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Abstract. — This paper presents an Autonomous Proxemic

System (APS) for a mobile robot. It detects peoplethe

surroundings and manipulates the robot’'s motionapproach
them keeping an acceptable proxemic distance. Hf® gensing
functions include face and upper body detectiog,detection,
and motion detection using camera, laser, and-nefilasensors
respectively. The control functions consist of agwh a human
and obstacle avoidance. APS uses the sonar and rkasge

devices to keep an accurate proxemic distance tvéthuman.
Initial system tests indicate that the APS keepsireld proxemic
distances to within an acceptable error margin.

1. Introduction

In order for a mobile service or domestic robob&a socially
acceptable and effective companion, it must exk@ppropriate
socially acceptable behaviours. The study of sospéces
between people is term&toxemics Within the wider research

Human Proxemics
In human-human interactions, Hgb] observed that human
social spatial distance varies by the degree ollifaity between
interacting humans and the number of participaaser, Hall
[6] provided a framework which categorized the maatial
spatial zones by interaction and situation. Hatineested these
distances visually but later researchd@ have assigned
numerical values for human-human personal spaceszon

¢ Intimate zone < 0.45m

* Personal zone 0.45m and <1.2m

e Social zone>1.2m and < 3.6m

¢ Public zone> 3.6m
In the field of human proxemics research, othetof@which
can also affect proxemic distances between integdtumans
have also been proposed. For instance, Stratioral. [8]
suggested that uncertainty (or slight perceiveddtjrcan affect
human proxemic distances, and makes them take igptlgl
greater distances from the source of the percepetntial

field of Human-Robot Interaction (HRI), Human-Robot hreat", In a study, for a robot which used diéier voice styles,
Proxemics (HRP) studies how humans and robots use amgarticipants initially encountering the robot toslkgnificantly

manipulate distances between each other with regasbcial
behaviour and human perceptions. Breaitphas found that
humans responded socially to expressive zoomoniiots in
some very fundamental non-verbal ways, includingpeeting
the robot's interpersonal space. Noneiral.[2] found that both
participants' negative attitudes and anxiety towadsmall size
humanoid robot had statistically significant effeain users’
preferred (comfortable) robot approach distancee. Main aims
for our HRP research are to empower domestic oicgerebots
to be able to:

different comfortable approach distancgd] and it was
suggested that these differences may be causedrbygipants'
slight initial uncertainty due to perceived incatshcies
between the robot's appearance and voice styles.

Gillespie and Leffler[10] concluded that much of the
observed variation in social distance between comcating
humans is accounted for by the relative statub®irteractants.
Burgoon and Jones[11] explained many seemingly
contradictory aspects of human-human proxemic hiehawby
suggesting that relatively small (dynamic) manigiolas of the

* Detect the presence and position of people in itsjistance between participants were a social "rewand

surroundings

punishment" mechanism. This theory can also exglaim high

* Approach, pass or avoid people as necessary, whilgtatus interactors can “reward" lower status ilters by
dynamically controlling for socially acceptable HRP moving closer, but lower status interactors camvarel" higher

distances

status interactors by keeping a greater distance.

e Take account of both the robot's and user's phlysica

situations, and the robot's task context.
The particular HRP distance taken will also depepdnuother
factors, including each individual human user'sfgmences, the
physical and social situation, and also task carjx Some of
these other factors which affect HRP are known,Hawve only
been roughly quantified using essentially staticasoeement
methods, such as the HRP framework presented byeWattal.
[4]. It is therefore desirable to carry out morenpwehensive
research to see if some of the richness apparerituinan
proxemics interactions can also apply to other HRe€ractions.

