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Abstract

Color–kinematics (CK) duality is a remarkable symmetry of gluon amplitudes that is the key to the 
double copy which links gauge theory and gravity amplitudes. Here we show that the complete Yang–
Mills action itself, including its gauge-fixing and ghost sectors required for quantization, can be recast to 
manifest CK duality using a series of field redefinitions and gauge choices. Crucially, the resulting loop-
level integrands are automatically CK-dual, up to potential Jacobian counterterms required for unitarity. 
While these counterterms may break CK duality, they exist, are unique and, since the tree-level is unaffected, 
may be deduced from the action or the integrands. Consequently, CK duality is a symmetry of the action 
like any other symmetry, and it is anomalous in a controlled and mostly harmless sense. Our results apply 
to any theory with CK-dual tree-level amplitudes. We also show that two CK duality-manifesting parent 
actions may be factorized and fused into a consistent quantizable offspring, with the double copy as the 
prime example. This provides a direct proof of the double copy to all loop orders.
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1. Introduction

Two seemingly distinct principles govern the fundamental forces of Nature: the strong and 
electroweak forces on the one side and gravity on the other. While the former are described by 
Yang–Mills gauge theories that play out on space–time, gravity is a consequence of the curvature 
of space–time itself, promoted from stage to protagonist. In spite of this evident discrepancy, it 
has been shown in the seminal work [1–3] that the tree-level scattering amplitudes of gravity can 
2
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be derived as the ‘square’ or ‘double copy’ of Yang–Mills scattering amplitudes. This observation 
suggests a novel and fundamental unity between gravity and the other forces of Nature.

The double copy does, however, rest crucially on the long-standing conjecture of Bern–
Carrasco–Johansson (BCJ) [1] that Yang–Mills scattering amplitudes satisfy what is known as 
color–kinematics (CK) duality. Recall that the fundamental degrees of freedom in Yang–Mills 
theory are described by the gluon field Aa

μ(x). Beyond the space–time coordinate x, the field 
carries a color index a and a Lorentz (co-)vector index μ. The two sorts of indices serve rather 
different purposes: one manifests a color internal symmetry, while the other instead reflects 
a kinematic space–time symmetry. The CK duality conjecture, however, suggests both indices 
should be put on an equal footing in a precise sense. Specifically, it posits that gluon scattering 
amplitudes can be organized into sums of products of color and kinematic factors, such that the 
algebraic structure of the kinematic factors mirrors the Lie algebra relations of the color factors. 
The origins of this unexpected property of the scattering amplitudes are nowhere to be found in 
the standard Yang–Mills action, making it all the more remarkable. The validity of CK duality 
at the tree level has been established long ago [4–11], but the extension to the loop level has 
remained an open issue for over a decade.

In the present paper, we will extend the CK duality principle to the complete set of (off-shell) 
fields appearing in the Yang–Mills Becchi–Rouet–Stora–Tyutin (BRST) action, including the 
Faddeev–Popov ghosts capturing the gauge symmetry, as well as the Nakanishi–Lautrup fields 
and the anti-ghosts arising when gauge fixing. As a consequence, CK duality becomes a mani-
fest infinite-dimensional symmetry of the BRST action. The latter serves as a powerful ordering 
principle for the required BCJ relations on the scattering amplitudes; in particular, the loop am-
plitude integrands derived directly from the Feynman diagrams of this action are automatically 
CK-dual. Importantly, they are the integrands of the theory, and they do not require to be validated 
by unitarity or other methods. At the loop level, these diagrams may have to be supplemented by 
Jacobian counterterms that ensure unitarity. While these will generically break CK duality, they 
exist, they are unique (in the appropriate sense), and they may be deduced from the action or the 
integrands themselves, since the tree level is unaffected.

As observed in [12], on-shell CK duality can be manifested (up to six points) in terms of an 
action made cubic (or, in our terminology, strictified) through the introduction of auxiliary fields. 
The paper [13] extended this to all orders, but without the auxiliary fields that render the action 
cubic; furthermore, their action was entirely geared towards the tree level, ignoring any and all 
loop-related desiderata (such as ghosts, BRST symmetry, etc.). In our previous papers [14,15], 
we extended the construction in [13] to obtain an action whose Feynman diagrams manifest on-
shell tree-level CK duality for both physical and unphysical fields. This suffices for the double 
copy of scattering amplitudes and actions to be well-defined [14], but not for full off-shell CK 
duality itself.1 In the present paper, we go one step further by removing the on-shell restriction 
in the prior literature up to potentially arising counterterms. It then remains to show that these 
counterterms are absent or harmless in theories of interests.

