 2 Policy 3 

SC Category         

SC Discharge 0.384 0.384 0.384 0.384 

SC Transfer to other wards  0.214 0.214 0.214 0.214 

SC Transfer to other hospitals  0.181 0.181 0.181 0.181 

SC Death 0.000 0.000 0.000 0.000 

SC to HDC 0.121 0.121 0.121 0.121 

SC to IC 0.100 0.100 0.100 0.100 

HDC Category         

HDC Discharge 0.009 0.133 0.133 0.133 

HDC Transfer to other wards  0.006 0.131 0.131 0.131 

HDC Transfer to other hospitals  0.054 0.179 0.179 0.179 

HDC Death 0.000 0.000 0.000 0.000 

HDC to SC 0.748 0.374 0.374 0.374 

HDC to IC 0.183 0.183 0.183 0.183 

IC Category         

IC Discharge  0.022 0.022 0.089 0.110 

IC Transfer to wards  0.036 0.036 0.099 0.120 

IC Transfer to other hospitals  0.210 0.210 0.277 0.297 

IC Death 0.088 0.088 0.088 0.088 

IC to SC 0.394 0.394 0.197 0.197 

IC to HDC 0.250 0.250 0.250 0.188 

 

 

BAU: Business As Usual (No Clinical Judgment) 

SC: Special Care 

HDC: High Dependency Care 

IC: Intensive Care 
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Table 3: Simulation results for policies excluding and allowing clinical judgment. 

 

 

  BDH    BTO   

Scenario BAU Policy 1 Policy 2 Policy 3 BAU Policy 1 Policy 2 Policy 3 

Scenario 0 230 226 213 212 187 182 194 197 

Scenario 1 234 224 213 212 182 181 193 197 

Scenario 2 235 226 214 212 182 182 194 197 

Scenario 3 234 225 212 212 182 181 193 197 

Scenario 4 233 226 213 212 181 182 194 197 

Scenario 5 233 224 213 212 181 181 194 196 

Scenario 6 234 225 213 211 181 181 194 196 

Scenario 7 236 226 213 212 182 182 194 197 

Scenario 8 240 226 214 212 185 182 195 197 

    BWH       BRE     

Scenario BAU Policy 1 Policy 2 Policy 3 BAU Policy 1 Policy 2 Policy 3 

Scenario 0 136 154 156 156 18 11 8 5 

Scenario 1 138 153 156 156 18 15 8 4 

Scenario 2 139 154 156 156 17 11 6 5 

Scenario 3 138 153 155 156 18 14 9 5 

Scenario 4 138 154 156 156 20 11 7 4 

Scenario 5 138 153 156 156 21 14 6 6 

Scenario 6 138 153 156 155 20 13 7 6 

Scenario 7 139 154 156 156 16 11 7 5 

Scenario 8 139 154 157 156 12 10 4 4 

 

 

BAU: Business as Usual (No Clinical Judgment) 

BDH: Cumulative Number of Babies Discharged Home (Babies) 

BTO: Cumulative Number of Babies Transferred to Other Units (Babies) 

BWH: Cumulative Number of Babies Transferred to other Wards in the Hospital (Babies) 

BRE: Cumulative Number of Babies Refused Entry (Babies) 
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Figure 1: Graphical representation of the effect of cot availability on admission (ECAR)  

 

 

 

 

ECAR: Effect of cot availability on admission 

FRCOT: Fraction of cots used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EC
A

R

FRCOT



24 
 

 

Figure 2: : High level structure of the care pathway in the neonatal unit 
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Figure 3: Stock and Flow Diagram of the High Dependency Care (HDC) care category. 
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Figure 4: Real versus simulated results for the variable “Cumulative Special Care (SC) babies 

discharged” 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

To
ta

l S
C

 B
ab

ie
s 

D
is

ch
ar

ge
d

MonthReal World Simulation



27 
 

Figure 5: Causal Loop Diagram (CLD) for the policy of no use of clinical judgment in HDC 
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Figure 6: Cumulative number of babies refused entry for policies involving the use and non-use of 

clinical judgment 

 

BAU: Business as Usual (No Clinical Judgment) 
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