Human-Robot (HR) Proxemics

Hittenrauchet al. [12] concluded that in HRI user trials most
participants kept inter-personal distances fromeapkReBot"
robot corresponding to Hall's Personal spatial z{flhd5m to
1.2m). Previously in HRI trials run using semi-angmous
robot control techniques in HRI trials, we foundttichildren
tended to approach a similar robot to similar dises[13] but
for individual adults approaching the same roblog &pproach
distances were more ambivalent and inconclugi4g{15].
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We (Koayet al.[16]) also found that people generally allow
robots to approach more closely during physicaérantions
(handing over an object etc.) than for verbal orimeraction
conditions. Syrdalet al. [17] found people generally prefer
more humanoid appearance robots to keep a furtistande
away than mechanoid appearance robots. Waéral. [18]
found that participants' preferences for particutdoot attributes
(both appearance and height) affected particip@otsifortable
approach distances with regard to whichever rolgpe tthey
interacted with. The results from our previous HR&4 [4] are
summarized in Table 1, where all
compensated to satisfy a standard measurement éretite
human and the robot's closest body trunk partsr@eincluding
arms or manipulators). These distance measurer(estsest as
we can tell from the published details) are alsaghdy
comparable to those made by Hall for his spatialezdistances
and also by Strattoet al. [8]. Takayama and Pantofaf@9]
found that other factors including robot head dméon, gender
of participants, and previous experience intergctivith both

pets and robots also affected peoples comfortabRP H
distances.
Base Distance =
57cm
Factor C: nt?é;(:% - Estimated
PP Adjustment for
Factor (+ 0.5cm)
Attribute or Factor of Robot

Mechanoid All - RH -3
Robot All - HR -7

. All - RH +3
Humanoid Robot All - HR 1
Verbal Verbal Interaction — +3
Communication | RH

- . Physical Interaction —
Giving object RH -7
Taking object ;r;'yswal Interaction — 7
Passing No Interaction — RH +4
Direction from: | Front—RH +2
) Right/Left - RH -2
Attribute or Factor of Human
Preferreq Robot All Private — RH -3
Humanoid
Preferred Robot
Mechanoid All —RH +3
Preferred Height All— RH 1
Tall
Preferred Height
Short All - RH +2
Uncertainty or
perceived Initial Encounter — HR +13
Inconsistency
Verbal Verbal Interaction — +3
Communication | HR
- . Physical Interaction —

Giving object HR -7
Taking object E:\?yswal Interaction — 7
Passing No Interaction — HR +4

Table 1.Factors affecting HR proxemics and corresponding
adjustments for Base HRP Distance (57f4h)

In order to confirm and extend these findings, stigate
whether other factors might apply to HRP interactjcend also
effectively measure and quantify any effects, inecessary to
first develop autonomous robot HRP sensing and aebntr
capabilities. Haaschet al. [28] have presented a mobile
companion robot that employs multi modal persorckiray,
attention mechanism, speech recognition, and dialagager to
interact with a human, but not studied HRP in tkeirk. This
paper therefore presents a state-of-art Autononinasemic
System (APS) for sensing and control of HRP distarite

distances haven beediscriminates humans from objects, automaticallyasnees the

HRP distance, controls for a given desired HRP digtaifhe
robot is also able to follow people around, keepindesired
HRP distance (to the best of the robot’s capalslités it moves
rather slowly compared to most people). The respager is
organized as follows. The next section explains ARS main
components and its implementation details. Sediatescribes
the experiment that evaluates the performance & ikFkeeping
the desired HRP distances. Finally, the last sectjimes a
conclusion and prospect of future work.

2. Autonomous Proxemic System

The APS is designed to detect a human in the mabbet’s

surroundings, and enable the robot to approach leep a
desired HRP distance in both static and dynamiestdthe APS
employs a range of sensors common to mobile ratmisisting

of a low resolution camera, passive infra-red (IB)sor, laser,
and sonar range finders. It uses computer visichnigues to
detect either a face or upper body of a personimits camera
range, but also applies a leg detection algoritonfaser range
finder data. Meanwhile, it uses infra-red (IR) almtha sensors
to perceive and track human motions and obstagspectively.
The rest of this section provides more details ofvhthese
sensors and associated algorithms are implememtiba iAPS.

Face Detection

The APS uses face detection to detect and locpépgple in the
focus range of the camera. The main aim of thie f&tection is
to determine whether or not there is actually a dnuface in the
current captured camera frame, and if so returnldlation.
However, face detection is challenging due to \mlitg in
scale, location, orientation (up-right, rotated)dgose (frontal,
profile). Facial expression, occlusion, and ligbtinonditions
also change the overall appearance of the {@s

In our application, we take advantage of an obgtector
which uses Haar-Like features of an im§@#]. This is a refined
version of the widely known algorithm created byMi& Jones
[22]. This algorithm is already implemented andrtea for face
and upper body detection i®penCV[23], the open-source
computer vision library adopted for use in the ARScording
to a comparative survey if20], the chosen solution shows a
good balance between performance and computatspresdd. It
is also proven that this method is colour independiee., adapt
for different skins) and robust to varying lightnclitions.