Realizing off-shell CK duality as a symmetry of the BRST action amounts to an advantageous 
shift in perspective. Like many other symmetries of an action, CK duality is generically anoma-
lous at the loop level; in particular, it may be broken by the counterterms required to restore 
unitarity of the amplitudes. We will show, however, that these counterterms are well under con-

1 To be precise, the loop kinematic numerators derived directly from the Feynman rules in [14,15] double-copy into 
genuine scattering amplitudes of N = 0 supergravity. However, this neither requires nor implies that said loop kinematic 
numerators fulfill CK duality, cf. also the discussion in [16].
3
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trol, and the quantum consistency of the theory is not affected. Moreover, our recent results [17]
strongly suggest that at least for some field theories, in particular for maximally supersymmetric 
Yang–Mills theory, these counterterms are absent.

The new perspective allows us to replace the original proof of the loop-level double copy 
based on unitarity methods [12] by the result that the CK-dual Yang–Mills BRST action itself 
manifestly double copies into a consistent, (perturbatively) quantizable gravitational BRST ac-
tion. Given the tree-level double copy, which is implied by the arguments of [12], this provides a 
direct proof that the double copy prescription for amplitudes holds to all loop orders.

Our action-focused interpretation opens up the path to a homotopy algebraic formulation of 
CK duality, parts of which were already visible in [11,15]. From this vantage point, CK duality 
fails only up to homotopy for a generic representation of the amplitudes. It is rather evident that 
this homotopy algebraic interpretation will not only provide an explanation of the origins of CK 
duality and the double copy, linking both to string theory, but it is hoped that it will lead to 
improvements in the efficiency of the computation of scattering amplitudes based on homotopy 
algebraic techniques.

This paper is organized as follows:

� Section 2 provides an outline of our constructions;
� Section 3 reviews some core concepts of quantum field theory used in this paper;
� Section 4 works out the case of the non-linear sigma model for a semi-simple compact Lie 

group, where the complications of higher spin are absent;
� Section 5 details the algorithm to manifest CK duality for a gauge theory, using Yang–Mills 

theory as an example, and Section 5.6 discusses the inclusion of adjoint-valued fermions, 
which requires supersymmetry;

� Section 6 introduces the generic syngamy of actions;
� The double copy of the non-linear sigma model action with manifest CK duality given in 

Section 4.5 yields the special galileon action, as described in Section 6.2;
� The double copy of the pure Yang–Mills action with manifest CK duality given in Section 5.5

yields N = 0 supergravity, as described in Section 6.3.
� In Section 6.4 the double copy of maximally supersymmetric Yang–Mills theory in d =

10 space–time dimensions is given as an example, and it is shown in Section 6.5 that the 
resulting double-copied action naturally yields a generalization of Sen’s mechanism [18] in 
the Ramond–Ramond sector;

� Finally, in Section 7 we present our conclusions and give an outlook to future work.

We have intentionally kept our presentation self-contained; no further background in quantum 
field theory is required than that provided by a standard textbook, e.g. [19].

2. Outline of our constructions

Color–kinematics duality, as usually formulated, deals with factoring out color and kinematic 
components, i.e. whole strings of structure constants, momenta, and polarizations, rather than 
dealing with just the color Lie bracket and the kinematic analogue thereof. This is natural if one 
is concerned purely with scattering amplitudes. If one rather works with actions, however, one 
can benefit from the ordering principle this provides for the amplitudes and the corresponding 
CK duality relations. In particular, the action of a fully CK-dual theory can be manipulated into 
a form resembling that of biadjoint scalar theory,
4
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SYM
BRST, CK-dual = 1

2 gijḡāb̄Aiā�Ajb̄ + 1
3! f̄āb̄c̄fijkAiāAjb̄Akc̄ , (2.1)

where the only generalization is that the fijk are allowed to be differential operators which, just as 
the color structure constants f̄āb̄c̄, are totally anti-symmetric and satisfy the Jacobi identity. Put 
differently, the fijk are the structure constants of a kinematic Lie algebra.

