

LAMP Detection and Identification of the Blackleg Pathogen Leptosphaeria biglobosa 'brassicae'

Journal:	Plant Disease
Manuscript ID	PDIS-08-20-1819-RE.R1
Manuscript Type:	Research
Date Submitted by the Author:	09-Jan-2021
Complete List of Authors:	Du, Ran; Huazhong Agricultural University, Plant Protection Huang, Yongju; University of Hertfordshire School of Life and Medical Sciences, Biological and Environmental Sciences Zhang, Jing; Huazhong Agricultural University, Plant Pathology Yang, Long; Huazhong Agricultural University, Plant Pathology Wu, Mingde; Huazhong Agricultural University, Plant Pathology Li, Guoqing; Huazhong Agricultural University, Plant Protection; Huazhong Agricultural University,
Keywords:	Fungi < Causal Agent, oilseeds and legumes < Field crops < Crop Type, Pathogen detection < Subject Areas
	·

1		
2 3	1	I AMP Detection and Identification of the Blackley Pathogen Leptosphaeria higlobosa
4	1	Entiti Detection and Identification of the Didentes I anogen Deprosphaeria orgiotosa
5 6	2	'brassicae'
7	2	
8 9	3	Ban Du State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural
10	4	Kan Du, State Key Laboratory of Agricultural Microbiology, Huazilong Agricultural
11 12	5	University, Wuhan 430070, China; Y. J. Huang, School of Life and Medical Sciences,
13 14	6	University of Hertfordshire, AL10 9, Hatfield, AB, UK; Jing Zhang, Long Yang, Mingde
15 16 17	7	Wu, and Guoqing Li, State Key Laboratory of Agricultural Microbiology, Huazhong
18 19	8	Agricultural University, Wuhan 430070, China
20 21	9	Correspondence: Dr. G. Q. Li, E-mail: guoqingli@mail.hzau.edu.cn
22 23	10	
24 25 26	11	
27 28	12	
29 30	13	
31 32 33	14	
34 35	15	
36 37 29	16	
39 40	17	
41 42	18	
43 44	19	
45 46	20	
40 47	20	
48	21	
49 50	22	
51 52	22	
52 53	23	
54 55	24	
56 57	25	
58 59	23	
60	26	

27 Abstract

Blackleg of oilseed rape is a damaging invasive disease caused by the species complex Leptosphaeria maculans (Lm)/L. biglobosa (Lb), which are composed of at least two and seven phylogenetic subclades, respectively. Generally, Lm is more virulent than Lb, however, under certain conditions, Lb can cause a significant yield loss in oilseed rape. Lb 'brassicae' (Lbb) has been found to be the causal agent for blackleg of oilseed rape in China, whereas Lm and Lb 'canadensis' (Lbc) were frequently detected in imported seeds of oilseed rape, posing a risk of spread into China. In order to monitor the blackleg-pathogen populations, a diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using a 615-bp-long DNA sequence from Lbb that was derived from a randomly amplified polymorphic DNA assay. The LAMP was optimized for temperature and time, and tested for specificity and sensitivity using the DNA extracted from Lbb, Lbc, Lm, and 10 other fungi. The results showed that the optimal temperature and time were 65°C and 40 min, respectively. The LAMP primer set was specific to Lbb and highly sensitive as it detected the Lbb DNA as low as 132 fg per reaction. The LAMP assay was validated using the DNA extracted from mycelia and conidia of a well-characterized Lbb isolate, and its utility was evaluated using the DNA extracted from leaves, stems, pods and seeds of oilseed rape. The LAMP assay developed herein will help for monitoring populations of the blackleg pathogens in China and developing strategies for management of the blackleg disease.

Page 3 of 66

Plant Disease

Blackleg (phoma stem canker) of oilseed rape (Brassica napus) is a world-wide economically important disease (Piening et al. 1975; Gugel and Petrie 1992; Laing 1986; Salisbury et al. 1995; Dilmaghani et al. 2000; West et al. 2000; Fitt et al. 2006; Lob et al. 2013; Molina et al. 2017). It is caused by two closely related and morphologically similar ascomycetous fungi, Leptosphaeria maculans (anamorph: Plenodomus lingam) and Leptosphaeria biglobosa (anamorph: *Plenodomus biglobosus*), which form a species complex (Mendes-Pereira et al. 2003). Both fungi can infect leaves, stems and pods of oilseed rape, causing phoma leaf spots, phoma stem cankers and phoma pod spots, respectively (Fitt et al. 2006b). Among these symptoms, phoma stem canker is the most important regarding seed vield loss, as it can cause stem collapse (lodging), thereby reducing seed production. Numerous studies indicated that L. maculans is more virulent than L. biglobosa in terms of the extent of damage to the plants and seed production, as L. maculans can invade into the vascular tissue of the basal stem, where it may cause stem collapse, in contrast, L. biglobosa usually infects the epidermal tissue of the upper stem, where it rarely causes stem collapse (Plummer et al. 1994; Williams and Fitt 1999; West et al. 2001; Fitt et al. 2006a). Previous studies showed that the L. maculans/L. biglobosa species complex (especially L. maculans) is responsible for serious economic losses to the industry of oilseed rape (or canola) in Australia, Canada, France, Germany and UK since the 1970s. It was estimated that the blackleg disease of oilseed rape caused an average annual economic loss of US\$167 million during 1983 to 1998 in Alberta of Canada, and US\$70 million during 2000 to 2002 in the UK (Fitt et al. 2006b, 2008).

In China, blackleg of oilseed rape was first reported in the early 2000s, and the pathogen for that disease was identified as NA1 or B-group of *L. maculans* (West et al. 2000), which was later re-classified as *L. biglobosa* (Shoemaker and Brun, 2001). Large-scale field surveys demonstrated that this disease widely occurred in oilseed rape-plantation areas (Li et al.

2013). Compared to healthy plants, diseased plants had less yield with the average single-plant seed vield loss ranging from 10% to 56% (Rong et al. 2015; Cai et al. 2018). So far, only L. biglobosa has been found in oilseed rape and cruciferous vegetables in China (Fitt et al. 2008; Li et al. 2013; Liu et al. 2014; Zhang et al. 2014; Cai et al. 2015, 2018), and L. *maculans* was thus officially considered as a guarantine pathogen since the late 2000s (Zhou et al. 2010; Wang et al. 2011). Both L. maculans and L. biglobosa can be further classified into subclades or subspecies based on phylogenetic analysis of the nucleotide sequences of the internal transcribed spacer region of ribosomal DNA (ITS-rDNA), and a few nuclear genes such as the mating type gene *MAT1-2* and the genes coding for actin and β-tubulin (Mendes-Pereira et al. 2003). So far, two subclades have been identified in L. maculans, including 'brassicae' on Brassica and 'lepidii' on Lepidium sp. (Mendes-Pereira et al. 2003). Seven subclades have been identified in L. biglobosa, including 'americensis', 'australensis', 'brassicae', 'canadensis' and 'occiaustralensis' on *Brassica* spp., 'erysimii' on *Erysimum*, and 'thlaspii' on *Thlaspi* sp. (Voigt et al. 2005; Vincenot et al. 2008; Zou et al. 2019). Among these *L. biglobosa* subclades, 'brassicae' and 'canadensis' are the most common and important, *L. biglobosa* 'brassicae' has been found in the continents of America, Asia and Europe (Fitt et al. 2006a; Vincenot et al. 2008; Dilmaghani et al. 2009; Liu et al. 2014), and *L. biglobosa* 'canadensis' has been detected in the continent of America (Canada, USA) as well as in Australia (van de Wouw et al. 2008; Dilmaghani et al. 2009; Liu et al. 2014). Five other subcluades of L. *biglobosa*, including 'americensis', 'australensis', 'erysimii', 'occiaustralensis' and 'thlaspii' are the minor subclades, 'americensis' was only found in USA (Zou et al. 2019), 'erysimii' was found in Canada (Voigt et al. 2005), 'australensis' and 'occiaustralensis' were found in Australia (Vincenot et al. 2008). It is well recognized that L. maculans and L. biglobosa can be spread over a long

Page 5 of 66

Plant Disease

distance through international trade of seeds of oilseed rape and/or exchange of germplasm resources of cruciferous crops (Chigogora and Hall 1995; Wang et al. 2003; Chen et al. 2010; Zhou et al. 2010; Wang et al. 2011; Chen et al. 2013). Therefore, detection and identification of L. maculans and L. biglobosa in crop seeds is essential in preventing spread of these two pathogens into other regions. Since the late 1970s, the deep-freezing blotter method has been recommended by the International Seed Testing Association (ISTA) to detect L. maculans and L. biglobosa in contaminated or infected seeds of cruciferous crops, including oilseed rape (Limonard 1968). The key point in that method is inhibition of seed germination under freezing temperatures (e.g. -20°C) and the subsequent promotion of growth of the seedborne fungi on the seeds under normal temperatures (e.g. 20°C) (Wang et al. 2003). Moreover, monitoring of the populations of *L. maculans* and *L. biglobosa* in fields planted with oilseed rape and cruciferous vegetables is also important regarding management of the blackleg disease (West et al. 2001; Dilmaghani et al. 2009). L. maculans and L. *biglobosa* usually produce similar symptoms on stems with formation of abundant black pycnidia (West et al. 2001; Li et al. 2013). Therefore, it is difficult to distinguish these two pathogens just based on disease symptoms and location of infection (e.g. basal and upper stems) and the disease symptoms. Many researchers have made efforts to develop simple, rapid and accurate methods to detect and identify L. maculans and L. biglobosa on diseased plant tissues. The methods so far developed include plant assays (e.g. virulence tests), morphological characterization (e.g. colony growth, pseudothecial shape, ascospore germlings), metabolite profiling (e.g. pigments, phytotoxins), typing of glucose phosphate isomerase, karyotyping, serological typing, DNA analyses (e.g. RFLP, RAPD, PCR) and genome analyses (Williams and Fitt, 1999; Mendes-Pereira et al., 2003; Liu et al., 2006; van de Wouw et al., 2008. Vincenot et al. 2008; Grandaubert et al. 2014). However, these methods are usually time-consuming, labor-intensive and/or dependent on special expertise

and instruments. There is a need to develop simpler, faster and more convenient methods for

detection and identification of these two pathogens. Since the early 2000s, loop-mediated isothermal amplification (LAMP) technique has been developed to detect animal and plant pathogens (Notomi et al. 2000; Endo et al. 2004; Niessen 2015). A typical LAMP assay consists of serial reactions catalyzed by *Bst* DNA polymerase to amplify a target DNA sequence with the aid of a set of primers (four to six primers) under the isothermal condition (Notomi et al. 2000). The LAMP products can be visualized with naked eyes in the presence of some DNA-staining dyes such as SYBR Green I or ethidium bromide (Zhou et al. 2016; Long et al. 2017; Du et al. 2020). Compared to PCR, LAMP detection has advantages of high specificity, high efficiency, simplicity and rapidity, and more importantly, it does not require expensive and special instruments (Niessen 2015). LAMP has been used to detect L. maculans and L. biglobosa in infected plant tissues and air samples (Jedryczka et al. 2013; Zhou et al. 2016; Long et al. 2017; Du et al. 2020). However, LAMP detection and identification of the subclades of L. maculans and L. biglobosa has not been reported so far. Therefore, we have developed a LAMP-based technique for detection and identification of L. biglobosa 'brassicae', the prevalent subclade of L. biglobosa in China (Liu et al. 2014; Cai et al. 2015, 2018). The specific objectives include: (i) to design the LAMP primer set specific for L. biglobosa 'brassicae'; (ii) to optimize the LAMP-based technique; and (iii) to evaluate the potential of LAMP detection and identification of L. *biglobosa* 'brassicae' in field disease diagnosis and pathogen population survey.

147 Materials and Methods

Fungal isolates. A total of 45 fungal strains were used in this study, including 26 strains
of *L. biglobosa* 'brassicae', 7 strains of *L. biglobosa* 'canadensis', 2 strains of *L. maculans*, 3
strains of other oilseed rape pathogens (*Botrytis cinerea*, *Collectotrichum higginsianum*, *Sclerotinia sclerotiorum*), and 7 strains of saprobes living on oilseed rape (*Phoma* spp.,

Page 7 of 66

Plant Disease

Alternaria alternatae, Chaetomium globosum) (Table 1). Two strains of L. maculans were isolated from seeds of canola (Brassica napus) imported from Canada by Dr. Zhenhua Wang of the Wuhan Customs Technical Centre (Wuhan, China). Strain 17-4 of L. biglobosa 'canadensis' was isolated from diseased seeds of canola (B. napus) also imported from Canada by Dr. Jianping Yi of the Shanghai Customs Technical Centre (Shanghai, China). The remains 42 fungal strains were isolated from oilseed rape collected from various locations in China (Table 1). All of the fungal strains were incubated on potato dextrose agar (PDA) with cellophane film overlays at 20°C for 3 to 15 days, mycelia and/or conidia of each strain were collected and stored at -80°C until use. LAMP primer designing. The specific LAMP primers for detection of L. biglobosa 'brassicae' were designed based on a DNA sequence selected from randomly amplified polymorphic DNA (RAPD) fragments. Strains Lb731 and W10 of L. biglobosa 'brassicae', strain 17-4 of L. biglobosa 'canadensis', strain 2010510-1 of L. maculans and strain P2 of Phoma macrostoma were used in the RAPD assays with 20 Operon primers listed in Table S1. Genomic DNA was extracted from the mycelia of these strains using the CTAB method (Möller et al. 1992) and used as templates in RAPD assays with the procedures described by Plummer and co-workers (1994). The resulting RAPD products were separated on a 1% agarose gel (w/v) in Tris-Borate-EDTA (TBE) buffer (89 mmol/L Tris, 89 mmol/L boric acid, and 2 mmol/L EDTA) and visualized on an UV trans-illuminator after staining with ethidium bromide (1.5 mg/mL). One of the DNA bands of approximately 600 bp in size specific for L. biglobosa 'brassicae' (Fig. 1A) was selected as target for LAMP detection. It was purified from the agarose gel using AxyPrep DNA Gel Extraction Kit (Axygen Scientific, Inc., Union City, CA), cloned into *Escherichia coli* DH5a using the pMD18-T vector (TaKaRa Biotechnol. Co. Ltd., Dalian, China), and sequenced in Beijing AuGCT Biotechnol. Co. Ltd. The resulting DNA sequence (Figure S1) was searched by BLASTn on National Center for

177	Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) to confirm its origin.
178	The result showed that the DNA sequence was 615 bp in length (Figure S1), it was 100%
179	identical to the DNA sequence in the scaffold00021 of <i>L. biglobosa</i> 'brassicae' b35
180	(GenBank Acc. FO905643.1), and 88.13% identical to a region in the genome of <i>L. biglobosa</i>
181	'canadensis' Lb1204 (Figure S2), however, no homologues to this DNA sequence were found
182	in the genome of <i>L. maculans</i> JN3 (Genome Assembly No. GCA_900538235.1). Therefore,
183	The DNA sequence appears to be highly specific for <i>L. biglobosa</i> 'brassicae'. Six LAMP
184	primers were designed based on the DNA sequence using the LAMP primer designing
185	software PrimerExplorer V5 at the website of http://www.primerexplorer.jp/lampv5e/
186	index.html (Fig. 1B, C, Table 2). The primers were synthesized by Beijing AuGCT
187	Biotechnol. Co. Ltd. and used in the following LAMP assays.
188	LAMP optimization. The strain W10 of L. biglobosa 'brassicae' was used in this
189	experiment. The LAMP mixtures (25 μ L) in 0.2-mL Eppendorf tubes contained the following
190	components (Table S2): 1× Isothermal Amplification Buffer (New England BioLabs [®] Inc,
191	Ipswich, MA, USA), Bst 2.0 WarmStart® DNA Polymerase at 8 U in each reaction mixture
192	(New England BioLabs [®]), MgSO ₄ (4 mmol/L), dNTPs (10 mmol/L for each nucleotide), the
193	forward and backward outer primers F3/B3 (0.2 μ mol/L for each), forward and backward
194	loop primers LF/LB (0.4 µmol/L for each), forward and inner primer backward FIP/BIP (1.6
195	μ mol/L for each), and template DNA (~100 ng for each reaction). The mixtures containing all
196	the components except template DNA were used as controls. In order to prevent evaporation
197	of the water in the mixtures during LAMP reaction, aliquots of liquid paraffin (Aladdin [®]
198	Industrial Corporation, Shanghai, China) were added to the tubes with the LAMP mixtures
199	(30 μ L in each tube) as overlays. The LAMP reactions were performed in 1000 TM Thermal
200	Cycler (Bio-Rad Laboratories Inc., Hercules, CA) at 65°C for 50 min to determine the
201	amplification efficiency of the primers, at 53°C, 55°C, 57°C, 59°C, 61°C, 63°C, 65°C, 67°C,