Briefly, the chosen face detection algorithm deplbigar-
like features that consist of two or three jointetttangular
regions (Figure 1). The value of a Haar-like featus the
difference between sums of grey level values oélgixvithin the
two rectangular regions.
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Figure 1.Haar-like features: two or three jointed rectangle
regions[22]

Figure 2. Haar-like features are extracted from sub-windows
for face detectiofi22]
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Figure 3. Cascade of simple classifiers applied to the Hdar-li
features of the sub-windovi22]

Compared with raw pixel values, Haar-like features c
reduce in-class, and increase out-class variapilitys making
more distinguishable data and easier classificatidre Haar-
like features are computed from sub-windows of arage
(Figure 2). Given an image resolution of 320x24fh-window
resolution of 24x24, and 15 frames per secondidtaé number
of sub-windows with one Haar-Like feature is abautnillion
per second which has a relatively large computatiost. To
optimize this computation, a cascade of pre-trais@dple
classifiers (i.e. AdaBoosf21]) with a threshold structure is
applied to the features computed from sub-windolee first
classifier eliminates a large number of negativb-windows
and passes almost all positive sub-windows (hidgefpositive
rate) with very little processing effort. Subsequdayers
eliminate additional negative sub-windows (passgdhe first
classifier) but which require more computation. efiseveral
stages of processing, the number of negative snbdemis has
been reduced greatly (Figure 3). Finally, the rening relatively
few sub-windows may contain a face passed as ttpibaf the
algorithm.

Bellotto et al. [24] presented an adapting regulation for
parameters of the face detection method to imprtinee fast
tracking performance in real-time applicationsstlrts with an
image at normal size (320x240) and once it hasctitea face
(or faces), selects the nearest one, and then ggsns sub-
image containing the selected face. Meanwhilegdluces the
sub-windows size into 80% of the selected face.sidgs
significantly increases the detection speed (~#d)nand keeps
track of one face as long as it can be detected.

The proposed algorithrf23] is capable to be extended to
distinguish different visual patterns. Then, as tioered, we
have extended the visual object detection to detpper body
rather than the exclusive face detection. Moreowerdeployed
the face detection classifier with different predil By this
means, the robot can perceive people even whenbietiind or
to the side of the person. More details about tp@émentation
are discussed in the next sub-section. To supplethenface
detection system, additional sensing tools areireduo detect
humans in the surrounding area. This is becausaphked face
detection is limited in both performance (false ipross,
negatives and lost targets) and the area of scgmoverage.

Leg Detection
Leg detection is a pattern recognition terminoldgat can

discriminate and localize people legs using lasadings[29].

The leg detection system processes the range di¢mted by
laser, extracts the edges produces by the objects/ocalizes
the patterns of edges that match with the humarp&terns’.
Although, the detected patterns are not guararitedxlong to
human legs, they provide potential directions tlese to
confirm whether people are in the environment. IRSA leg
detection is employed to provide the turning dictfor the
robot when no one was detected by the visual deteobject.

The laser sensor provides range data from 180°ricayéhe
front and sides of the robot, at a height of abduty
centimetres from the floor, and with half degresotation. The
scanning area is semicircular with a radius of 8emse The laser
range data, according to the manufacturer's spetifins, are
very accurate with errors of a few millimetres. itig 4 depicts a
snapshot of the range data in the presence of sopen the
scanning area.