Once one has cast the action into the form (2.1) for all fields, including potential ghosts and 
other Becchi–Rouet–Stora–Tyutin (BRST) fields, it automatically implies a very strong form 
of CK duality: the integrand corresponding to any correlator at any loop level is CK-dual. We 
stress already here, that the required manipulations of the action involve field redefinitions that 
may induce Jacobian contributions in the path integral measure which we do not include in the 
integrands, as we will discuss further below.

From any two such parent theories, we can produce an offspring or syngamy2 by combining 
one type of structure constants of each parent theory into a new theory. The most prominent 
offspring of two parent BRST Yang–Mills actions cast in the form (2.1) is certainly the case in 
which the syngamy carries both kinematic structure constants from its parents, usually known as 
the double copy,

SDC
BRST, CK-dual = 1

2 gikgjlHij�Hkl + 1
3! fijkflmnHilHjmHkn . (2.2)

With some mild additional assumptions, a syngamy automatically comes with a consistent BRST 
operator, and in particular the theory (2.2) is indeed quantum equivalent to Einstein gravity 
coupled to a massless 2-form gauge field and a dilaton.3 Although there is no supersymmetry 
involved, this theory is oxymoronically sometimes called N = 0 supergravity, due to the fact 
that it is the common bosonic sector of the type IIA and type IIB supergravity theories in ten 
dimensions.

In this form, the double copy of the BRST symmetry and other symmetries (that do not ex-
plicitly depend on the space–time coordinates) is transparent. In particular, the diffeomorphisms 
underpinning general relativity are seen to be a consequence of the gauge symmetries of the 
parent Yang–Mills theories, cf. Section 6.1.

The very existence of the action (2.1) for Yang–Mills theory implies the usual scattering 
amplitude-theoretic CK duality and double copy conjectures to all loop orders (up to countert-
erms, as discussed below):

(i) construct all Feynman diagrams using (2.1) for a desired n-point, L-loop scattering ampli-
tude, which are all cubic;

(ii) compute the loop integrand corresponding to each Feynman diagram;
(iii) group the diagrams according to their cubic graph topology.

This yields kinematic numerators compliant with CK duality for (on-shell) tree and loop di-
agrams as well as (off-shell) tree and loop correlators and hence suitable for double copy. 
Our numerators will be formulated up to shifts in loop momenta, and the ‘labeling problem’, 
cf. e.g. [20], will turn out to be irrelevant for our considerations.

2 There is a clear analogy with the meiotic reproduction of cells with diploid chromosome sets.
3 To be precise, we claim that the action (2.1) can be supplemented by a suitable choice of regularization scheme and 

set of counterterms to produce an S-matrix equivalent to that of Yang–Mills theory and that, for any suitable choice 
of regularization scheme and set of counterterms for N = 0 supergravity, one can construct a corresponding set of 
counterterms for (2.2) such that the two theories produce equivalent S-matrices; cf. also the more extensive discussion in 
Section 3.5.
5
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The ordinary BV Yang–Mills action can be manipulated into the semi-classically equivalent 
form (2.1) as follows. We assume that CK duality holds for physical on-shell tree-level scattering 
amplitudes and bootstrap our way to the desired form of the action using a very well worn 
set of tools: adding terms that sum to zero, tweaking choices of gauge, redefining fields, and 
introducing auxiliary fields. More explicitly:

(i) Violations of tree-level CK duality for on-shell physical gluons are repaired by adding sets 
of terms that sum to zero due to the color Jacobi identity, but which have the effect of chang-
ing the partition of the scattering amplitude given by the Feynman diagrams. In this step, 
contributions to the scattering amplitude are shuffled around between different Feynman 
diagrams, while leaving the total scattering amplitude invariant.

(ii) Violations of tree-level CK duality for scattering amplitudes with non-transverse modes of 
gauge fields on external legs are repaired by a choice of gauge that cancels them. By Ward 
identities, this also repairs tree-level CK duality violations for scattering amplitudes with 
Faddeev–Popov ghosts and anti-ghosts on external legs. In this step, the unphysical tree-
level scattering amplitudes, being gauge-dependent, are changed by adding new kinds of 
Feynman vertices.