Page 9 of 66

Plant Disease

י ר		
2 3 4	202	69°C, 71°C, 73°C and 75°C for 40 min to optimize the temperature, and at 65°C for 10 min,
5 6	203	20 min, 30 min, 40 min, 50 min, 60 min, 70 min and 80 min to optimize the time requirement.
7 8	204	After LAMP amplification, the tubes were taken out from the thermal cycler and maintained
9 10 11	205	at 4°C for at least 10 min to cool down the temperature in the reaction mixtures. Then, they
12 13	206	were opened in another room next to the LAMP operation area, and aliquots of SYBR Green
14 15 16	207	I solution at 100 μ g/mL (Sigma-Aldrich [®] , St. Louis, MO, USA) was added to the tubes at 0.2
10 17 18	208	μ L per tube. Color change in the reaction mixtures was then observed, green coloration
19 20	209	indicated a positive LAMP amplification, whereas brown coloration indicated a negative
21 22	210	LAMP amplification. In order to confirm the LAMP amplification, 4 μ L LAMP product of
23 24 25	211	each reaction was loaded in a 2% agarose gel (w/v). After electrophoresis, the gel was
25 26 27	212	immersed in an ethidium bromide solution (1.5 mg/mL, w/v) for 30 min, and the DNA
28 29	213	fragments in the agarose gels were visualized on the UV trans-illuminator, formation of DNA
30 31	214	mass ladders showing a multiple DNA bands pattern (or DNA ladder pattern) indicated a
32 33 34	215	positive LAMP amplification and vice versa. Each LAMP reaction in this experiment as well
35 36	216	as in the following experiments was repeated three times.
37		
38	217	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i>
38 39 40 41	217 218	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L.</i>
38 39 40 41 42 43	217 218 219	 Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table
38 39 40 41 42 43 44 45	217218219220	 Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to
38 39 40 41 42 43 44 45 46 47	 217 218 219 220 221 	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP
38 39 40 41 42 43 44 45 46 47 48 49 50	 217 218 219 220 221 222 	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	 217 218 219 220 221 222 223 	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Sensitivity test. Strain W10 of <i>L. biglobosa</i> 'brassicae' was used in this experiment for
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 217 218 219 220 221 222 223 224 	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Sensitivity test. Strain W10 of <i>L. biglobosa</i> 'brassicae' was used in this experiment for comparison of the detection thresholds in the LAMP and PCR assays, as the PCR assay was
38 39 40 41 42 43 44 45 46 47 48 50 51 53 54 55 56 57	 217 218 219 220 221 222 223 224 225 	Specificity test. To test the specificity of the primers in LAMP detection of <i>L. biglobosa</i> 'brassicae', Genomic DNA was extracted from <i>L. biglobosa</i> 'brassicae' (26 strains), <i>L. biglobosa</i> 'canadensis' (7 strains), <i>L. maculans</i> (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Sensitivity test. Strain W10 of <i>L. biglobosa</i> 'brassicae' was used in this experiment for comparison of the detection thresholds in the LAMP and PCR assays, as the PCR assay was officially approved to detect <i>L. biglobosa</i> 'brassicae' in China (Zhao et al. 2015). The DNA

concentration decreasing from 132 ng/ μ L to 1.32 fg/ μ L. An aliquot of 1 μ L of each DNA solution or water alone (control) was added to a LAMP mixture, which was incubated at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Meanwhile, the template sensitivity in LAMP detection was compared with that in the conventional PCR detection using the forward and backward outer primers F3 and B3 developed in this study (Table 2). The PCR reaction mixtures (25 µL) were prepared with the following components: 12.5 µL 2× TSINGKE Master Mix (Tsingke Biol. Technol. Co. Ltd., Chengdu, China), 0.5 µL forward primer F3 (10 µmol/L), 0.5 µL backward primer B3 (10 µmol/L), 1.0 µL DNA solution, and 10.5 µL water. The PCR was performed in 1000[™] Thermal Cycler with the following thermal program: initial denaturation at 94°C for 3 min; followed by 36 cycles with denaturation at 94°C for 30 s, annealing at 50°C for 30 s and extension at 72°C for 30 s; and final extension at 72°C for 10 min. The PCR product (210 bp in size) was confirmed by agarose gel electrophoresis (Du et al. 2020).

LAMP-assisted fungal detection. Strain W10 of L. biglobosa 'brassicae' was used in this experiment. It was incubated at 20°C on PDA with cellophane film overlays for four days. Mycelia from 1, 2 or 3 square-shaped colony patches ($0.5 \text{ cm} \times 0.5 \text{ cm}$, length \times width) at the colony margin area were collected and put in 1.5-mL Eppendorf tubes. Aliquots of $1 \times$ TE buffer (100 mmol/L Tris-HCl, 10 mmol/L EDTA, pH 8.0) were transferred to the tubes at 50 µL per tube. The mycelia were squashed using sterilized plastic pestles. The resulting mixtures were heat-treated in water bath at 95°C for 2 min for DNA release from the hyphal cells (Fan et al., 2018). After cooling down to the room temperature $(20 \pm 2^{\circ}C)$, the mixtures were centrifuged at 12,000 rpm, 1 µL supernatant of each sample was added to a LAMP mixture. In the control, 1 µL sterilized water was added to the mixture. The LAMP amplifications were performed at 65°C for 40 min, visualized with SYBR Green I and

Page 11 of 66

Plant Disease

confirmed by agarose gel electrophoresis.

The PDA cultures of strain W10 were further incubated at 20°C for another 10 days for production of pycnidia and pycnidiospores (conidia), which were harvested by washing with sterilized water. Conidial concentration was measured using a hemocytometer. The master conidial suspension ($\sim 1 \times 10^7$ conidia/mL) was 10-fold diluted with sterilized water to generate serial conidial suspensions with the final concentrations at 2×10^5 , 2×10^4 , 2×10^3 , 2×10^2 and 20 conidia/mL, and an aliquot of 100 µL of each conidial suspension was pippeted to an Eppendorf tube containing 50 μ L 3× TE buffer. The conidial suspensions in the tubes were heat-treated in water bath (95°C, 2 min), and after that, they were centrifuged at 12,000 rpm, and 1 µL supernatant of each sample was added to the LAMP mixture. For the control, 1 µL sterilized water was added to a LAMP mixture. The LAMP reactions were performed at 65°C for 40 min, visualized with SYBR Green I and confirmed by agarose gel electrophoresis.

LAMP-assisted disease diagnosis. Diseased leaves, stems, mature pods and seeds of the winter-type oilseed rape (B. napus cultivar 'Zhongshuang No. 9') showing typical blackleg symptoms (Figure S3) were collected in the 2018-2019 season from a field in Shenshan Town of Chibi County, Hubei Province of China (29°52'50"N, 114°3'48"E, 40 m high above sea level). Leaf samples were collected at the early flowering stage, and samples of stems, pods and seeds were collected at the harvest stage. The pathogen for the blackleg disease of oilseed rape and cruciferous vegetables in that area is L. biglobosa 'brassicae' according to the two-year surveys in our lab (Li 2019). Meanwhile, healthy leaves, stems, mature pods and seeds were collected and used as controls. Tissues were carefully taken from the collected samples using a sharp razor blade, tissue pieces ($\sim 5 \times 5$ mm, length \times width) were cut off from the leaves and the pod hulls, stem tissues ($\sim 5 \times 5$ mm, length \times width) were peeled off from the epidermal layer of the stems. The diseased leaf, stem and pod-hull pieces,

277	or the diseased seeds were separately put in 1.5-mL Eppendorf tubes at 1, 2 or 3 pieces (or
278	seeds) in each tube. Meanwhile, two healthy tissue pieces or healthy seeds were put in other
279	Eppendorf tubes as controls. Aliquots of NaOH solution (0.4 mol/L) were added to the tubes,
280	100 μ L per tube, and the plant tissue pieces or the seeds were squashed using sterilized
281	plastic pestles, followed by heat-treatment in water bath at 95°C for 2 min. Then, the
282	mixtures were centrifuged at 12,000 rpm, and 1 μ L supernatant of each sample was added to
283	a LAMP mixture as DNA template. The LAMP reactions were performed at 65°C for 40 min
284	and visualized with SYBR Green I and confirmed by agarose gel electrophoresis.
285	Results
286	LAMP primers. Results of the RAPD assays showed that among the 20 tested 10-mer
287	Operon primers (Table S1), OPA-19 persistently produced polymorphic DNA fragments
288	among L. biglobosa 'brassicae', L. biglobosa 'canadensis', L. maculans and Phoma
289	macrostoma (Fig. 1A). Strains Lb731 and W10 of <i>L. biglobosa</i> 'brassicae' showed an
290	identical DNA-banding pattern, which differed greatly from those in <i>L. biglobosa</i>
291	'canadensis' 17-4, L. maculans 2010510-1, and P. macrostoma P2. A DNA fragment of 615
292	bp in size from <i>L. biglobosa</i> 'brassicae' W10 was selected as target (Figure S1). It was
203	unloaded into the on-line software PrimerExplorer V5 and six primers (forward and
295	
294	backward outer primers F3/B3, inner primers FIP/BIP, and loop primers LF/LB) were
295	designed based on the 230-bp-long central region in that DNA sequence (Fig. 1B, C; Table
296	2).
297	LAMP optimization. In the assay for testing the LAMP amplification efficiency (65°C,
298	50 min), the control reaction mixture without any DNA templates retained a brown coloration
299	in the presence of SYBR Green I, and did not produce any multiple DNA bands patterns
300	
	when visualized on the agarose gel (Fig. 2A). However, the reaction mixture containing the

Plant Disease

SYBR Green I, and it produced a multiple DNA bands pattern on the agarose gel. This result suggests that the LAMP primers can efficiently amplify the DNA of L. biglobosa 'brassicae' strain W10.

The temperature and time duration required for LAMP detection of L. biglobosa 'brassicae' were optimized. In the temperature assay (40 min), a significant difference in the color of the reaction mixtures amended with SYBR Green I was observed among the temperature treatments ranging from 53°C to 75°C (Fig. 2B). In two low temperature treatments (53°C, 55°C) and two high temperature treatments (73°C and 75°C), the reaction mixtures retained a brown coloration without formation of multiple DNA bands patterns in agarose gels after electrophoresis, indicating no detectable LAMP amplifications in these four treatments. In the treatments at 57°C, 59°C, 63°C and 65°C, the reaction mixtures had a green coloration and formed multiple DNA bands patterns in agarose gels after electrophoresis, moreover, the intensity of the green color showed an increase tendency with the temperatures increasing from 57°C to 65°C. In the treatments at 67°C, 69°C and 71°C, the reaction mixtures also showed a green coloration and formed multiple DNA bands patterns in agarose gels after electrophoresis, however, the intensity of the green color showed a decreased tendency with the temperatures increasing from 67°C to 71°C. Therefore, the optimum temperature for LAMP detection of L. biglobosa 'brassicae' W10 was 65°C. In the time duration assay (65°C), the LAMP mixtures amended with SYBR Green I retained a brown coloration at 10 min post reaction (mpr). The color of the reaction mixtures turned green when the time duration lasted between 20 and 80 mpr (Fig. 2B). With the time duration extending to 20, 30 and 40 mpr, the intensity of the green color gradually increased. The green color intensity had no visible change at the time duration longer than 50 mpr. suggesting that the LAMP reactions at 50 to 80 mpr may reach a plateau state. Therefore, the minimum time duration for LAMP detection of *L. biglobosa* 'brassicae' strain W10 was 40

3	
4	
5	
2	
0	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
22	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
رد. ۵۶	
-1U 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

327 min.

1 2

> LAMP specificity. Results of the specificity assay showed that DNA from 45 fungi 328 exhibited two different effects on LAMP amplification (Table 1). The reaction mixtures with 329 the DNA from 26 strains of L. biglobosa 'brassicae' had a green coloration in the presence of 330 SYBR Green I and formed multiple DNA bands patterns in agarose gels after electrophoresis. 331 This result indicated that these reactions had a positive LAMP amplification. In contrast, the 332 reaction mixtures with the DNA from 19 other fungi, including two close relatives of L. 333 biglobosa 'brassicae' (L. biglobosa 'canadensis', L. maculans), three pathogens of oilseed 334 rape (B. cinerea, Co. higginsianum, S. sclerotiorum), and seven saprobes living on oilseed 335 rape (A. alternatae, Ch. globosum, Phoma spp.) retained a brown coloration and did not 336 produce any multiple DNA bands patterns in agarose gels after electrophoresis. This result 337 indicated that these LAMP reactions had a negative LAMP amplification. Therefore, the 338 LAMP detection has a high specificity for *L. biglobosa* 'brassicae'. 339 LAMP sensitivity. Results of the sensitivity assay showed that the amount of the 340 template DNA of L. biglobosa 'brassicae' in the reaction mixtures greatly affected LAMP 341 amplification. The reaction mixtures with the amount of DNA per reaction ranging from 132 342 ng to 132 fg had a green coloration in presence of SYBR Green I (Fig. 3A), and formed 343 344 multiple DNA bands patterns in electrophored agarose gels (Fig. 3B). In contrast, the reaction mixtures with the amount of DNA per reaction at 13.2 fg and 1.32 fg and the control mixture 345 without the template DNA retained a brown coloration in presence of SYBR Green I (Fig. 346 3A), and did not produce any multiple DNA bands patterns in the electrophored agarose gels 347 (Fig. 3B). This result suggests that the minimum amount of the DNA in LAMP detection of L. 348 biglobosa 'brassicae' is 132 fg per reaction. 349 Results of the conventional PCR with the primers F3 and B3 (Table 2) indicated that 350

> after reaction, the PCR mixtures with the amount of the DNA template per reaction at 132 ng,

Page 15 of 66

Plant Disease

13.2 ng, 1.32 ng or 132 pg produced a DNA fragment with the expected size of 210 bp (Fig. 3C). The brightness of the DNA band gradually became weaker with the amount of the DNA per reaction decreasing from 132 ng to 132 pg. However, the PCR mixtures with the amount of the DNA template per reaction ranging from 13.2 pg to 1.32 fg did not produce any multiple DNA bands patterns in that agarose gel (Fig. 3C). Therefore, the LAMP detection appears 1000 times more sensitive than the PCR detection. LAMP-assisted detection of L. biglobosa 'brassicae'. The DNA from the mycelia and conidia of L. biglobosa 'brassicae' strain W10 was used as template in LAMP assays. The reaction mixtures containing the DNA from all the three mycelial samples and from 20 to

20000 conidia had a green coloration in the presence of SYBR Green I and produced multiple
DNA bands patterns in electrophored agarose gels, indicating positive LAMP amplifications
in these reactions (Table 3). In contrast, the control reaction mixtures without the DNA
template and the reaction mixture containing the DNA from 2 conidia did not showed any
visible color change in the presence of SYBR Green I and formation of multiple DNA bands
patterns in the electrophored agarose gel was not observed at all (Table 3), indicating
negative LAMP amplifications in these reactions.

LAMP-assisted diagnosis of the blackleg disease. The DNA from healthy and diseased tissues from leaves, stems, pods and seeds of oilseed rape (Figure S3) was used as template in LAMP assays. The results showed that the control mixtures containing the DNA from healthy leaves, stems, pods and seeds displayed a brown coloration in presence of SYBR Green I and did not produce any multiple DNA bands patterns in the agarose gels (Table 3), indicating negative LAMP amplifications in these reactions. However, the reaction mixtures containing the DNA from diseased leaves, stems, pods and seeds displayed a green coloration in presence of SYBR Green I (Table 3) and produced multiple DNA bands patterns on the agarose gels, indicating positive LAMP amplifications in these reactions.