Bellettoet al.[24] [25] presented a novel detection algorithm
to find human legs by using laser scans. It isgiesi to work
either in large empty environments or small claterooms, and
is able to distinguish among different leg posturéisus
improving the discrimination of false positives. eThleg
detection algorithm extracts the necessary featuedges
produced by the objects) from a single laser saad,identifies
typical patterns (relative to particular leg poses)rthat, in most
of the cases, are distinguishable from the othgeotb in the
environment. The desired leg patterns, shown sctiestig in
Figure 5, correspond to three typical situation® tegs-apart
(LA), forward straddle (FS), and two legs-togetioerSL. The
first pattern is usually very common when a pelisgstanding in
front of the robot. The second is most likely tgopen when the
person is walking. The last pattern covers moshefremaining
postures. However, it can also be generated by atiects in
the environment, giving rise to false positive datns[25].
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Figure. 4. Range data collected from the laser sensor with
marked edges
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Figure 5. Leg patterns and the Leg Detector's schematic
diagram[25]

As shown in the schematic presentation of Figurehg,
algorithm is divided into three main parts: data-processing,
detection of vertical edges, and finally extractafrieg patterns.
The laser range data are pre-processed by applyithacal
minimization operator to remove possible spikes doe
reflections on sloped surfaces, and a local mastiun operator
to discard thin objects such as table legs. Suppusengular
step between two consecutive laser scans is cdnstad the
range data after pre-processing is stored in ay&r=1[r; . . .
ri ... tl, wherer; is the range measured on the directiprand
M is the total number of readings. If we repres€nbn a
Cartesian graph, we can identify a sequence ofcaériédges
defined as follows. The doublét;, ri.;} can be considered an
almost vertical edge if the distan¢g.,—r;| is greater than a
given threshold. Moreover, we can distinguish aédelige, when
ri>ri.; from a right edge, when<r;,;, and refer to them ds
andR, respectively.

The resulting vertical edges are initially queueid ia listE =
{e1 ... & ...}, where each elemer} can be either ah or R
edge. If they are very close and almost alignefhcadt edges of

the same type are connected to form a longer ofter #hat,
from the updated list of connected edges, we exia#icthe
subsets that might belong to one of the three lagiems
described before. The order of patterns that wé oo is as
follows.

e The LA pattern is a quadruplet {L, R, L, R}.

¢ The FS pattern is a triplet {L, L, R} or {L, R, R}.

e The SL pattern is a doublet {L, R}.
Every edge is removed frof as soon as it contributes to form
one of the aforementioned sequences. ThereforethallLA
patterns, which are normally the most reliable,exteacted first,
while the SL patterns, which are the easiest tanteigpret, are
left at the end. During the search for the pattemesconsider
some constraints and spatial relations betweensedigeluding
maximum normal distance between legs and limitsheir size.
With reference to Figure 5, some dimensional cain#s are
fixed for the measures, b, andc, which are, respectively, the
leg’s width, the maximum step length, and the widlthwo legs
together. These are used by the algorithm’s praesduo
recognize LA, FS, and SL patterns. Finally, thetadise and
direction of the detected legs are calculated frioenmidpoint of
each patterf25].

Motion Detection

Many objects normally emit IR radiation, invisible human
eyes that can be detected by electronic devicegramsfor such
a purpose. The APS motion detector is designedetoepre a
human as the robot is moving. It is based on a&a#R sensor,

+ which is an electronic device that measures IRt ligluiating

. from objects in its field of view. It is a passigensor, which
: means that it does not emit an IR beam but meragsipely
+ accepts incoming IR radiations. Intensity of thatid radiation

is proportional to the objects’ temperatyg6], and apparent
motion is detected when an IR source with one teatpes,

such as a human, passes in front of an IR sourtte amother
temperature (e.g. a wall etc.). Furthermore, a onotian also be
realized when an IR sensor moves relative to anolRcg with

one temperature, such as a human, standing in &ah IR

source with another temperature. This feature eaadopted to
detect the positional change between a human amblile

robot carrying the IR sensor.

In our application, we set up an IR sensor connettiean
analogue to digital converter (ADC, Phidget Integf@pard) on
top of the mobile robot to perceive the presenca bfiman in
its surroundings. The sensor was fixed at a heigptoximately
1.2 meters from the floor to read IR radiations &ditfrom the
human body (i.e. trunk) and avoid typical non-hurtiRrsources
(e.g. heating radiators) in a room. The samplirgidency was
5Hz, and the recorded data was passed through-pdes/filter
to remove noises produced by the vibration. Theligra of the
filtered data represents a change in successiveadation
measurements and indicates a motion when it exceegstain
threshold. The threshold was chosen after prelimitests, and
adjusted to detect the motions produced by a huwithin a
range of 5 metres.