(iii) Violations of tree-level CK duality due to off-shell momenta are repaired by a choice of 
possibly non-local field redefinitions (change of local coordinates in the space of fields). 
Violations of tree-level CK duality due to unphysically polarized fermions are also repaired 
by possibly non-local field redefinitions. In this step, tree-level scattering amplitudes do not 
change, but the loop integrands (and, thus, the corresponding counterterms) may change.

(iv) Finally, the action can be tidied up to make the Feynman diagrams coincide literally with 
cubic graphs by suitably introducing auxiliary fields, a procedure that we call strictifica-
tion, borrowing a term from homotopical algebra. This step does not change any scattering 
amplitudes, loop integrands, or partition of the scattering amplitude, and is merely cosmetic.

3. Quantum field theoretic preliminaries

In the following, we briefly review CK duality as well as the double copy construc-
tion [1,21,12]. We then continue with collecting a number of more general quantum field the-
oretic observations4 that we will use in our arguments in later sections.

Note that we will always make the usual distinction between scattering amplitudes, corre-
sponding to sums of amputated Feynman diagrams with physical states on external legs, and 
correlators, corresponding to sums of general Feynman diagrams with possibly off-shell mo-
menta. Physical states are on shell, i.e. they have light-like momenta with non-negative energies 
in the massless theories in which we are mostly interested, and, if they transform non-trivially 
under the Lorentz group, they are further restricted in their polarization or chirality.

We will always have an action principle and a path integral measure in mind when speaking 
of correlators and scattering amplitudes. The homotopy algebraic point of view on quantum field 
theory unifies scattering amplitudes and actions, cf. [22,23,15], but we refrain from using this 
language here bar some minor remarks.

4 Which are “theorems,” satisfying the usual standard of rigor in theoretical physics.
6
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3.1. Color–kinematics duality

The perturbative tree-level scattering amplitudes of Yang–Mills theory allow for a parameter-
ization in terms of Feynman diagrams with exclusively cubic (or trivalent) vertices, which each 
carry a factor of the structure constants of the color or gauge Lie algebra as well as a kinematic 
factor. Furthermore, this parameterization can be chosen such that the symmetry properties of 
the Lie algebra structure constants match those of the kinematic factors [1,21]. This is known as 
color–kinematics (CK) duality or Bern–Carrasco–Johansson (BCJ) duality.

In more detail, we can parameterize the loop integrand of n-point L-loop scattering amplitudes 
of Yang–Mills theory as

An,L = (−i)n−3+3Lgn−2+2L
∑

i∈�n,L

∫ (
L∏

l=1

ddpl

(2π)d

)
cini

Sidi

, (3.1)

where i := √−1, g is the Yang–Mills coupling constant, and �n,L is the set of cubic graphs5 with 
n labeled external lines. The denominators di are given by products of the Feynman–’t Hooft 
propagators, i.e. products of factors 1

p2
l

where pl is the momentum flowing through the internal 

line l. The ci are the color numerators or color factors, consisting of contractions of the gauge 
Lie algebra structure constants and the Killing form according to the structure of the tree i ∈ T . 
The kinematic factors ni are sums of Lorentz-invariant contractions of external momenta, the 
Minkowski metric, and the polarization vectors labeling the external scattering states.

Note that the color numerators ci and propagator denominators di are determined uniquely by 
the topology of the diagram i ∈ �n,L alone, while the kinematic numerators ni are non-unique. 
It is this non-uniqueness that makes CK duality possible.

It will be convenient to absorb coupling constants and powers of i into the color and kinematic 
factors. Anticipating the double copy, we define6

či =
(

g

√
2
κi

)n−2+2L

ci and ňi =
(√

κ
2i

)n−2+2L

ni , (3.2)

where κ := 4
√

2πG is Einstein’s gravitational constant. After the rescaling, či and ňi have the 
same mass dimensions, and we can write

An,L = i
∑

i∈�n,L

∫ (
L∏

l=1

ddpl

(2π)d i

)
či ňi

Sidi

. (3.3)

The parameterization (3.3) and the corresponding kinematic numerators are evidently not 
unique. CK duality is the existence of a choice7 such that [1,21]

(i) whenever anti-symmetry of the gauge Lie algebra structure constants or invariance of the 
Killing form imply that ci + cj = 0 for two graphs i, j ∈ �n,L, then ni + nj = 0;

(ii) whenever the Jacobi identity of the gauge Lie algebra implies that ci +cj +ck = 0 for graphs 
i, j, k ∈ �n,L, then ni + nj + nk = 0.