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
40	
+∠ ⊿⊃	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
22	
20	
5/	
58	
59	

377	Discussion
378	This study developed a rapid, specific and sensitive LAMP assay for detection of L.
379	<i>biglobosa</i> 'brassicae'. The use of LAMP as a tool to study the changing populations of <i>L</i> .
380	maculans and L. biglobosa in diseased tissues of oilseed rape as well as in air samples was
381	first reported in 2013 (Jedryczka et al. 2013). However, it is not clear what DNA sequence
382	was used for designing of the LAMP primer set in that study (Jedryczka et al. 2013). In later
383	studies, the internal transcribed spacer regions of the ribosomal DNA (ITS-rDNA) in L.
384	maculans and L. biglobosa were used for designing the LAMP primer sets (Zhou et al. 2016;
385	Long et al. 2017; Du et al. 2020). The resulting LAMP assays displayed a consistent
386	detection of these two closely related pathogens (Zhou et al. 2016; Long et al. 2017; Du et al.
387	2020). However, whether these LAMP assays have specificity for subclades of <i>L. maculans</i>
388	and <i>L. biglobosa</i> remains unknown. Omer and Wallenhammar (2020) reported real-time
389	LAMP detection of <i>L. maculans</i> and <i>L. biglobosa</i> "brassicae". The primer sets SirP and
390	PKS5 for <i>L. maculans</i> were designed based on the nucleotide sequences of the phytotoxin
391	sirodesmin PL gene (sirP) and the polyketide synthase gene (PKS5). respectively, and the
392	primer set PKS5 for <i>L. biglobosa</i> "brassicae" was designed based on the nucleotide
393	sequences of the <i>L. biglobosa</i> "brassicae" PKS21 gene (Omer and Wallenhammar, 2020). In
394	the present study, a 615-bp DNA sequence derived from a RAPD assay was used for
395	designing the LAMP primer set. The resulting LAMP assay showed a positive detection of <i>L</i> .
396	biglobosa 'brassicae', but failed to detect L. biglobosa 'canadensis' and L. maculans.
397	Therefore, the LAMP assay has a high specificity for L. biglobosa 'brassicae'.
398	To the best of our knowledge, this is the first report about LAMP detection of <i>L</i> .
399	biglobosa at the subclade level. The specificity may lie in the target DNA sequence, which is

400 highly identical among strains of *L. biglobosa* 'brassicae', as it is a part of the genome of *L*.

biglobosa 'brassicae' itself. However, the target DNA sequence has a low identity level

Plant Disease

(88.13%) to that in strains of L. biglobosa 'canadensis'. Moreover, no homologues to the target DNA sequence were identified in the genome of *L. maculans*. Future studies are necessary to characterize the nature and location of the 615-bp DNA sequence in the genome of L. biglobosa 'brassicae' and to determine specificity of the primer set for other subclades of L. biglobosa, including 'americensis', 'australensis', 'erysimii', 'occiaustralensis' and 'thlaspii', which belong to different branches from 'brassicae' and 'canadensis' in the phylogeneties inferred from the combined gene set ITS-rDNA, MAT1-2, actin gene (act) and β -tublin gene (*Tub*) as well as whole genomes (Vincenot et al. 2008; Dilmaghani et al. 2009; Grandaubert et al. 2014; Zou et al. 2019). Previous studies indicated that the majority of the target DNA sequences used in the LAMP assays for fungi, yeasts and oomycetes are selected from public databases (Niessen 2015). The target DNA sequences include the ribosomal RNA genes in most cases, as well as many nuclear genes such as *acl1*, *amy1*, *btub*, *cap59*, *gaoA*, *gp43*, *rodA*, *tef1*, and *ypt1* (Endo et al. 2004; Locas et al. 2010; Matsuzawa et al. 2010; Niessen and Vogel 2010; Huang et al. 2011; Luo et al. 2012; Niessen et al. 2012; Chen et al. 2013; Ferdousi et al. 2014; Niessen 2015). Meanwhile, quite a few previous studies reported use of RAPD assays to explore some novel DNA sequences as targets for LAMP detection of Verticillium dahliae, Fusarium oxysporum f.sp. cubense race 4, F. oxysporum f.sp. niveum and F. mangiferae (Li et al. 2013; Moradi et al. 2013; Peng et al. 2013; Pu et al. 2014). The present study selected a 615-bp-long RAPD sequence of L. biglobosa 'brassicae' as target in the LAMP assay for L. biglobosa 'brassicae'. The result corroborated the previous studies mentioned above that combined use of RAPD and LAMP is a valid strategy to develop the molecular techniques for detection and discrimination of the closely related plant pathogenic fungi. The LAMP assay developed in this study provided a simple, rapid and efficient tool to diagnose the blackleg disease caused by L. biglobosa 'brassicae', and to assist identification

of isolates of L. biglobosa 'brassicae'. Previous studies demonstrated that L. biglobosa 'brassicae' usually co-exists with L. maculans, L. biglobosa 'canadensis' and other minor subclades of L. biglobosa (e.g. 'americensis', 'australensis' and 'occiaustralensis') (Voigt et al, 2005; Fitt et al. 2006a; Vincenot et al. 2008; Dilmaghani et al. 2009; Zou et al. 2019). At present, L. biglobosa 'brassicae' was found to be the sole causal agent for blackleg of oilseed rape and cruciferous vegetables in China (Li et al. 2013; Liu et al. 2014; Cai et al. 2015, 2018). However, considering the situation of the continuous imports of seeds of oilseed rape from foreign countries, L. maculans and other subclades of L. biglobosa might be introduced to this country (Fitt et al. 2008; Zhou et al. 2010; Wang et al. 2011; Zhang et al. 2014). Therefore, it is necessary to persistently monitor the populations of the blackleg pathogens in oilseed rape-plantation areas as well as in the areas surrounding the import ports in China. This study found that the LAMP assay could consistently detect the DNA extracted from the pure cultures of L. biglobosa 'brassicae' and from diseased plant tissues using the simplified DNA extraction methods (e.g. TE-buffer or alkaline lysis under 95°C for 2 min), and the LAMP assay was performed within 2 h. Using this technique together with the LAMP assays for *L. maculans* and *L. biglobosa* developed in previous studies (Zhou et al. 2016; Long et al. 2017; Du et al. 2020), it is possible to conduct a large-scale identification of the isolates of Leptosphaeria spp. and to carry out the on-site diagnosis of the blackleg disease in field surveys. Future studies are required to assemble the LAMP components into a kit and to optimize the LAMP assays under the field conditions.

447 Acknowledgements

This research was financially funded by the China Agriculture Research System (Grant
CARS-12). We appreciate kind help from Dr. Zhenhua Wang of the Technical Center of the
Wuhan Customs (Wuhan, China), and Dr. Jianping Yi of the Technical Center of the
Shanghai Customs (Shanghai, China) for providing strains of *L. biglobosa* 'canadensis' and *L*.

Page 19 of 66

1

Plant Disease

2 3 4	452	maculans.
5 6 7	453	Literature cited
8 9	454	Cai, X., Zhang, J., Wu, M. D., Jiang, D. H., Li, G. Q., and Yang, L. 2015. Effect of water
10 11	455	flooding on survival of Leptosphaeria biglobosa 'brassicae' in stubble of oilseed rape
12 13 14	456	(Brassica napus) in central China. Plant Dis. 99:1426–1433.
15 16	457	Cai, X., Huang, Y. J., Jiang, D. H., Fitt, B. D. L., Li, G. Q., and Yang, L. 2018. Evaluation of
17 18	458	oilseed rape seed yield losses caused by Leptosphaeria biglobosa in central China. Eur.
19 20 21	459	J. Plant Pathol. 150:179–190.
22 23	460	Chen, G. Y., Wu, C. P., Li, B., Su, H., Zhen, S. Z., and An, Y. L. 2010. Detection of
24 25	461	Leptosphaeria maculans from imported canola seeds. J. Plant Dis. Protect.
26 27 28	462	117(4):173–176.
29 30	463	Chen, Q., Huang, F., Liao, F. R., Chen, H. Y., Yi, J. P., and Lin, S. M. 2013. Detection and
31 32	464	identification of Leptosphaeria maculans from imported pakchoi (Brassica chinensis L.)
33 34 35	465	seeds. Plant Quarantine 27(4):62–64.
35 36 37	466	Chigogora, J. L., and Hall, R. 1995. Relationships among measures of blackleg in winter
38 39	467	oilseed rape and infection of harvested seed by Leptosphaeria maculans. Can. J. Plant
40 41	468	Pathol. 17(1):25–30.
42 43 44	469	Dilmaghani, A., Balesdent, M. H., Didier, J. P., Wu, C., Davey, J., Barbetti, M. J., Li H.,
45 46	470	Moreno-Rico, O., Phillips, D., Despeghel, J. P., Vincenot, L., Gout, L., and Rouxel, T.
47 48	471	2009. The Leptosphaeria maculans-Leptosphaeria biglobosa species complex in the
49 50 51	472	American continent. Plant Pathol. 58:1044–1058.
52 53	473	Du, R., Zhang, J., Yang, L., Wu, M. D., and Li, G. Q. 2020. Development of LAMP
54 55	474	techniques to detect Leptosphaeria biglobosa and L. maculans in oilseed rape. Acta
56 57	475	Phytopathol. Sin. DOI: 10.13926/j.cnki.apps.000514.
58 59 60	476	Endo, S., Komori, T., Ricci, G., Sano, A., Yokoyama, K., Ohori, A., Kamei, K., Franco, M.,

1		
2 3 4	477	Miyaji, M., and Nishimura, K. 2004. Detection of gp43 of Paracoccidioides brasiliensis
5 6	478	by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol. Lett.
7 8 0	479	234:93–97.
9 10 11	480	Fan, F., Yin, W. X., Li, G. Q., Yin, L. F., and Luo, C. X. 2018. Development of a LAMP
12 13	481	method for detecting SDHI fungicide resistance in Botrytis cinerea. Plant Dis.
14 15	482	102:1612–1618.
16 17 18	483	Ferdousi, A., Shahhossein, M. H., Bayat, M., Hashimi, S. J., and Gharhi, M. 2014.
19 20	484	Comparison of polymerase chain reaction and loop-mediated isothermal amplification
21 22	485	for diagnosis of Fusarium solani in human immunodeficiency virus positive patients.
23 24 25	486	Afri. J. Biotechnol. 13:1496–1502.
26 27	487	Fitt, B. D. L., Huang, Y. J., van den Bosch, F., and West, J. S. 2006a. Coexistence of related
28 29	488	pathogen species on arable crops in space and time. Annu. Rev. Phytopathol.
30 31 32	489	44:163–182.
33 34	490	Fitt, B. D. L., Brun, H., Barbetti, M. J., and Rimmer, S. R. 2006b. World-wide importance of
35 36	491	phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape
37 38 30	492	(Brassica napus). Eur. J. Plant Pathol. 114:3–15.
39 40 41	493	Fitt, B. D. L., Hu, B. C., Li, Z. Q., Liu, S. Y., Lange, R. M., Kharbanda, P. D., Butterworth,
42 43	494	M. H., and White R. P. 2008. Strategies to prevent spread of Leptosphaeria maculans
44 45	495	(phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol.
46 47 48	496	57:652–664.
49 50	497	Grandaubert, J., Lowe, R. G., Soyer, J. L., Schoch, C. L., van de Wouw, A. P., Fudal, I.,
51 52	498	Robbertse, B., Lapalu, N., Links, M. G., Ollivier, B., Linglin, J., Barbe, V., Mangenot,
53 54 55	499	S., Cruaud, C., Borhan, H., Howlett, B. J., Balesdent, M., and Rouxel, T. 2014.
56 57	500	Transposable element-assisted evolution and adaptation to host plant within the
58 59 60	501	Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens.

Page 21 of 66

1 2

Plant Disease

3 4	50
5 6	50
7 8 0	50
9 10 11	50
12 13	50
14 15	50
16 17 18	50
19 20	50
21 22	5
23 24 25	5
25 26 27	5
28 29	5
30 31 32	5
32 33 34	5
35 36	5
37 38	5
39 40 41	5
42 43	5
44 45	52
46 47 48	52
49 50	52
51 52	52
53 54 55	52
56 57	52
58 59	52
60	

502 BMC Genomics 15:891.

- Gugel, R. K., and Petrie, G. A. 1992. History, occurrence, impact and control of blackleg of
 rapeseed. Can. J. Plant Pathol. 14:36–45.
- Huang, C., Sun, Z., Yan, J., Luo, Y., Wang, H., and Ma, Z. 2011. Rapid and precise detection
 of latent infections of wheat stripe rust in wheat leaves using loop-mediated isothermal
 amplification. J. Phytopathol. 159:582–584.
- 508 Jedryczka, M., Burzynski, A., Brachaczek, A., Langwinski, W., Song, P., and Kaczmarek, J.
- 509 2013. Loop-mediated isothermal amplification as a good tool to study changing
- 510 *Leptosphaeria* populations in oilseed rape plants and air samples. Acta Agrobot.
- 4 511 66:93–99.
- 512 Laing, M. D. 1986. The crucifer blackleg pathosystem in Natal, South Africa. Acta Horticult.
 513 194:141–151.
- Li, B. J., Du, J. L., Lan, C. Z., Liu, P. Q., Weng, Q. Y., and Chen, Q. H. 2013. Development
 of a loop-mediated isothermal amplification assay for rapid and sensitive detection of *Fusarium oxysporum* f.sp. *cubense* race 4. Eur. J. Plant Pathol. 135:903–911.
- 517 Li, J. C. 2019. Fixed-site monitoring of occurrence of blackleg of oilseed rape and
- 518 characterization of infection by conidia of the pathogen. Master's degree dissertation of
 - 519 Huazhong Agricultural University (Wuhan, China). IV + 61pp.
- 520 Li, Q. S., Rong, S. B., Hu, B. C., Jiang, Y. F., Hou, S. M., Fei, W. X. Chen, F. X., Wu, X. J.,
- Fan, Z. X. and Lei, W. X. 2013. Distribution of blackleg disease on oilseed rape in
 China and its pathogen identification. Chin. J. Oil Crop Sci. 35:415–423.
- Limonard, T. 1968. Ecological aspects of seed health testing. Proc. Interl. Seed Testing Assoc. 3 4 524 33(3): 64.
- 5 525 Liu, S. Y., Liu, Z., Fitt, B. D. L., Evans, N., Foster, S. J., Huang, Y. J., Latunde-Dada, A. O.,
 - and Lucas, J. A. 2006. Resistance to *Leptosphaeria maculans* (phoma stem canker) in

2		
3 4	527	Brassica napus (oilseed rape) induced by L. biglobosa and chemical defense activators
5 6	528	in field and controlled environments. Plant Pathology 55(3): 401-412.
7 8 9	529	Liu, Z., Latunde-Dada, A. O., Hall, A. M., and Fitt, B. D. L. 2014. Phoma stem canker
10 11	530	disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa
12 13	531	'brassicae'. Eur. J. Plant Pathol. 140:841-857.
14 15	532	Lob, S., Jaspers, M. V., Ridgway, H. J., and Jones, E. E. 2013. Leptosphaeria maculans/L.
16 17 19	533	biglobosa disease progression in oilseed rape and timing of ascospore release under New
10 19 20	534	Zealand conditions. New Zealand Plant Protect. 66:214–222.
21 22	535	Long, Y., Ma, X. H., Yuan, J. J., Lu, N. H., Yang, Z. Y., Wei, S. and Wang, W. F. 2017.
23 24 25	536	Establishment of LAMP-HNB method for detection of <i>Leptosphaeria maculans</i> in rape.
25 26 27	537	Guangdon Agri. Sci. 44:66–69.
28 29	538	Lucas, S., da Luz Martins, M., Flores, O., Meyer, W., Spencer-Martins, I., and Ina, J. 2010.
30 31	539	Differentiation of Cryptococcus neoformans varieties and Cryptococcus gattii using
32 33 34	540	CAP59-based loop-mediated isothermal DNA amplification. Clin. Microbiol. Infect.
35 36	541	16:711–714.
37 38	542	Luo, J., Vogel, R. F., and Niessen, L. 2012. Development and application of a loop-mediated
39 40	543	isothermal amlification assay for rapid identification of aflatoxinogenic molds and their
41 42 43	544	detection in food samples. Interl. J. Food Microbiol. 159:214-224.
44 45	545	Matsuzawa, T., Tanaka, R., Horie, Y., Gonoi, T., and Yaguchi, T. 2010. Development of
46 47	546	rapid and specific molecular discrimination methods for pathogenic <i>Emericella</i> species.
48 49 50	547	Japn. J. Med. Mycol. 51:109–115.
51 52	548	Mendes-Pereira, E., Balesdent, M., Brun, H., and Rouxel, T. 2003. Molecular phylogeny of
53 54	549	the Leptosphaeria maculans-L. biglobosa species complex. Mycol. Res.
55 56	550	107:1287–1304.
57 58 59 60	551	Molina, J. P. E., Escande, A., Cendoya, G., and Quiroz, F. 2017. Qualitative and quantitative