According to the desired scenarios in our applicative
deliberately ignored any fast or weak motions fribra passive
IR sensor by adjusting the sampling rate, low-péssr fand
threshold parameters. After tuning, the robot detkcthe



presence of a static human when the robot passes when a
human moves in front of the robot.

System Implementation

The APS is a real-time controller developed for Rieneer
PeopleBot" robot. It has a modular design and employs th
above-mentioned detectors as modules running ini-thuéad

with a human. The APS is supposed to manipulatedhet in
such a way that it keeps reliably the desired HRRadces
corresponding to different settings. We conducted

experiment, to evaluate the performance in HR praxeontrol

produced by APS.

€

mode. The APS is implemented in C++ using ARIA an
OpenCV libraries. It runs on a Dual Core PC (with Vidiwd
XP) connected directly to the robot via the USB aleport
adaptor.

The APS includes both control and sensing functidre
controlling commands are made up of ‘Turning LefyRi and
‘Moving Forward/Backward’, both implemented as Acsoin
ARIA. The Turning command has a priority over Movjirgis
means the robot first turns toward the person &mh starts
approaching. The Moving command checks regulasyringe
devices (i.e. Sonar and Laser) to keep the HRP rdistand
avoid obstacles. The cycle time of the robot cdlgrpat which
the sensors and commands are regularly updated,setato
200ms. This is a sensible rate for a companiontragbaormal
daily activities.

APS sensing functions include face and upper bedgation,
leg detection, and motion detection using the camnleser, and
Infra-Red (IR) sensor, respectively. Moreover, thestatle
avoidance Action also uses the sonar and laseerdat. APS
gives a higher priority to the camera-based fumstiover the
laser[30]. This means APS manipulates the robot usisiprk
based information, as long as it detects a facanaupper body
in view of the camera. When a face or an upper hedgtected,
APS uses its relative horizontal location in theagm to adjust
the robot’s bearing angle towards the human. Iratteence of a
detected human by the camera system during a @mitee,
APS then uses the information provided by the letector to
manipulate the robot. Motion detection, due to perticular
characteristics, just stops the robot turning ,(iieterrupt the
Turning command) when it spots a human in its range

To make a sensible integration of the detectorsreggiire
considering their features along with the charasties of the
controller. The laser-based leg detector is veguate and in
most of the cases is much more reliable than fatection[25].
Moreover, the computational time needed by thediegctor is
much less than that one required by the face deteatodule.
Considering the modules running asynchronously al-time
operation, the face and leg detection processes dbkut 500
and 250msec, respectively. The range covered bylaber
device is much wider than the camera view. While thser
covers a semicircular area with a radius of 8 rsetitee camera
view is limited to approximately 40°. As mentiondtie face
detection is featured to discriminate faces witffedént profiles
as well as the upper body. However, even if theerans fixed
at about 1.4m from the floor (which is about a nalrperson’s
face height), there are cases when a face or iggusrcannot be
detected because a person is too tall, too shoxeny close to
the robot.

3. Experiments and Results

According to Section 1, a domestic robot shouldabke to
keep an acceptable HR proxemic distance during datien

Desired distance in APS
| 450 550] 650 750 850 95p 1090 1150 1250
Recorded distances for subject 1
1| 385| 500 595 729 71 885 1015 1055 1055
2| 395[ 495| 645/ 730 82 885 1005 1005 1125
3 395 485 635 739 73% 82p 960 1065 1115
4| 405| 475| 6200 709 76 845 1015 1015 1135
5] 385| 505| 595 679 75 865 od5 1055 1145
Recorded distances for subject 2
1 365 540 560 65( 760 82p 895 1005 1085
2| 375| 450| 570 650 76 83p 8d5 1005 1105
3 355 480 570 66( 75| 82p 915 995 10095
4| 345| 480| 565 659 75 83p 895 985 1105
5] 335| 480| 575/ 665 76 825 925 1005 1115

Table 2.Recorded HRP distances corresponding to different
settings (inmillimetersy

@ Subject 1 m Subject 2

30 4
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5] I - -

10 4

% Error

45 55 65 75 85 95 105 115 125

HRP desired set distance (cm)