5 I.e. graphs with vertices that all have degree three.
6 This redefinition of coupling constant is merely a bookkeeping trick. When renormalizing, the explicit coupling 

constants must be reintroduced by dimensional analysis.
7 Which is non-unique.
7
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This has been shown to hold in the case of Yang–Mills theory tree amplitudes (i.e. L = 0) from 
a number of different perspectives [4–11]; see also [24,25] and references therein for other ap-
proaches and generalizations to a growing set of diverse gauge theories. There is, however, also 
evidence that CK duality must be generalized in order for it to extend to the loop level, see 
e.g. [16].

It is now an obvious conjecture that CK duality should extend to the full quantum or loop level, 
i.e. L > 0, and much evidence supporting this conjecture has been collected, see e.g. [2,3,26–31]
as well as the reviews [24,25].

In the reparameterization (3.1), we have ignored any considerations regarding regularization 
and renormalization and merely consider the loop integrands. We note that loop integrands them-
selves are certainly neither observable nor canonically extractable from the S-matrix; we will 
therefore discuss their definition in some detail later.

By cutting open an n-point, L-loop Feynman diagram to a connected (n + 2L)-point tree 
diagram with arbitrary operators on external legs,8 we can simplify the CK duality conjecture.

Observation 3.1. The loop diagrams � appearing in An,L are glued together from (off-shell) tree 
diagrams, and if we can establish off-shell CK duality at the level of tree diagrams or correlators, 
then it will automatically hold at the loop level.

This is easily seen from the actual Feynman diagrams. If we have a triple of tree diagrams 
whose color numerators sum to zero due to the Jacobi identity, then their color numerators have 
to agree except for a factor quadratic in the structure constants of the color Lie algebra. Recall 
that the three color numerators fully determine the three diagrams. It follows that the latter agree 
up to a common four-point subregion, where we have the three subdiagrams

(3.4)

If we now glue these together in the same way to form loop diagrams that differ again only in 
these three subdiagrams, then the corresponding sum of loop diagrams vanishes as well. Since 
all loop diagrams are glued together from tree diagrams, the observation is evident (up to the 
above mentioned labeling problem, which does not affect our discussion).

Observation 3.1 allows us to lift the discussion to the level of Lagrangians, as we had done 
previously in the context of what we called the BRST–Lagrangian double copy [14,15]. More 
precisely, our formulation of CK duality will be the following: there is a renormalizable La-
grangian containing a Yang–Mills gauge potential as well as other fields, such that the scattering 
amplitudes between asymptotic states labeling gauge potentials are those of Yang–Mills theory 
and such that the implied Feynman diagram expansion manifests CK duality at the full quantum 
level. Note that this Feynman diagram expansion neglects possible counterterms. These coun-
terterms may break CK duality, which may be anomalous in this sense.

CK duality has a number of generalizations, such as the flavor–kinematics duality exhibited 
by the non-linear sigma model discussed in Section 4; in the following, we will use the term 
color–kinematics duality to capture all of these.

8 Not to be confused with cutting apart a loop diagram into multiple tree diagrams.
8
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3.2. Master numerators at the tree level

For later purposes, let us develop the decomposition of the tree-level scattering amplitudes in 
more detail, cf. also the longer discussion in [15]. Given a general theory with CK-dual ampli-
tudes, we can trivially write the n-point tree amplitude in the form

An,0 = cTDn with Dij = δij

dj

, (3.5)

where we arranged the color and kinematic numerators ci and ni into column vectors c and n. We 
note that there are (2n − 5)!! different cubic trees at n points. Because of the color and kinematic 
Jacobi identities, however, only (n − 2)! of these are linearly independent. We can choose a basis 
cm of the color numerators, which we call master numerators, and we denote the corresponding 
kinematic numerators by nm. Thus,

c = Jcm and n = Jnm , (3.6)

where J is a (2n − 5)!! × (n − 2)!-dimensional matrix capturing the linear dependence of the 
various numerators.