Page 23 of 66

Plant Disease

1		
2 3 4	552	factors affecting the relationship between canola leaf spot epidemic and stem base
5 6	553	canker (Leptosphaeria maculans) in Argentina. Australasian Plant Pathol. 46:453-461.
7 8 0	554	Möller, E. M., Bahnweg, G., Sandermann, H., and Geige, H. H. 1992. A simple and efficient
9 10 11	555	protocol for isolation of high molecular weight DNA from filamentous fungi, fruit
12 13	556	bodies, and infected plant tissues. Nucl. Acids Res. 20:6115-6116.
14 15 16	557	Moradi, A., Almasi, M.A., Jafary, H., and Mercado-Blanco, J. 2013. A novel and rapid
17 18	558	loop-mediated isothermal amplification assay for the specific detection of Verticillium
19 20	559	dahliae. J. Appl. Microbiol. 116:942–954.
21 22 22	560	Niessen, L., and Vogel, R. F. 2010. Detection of Fusarium graminearum DNA using a
23 24 25	561	loop-mediated isothermal amplification (LAMP) assay. Interl. J. Food Microbiol.
26 27	562	140:183–191.
28 29	563	Niessen, L., Gräfenhan, T., and Vogel, R. F. 2012. ATP citrate lyase 1 (acl1) gene based
30 31 32	564	loop-mediated amplification assay for the detection of the Fusarium tricinctum species
33 34	565	complex in pure cultures and in cereal samples. Interl. J. Food Microbiol. 158:171–185.
35 36	566	Niessen, L. 2015. Current state and future perspectives of loop-mediated isothermal
37 38 39	567	amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol.
40 41	568	Biotechnol. 99:553–574.
42 43	569	Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and
44 45 46	570	Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucl. Acids Res.
47 48	571	28:e63.
49 50	572	Omer, Z. S., and Wallenhammar, AC. 2020. Development of loop-mediated isothermal
51 52 53	573	amplification assays for rapid detection of blackleg pathogens in Swedish winter oil seed
54 55	574	rape. Eur. J. Plant Pathol. 157:353–365.
56 57	575	Peng, J., Zhan, Y. F., Zeng F. Y., Long, H. B., Pei, Y. L., and Guo, J. R. 2013. Development
58 59 60	576	of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and

2 3 4	577	quantitative detection of Fusarium oxysporum f.sp. niveum in soil. FEMS Microbiol.
5 6	578	Lett. 349:127–134.
7 8	579	Piening, L., Okolo, E., and Harder, D. 1975. Blackleg of rapeseed in Kenya. East Afr. Agri.
9 10 11	580	For. J. 41:110–113.
12 13	581	Plummer, K. M., Dunse, K., and Howlett, B. J. 1994. Non-aggressive strains of the blackleg
14 15 16	582	fungus, Leptosphaeria maculans, are present in Australia and can be distinguished from
17 18	583	aggressive strains by molecular analysis. Aus. J. Bot. 42:1–8.
19 20	584	Pu, J. J., Xie, Y. X., Zhang, H., Zhang, X., Qi, Y. X., and Peng, J. 2014. Development of a
21 22 22	585	real-time fluorescence loop-mediated isothermal amplification assay for rapid and
23 24 25	586	quantitative detection of Fusarium mangiferae associated with mango malformation.
26 27	587	Physiol. Mol. Plant Pathol. 86:81–88.
28 29	588	Rong, S. B., Hu, B. C., Chen, F. X., Wu, X. J. Hou, S. M., Fei, W. X., and Li, Q. S. 2015.
30 31 32	589	Effects of Leptosphaeria biglobosa on seed yield and related traits of oilseed rape. Crops
33 34	590	(6):159–161.
35 36	591	Salisbury, P. A., Ballinger, D. J., Wratten, N., Plummer, K. M., and Howlett, B. J. 1995.
37 38 30	592	Blackleg disease on oilseed Brassica in Australia: a review. Aus. J. Exper. Agri.
40 41	593	35:665–672.
42 43	594	Shoemaker, R. A., and Brun, H. 2001. The teleomorph of the weakly aggressive segregate of
44 45	595	Leptosphaeria maculans. Can. J. Bot. 79:412–419.
46 47 48	596	Vincenot, L., Balesdent, M. H., Li, H., Barbetti, M. J., Sivasithamparam, K., Gout, L., and
49 50	597	Rouxel, T. 2008. Occurrence of a new subclade of Leptosphaeria biglobosa in Western
51 52	598	Australia. Phytopathology 98:321–329.
53 54 55	599	van de Wouw, A. P., Thomas, V. L., Cozijnsen, A. J., Marcroft, S. J., Salisbury, P. A., and
56 57	600	Howlett, B. J. 2008. Identification of Leptosphaeria biglobosa 'canadensis' on Brassica
58 59 60	601	juncea stubble from northern New South Wales, Australia. Australasian Plant Dis. Notes

Page 25 of 66

1

Plant Disease

2 3	602	3:124–128.
4 5 6	603	Voigt, K., Cozijnsen, A. J., Kroymann, J., Pöggeler, S., and Howlett, B. J. 2005. Phylogenetic
7 8	604	relationships between members of the crucifer pathogenic Leptosphaeria maculans
9 10 11	605	species complex as shown by mating type (<i>MAT1-2</i>), actin, and β -tubulin sequences.
12 13	606	Mol. Phylogen. Evol. 37:541–557.
14 15 16	607	Wang, T., Wang, C. N., Zhang, H., Wen, J. J., and Zhang, B. 2017. Study on rapid extraction
17 18	608	of genomic DNA from Chinese cabbage. Acta Agri. Boreali-Sin. 32:67-72.
19 20	609	Wang, G. P., Hu, K. L., and Jedryczka, M. 2003. Health testing and evaluation of
21 22 23	610	Leptosphaeria maculans (Phoma lingam) contamination in Brassica napus seed samples
24 25	611	from Poland and England. J. South China Agri. Univ. (Nat. Sci. Ed.) 24(4):28-31.
26 27	612	Wang, Z. H., Yang, W., Zhao, H., Zeng, X. D., Li, F. X., Cai, X., Wang, H. C., and Yu, H.
28 29 30	613	2011. Detection and identification of Leptosphaeria maculans in imported Canadian
31 32	614	rapeseeds. J. Huazhong Agri. Univ. 30(1):66–69.
33 34	615	West, J. S., Evans, N., Liu, S., Hu, B., and Peng, L. 2000. Leptosphaeria maculans causing
35 36	616	stem canker of oilseed rape in China. Plant Pathol. 49:800.
37 38 39	617	West, J. S., Kharbanda, P., Barbetti, M. J., and Fitt, B. D. L. 2001. Epidemiology and
40 41	618	management of Leptosphaeria maculans (phoma stem canker) in Australia, Canada and
42 43	619	Europe. Plant Pathol. 50:10–27.
44 45 46	620	Williams, R. H., and Fitt, B. D. L. 1999. Differentiating A and B groups of Leptosphaeria
40 47 48	621	maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol.
49 50	622	48:161–175.
51 52	623	Zhang, X., White, R. P., Demir, E., Jedryczkae, M., Lange, R. M., Islam, M., Li, Z. Q.,
53 54 55	624	Huang, Y. J., Hall, A. M., Zhou, G., Wang, Z., Cai, X., Skelsey, P., and Fitt, B. D. L.
56 57	625	2014. Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on
58 59 60	626	oilseed rape crops in China. Plant Pathol. 63:598–612.

Zhao, H., Wang, Z. H., Zeng, X. D., Yi, J. P., Li, B., Li, G. Q., Wu, P. S., and Cai, X. 2015.

General Administration of Quality Supervision, Inspection and Quarantine of the

People's Republic of China, and China National Standardizing Committee.

Australia. Acta Phytophyl. Sin. 37(4):289–294.

Interl. J. Mol. Sci. 20:1668.

Zhou, G. L., Shang, L. L., Yu, C., Yin, L. P., Xu, D. S., and Yi, J. P. 2010. Detection of

Leptosphaeria maculans and L. biglobosa in oilseed rape samples imported from

Zhou, Y., Huang, H. L., Li, X. J., Shan, C. L., Li, X. S., Chen, Y., Shao, W. D., and Zhu, P.

amplification combined with a lateral-flow dipstick. Plant Quarantine 30(4):32–37.

Zou, Z. W., Zhang, X. H., Parks, P., du Toit, L. J., van de Wouw, A. P., and Fernando W. G.

D. 2019. A new subclade of *Leptosphaeria biglobosa* identified from *Brassica rapa*.

26

Review

2016. Establishment of Leptosphaeria maculans detection by loop-mediated isothermal

Detection and identification of *Plenodomus biglobosus*. GB/T 31798-2015. Released by

3 4	627
5 6	628
7 8	629
9 10 11	630
11 12 13	631
14 15	632
16 17	633
18 19 20	634
20 21 22	635
23 24	636
25 26 27	637
27 28 29	638
30 31	639
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
5∠ 53	
55 54	
55	
56	
57 50	
58 59	

60

1 2		
3	1	LAMP Detection and Identification of the Blackleg Pathogen Leptosphaeria biglobosa
4 5	C	'brassiene'
6 7	2	blassicae
8	3	
9 10	4	Kan Du, State Key Laboratory of Agricultural Microbiology, Huaznong Agricultural
11 12	5	University, Wuhan 430070, China; Y. J. Huang, School of Life and Medical Sciences,
13 14	6	University of Hertfordshire, AL10 9, Hatfield, AB, UK; Jing Zhang, Long Yang, Mingde
15 16 17	7	Wu, and Guoqing Li, State Key Laboratory of Agricultural Microbiology, Huazhong
18 19	8	Agricultural University, Wuhan 430070, China
20 21	9	Correspondence: Dr. G. Q. Li, E-mail: guoqingli@mail.hzau.edu.cn
22 23	10	
24 25	11	
26 27	10	
28 29	12	
30 31	13	
32 33	14	
34 35	15	
36 37	16	
38	17	
40 41	17	
41	18	
43 44	19	
45 46	20	
47 48	21	
49 50	21	
50 51 52	22	
52 53 54	23	
55 56	24	
57 57	25	
58 59	26	
60	20	

27 Abstract

Blackleg of oilseed rape is a damaging invasive disease caused by the species complex Leptosphaeria maculans (Lm)/L. biglobosa (Lb), which are composed of at least two and seven phylogenetic subclades, respectively. Generally, Lm is more virulent than Lb, however, under certain conditions, Lb can cause a significant yield loss in oilseed rape. Lb 'brassicae' (Lbb) has been found to be the causal agent for blackleg of oilseed rape in China, whereas Lm and Lb 'canadensis' (Lbc) were frequently detected in imported seeds of oilseed rape, posing a risk of spread into China. In order to monitor the blackleg-pathogen populations, a diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using a 615-bp-long DNA sequence from Lbb that was derived from a randomly amplified polymorphic DNA assay. The LAMP was optimized for temperature and time, and tested for specificity and sensitivity using the DNA extracted from Lbb, Lbc, Lm, and 10 other fungi. The results showed that the optimal temperature and time were 65°C and 40 min, respectively. The LAMP primer set was specific to Lbb and highly sensitive as it detected the Lbb DNA as low as 132 fg per reaction. The LAMP assay was validated using the DNA extracted from mycelia and conidia of a well-characterized Lbb isolate, and its utility was evaluated using the DNA extracted from leaves, stems, pods and seeds of oilseed rape. The LAMP assay developed herein will help for monitoring populations of the blackleg pathogens in China and developing strategies for management of the blackleg disease.

Page 29 of 66

Plant Disease

Blackleg (phoma stem canker) of oilseed rape (Brassica napus) is a world-wide economically important disease (Piening et al. 1975; Gugel and Petrie 1992; Laing 1986; Salisbury et al. 1995; Dilmaghani et al. 2000; West et al. 2000; Fitt et al. 2006; Lob et al. 2013; Molina et al. 2017). It is caused by two closely related and morphologically similar ascomycetous fungi, Leptosphaeria maculans (anamorph: Plenodomus lingam) and Leptosphaeria biglobosa (anamorph: *Plenodomus biglobosus*), which form a species complex (Mendes-Pereira et al. 2003). Both fungi can infect leaves, stems and pods of oilseed rape, causing phoma leaf spots, phoma stem cankers and phoma pod spots, respectively (Fitt et al. 2006b). Among these symptoms, phoma stem canker is the most important regarding seed vield loss, as it can cause stem collapse (lodging), thereby reducing seed production. Numerous studies indicated that L. maculans is more virulent than L. biglobosa in terms of the extent of damage to the plants and seed production, as L. maculans can invade into the vascular tissue of the basal stem, where it may cause stem collapse, in contrast, L. biglobosa usually infects the epidermal tissue of the upper stem, where it rarely causes stem collapse (Plummer et al. 1994; Williams and Fitt 1999; West et al. 2001; Fitt et al. 2006a). Previous studies showed that the L. maculans/L. biglobosa species complex (especially L. maculans) is responsible for serious economic losses to the industry of oilseed rape (or canola) in Australia, Canada, France, Germany and UK since the 1970s. It was estimated that the blackleg disease of oilseed rape caused an average annual economic loss of US\$167 million during 1983 to 1998 in Alberta of Canada, and US\$70 million during 2000 to 2002 in the UK (Fitt et al. 2006b, 2008).

In China, blackleg of oilseed rape was first reported in the early 2000s, and the pathogen for that disease was identified as NA1 or B-group of *L. maculans* (West et al. 2000), which was later re-classified as *L. biglobosa* (Shoemaker and Brun, 2001). Large-scale field surveys demonstrated that this disease widely occurred in oilseed rape-plantation areas (Li et al.

2013). Compared to healthy plants, diseased plants had less yield with the average
single-plant seed yield loss ranging from 10% to 56% (Rong et al. 2015; Cai et al. 2018). So
far, only *L. biglobosa* has been found in oilseed rape and cruciferous vegetables in China (Fitt et al. 2008; Li et al. 2013; Liu et al. 2014; Zhang et al. 2014; Cai et al. 2015, 2018), and *L. maculans* was thus officially considered as a quarantine pathogen since the late 2000s (Zhou et al. 2010; Wang et al. 2011).

Both L. maculans and L. biglobosa can be further classified into subclades or subspecies based on phylogenetic analysis of the nucleotide sequences of the internal transcribed spacer region of ribosomal DNA (ITS-rDNA), and a few nuclear genes such as the mating type gene *MAT1-2* and the genes coding for actin and β-tubulin (Mendes-Pereira et al. 2003). So far, two subclades have been identified in L. maculans, including 'brassicae' on Brassica and 'lepidii' on Lepidium sp. (Mendes-Pereira et al. 2003). Seven subclades have been identified in L. biglobosa, including 'americensis', 'australensis', 'brassicae', 'canadensis' and 'occiaustralensis' on Brassica spp., 'erysimii' on Erysimum, and 'thlaspii' on Thlaspi sp. (Voigt et al. 2005; Vincenot et al. 2008; Zou et al. 2019). Among these L. biglobosa subclades, 'brassicae' and 'canadensis' are the most common and important, L. biglobosa 'brassicae' has been found in the continents of America, Asia and Europe (Fitt et al. 2006a; Vincenot et al. 2008; Dilmaghani et al. 2009; Liu et al. 2014), and L. biglobosa 'canadensis' has been detected in the continent of America (Canada, USA) as well as in Australia (van de Wouw et al. 2008; Dilmaghani et al. 2009; Liu et al. 2014). Five other subcluades of L. biglobosa, including 'americensis', 'australensis', 'erysimii', 'occiaustralensis' and 'thlaspii' are the minor subclades, 'americensis' was only found in USA (Zou et al. 2019), 'erysimii' was found in Canada (Voigt et al. 2005), 'australensis' and 'occiaustralensis' were found in Australia (Vincenot et al. 2008).