Figure 6. Error (%) of raw HRP distances
@ Subject 1 @ Subject 2
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Biased % Error

45 55 65 75
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HRP desired set distance (cm)

Figure 7. Error (%) of HRP distances after applying bias
values (6¢cm for Subject 1 and 10cm for Subject 2)

To have a realistic evaluation, the experiment witho
participants was conducted in a real living roonthwiisual
furniture in the University of Hertfordshire ‘Robblouse’. The
'Robot house' is a house near the University, bssadlomestic
area, which appears to be like any typical UK housé has
been adapted so that HRI experiments and user ti#aisbe



performed in an ecologically valid, real home eomment,
rather than a laboratory or simulated home surrmgsd In the
experiment, we measured directly using a tape meathe
actual distance between static human and robo¢gponding to
different desired HRP values set in APS. The expaminwas
designed to evaluate the reliability and repeaitgitiif the APS
performance; Hence, we repeated five trials fohesstting, and
also recorded the error. The error refers to thiéeréince
between desired and actual HRP distances. Some &ror
inevitable, since the APS records the nearestriistaread by
the sonar and laser at a fixed height (i.e. 0.3%5@ch for sonar
and 0.4m for laser) from the floor as HRP, while nveasured
the actual distance at a height that includes thsest point
between human and robot’s trunks. However, it wgeeted to
record errors with constant bias and low variaritiee bias
mainly depends on particular subjects’ body shape.

The experiment examined HRP settings from 45 to 12
centimetres, and repeated trials for each setiuegtimes. Table
2 demonstrates the recorded distances for twocpzatits and
nine settings. Figures 6 and 7 illustrate the meaeh standard
deviation for error of HRP distances for each sutged setting.
The former is for the raw data and the later degtice error rate
after subtracting the bias value to reduce theteonpart of the
error.

The bias is a constant value that exists in théemdifices
between measured values by the human and robstpiimarily
caused by the difference in the height of the poaft
measurement. The bias value therefore depends ymositl
individual humans’ body shapes and is worked out €ach
subject. Considering the errors with normal distiifiy, it can
be calculated using théhree-sigmarule in Statistic27]. The
bias is worked out by subtracting the one-thirdtef standard
deviation (STD) of the recorded errors from thecdlte value
of their mean. It was found to be 60 and 100 mélires for
Subject 1 and 2, respectively.

O Subject 1 @ Subject 2

30

25

20

15

T T

 mm

Biased Data Error

Raw Data Error

Figure 8. Error (%) decreases significantly by applying bies
values to raw HRP distances

Figure 8 shows that applying the individual sulgetiases
to the raw HRP distances from the APS, increaseatftwigntly
the accuracy of measurement. The adjusted (bianedh HRP
error is about +1.5% with repeatability of +1%. Fhinplies an
approximate error of +0.75cm in HRP distance measents
close to the 57cm base distan¢#] from the Proxemic
Framework from Table 1. This is acceptable for fumre work

which will focus on HRP interactions within the nd2ersonal
Zone distances (40 — 100cm). We hope to refine the
measurement accuracy in the light of more data feomider
range and number of participants in future trisd& also intend

to improve the APS in future work by incorporatiadearning
mechanism that can learn users’ proxemic prefeserard
individual HRP parameters during run-time.

4. Conclusion

The social behaviour of a mobile robot can maksottially
acceptable and effective as a companion. In HRI,sthdy of
how human and robot use and manipulate distancegcbe
each other with regard to social behaviour and gmicns is
called human-robot proxemics (HRP). An aim of HRReagsh

és that a social service robot should be able tealgoresence of

people in its surrounding and approach them to cnemable
proxemic distance. The particular HRP distance ddpem
individual humans’ preferences, the robot's task aervices,
social and physical situation, and possibly otletdrs. In this
paper we proposed an autonomous proxemics systena fo
mobile robot. Experimental findings indicate thiae tproposed
system works reliably and keeps a desired HRP distanth a
total error variance about +1.5%. We intend to iowerthe APS
in future work by refining the HR measurements and
incorporating a learning mechanism that automdyicain adapt
to individual users’ HRP preferences and parameters.
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