At four points, for example, there are (8 − 5)!! = 3 distinct cubic trees, corresponding to the 
s-, t-, and u-channels, as depicted in (3.4). The color numerators of these are linearly dependent, 
as cs = ct + cu. We can choose a basis of (4 − 2)! = 2 master numerators, for example ct and cu. 
In this basis, the matrix J reads as

J =
⎛
⎝1 1

1 0
0 1

⎞
⎠ . (3.7)

In order to use Observation 3.1 in our later discussion, we need to continue the tree-level 
scattering amplitudes An,0 to tree-level amputated correlators, which have external legs of ar-
bitrary momentum, polarization (or chirality), and ghost number. The choice of relaxation to 
include off-shell and unphysical external states is essentially arbitrary, but it is helpful to think of 
the concrete realization given by simply computing the amplitude with the amputated Feynman 
diagrams of the theory, where one does not impose any constraints on the external states and 
momenta. This yields the amputated correlators ˆAn,0 canonically associated to the underlying 
action.

Another example, which will be crucial for our discussion later, is the following. Consider 
a generic continuation of the master numerators nm beyond the asymptotic states, allowing 
off-shell momenta, unphysical polarization/chirality, and Faddeev–Popov ghost states. We will 
denote the thus extended master numerators by n̂m, and choose the complete set of numerators 
to be given by

n̂ = J n̂m . (3.8)

If we contract these extended numerators with the color factors, we obtain the amputated corre-
lators satisfying CK duality

ˆA ′
n,0 =

[
c(n)TD(n)n̂(n)

]
σ

, (3.9)

where σ denotes symmetrization over all external legs.
9
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3.3. Double copy of scattering amplitudes

Color–kinematics duality is the crucial ingredient in the amplitudes realization of the fact that 
gravity = gauge ⊗ gauge, known as the double copy. Consider again the L-loop, n-gluons Yang–
Mills scattering amplitude in the parameterization (3.3). If CK duality holds, then we can replace 
the color factors ci in (3.3) with a second copy of the kinematic factor ni to obtain the N = 0
supergravity scattering amplitude [1,21,12],

Hn,L = (−i)n−3+3L
(κ

2

)n−2+2L ∑
i∈�n,L

∫ (
L∏

l=1

ddpl

(2π)d

)
nini

Sidi

= i
∑

i∈�n,L

∫ (
L∏

l=1

ddpl

(2π)d i

)
ňi ňi

Sidi

,

(3.10)

where ňi is defined in (3.2). At the tree level, this is equivalent to the field theory limit of the 
famous Kawai–Lewellen–Tye (KLT) relations [32], which relate the scattering amplitudes of 
open string theory (whose field theory limit contains Yang–Mills theory) to those of closed string 
theory (whose field theory limit contains gravity). It has recently been shown in [33] that by 
bootstrapping the KLT relations [32] the tree-level double copy can be generalized, e.g. to include 
higher derivative operators. However, (3.10) is an all-loop statement: one of the most startling 
consequences of full CK duality is the validity of the double copy prescription to all perturbative 
orders. This has been shown using the unitarity method in [12]. Essentially, CK duality of loop 
diagrams implies CK duality of the sub-diagrams of the unitarity cuts, allowing one to reduce 
the validity of loop double copy to the validity of the tree double copy.

It is natural to think that the presented on-shell, scattering amplitudes-based picture of the 
paradigm gravity = gauge ⊗ gauge can be lifted to a field-theoretic or action-based descrip-
tion [34,12,35–48]. It was argued in [37,44,45] that the complete BRST complex – i.e. the gluon 
field Aμ, the Nakanishi–Lautrup field b for gauge-fixing, and the corresponding Faddeev–Popov 
ghosts c, c̄ – should be considered when formulating a field-theoretic double copy; using this, it 
was shown explicitly that the BRST Einstein–Hilbert action to cubic order follows [47].

In [14], we proposed the realization of a double-copied Yang–Mills action and BRST operator 
valid to all orders in perturbation theory, a construction naturally interpreted in terms of factor-
izations of homotopy algebras [15]. We refer to this general construction as BRST–Lagrangian 
double copy. Following this off-shell approach, and generalizing tree-level CK duality to the 
BRST-extended field space, we were able to show that the double-copied theory was a per-
turbative description of N = 0 supergravity to all loop orders, bypassing the need of perfect CK 
duality. However, some technical difficulties of that proof came from the possibility of a violation 
of perfect off-shell CK duality. Having established CK duality for the BRST action Section 5, 
the validity of loop-level double copy becomes a manifest property of the BRST–Lagrangian 
double copy, as discussed in Section 6. In this regard, the shift in interpretation of CK duality to 
a property of the BRST action renders the consistency of the double copy theory plain to see.