It is well recognized that *L. maculans* and *L. biglobosa* can be spread over a long

Page 31 of 66

Plant Disease

distance through international trade of seeds of oilseed rape and/or exchange of germplasm resources of cruciferous crops (Chigogora and Hall 1995; Wang et al. 2003; Chen et al. 2010; Zhou et al. 2010; Wang et al. 2011; Chen et al. 2013). Therefore, detection and identification of L. maculans and L. biglobosa in crop seeds is essential in preventing spread of these two pathogens into other regions. Since the late 1970s, the deep-freezing blotter method has been recommended by the International Seed Testing Association (ISTA) to detect L. maculans and L. biglobosa in contaminated or infected seeds of cruciferous crops, including oilseed rape (Limonard 1968). The key point in that method is inhibition of seed germination under freezing temperatures (e.g. -20°C) and the subsequent promotion of growth of the seedborne fungi on the seeds under normal temperatures (e.g. 20°C) (Wang et al. 2003). Moreover, monitoring of the populations of *L. maculans* and *L. biglobosa* in fields planted with oilseed rape and cruciferous vegetables is also important regarding management of the blackleg disease (West et al. 2001; Dilmaghani et al. 2009). L. maculans and L. *biglobosa* usually produce similar symptoms on stems with formation of abundant black pycnidia (West et al. 2001; Li et al. 2013). Therefore, it is difficult to distinguish these two pathogens just based on disease symptoms and location of infection (e.g. basal and upper stems) and the disease symptoms. Many researchers have made efforts to develop simple, rapid and accurate methods to detect and identify L. maculans and L. biglobosa on diseased plant tissues. The methods so far developed include plant assays (e.g. virulence tests), morphological characterization (e.g. colony growth, pseudothecial shape, ascospore germlings), metabolite profiling (e.g. pigments, phytotoxins), typing of glucose phosphate isomerase, karyotyping, serological typing, DNA analyses (e.g. RFLP, RAPD, PCR) and genome analyses (Williams and Fitt, 1999; Mendes-Pereira et al., 2003; Liu et al., 2006; van de Wouw et al., 2008. Vincenot et al. 2008; Grandaubert et al. 2014). However, these methods are usually time-consuming, labor-intensive and/or dependent on special expertise

and instruments. There is a need to develop simpler, faster and more convenient methods fordetection and identification of these two pathogens.

Since the early 2000s, loop-mediated isothermal amplification (LAMP) technique has been developed to detect animal and plant pathogens (Notomi et al. 2000; Endo et al. 2004; Niessen 2015). A typical LAMP assay consists of serial reactions catalyzed by Bst DNA polymerase to amplify a target DNA sequence with the aid of a set of primers (four to six primers) under the isothermal condition (Notomi et al. 2000). The LAMP products can be visualized with naked eyes in the presence of some DNA-staining dyes such as SYBR Green I or ethidium bromide (Zhou et al. 2016; Long et al. 2017; Du et al. 2020). Compared to PCR, LAMP detection has advantages of high specificity, high efficiency, simplicity and rapidity, and more importantly, it does not require expensive and special instruments (Niessen 2015). LAMP has been used to detect L. maculans and L. biglobosa in infected plant tissues and air samples (Jedryczka et al. 2013; Zhou et al. 2016; Long et al. 2017; Du et al. 2020). However, LAMP detection and identification of the subclades of L. maculans and L. biglobosa has not been reported so far. Therefore, we have developed a LAMP-based technique for detection and identification of L. biglobosa 'brassicae', the prevalent subclade of L. biglobosa in China (Liu et al. 2014; Cai et al. 2015, 2018). The specific objectives include: (i) to design the LAMP primer set specific for L. biglobosa 'brassicae'; (ii) to optimize the LAMP-based technique; and (iii) to evaluate the potential of LAMP detection and identification of L. *biglobosa* 'brassicae' in field disease diagnosis and pathogen population survey.

147 Materials and Methods

Fungal isolates. A total of 45 fungal strains were used in this study, including 26 strains
of *L. biglobosa* 'brassicae', 7 strains of *L. biglobosa* 'canadensis', 2 strains of *L. maculans*, 3
strains of other oilseed rape pathogens (*Botrytis cinerea*, *Collectotrichum higginsianum*, *Sclerotinia sclerotiorum*), and 7 strains of saprobes living on oilseed rape (*Phoma* spp.,

Page 33 of 66

Plant Disease

Alternaria alternatae, Chaetomium globosum) (Table 1). Two strains of L. maculans were isolated from seeds of canola (Brassica napus) imported from Canada by Dr. Zhenhua Wang of the Wuhan Customs Technical Centre (Wuhan, China). Strain 17-4 of L. biglobosa 'canadensis' was isolated from diseased seeds of canola (B. napus) also imported from Canada by Dr. Jianping Yi of the Shanghai Customs Technical Centre (Shanghai, China). The remains 42 fungal strains were isolated from oilseed rape collected from various locations in China (Table 1). All of the fungal strains were incubated on potato dextrose agar (PDA) with cellophane film overlays at 20°C for 3 to 15 days, mycelia and/or conidia of each strain were collected and stored at -80°C until use. LAMP primer designing. The specific LAMP primers for detection of L. biglobosa 'brassicae' were designed based on a DNA sequence selected from randomly amplified polymorphic DNA (RAPD) fragments. Strains Lb731 and W10 of L. biglobosa 'brassicae',

strain 17-4 of *L. biglobosa* 'canadensis', strain 2010510-1 of *L. maculans* and strain P2 of

Phoma macrostoma were used in the RAPD assays with 20 Operon primers listed in Table

166 S1. Genomic DNA was extracted from the mycelia of these strains using the CTAB method

167 (Möller et al. 1992) and used as templates in RAPD assays with the procedures described by

Plummer and co-workers (1994). The resulting RAPD products were separated on a 1%

agarose gel (w/v) in Tris-Borate-EDTA (TBE) buffer (89 mmol/L Tris, 89 mmol/L boric acid,

and 2 mmol/L EDTA) and visualized on an UV trans-illuminator after staining with ethidium

bromide (1.5 mg/mL). One of the DNA bands of approximately 600 bp in size specific for *L*.

biglobosa 'brassicae' (Fig. 1A) was selected as target for LAMP detection. It was purified

173 from the agarose gel using AxyPrep DNA Gel Extraction Kit (Axygen Scientific, Inc., Union

174 City, CA), cloned into *Escherichia coli* DH5a using the pMD18-T vector (TaKaRa

175 Biotechnol. Co. Ltd., Dalian, China), and sequenced in Beijing AuGCT Biotechnol. Co. Ltd.

176 The resulting DNA sequence (Figure S1) was searched by BLASTn on National Center for

177	Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) to confirm its origin.
178	The result showed that the DNA sequence was 615 bp in length (Figure S1), it was 100%
179	identical to the DNA sequence in the scaffold00021 of L. biglobosa 'brassicae' b35
180	(GenBank Acc. FO905643.1), and 88.13% identical to a region in the genome of <i>L. biglobosa</i>
181	'canadensis' Lb1204 (Figure S2), however, no homologues to this DNA sequence were found
182	in the genome of <i>L. maculans</i> JN3 (Genome Assembly No. GCA_900538235.1). Therefore,
183	The DNA sequence appears to be highly specific for L. biglobosa 'brassicae'. Six LAMP
184	primers were designed based on the DNA sequence using the LAMP primer designing
185	software PrimerExplorer V5 at the website of http://www.primerexplorer.jp/lampv5e/
186	index.html (Fig. 1B, C, Table 2). The primers were synthesized by Beijing AuGCT
187	Biotechnol. Co. Ltd. and used in the following LAMP assays.
188	LAMP optimization. The strain W10 of L. biglobosa 'brassicae' was used in this
189	experiment. The LAMP mixtures (25 μ L) in 0.2-mL Eppendorf tubes contained the following
190	components (Table S2): 1× Isothermal Amplification Buffer (New England BioLabs [®] Inc,
191	Ipswich, MA, USA), Bst 2.0 WarmStart® DNA Polymerase at 8 U in each reaction mixture
192	(New England BioLabs [®]), MgSO ₄ (4 mmol/L), dNTPs (10 mmol/L for each nucleotide), the
193	forward and backward outer primers F3/B3 (0.2 μ mol/L for each), forward and backward
194	loop primers LF/LB (0.4 µmol/L for each), forward and inner primer backward FIP/BIP (1.6
195	μ mol/L for each), and template DNA (~100 ng for each reaction). The mixtures containing all
196	the components except template DNA were used as controls. In order to prevent evaporation
197	of the water in the mixtures during LAMP reaction, aliquots of liquid paraffin (Aladdin $^{\mbox{\tiny \ensuremath{\mathbb{R}}}}$
198	Industrial Corporation, Shanghai, China) were added to the tubes with the LAMP mixtures
199	(30 μ L in each tube) as overlays. The LAMP reactions were performed in 1000 TM Thermal
200	Cycler (Bio-Rad Laboratories Inc., Hercules, CA) at 65°C for 50 min to determine the
201	amplification efficiency of the primers, at 53°C, 55°C, 57°C, 59°C, 61°C, 63°C, 65°C, 67°C,

Page 35 of 66

Plant Disease

69°C, 71°C, 73°C and 75°C for 40 min to optimize the temperature, and at 65°C for 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 70 min and 80 min to optimize the time requirement. After LAMP amplification, the tubes were taken out from the thermal cycler and maintained at 4°C for at least 10 min to cool down the temperature in the reaction mixtures. Then, they were opened in another room next to the LAMP operation area, and aliquots of SYBR Green I solution at 100 µg/mL (Sigma-Aldrich[®], St. Louis, MO, USA) was added to the tubes at 0.2 µL per tube. Color change in the reaction mixtures was then observed, green coloration indicated a positive LAMP amplification, whereas brown coloration indicated a negative LAMP amplification. In order to confirm the LAMP amplification, 4 µL LAMP product of each reaction was loaded in a 2% agarose gel (w/v). After electrophoresis, the gel was immersed in an ethidium bromide solution (1.5 mg/mL, w/v) for 30 min, and the DNA fragments in the agarose gels were visualized on the UV trans-illuminator, formation of DNA mass ladders showing a multiple DNA bands pattern (or DNA ladder pattern) indicated a positive LAMP amplification and vice versa. Each LAMP reaction in this experiment as well as in the following experiments was repeated three times. Specificity test. To test the specificity of the primers in LAMP detection of L. biglobosa 'brassicae', Genomic DNA was extracted from L. biglobosa 'brassicae' (26 strains), L. biglobosa 'canadensis' (7 strains), L. maculans (2 strains) and 10 strains of other fungi (Table 1) using the CTAB method (Möller et al. 1992). The DNA extracts were separately added to the LAMP mixtures, and the reactions were performed at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Sensitivity test. Strain W10 of L. biglobosa 'brassicae' was used in this experiment for comparison of the detection thresholds in the LAMP and PCR assays, as the PCR assay was officially approved to detect L. biglobosa 'brassicae' in China (Zhao et al. 2015). The DNA solution (132 ng/ μ L) was 10-fold diluted to generate the serial solutions with the DNA

concentration decreasing from 132 ng/ μ L to 1.32 fg/ μ L. An aliquot of 1 μ L of each DNA solution or water alone (control) was added to a LAMP mixture, which was incubated at 65°C for 40 min. The LAMP products were visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Meanwhile, the template sensitivity in LAMP detection was compared with that in the conventional PCR detection using the forward and backward outer primers F3 and B3 developed in this study (Table 2). The PCR reaction mixtures (25 µL) were prepared with the following components: 12.5 µL 2× TSINGKE Master Mix (Tsingke Biol. Technol. Co. Ltd., Chengdu, China), 0.5 µL forward primer F3 (10 µmol/L), 0.5 µL backward primer B3 (10 µmol/L), 1.0 µL DNA solution, and 10.5 µL water. The PCR was performed in 1000[™] Thermal Cycler with the following thermal program: initial denaturation at 94°C for 3 min; followed by 36 cycles with denaturation at 94°C for 30 s, annealing at 50°C for 30 s and extension at 72°C for 30 s; and final extension at 72°C for 10 min. The PCR product (210 bp in size) was confirmed by agarose gel electrophoresis (Du et al. 2020).

LAMP-assisted fungal detection. Strain W10 of L. biglobosa 'brassicae' was used in this experiment. It was incubated at 20°C on PDA with cellophane film overlays for four days. Mycelia from 1, 2 or 3 square-shaped colony patches ($0.5 \text{ cm} \times 0.5 \text{ cm}$, length \times width) at the colony margin area were collected and put in 1.5-mL Eppendorf tubes. Aliquots of $1 \times$ TE buffer (100 mmol/L Tris-HCl, 10 mmol/L EDTA, pH 8.0) were transferred to the tubes at 50 µL per tube. The mycelia were squashed using sterilized plastic pestles. The resulting mixtures were heat-treated in water bath at 95°C for 2 min for DNA release from the hyphal cells (Fan et al., 2018). After cooling down to the room temperature $(20 \pm 2^{\circ}C)$, the mixtures were centrifuged at 12,000 rpm, 1 µL supernatant of each sample was added to a LAMP mixture. In the control, 1 µL sterilized water was added to the mixture. The LAMP amplifications were performed at 65°C for 40 min, visualized with SYBR Green I and

Page 37 of 66

Plant Disease

confirmed by agarose gel electrophoresis.

The PDA cultures of strain W10 were further incubated at 20°C for another 10 days for production of pycnidia and pycnidiospores (conidia), which were harvested by washing with sterilized water. Conidial concentration was measured using a hemocytometer. The master conidial suspension ($\sim 1 \times 10^7$ conidia/mL) was 10-fold diluted with sterilized water to generate serial conidial suspensions with the final concentrations at 2×10^5 , 2×10^4 , 2×10^3 , 2×10^2 and 20 conidia/mL, and an aliquot of 100 µL of each conidial suspension was pippeted to an Eppendorf tube containing 50 μ L 3× TE buffer. The conidial suspensions in the tubes were heat-treated in water bath (95°C, 2 min), and after that, they were centrifuged at 12,000 rpm, and 1 µL supernatant of each sample was added to the LAMP mixture. For the control, 1 µL sterilized water was added to a LAMP mixture. The LAMP reactions were performed at 65°C for 40 min, visualized with SYBR Green I and confirmed by agarose gel electrophoresis.

LAMP-assisted disease diagnosis. Diseased leaves, stems, mature pods and seeds of the winter-type oilseed rape (B. napus cultivar 'Zhongshuang No. 9') showing typical blackleg symptoms (Figure S3) were collected in the 2018-2019 season from a field in Shenshan Town of Chibi County, Hubei Province of China (29°52'50"N, 114°3'48"E, 40 m high above sea level). Leaf samples were collected at the early flowering stage, and samples of stems, pods and seeds were collected at the harvest stage. The pathogen for the blackleg disease of oilseed rape and cruciferous vegetables in that area is L. biglobosa 'brassicae' according to the two-year surveys in our lab (Li 2019). Meanwhile, healthy leaves, stems, mature pods and seeds were collected and used as controls. Tissues were carefully taken from the collected samples using a sharp razor blade, tissue pieces ($\sim 5 \times 5$ mm, length \times width) were cut off from the leaves and the pod hulls, stem tissues ($\sim 5 \times 5$ mm, length \times width) were peeled off from the epidermal layer of the stems. The diseased leaf, stem and pod-hull pieces,

or the diseased seeds were separately put in 1.5-mL Eppendorf tubes at 1, 2 or 3 pieces (or seeds) in each tube. Meanwhile, two healthy tissue pieces or healthy seeds were put in other Eppendorf tubes as controls. Aliquots of NaOH solution (0.4 mol/L) were added to the tubes, μ L per tube, and the plant tissue pieces or the seeds were squashed using sterilized plastic pestles, followed by heat-treatment in water bath at 95°C for 2 min. Then, the mixtures were centrifuged at 12,000 rpm, and 1 uL supernatant of each sample was added to a LAMP mixture as DNA template. The LAMP reactions were performed at 65°C for 40 min and visualized with SYBR Green I and confirmed by agarose gel electrophoresis. Results LAMP primers. Results of the RAPD assays showed that among the 20 tested 10-mer Operon primers (Table S1), OPA-19 persistently produced polymorphic DNA fragments among L. biglobosa 'brassicae', L. biglobosa 'canadensis', L. maculans and Phoma macrostoma (Fig. 1A). Strains Lb731 and W10 of L. biglobosa 'brassicae' showed an identical DNA-banding pattern, which differed greatly from those in L. biglobosa 'canadensis' 17-4, L. maculans 2010510-1, and P. macrostoma P2. A DNA fragment of 615 bp in size from *L. biglobosa* 'brassicae' W10 was selected as target (Figure S1). It was uploaded into the on-line software PrimerExplorer V5 and six primers (forward and backward outer primers F3/B3, inner primers FIP/BIP, and loop primers LF/LB) were designed based on the 230-bp-long central region in that DNA sequence (Fig. 1B, C; Table 2).

LAMP optimization. In the assay for testing the LAMP amplification efficiency (65°C,
50 min), the control reaction mixture without any DNA templates retained a brown coloration
in the presence of SYBR Green I, and did not produce any multiple DNA bands patterns
when visualized on the agarose gel (Fig. 2A). However, the reaction mixture containing the
DNA from strain W10 of *L. biglobosa* 'brassicae' exhibited a green coloration in presence of

Plant Disease

SYBR Green I, and it produced a multiple DNA bands pattern on the agarose gel. This result suggests that the LAMP primers can efficiently amplify the DNA of L. biglobosa 'brassicae' strain W10.

The temperature and time duration required for LAMP detection of L. biglobosa 'brassicae' were optimized. In the temperature assay (40 min), a significant difference in the color of the reaction mixtures amended with SYBR Green I was observed among the temperature treatments ranging from 53°C to 75°C (Fig. 2B). In two low temperature treatments (53°C, 55°C) and two high temperature treatments (73°C and 75°C), the reaction mixtures retained a brown coloration without formation of multiple DNA bands patterns in agarose gels after electrophoresis, indicating no detectable LAMP amplifications in these four treatments. In the treatments at 57°C, 59°C, 63°C and 65°C, the reaction mixtures had a green coloration and formed multiple DNA bands patterns in agarose gels after electrophoresis, moreover, the intensity of the green color showed an increase tendency with the temperatures increasing from 57°C to 65°C. In the treatments at 67°C, 69°C and 71°C, the reaction mixtures also showed a green coloration and formed multiple DNA bands patterns in agarose gels after electrophoresis, however, the intensity of the green color showed a decreased tendency with the temperatures increasing from 67°C to 71°C. Therefore, the optimum temperature for LAMP detection of L. biglobosa 'brassicae' W10 was 65°C. In the time duration assay (65°C), the LAMP mixtures amended with SYBR Green I retained a brown coloration at 10 min post reaction (mpr). The color of the reaction mixtures turned green when the time duration lasted between 20 and 80 mpr (Fig. 2B). With the time duration extending to 20, 30 and 40 mpr, the intensity of the green color gradually increased. The green color intensity had no visible change at the time duration longer than 50 mpr. suggesting that the LAMP reactions at 50 to 80 mpr may reach a plateau state. Therefore, the minimum time duration for LAMP detection of L. biglobosa 'brassicae' strain W10 was 40

327 min.

LAMP specificity. Results of the specificity assay showed that DNA from 45 fungi exhibited two different effects on LAMP amplification (Table 1). The reaction mixtures with the DNA from 26 strains of L. biglobosa 'brassicae' had a green coloration in the presence of SYBR Green I and formed multiple DNA bands patterns in agarose gels after electrophoresis. This result indicated that these reactions had a positive LAMP amplification. In contrast, the reaction mixtures with the DNA from 19 other fungi, including two close relatives of L. biglobosa 'brassicae' (L. biglobosa 'canadensis', L. maculans), three pathogens of oilseed rape (B. cinerea, Co. higginsianum, S. sclerotiorum), and seven saprobes living on oilseed rape (A. alternatae, Ch. globosum, Phoma spp.) retained a brown coloration and did not produce any multiple DNA bands patterns in agarose gels after electrophoresis. This result indicated that these LAMP reactions had a negative LAMP amplification. Therefore, the LAMP detection has a high specificity for *L. biglobosa* 'brassicae'. LAMP sensitivity. Results of the sensitivity assay showed that the amount of the template DNA of L. biglobosa 'brassicae' in the reaction mixtures greatly affected LAMP amplification. The reaction mixtures with the amount of DNA per reaction ranging from 132 ng to 132 fg had a green coloration in presence of SYBR Green I (Fig. 3A), and formed

multiple DNA bands patterns in electrophored agarose gels (Fig. 3B). In contrast, the reaction
mixtures with the amount of DNA per reaction at 13.2 fg and 1.32 fg and the control mixture

346 without the template DNA retained a brown coloration in presence of SYBR Green I (Fig.

347 3A), and did not produce any multiple DNA bands patterns in the electrophored agarose gels

348 (Fig. 3B). This result suggests that the minimum amount of the DNA in LAMP detection of *L*.

biglobosa 'brassicae' is 132 fg per reaction.

Results of the conventional PCR with the primers F3 and B3 (Table 2) indicated that
after reaction, the PCR mixtures with the amount of the DNA template per reaction at 132 ng,

Page 41 of 66

Plant Disease

13.2 ng, 1.32 ng or 132 pg produced a DNA fragment with the expected size of 210 bp (Fig.
3C). The brightness of the DNA band gradually became weaker with the amount of the DNA
per reaction decreasing from 132 ng to 132 pg. However, the PCR mixtures with the amount
of the DNA template per reaction ranging from 13.2 pg to 1.32 fg did not produce any
multiple DNA bands patterns in that agarose gel (Fig. 3C). Therefore, the LAMP detection
appears 1000 times more sensitive than the PCR detection.

LAMP-assisted detection of L. biglobosa 'brassicae'. The DNA from the mycelia and conidia of L. biglobosa 'brassicae' strain W10 was used as template in LAMP assays. The reaction mixtures containing the DNA from all the three mycelial samples and from 20 to 20000 conidia had a green coloration in the presence of SYBR Green I and produced multiple DNA bands patterns in electrophored agarose gels, indicating positive LAMP amplifications in these reactions (Table 3). In contrast, the control reaction mixtures without the DNA template and the reaction mixture containing the DNA from 2 conidia did not showed any visible color change in the presence of SYBR Green I and formation of multiple DNA bands patterns in the electrophored agarose gel was not observed at all (Table 3), indicating negative LAMP amplifications in these reactions.

LAMP-assisted diagnosis of the blackleg disease. The DNA from healthy and diseased tissues from leaves, stems, pods and seeds of oilseed rape (Figure S3) was used as template in LAMP assays. The results showed that the control mixtures containing the DNA from healthy leaves, stems, pods and seeds displayed a brown coloration in presence of SYBR Green I and did not produce any multiple DNA bands patterns in the agarose gels (Table 3), indicating negative LAMP amplifications in these reactions. However, the reaction mixtures containing the DNA from diseased leaves, stems, pods and seeds displayed a green coloration in presence of SYBR Green I (Table 3) and produced multiple DNA bands patterns on the agarose gels, indicating positive LAMP amplifications in these reactions.

377 Discussion

This study developed a rapid, specific and sensitive LAMP assay for detection of L. biglobosa 'brassicae'. The use of LAMP as a tool to study the changing populations of L. maculans and L. biglobosa in diseased tissues of oilseed rape as well as in air samples was first reported in 2013 (Jedryczka et al. 2013). However, it is not clear what DNA sequence was used for designing of the LAMP primer set in that study (Jedryczka et al. 2013). In later studies, the internal transcribed spacer regions of the ribosomal DNA (ITS-rDNA) in L. maculans and L. biglobosa were used for designing the LAMP primer sets (Zhou et al. 2016; Long et al. 2017; Du et al. 2020). The resulting LAMP assays displayed a consistent detection of these two closely related pathogens (Zhou et al. 2016; Long et al. 2017; Du et al. 2020). However, whether these LAMP assays have specificity for subclades of *L. maculans* and L. biglobosa remains unknown. Omer and Wallenhammar (2020) reported real-time LAMP detection of L. maculans and L. biglobosa "brassicae". The primer sets SirP and PKS5 for L. maculans were designed based on the nucleotide sequences of the phytotoxin sirodesmin PL gene (sirP) and the polyketide synthase gene (PKS5). respectively, and the primer set PKS5 for L. biglobosa "brassicae" was designed based on the nucleotide sequences of the L. biglobosa "brassicae" PKS21 gene (Omer and Wallenhammar, 2020). In the present study, a 615-bp DNA sequence derived from a RAPD assay was used for designing the LAMP primer set. The resulting LAMP assay showed a positive detection of L. biglobosa 'brassicae', but failed to detect L. biglobosa 'canadensis' and L. maculans. Therefore, the LAMP assay has a high specificity for L. biglobosa 'brassicae'. To the best of our knowledge, this is the first report about LAMP detection of L. *biglobosa* at the subclade level. The specificity may lie in the target DNA sequence, which is highly identical among strains of L. biglobosa 'brassicae', as it is a part of the genome of L. biglobosa 'brassicae' itself. However, the target DNA sequence has a low identity level

Plant Disease

(88.13%) to that in strains of L. biglobosa 'canadensis'. Moreover, no homologues to the target DNA sequence were identified in the genome of *L. maculans*. Future studies are necessary to characterize the nature and location of the 615-bp DNA sequence in the genome of L. biglobosa 'brassicae' and to determine specificity of the primer set for other subclades of L. biglobosa, including 'americensis', 'australensis', 'erysimii', 'occiaustralensis' and 'thlaspii', which belong to different branches from 'brassicae' and 'canadensis' in the phylogeneties inferred from the combined gene set ITS-rDNA, MAT1-2, actin gene (act) and β -tublin gene (*Tub*) as well as whole genomes (Vincenot et al. 2008; Dilmaghani et al. 2009; Grandaubert et al. 2014; Zou et al. 2019). Previous studies indicated that the majority of the target DNA sequences used in the LAMP assays for fungi, yeasts and oomycetes are selected from public databases (Niessen 2015). The target DNA sequences include the ribosomal RNA genes in most cases, as well as many nuclear genes such as *acl1*, *amy1*, *btub*, *cap59*, *gaoA*, *gp43*, *rodA*, *tef1*, and *ypt1* (Endo et al. 2004; Locas et al. 2010; Matsuzawa et al. 2010; Niessen and Vogel 2010; Huang et al. 2011; Luo et al. 2012; Niessen et al. 2012; Chen et al. 2013; Ferdousi et al. 2014; Niessen 2015). Meanwhile, quite a few previous studies reported use of RAPD assays to explore some novel DNA sequences as targets for LAMP detection of Verticillium dahliae, Fusarium oxysporum f.sp. cubense race 4, F. oxysporum f.sp. niveum and F. mangiferae (Li et al. 2013; Moradi et al. 2013; Peng et al. 2013; Pu et al. 2014). The present study selected a 615-bp-long RAPD sequence of L. biglobosa 'brassicae' as target in the LAMP assay for L. biglobosa 'brassicae'. The result corroborated the previous studies mentioned above that

423 combined use of RAPD and LAMP is a valid strategy to develop the molecular techniques

424 for detection and discrimination of the closely related plant pathogenic fungi.

The LAMP assay developed in this study provided a simple, rapid and efficient tool to
diagnose the blackleg disease caused by *L. biglobosa* 'brassicae', and to assist identification

of isolates of L. biglobosa 'brassicae'. Previous studies demonstrated that L. biglobosa 'brassicae' usually co-exists with L. maculans, L. biglobosa 'canadensis' and other minor subclades of L. biglobosa (e.g. 'americensis', 'australensis' and 'occiaustralensis') (Voigt et al, 2005; Fitt et al. 2006a; Vincenot et al. 2008; Dilmaghani et al. 2009; Zou et al. 2019). At present, L. biglobosa 'brassicae' was found to be the sole causal agent for blackleg of oilseed rape and cruciferous vegetables in China (Li et al. 2013; Liu et al. 2014; Cai et al. 2015, 2018). However, considering the situation of the continuous imports of seeds of oilseed rape from foreign countries, L. maculans and other subclades of L. biglobosa might be introduced to this country (Fitt et al. 2008; Zhou et al. 2010; Wang et al. 2011; Zhang et al. 2014). Therefore, it is necessary to persistently monitor the populations of the blackleg pathogens in oilseed rape-plantation areas as well as in the areas surrounding the import ports in China. This study found that the LAMP assay could consistently detect the DNA extracted from the pure cultures of L. biglobosa 'brassicae' and from diseased plant tissues using the simplified DNA extraction methods (e.g. TE-buffer or alkaline lysis under 95°C for 2 min), and the LAMP assay was performed within 2 h. Using this technique together with the LAMP assays for *L. maculans* and *L. biglobosa* developed in previous studies (Zhou et al. 2016; Long et al. 2017; Du et al. 2020), it is possible to conduct a large-scale identification of the isolates of Leptosphaeria spp. and to carry out the on-site diagnosis of the blackleg disease in field surveys. Future studies are required to assemble the LAMP components into a kit and to optimize the LAMP assays under the field conditions.

447 Acknowledgements

This research was financially funded by the China Agriculture Research System (Grant
CARS-12). We appreciate kind help from Dr. Zhenhua Wang of the Technical Center of the
Wuhan Customs (Wuhan, China), and Dr. Jianping Yi of the Technical Center of the
Shanghai Customs (Shanghai, China) for providing strains of *L. biglobosa* 'canadensis' and *L.*

Page 45 of 66

1

Plant Disease

2 3 4	452	maculans.
5 6 7 8 9	453	Literature cited
	454	Cai, X., Zhang, J., Wu, M. D., Jiang, D. H., Li, G. Q., and Yang, L. 2015. Effect of water
10 11	455	flooding on survival of Leptosphaeria biglobosa 'brassicae' in stubble of oilseed rape
12 13 14	456	(Brassica napus) in central China. Plant Dis. 99:1426–1433.
15 16 17 18 19 20 21 22 23 24 25 26 27 28	457	Cai, X., Huang, Y. J., Jiang, D. H., Fitt, B. D. L., Li, G. Q., and Yang, L. 2018. Evaluation of
	458	oilseed rape seed yield losses caused by Leptosphaeria biglobosa in central China. Eur.
	459	J. Plant Pathol. 150:179–190.
	460	Chen, G. Y., Wu, C. P., Li, B., Su, H., Zhen, S. Z., and An, Y. L. 2010. Detection of
	461	Leptosphaeria maculans from imported canola seeds. J. Plant Dis. Protect.
	462	117(4):173–176.
28 29 30	463	Chen, Q., Huang, F., Liao, F. R., Chen, H. Y., Yi, J. P., and Lin, S. M. 2013. Detection and
31 32 33 34 35 36 37 38 39	464	identification of Leptosphaeria maculans from imported pakchoi (Brassica chinensis L.)
	465	seeds. Plant Quarantine 27(4):62–64.
	466	Chigogora, J. L., and Hall, R. 1995. Relationships among measures of blackleg in winter
	467	oilseed rape and infection of harvested seed by Leptosphaeria maculans. Can. J. Plant
40 41	468	Pathol. 17(1):25–30.
42 43 44	469	Dilmaghani, A., Balesdent, M. H., Didier, J. P., Wu, C., Davey, J., Barbetti, M. J., Li H.,
45 46	470	Moreno-Rico, O., Phillips, D., Despeghel, J. P., Vincenot, L., Gout, L., and Rouxel, T.
47 48	471	2009. The Leptosphaeria maculans-Leptosphaeria biglobosa species complex in the
49 50 51	472	American continent. Plant Pathol. 58:1044–1058.
52 53	473	Du, R., Zhang, J., Yang, L., Wu, M. D., and Li, G. Q. 2020. Development of LAMP
54 55	474	techniques to detect Leptosphaeria biglobosa and L. maculans in oilseed rape. Acta
56 57 58	475	Phytopathol. Sin. DOI: 10.13926/j.cnki.apps.000514.
59 60	476	Endo, S., Komori, T., Ricci, G., Sano, A., Yokoyama, K., Ohori, A., Kamei, K., Franco, M.,

1		
2 3 4	477	Miyaji, M., and Nishimura, K. 2004. Detection of gp43 of Paracoccidioides brasiliensis
5 6	478	by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol. Lett.
7 8 0	479	234:93–97.
10 11	480	Fan, F., Yin, W. X., Li, G. Q., Yin, L. F., and Luo, C. X. 2018. Development of a LAMP
12 13	481	method for detecting SDHI fungicide resistance in Botrytis cinerea. Plant Dis.
14 15 16	482	102:1612–1618.
16 17 18	483	Ferdousi, A., Shahhossein, M. H., Bayat, M., Hashimi, S. J., and Gharhi, M. 2014.
19 20	484	Comparison of polymerase chain reaction and loop-mediated isothermal amplification
21 22	485	for diagnosis of Fusarium solani in human immunodeficiency virus positive patients.
23 24 25	486	Afri. J. Biotechnol. 13:1496–1502.
26 27	487	Fitt, B. D. L., Huang, Y. J., van den Bosch, F., and West, J. S. 2006a. Coexistence of related
28 29	488	pathogen species on arable crops in space and time. Annu. Rev. Phytopathol.
30 31 22	489	44:163–182.
32 33 34	490	Fitt, B. D. L., Brun, H., Barbetti, M. J., and Rimmer, S. R. 2006b. World-wide importance of
35 36	491	phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape
37 38	492	(Brassica napus). Eur. J. Plant Pathol. 114:3–15.
39 40 41	493	Fitt, B. D. L., Hu, B. C., Li, Z. Q., Liu, S. Y., Lange, R. M., Kharbanda, P. D., Butterworth,
42 43	494	M. H., and White R. P. 2008. Strategies to prevent spread of Leptosphaeria maculans
44 45	495	(phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol.
46 47 48	496	57:652–664.
49 50	497	Grandaubert, J., Lowe, R. G., Soyer, J. L., Schoch, C. L., van de Wouw, A. P., Fudal, I.,
51 52	498	Robbertse, B., Lapalu, N., Links, M. G., Ollivier, B., Linglin, J., Barbe, V., Mangenot,
53 54 55	499	S., Cruaud, C., Borhan, H., Howlett, B. J., Balesdent, M., and Rouxel, T. 2014.
56 57	500	Transposable element-assisted evolution and adaptation to host plant within the
58 59	501	Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens.
00		

Page 47 of 66

1 2

Plant Disease

3 4	50
5 6	50
7 8 0	50
9 10 11	50
12 13	50
14 15	50
16 17 18	50
19 20	50
21 22	5
23 24 25	5
25 26 27	5
28 29	5
30 31 32	5
32 33 34	5
35 36	5
37 38	5
39 40 41	5
42 43	5
44 45	52
46 47 48	52
49 50	52
51 52	52
53 54 55	52
56 57	52
58 59	52
60	

502 BMC Genomics 15:891.

- Gugel, R. K., and Petrie, G. A. 1992. History, occurrence, impact and control of blackleg of
 rapeseed. Can. J. Plant Pathol. 14:36–45.
- Huang, C., Sun, Z., Yan, J., Luo, Y., Wang, H., and Ma, Z. 2011. Rapid and precise detection
 of latent infections of wheat stripe rust in wheat leaves using loop-mediated isothermal
 amplification. J. Phytopathol. 159:582–584.
- 508 Jedryczka, M., Burzynski, A., Brachaczek, A., Langwinski, W., Song, P., and Kaczmarek, J.
- 509 2013. Loop-mediated isothermal amplification as a good tool to study changing
- 510 *Leptosphaeria* populations in oilseed rape plants and air samples. Acta Agrobot.
- 4 511 66:93–99.
- 512 Laing, M. D. 1986. The crucifer blackleg pathosystem in Natal, South Africa. Acta Horticult.
 513 194:141–151.
- Li, B. J., Du, J. L., Lan, C. Z., Liu, P. Q., Weng, Q. Y., and Chen, Q. H. 2013. Development
 of a loop-mediated isothermal amplification assay for rapid and sensitive detection of *Fusarium oxysporum* f.sp. *cubense* race 4. Eur. J. Plant Pathol. 135:903–911.
- 517 Li, J. C. 2019. Fixed-site monitoring of occurrence of blackleg of oilseed rape and
- 518 characterization of infection by conidia of the pathogen. Master's degree dissertation of
 - 519 Huazhong Agricultural University (Wuhan, China). IV + 61pp.
- 520 Li, Q. S., Rong, S. B., Hu, B. C., Jiang, Y. F., Hou, S. M., Fei, W. X. Chen, F. X., Wu, X. J.,
- Fan, Z. X. and Lei, W. X. 2013. Distribution of blackleg disease on oilseed rape in
 China and its pathogen identification. Chin. J. Oil Crop Sci. 35:415–423.
- Limonard, T. 1968. Ecological aspects of seed health testing. Proc. Interl. Seed Testing Assoc.
 33
 4524 33(3): 64.
- 5 525 Liu, S. Y., Liu, Z., Fitt, B. D. L., Evans, N., Foster, S. J., Huang, Y. J., Latunde-Dada, A. O.,
 - and Lucas, J. A. 2006. Resistance to *Leptosphaeria maculans* (phoma stem canker) in

2		
3 4	527	Brassica napus (oilseed rape) induced by L. biglobosa and chemical defense activators
5 6	528	in field and controlled environments. Plant Pathology 55(3): 401-412.
7 8 9	529	Liu, Z., Latunde-Dada, A. O., Hall, A. M., and Fitt, B. D. L. 2014. Phoma stem canker
10 11	530	disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa
12 13	531	'brassicae'. Eur. J. Plant Pathol. 140:841-857.
14 15	532	Lob, S., Jaspers, M. V., Ridgway, H. J., and Jones, E. E. 2013. Leptosphaeria maculans/L.
16 17 19	533	biglobosa disease progression in oilseed rape and timing of ascospore release under New
10 19 20	534	Zealand conditions. New Zealand Plant Protect. 66:214–222.
21 22	535	Long, Y., Ma, X. H., Yuan, J. J., Lu, N. H., Yang, Z. Y., Wei, S. and Wang, W. F. 2017.
23 24 25	536	Establishment of LAMP-HNB method for detection of <i>Leptosphaeria maculans</i> in rape.
25 26 27	537	Guangdon Agri. Sci. 44:66–69.
28 29	538	Lucas, S., da Luz Martins, M., Flores, O., Meyer, W., Spencer-Martins, I., and Ina, J. 2010.
30 31	539	Differentiation of Cryptococcus neoformans varieties and Cryptococcus gattii using
32 33 34	540	CAP59-based loop-mediated isothermal DNA amplification. Clin. Microbiol. Infect.
35 36	541	16:711–714.
37 38	542	Luo, J., Vogel, R. F., and Niessen, L. 2012. Development and application of a loop-mediated
39 40	543	isothermal amlification assay for rapid identification of aflatoxinogenic molds and their
41 42 43	544	detection in food samples. Interl. J. Food Microbiol. 159:214-224.
44 45	545	Matsuzawa, T., Tanaka, R., Horie, Y., Gonoi, T., and Yaguchi, T. 2010. Development of
46 47	546	rapid and specific molecular discrimination methods for pathogenic <i>Emericella</i> species.
48 49 50	547	Japn. J. Med. Mycol. 51:109–115.
50 51 52	548	Mendes-Pereira, E., Balesdent, M., Brun, H., and Rouxel, T. 2003. Molecular phylogeny of
53 54	549	the Leptosphaeria maculans-L. biglobosa species complex. Mycol. Res.
55 56	550	107:1287–1304.
57 58 59 60	551	Molina, J. P. E., Escande, A., Cendoya, G., and Quiroz, F. 2017. Qualitative and quantitative

Page 49 of 66

Plant Disease

1 2		
2 3 4	552	factors affecting the relationship between canola leaf spot epidemic and stem base
5 6	553	canker (Leptosphaeria maculans) in Argentina. Australasian Plant Pathol. 46:453-461.
7 8	554	Möller, E. M., Bahnweg, G., Sandermann, H., and Geige, H. H. 1992. A simple and efficient
9 10 11	555	protocol for isolation of high molecular weight DNA from filamentous fungi, fruit
12 13	556	bodies, and infected plant tissues. Nucl. Acids Res. 20:6115-6116.
14 15	557	Moradi, A., Almasi, M.A., Jafary, H., and Mercado-Blanco, J. 2013. A novel and rapid
16 17	558	loop-mediated isothermal amplification assay for the specific detection of Verticillium
18 19 20	559	dahliae. J. Appl. Microbiol. 116:942–954.
21 22	560	Niessen, L., and Vogel, R. F. 2010. Detection of Fusarium graminearum DNA using a
23 24	561	loop-mediated isothermal amplification (LAMP) assay. Interl. J. Food Microbiol.
25 26 27	562	140:183–191.
27 28 29	563	Niessen, L., Gräfenhan, T., and Vogel, R. F. 2012. ATP citrate lyase 1 (acl1) gene based
30 31	564	loop-mediated amplification assay for the detection of the Fusarium tricinctum species
32 33 34	565	complex in pure cultures and in cereal samples. Interl. J. Food Microbiol. 158:171–185.
35 36	566	Niessen, L. 2015. Current state and future perspectives of loop-mediated isothermal
37 38	567	amplification (LAMP)-based diagnosis of filamentous fungi and yeasts. Appl. Microbiol.
39 40	568	Biotechnol. 99:553–574.
41 42 43	569	Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and
44 45	570	Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucl. Acids Res.
46 47 48 49 50 51 52	571	28:e63.
	572	Omer, Z. S., and Wallenhammar, AC. 2020. Development of loop-mediated isothermal
	573	amplification assays for rapid detection of blackleg pathogens in Swedish winter oil seed
53 54	574	rape. Eur. J. Plant Pathol. 157:353–365.
55 56 57	575	Peng, J., Zhan, Y. F., Zeng F. Y., Long, H. B., Pei, Y. L., and Guo, J. R. 2013. Development
58 59	576	of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and
60		23

2 3 4	577	quantitative detection of Fusarium oxysporum f.sp. niveum in soil. FEMS Microbiol.
5 6	578	Lett. 349:127–134.
7 8	579	Piening, L., Okolo, E., and Harder, D. 1975. Blackleg of rapeseed in Kenya. East Afr. Agri.
9 10 11	580	For. J. 41:110–113.
12 13	581	Plummer, K. M., Dunse, K., and Howlett, B. J. 1994. Non-aggressive strains of the blackleg
14 15 16	582	fungus, Leptosphaeria maculans, are present in Australia and can be distinguished from
17 18	583	aggressive strains by molecular analysis. Aus. J. Bot. 42:1–8.
19 20	584	Pu, J. J., Xie, Y. X., Zhang, H., Zhang, X., Qi, Y. X., and Peng, J. 2014. Development of a
21 22 22	585	real-time fluorescence loop-mediated isothermal amplification assay for rapid and
23 24 25	586	quantitative detection of Fusarium mangiferae associated with mango malformation.
26 27	587	Physiol. Mol. Plant Pathol. 86:81–88.
28 29	588	Rong, S. B., Hu, B. C., Chen, F. X., Wu, X. J. Hou, S. M., Fei, W. X., and Li, Q. S. 2015.
30 31 32	589	Effects of Leptosphaeria biglobosa on seed yield and related traits of oilseed rape. Crops
33 34	590	(6):159–161.
35 36	591	Salisbury, P. A., Ballinger, D. J., Wratten, N., Plummer, K. M., and Howlett, B. J. 1995.
37 38 30	592	Blackleg disease on oilseed Brassica in Australia: a review. Aus. J. Exper. Agri.
40 41	593	35:665–672.
42 43	594	Shoemaker, R. A., and Brun, H. 2001. The teleomorph of the weakly aggressive segregate of
44 45	595	Leptosphaeria maculans. Can. J. Bot. 79:412–419.
46 47 48	596	Vincenot, L., Balesdent, M. H., Li, H., Barbetti, M. J., Sivasithamparam, K., Gout, L., and
49 50	597	Rouxel, T. 2008. Occurrence of a new subclade of Leptosphaeria biglobosa in Western
51 52	598	Australia. Phytopathology 98:321–329.
53 54 55	599	van de Wouw, A. P., Thomas, V. L., Cozijnsen, A. J., Marcroft, S. J., Salisbury, P. A., and
56 57	600	Howlett, B. J. 2008. Identification of Leptosphaeria biglobosa 'canadensis' on Brassica
58 59 60	601	juncea stubble from northern New South Wales, Australia. Australasian Plant Dis. Notes

Page 51 of 66

1

Plant Disease

2 3	602	3:124–128.
4 5 6	603	Voigt, K., Cozijnsen, A. J., Kroymann, J., Pöggeler, S., and Howlett, B. J. 2005. Phylogenetic
7 8	604	relationships between members of the crucifer pathogenic Leptosphaeria maculans
9 10 11	605	species complex as shown by mating type (MAT1-2), actin, and β -tubulin sequences.
12 13	606	Mol. Phylogen. Evol. 37:541–557.
14 15 16	607	Wang, T., Wang, C. N., Zhang, H., Wen, J. J., and Zhang, B. 2017. Study on rapid extraction
17 18	608	of genomic DNA from Chinese cabbage. Acta Agri. Boreali-Sin. 32:67-72.
19 20	609	Wang, G. P., Hu, K. L., and Jedryczka, M. 2003. Health testing and evaluation of
21 22 23	610	Leptosphaeria maculans (Phoma lingam) contamination in Brassica napus seed samples
24 25	611	from Poland and England. J. South China Agri. Univ. (Nat. Sci. Ed.) 24(4):28-31.
26 27	612	Wang, Z. H., Yang, W., Zhao, H., Zeng, X. D., Li, F. X., Cai, X., Wang, H. C., and Yu, H.
28 29 30	613	2011. Detection and identification of Leptosphaeria maculans in imported Canadian
31 32	614	rapeseeds. J. Huazhong Agri. Univ. 30(1):66–69.
33 34	615	West, J. S., Evans, N., Liu, S., Hu, B., and Peng, L. 2000. Leptosphaeria maculans causing
35 36 37	616	stem canker of oilseed rape in China. Plant Pathol. 49:800.
37 38 39	617	West, J. S., Kharbanda, P., Barbetti, M. J., and Fitt, B. D. L. 2001. Epidemiology and
40 41	618	management of Leptosphaeria maculans (phoma stem canker) in Australia, Canada and
42 43	619	Europe. Plant Pathol. 50:10–27.
44 45 46	620	Williams, R. H., and Fitt, B. D. L. 1999. Differentiating A and B groups of Leptosphaeria
47 48	621	maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol.
49 50	622	48:161–175.
51 52	623	Zhang, X., White, R. P., Demir, E., Jedryczkae, M., Lange, R. M., Islam, M., Li, Z. Q.,
54 55	624	Huang, Y. J., Hall, A. M., Zhou, G., Wang, Z., Cai, X., Skelsey, P., and Fitt, B. D. L.
56 57	625	2014. Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on
58 59 60	626	oilseed rape crops in China. Plant Pathol. 63:598–612.

2		
3 4	627	Zhao, H., Wang, Z. H., Zeng, X. D., Yi, J. P., Li, B., Li, G. Q., Wu, P. S., and Cai, X. 2015.
5 6	628	Detection and identification of Plenodomus biglobosus. GB/T 31798-2015. Released by
7 8	629	General Administration of Quality Supervision, Inspection and Quarantine of the
9 10 11	630	People's Republic of China, and China National Standardizing Committee.
12 13	631	Zhou, G. L., Shang, L. L., Yu, C., Yin, L. P., Xu, D. S., and Yi, J. P. 2010. Detection of
14 15	632	Leptosphaeria maculans and L. biglobosa in oilseed rape samples imported from
16 17 19	633	Australia. Acta Phytophyl. Sin. 37(4):289–294.
19 20	634	Zhou, Y., Huang, H. L., Li, X. J., Shan, C. L., Li, X. S., Chen, Y., Shao, W. D., and Zhu, P.
21 22	635	2016. Establishment of Leptosphaeria maculans detection by loop-mediated isothermal
23 24	636	amplification combined with a lateral-flow dipstick. Plant Quarantine 30(4):32-37.
25 26 27	637	Zou, Z. W., Zhang, X. H., Parks, P., du Toit, L. J., van de Wouw, A. P., and Fernando W. G.
28 29	638	D. 2019. A new subclade of Leptosphaeria biglobosa identified from Brassica rapa.
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	639	Interl. J. Mol. Sci. 20:1668.
56 57		

Plant Disease

			LAM	P result
Strain	Species	Origin (location and year)	SYBR green I x	Multiple DNA
				bands patterns ³
W10	L. biglobosa 'brassicae'	Wuxue, Hubei, China, 2011	+	+
Lb22	L. biglobosa 'brassicae'	Wuhan, Hubei, China, 2017	+	+
Lb23	L. biglobosa 'brassicae'	Wuhan, Hubei, China, 2017	+	+
Lb219	L. biglobosa 'brassicae'	Macheng City, Hubei, China, 2017	+	+
Lb220	L. biglobosa 'brassicae'	Macheng City, Hubei, China, 2017	+	+
Lb221	L. biglobosa 'brassicae'	Macheng City, Hubei, China, 2017	+	+
Lb324	L. biglobosa 'brassicae'	Xiangyang City, Hubei, China, 2017	+	+
Lb325	L. biglobosa 'brassicae'	Xiangyang City, Hubei, China, 2017	+	+
Lb326	L. biglobosa 'brassicae'	Xiangyang City, Hubei, China, 2017	+	+
Lb460	L. biglobosa 'brassicae'	Badong County, Hubei, China, 2017	+	+
Lb463	L. biglobosa 'brassicae'	Badong County, Hubei, China, 2017	+	+
Lb649	L. biglobosa 'brassicae'	Nanjing City, Jiangsu, China, 2017	+	+
Lb650	L. biglobosa 'brassicae'	Nanjing City, Jiangsu, China, 2017	+	+
Lb691	L. biglobosa 'brassicae'	Luoping County, Yunnan, China, 2017	+	+
Lb692	L. biglobosa 'brassicae'	Luoping County, Yunnan, China, 2017	+	+
Lb695	L. biglobosa 'brassicae'	Luoping County, Yunnan, China, 2017	+	+
Lb716	L. biglobosa 'brassicae'	Chongzhou County, Sichuan, 2017	+	+

T 11 1 T • • •1 1 (D

Lb717	L. biglobosa 'brassicae'	Chongzhou County, Sichuan, 2017	+	+
Lb718	L. biglobosa 'brassicae'	Chongzhou County, Sichuan, 2017	+	+
Lb731	L. biglobosa 'brassicae'	Xingyang City, Henan, China, 2017	+	+
Lb903	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
Lb904	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
Lb905	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
Lb915	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
Lb916	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
Lb917	L. biglobosa 'brassicae'	Guiyang City, Guizhou, 2017	+	+
17-4	L. biglobosa 'canadensis'	Seeds of oilseed rape imported from Canada, 2009	_	_
Lb2700	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
Lb2701	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
Lb2702	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
Lb2703	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
Lb2704	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
Lb2705	L. biglobosa 'canadensis'	Hailar City, Inner Mongolia, China, 2018	_	_
2010510-1	L. maculans	Seeds of oilseed rape imported from Canada, 2010	_	_
2010510-2	L. maculans	Seeds of oilseed rape imported from Canada, 2010	_	_
C1	Colletotrichum higginsianum	Huzhou County, Qinghai, 2017	_	_
CanL-24	Alternaria alternata	Zhang et al. 2014	_	_
CanS-33	Chaetomium globosum	Zhang et al. 2014	_	_

CanS-75	Botrytis cinerea	Zhang et al. 2014	_	_
P1	Phoma sp.	Badong County, Hubei, China, 2017	_	_
P2	Phoma macrostoma	Yunxi County, Hubei, China, 2017	_	_
P3	Phoma sp.	Yunxi County, Hubei, China, 2017	_	_
P4	Phoma glomerata	Huzhou County, Qinghai, 2017	_	_
P5	Phoma herbarum	Huzhou County, Qinghai, 2018	_	_
SS-1	Sclerotinia sclerotiorum 🦯	Wuhan City, Hubei, 2014	_	_

^y SYBR Green I was added to the LAMP mixtures after reaction,+, positive detection; –, negative detection.

^z The LAMP products were loaded in 1% agarose gels and after electrophoresis, the gels were stained with a ethidium bromide solution and observed under an UV-illuminator. +, with multiple DNA bands patterns (DNA ladder patterns); –, without multiple DNA bands patterns.

iple DNA vun

Table 2. The nucleotide sequences of the six LAMP primers for L. biglobosa 'brassicae'

Primer	Oligonucleotide sequence (5' to 3')
Forward outer primer F3	GTATTGGCCGCGAATTCC
Backward outer primer B3	GGAGATTGGCCACTATGG
Forward inner primer FIP (F1c-F2)	GGCGTCTCTTTTATGGCTATTTTCT-GGTCAAAAGTTGTTTGGA
Backward inner primer BIP (B1c-B2)	AATGTCAGGAAGTCTGAAAAGCT-ACGTTCTCTGATCAGGAC
Forward loop primer LF	CCGAAATGAATTGTACCAGTATCCT
Backward loop primer LB	ACTGCCTCATGCAACATGG

to per per external

Plant Disease

Table 3. LAMP detection of *L. biglobosa* 'brassicae' in pure cultures and plant tissues of oilseed rape (stems, leaves, pods and seeds).

		LAMP evaluation	LAMP evaluation			
Trial ^x	Template DNA in LAMP	Green coloration ^y	Multiple DNA			
		Green coloration	bands patterns ^z			
Mycelia	Water alone (Control)	_	_			
	DNA (1 colony patch)	+	+			
	DNA (2 colony patches)	+	+			
	DNA (3 colony patches)	+	+			
Conidia	Water alone (Control)	-	-			
	DNA from 2 conidia	_	_			
	DNA from 20 conidia	+	+			
	DNA from 200 conidia	+	+			
	DNA from 2000 conidia	+	+			
	DNA from 20000 conidia	+	+			
Leaf	DNA from 2 healthy leaf pieces (Control)	_	-			
	DNA from 1 diseased leaf piece	+	+			
	DNA from 2 diseased leaf pieces	+	+			
	DNA from 3 diseased leaf pieces	+	+			
Stem	DNA from 2 healthy stem pieces	_	_			
	DNA from 1 diseased stem piece	+	+			
	DNA from 2 diseased stem pieces	+	+			
	DNA from 3 diseased stem pieces	+	+			
Pod	DNA from 2 healthy pod pieces (Control)		-			
	DNA from 1 diseased pod piece	+	+			
	DNA from 2 diseased pod pieces	+	+			
	DNA from 3 diseased pod pieces	+	+			
Seed	DNA from 2 healthy seeds (Control)	_	-			
	DNA from 1 diseased seed	+	+			
	DNA from 2 diseased seeds	+	+			
	DNA from 3 diseased seeds	+	+			

^xIn the mycelial trial, the mycelia were sampled from a 4-day-old colonies of strain Lb731 of *L. biglobosa* 'brassicae' (20°C); In the conidial trial, the conidia were harvested from 14-day-old colonies of strain Lb731; In the leaf trial, both healthy and diseased leaves (Fig. S3) of oilseed rape were collected from field plants of oilseed rape at the early flowering stage, each square-shaped leaf piece had a size of 0.25 cm²; In the stem and pod trials, the samples of both healthy and diseased stems and pods were collected from field plants at the harvest stage, each stem epidermal piece or pod-hull piece of the square shape had

a size of 0.25 cm²; In the seed trial, healthy seeds were collected from healthy pods of field plants of oilseed rape at the harvest stage, diseased seeds were collected from diseased pods of field plants of oilseed rape also at the harvest stage. The TE buffer-lysis method was used to extract the DNA from the sampled mycelia and conidia in the mycelial and conidia trials. The alkaline-lysis method was used to extract DNA from sampled tissues of leaves, stems, pods and seeds in the leaf, stem, pod and seed trials. ^y SYBR Green I was added to the LAMP mixtures after reaction, +, positive amplification; –, negative amplification.

^z The LAMP products were loaded in 1% agarose gels and after electrophoresis, the gels were stained with a ethidium bromide solution and observed under an UV-illuminator. +, with multiple DNA bands patterns; –, without multiple DNA bands patterns.

to people period

Plant Disease

Figure 2. Optimization of the temperature and the time duration for LAMP detection of *L. biglobosa* 'brassicae'. A, Top, two LAMP reaction mixtures with different colors in the presence of SYBR Green I, green in the reaction with DNA from strain W10 of *L. biglobosa* 'brassicae' (Lbb) as template, whereas brown in the control (CK) reaction mixture without DNA template; Bottom, an agarose gel electrophoregram showing difference of the two reaction mixtures in formation of a multiple DNA bands pattern on the agarose gel; B, Twelve LAMP reactions under different temperatures showing different colors in presence of SYBR Green I;
C, Eight LAMP reactions with different time durations showing different colors in presence of SYBR Green I.

200x97mm (120 x 120 DPI)

Figure 3. Effect of the amount of template DNA on LAMP and PCR detection of *L. biglobosa* 'brassicae'. A, Ten LAMP reactions with different amounts of the template DNA from strain W10 of *L. biglobosa* 'brassicae' showing different colors in the presence of SYPR Green I. CK, control reaction mixture without DNA template; B, An agarose gel electrophoregram showing a difference among the reaction mixtures in formation of multiple DNA bands patterns on the agarose gel; C, An agarose gel electrophoregram showing the 210-bp-long DNA bands from the PCR reactions containing different amounts of template DNA from *L. biglobosa* 'brassicae' W10.

161x185mm (119 x 119 DPI)

		Efficacy in RAPD			
Primer	Sequence (5' to 3')	Persistency in amplification	#DNA bands for <i>L. biglobosa</i>		
		of L. biglobosa 'brassicae' y	'brassicae' ^z		
OPA-02	TGCCGAGCTG	2/3	0		
OPA-07	GAAACGGGTG	1/3	0		
OPA-13	CAGCACCCAC	2/3	0		
OPA-15	TTCCGAACCC	2/3	0		
OPA-19	CAAACGTCGG	3/3	1		
OPB-01	GTTTCGCTCC	2/3	0		
OPB-06	TGCTCTGCCC	3/3	0		
OPB-11	GTAGACCCGT	2/3	0		
OPB-20	GGACCCTTAC	2/3	0		
OPC-04	CCGCATCTAC	3/3	0		
OPC-12	TGTCATCCCC	3/3	0		
OPE-02	GGTGCGGGAA	1/3	0		
OPE-11	GAGTCTCAGG	2/3	0		
OPG-14	GGATGAGACC	3/3	0		
OPG-18	GGCTCATGTG	1/3	0		
OPI-08	TTTGCCCGGT	1/3	0		
OPI-12	AGAGGGCACA	2/3	0		
OPR-02	CACAGCTGCC	1/3	0		
OPW-04	CAGAAGCGGA	1/3	0		
OPX-19	TGGCAAGGCA	1/3	0		

Table S1. Operon primers used in RAPD assays of this study.

^yNumber of RAPD assays with positive amplification of *L. biglobosa* 'brassicae'/Total number of the RAPD assays;

^zThe selected DNA bands for *L. biglobosa* 'brassicae' were approximately 600 bp (close to the size of ITS-rDNA) and in agarose gel electrophoresis, the abundance of the DNA bands in the gels was high enough for purification and cloning (e.g., bright DNA bands under the UV-illuminator).

Plant Disease

Composition	Volume	Final concentration
10× reaction buffer	2.5 μL	$1 \times$ reaction buffer
MgSO ₄ (100 mmol/L)	1 µL	4 mmol/L
dNTPs Mix (10 mmol/L for each)	2.5 μL	10 mmol/L for each dNTP
F3/B3 (10 µmol/L for each)	0.5 µL	0.2 µmol/L for each primer
FIP/BIP (10 µmol/L for each)	4 μL	1.6 µmol/L for each primer
LF/LB (10 µmol/L for each)	1 µL	0.4 µmol/L for each primer
Bst 2.0 WarmStart [®] DNA polymerase [8 U/μL]	1 µL	0.32 U/µL
DNA template	1 µL	>132 fg per reaction
Water	Το 25 μL	-
Total	25µL	
Liquid paraffin (Aladdin® Industrial Corporation, Shanghai, China)	30 µL	For prevention of evaporation o water in the reaction mixtures

1								
2								
3								
4								
5								
6 7	1	TATAAAGGGT	AGTTACAATG	AAAACTTAAC	TTGAGAGCAG	CTCATATAAG	TGTTGATTGA	60
8	61	GGAAAGTTTG	ATCGAAATAG	CAATTATACA	GTGCTTTGGT	CAGACAATGT	AGAAGCTGGC	2 120
9	121	TATGCGAGAC	AAGCATATGT	TTTATTGCTT	GCTCTTAGAC	ATGTTCCAGA	ATGCTGTTCC	180
10	181	CGCCTAGACC	TGGTAGGCTA	GATTGCTAGG	GCCATTGCGA	TGTGACGCAC	GCGTTTGGTC	240
11	241	ΑΑGCTACCAA	GATCGTCGTG	AAAGGTTTGT	ATTGGCCGCG	AATTCCGGGT	CAAAAGTTGG	300
12	301	TTTGGAAGAG	GATACTECTA	CAATTCATTT	CGGTAGTTT			360
14	361		CCCTTTCCAA		TETERARA	TACTOCOTOA		420
15	301	AAAAGAGAGG	CCGTTICCAA	IGICAGGAAG	ICIGAAAAGC	TACIGCUICA	IGCAACAIGG	420
16	421	TCGAAAAGTA	GGATGAAGGT	CCTGATCAGA	GAACGTGCAG	CCATAGTGGC	CAATCTCCAG	480
17	481	CGCTTCGTAT	TAGGTATGTG	TGCCAATGAA	AGTTGCCGAC	ATGGACAACA	CGAACACCTT	540
18	541	GATACCAATG	TTATTAGCGT	CATATCCAAT	TTAGTGAGCA	TTCAGTGGGT	CTGTTATTGC	600
19	601	GCAGTCTGAA	GTTAC					615
20	-							
22	Figure S1. A	615-bp DNA	sequence from	n <i>L. biglobosa</i>	'brassicae' fo	or designing o	f the LAMP p	rimer set. Note
23			LAMP primer	set in the reg		eocides migning		
24			2	86x129mm (:	120 x 120 DP	[)		
25								
20								
28								
29								
30								
31								
33								
34								
35								
36								
37								
30								
40								
41								
42								
43								
44 45								
46								
47								
48								
49								
50 51								
52								
53								
54								
55								
50 57								
58								
59								
60								

Lbb Lbc	1 1	TATAAAGGGTAGTTACAATGAAAACTTAACTTGAGAGCAGCTCATATAAG TAAATGGTGGATAAAATGAGAACTGAACGTGAGAGCAGCTCATATAGA ** * * * * * * * * * * * * * * * * * *
Lbb Lbc	51 49	TGTTGA <mark>m</mark> tgagga <mark>a</mark> agtttgatcgaaatagcaa <mark>m</mark> tamacagtgctttggt Tgttgagtgaggagagtttgatcgaaatagcaaatacacagtgctttggt * * *
Lbb Lbc	101 99	CAGACAATGTAGAAGCTGGCTATGCGAGACAAGCATATGTTTTATTGCTT GAGACAATGTAGCAGGTGGCTATGCGAGACAAGCATATGTTTTACTGCTT * * *
Lbb Lbc	151 149	GCTCTTAGACATCTTCCAGAATGCTGTTCCCGCCTAGACCTGGTAGCCTA GCTCTTGGAAATATTCCAGAATGCTGTTTCCGCCTAGACCTGGTAGTCTA * * *
Lbb Lbc	201 199	GATTGCTAGGGCCATTGCGATGTGACGCACG <mark>CG</mark> TTTGG <mark>T</mark> CAAGCTACCAA GATTGCTAGGGCCGTTGCAATGTGACGCACGTATTTGGCCAAGCTACCAA * * * *
Lbb Lbc	251 249	GATCGTCCTGAAAGGTTTGTATTCGGCCGCGAATTCCGGGGTCAAAAGTTGG GATCGTCATGAAAGGGTTGTATCTGGCGCGCGAGTTCTGGGGTTGAAAGTTGG
Lbb Lbc	301 299	TT <u>H</u> GGAAGAGGA <u>H</u> ACTGGTACAATTCATTTCGG <mark>TAG</mark> TTT <mark>T</mark> TTC <mark>CA</mark> GAAGA TTGGGAAGAGGAGACTGGTACAATTCATTTCGGCGATTTCTTCTTGAA <mark>-</mark> A
Lbb Lbc	351 348	AAATAGCCA <mark>T</mark> AAAAGAG <mark>AC</mark> GCC <mark>G</mark> TTT <mark>C</mark> CAATGTCAGGAAGTCTGAAAAGC AAATAGCCACAAAAGAGGTGCCATTTGCAATGTCAGGAAGTCTGAAAAGC * * * * *
Lbb Lbc	401 398	TACTGCCTCATGCAA <mark>CAT</mark> GGTCGAAAAGTAGGAT <mark>CA</mark> AGGTCCTGATCAGA TACTGCCTCATGCAAGCCGGTC <mark>-</mark> AAAAGTAGGATATAGGTCCTGATCAGA * * *
Lbb Lbc	451 447	GAACGTCCAGCATAGTGGCCAATCCCAGCGCTTCGTATTAGGTATGT GAACGTACAGTCATAGTTGCCAATTTCCAGACGCTTCGTATTATGTATG
Lbb Lbc	500 497	GTGCCAATG <mark>h</mark> aagttgccgacatg <mark>g</mark> acahcacgaacac <mark>ct</mark> tgata <mark>cc</mark> aat Gtgccaatggaagttgccgacatgtacaccacgaacacgctgataggaat * * * * * *
Lbb Lbc	550 547	GT_TATTAGCGTCATATCCAATT <u>m</u> agtgagcattcagmggggtctgttatt atctattagcgtcatatccaattcagtgagcattcagaggggtctgttatt *
Lbb Lbc	599 597	GCGCAGTCTGA <mark>A</mark> GTTAC ACGCAGTCTGACGTTAC * *

Figure S2. Alignment of the 615-bp-long DNA sequence from strain W10 of *L. biglobosa* 'brassicae' with the corresponding DNA sequence in strain Lb1204 of *L. biglobosa* 'canadensis' (T. Luo et al. Huazhong Agricultural University, Wuhan, China, unpublished data). Lbb, *L. biglobosa* 'brassicae'; Lbc, *L. biglobosa* 'canadensis'; *, differential nucleotides.

59 60

Figure S3. Symptoms of the blackleg disease on a leaf (A), a stem (B), a pod (C) and a seed (D) of oilseed rape (*Brassica napus*) collected for LAMP diagnosis. Note necrotic plant tissues with formation abundant pycnidia (black dots) on the surface.

231x169mm (120 x 120 DPI)