Just as in the case of CK duality, there is an evident generalization of the double copy to the 
case of general theories with some extended notion of CK duality, which we call syngamies; we 
will discuss these in Section 6.1.
10
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3.4. Equivalence of field theories

As is already clear from the discussion in Section 3.1, any lift of CK duality from tree-level 
diagrams to loop-level integrands will imply a reparameterization of the field theory scattering 
amplitudes, and we have to identify reparameterizations that link physically equivalent field the-
ories. Before this, let us set up our discussion by introducing some precise nomenclature.

First of all, we restrict our discussion to the perturbative situation. That is, we restrict our 
attention to perturbatively computed scattering amplitudes (or, at most, correlators that can be 
computed perturbatively by Feynman diagrams) at zero temperature, ignoring non-perturbative 
issues such as Wilson loops, black holes, confinement, phases, etc.; our fields take values in 
vector spaces, and all expressions, such as classical solutions, scattering amplitudes and corre-
lators, are formal power series in the coupling constants. Homotopy algebraically, our classical 
field theories correspond to cyclic L∞-algebras, and we can use the homological perturbation 
lemma to compute the scattering amplitudes, cf. e.g. [15,23]. This perspective suffices for our 
purposes, as we are merely interested in n-point, L-loop scattering amplitudes for finite n and L
in this paper. It allows us to truncate accordingly any perturbative power series in the fields, and, 
e.g., to neglect higher-order terms in the action. We can thus ignore many questions regarding 
convergence.

There are three notions of equivalence commonly found in the literature. First, if two actions 
have isomorphic solution spaces, then they are often called classically equivalent. While this 
notion of equivalence can be useful for the generation or reparameterization of classical solutions, 
it is fairly coarse. For example, the solution spaces of both the free Klein–Gordon equation and 
the equation with polynomial potential over Minkowski space are isomorphic to boundary data 
on a Cauchy surface and therefore isomorphic.

Second, there is the notion of semi-classical equivalence, where we have a similarity transfor-
mation between the tree-level S-matrices of two theories. In other words, the tree-level scattering 
amplitudes of the theories agree up to a reparameterization of the external states. From the 
discussion in [49], it follows that this is equivalent to an isomorphism between the classical 
solution spaces of both theories with arbitrary non-vanishing external sources. In the homotopy 
algebraic formulation of field theories, cf. e.g. [23,15], semi-classical equivalence implies that 
both theories have cyclic L∞-algebras that are related by a quasi-isomorphism. Mathematically, 
this is a very clear and natural notion of equivalence. Semi-classical equivalence implies classi-
cal equivalence, at least perturbatively. We can further distinguish between strict semi-classical 
equivalence, where the field spaces of both theories are isomorphic, and weak semi-classical 
equivalence, where the field spaces are not isomorphic, but auxiliary fields may have been intro-
duced or integrated out.

For our discussion, a suitable notion of quantum equivalence will be important. By taking 
the limit h̄ → 0, we can obtain a unique classical field theory from a perturbative quantum field 
theory; however, the reverse statement fails to hold. Quantization is not a unique process, but in-
volves several choices such as the space of admissible fluctuations and its path integral measure. 
To render this measure well-defined, we usually have to choose additionally a regularization and 
renormalization procedure. Given a strict semi-classical equivalence between two theories, it is 
reasonably clear that a choice of quantization can be translated from one theory to the other, 
leading to S-matrices related by a similarity transform. For weakly semi-classically equivalent 
theories, one can always introduce trivial pairs, i.e. physically irrelevant extra fields, such that 
the equivalence is enhanced to a strict semi-classical equivalence. This is essentially the decom-
position theorem for L∞-algebras, cf. e.g. [23,15]. Finally, we sometimes want to regard our 
11
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S-matrix as the restriction of the S-matrix of a larger theory, in which we regard certain fields 
merely as auxiliary and not appearing on external legs of Feynman diagrams. In such a case, we 
must ensure that the restriction is compatible with unitarity and all the symmetries we want to 
preserve. This may be familiar from the BRST gauge-fixing procedure, where the unitarity of the 
full S-matrix together with the BRST symmetry guarantee that the restricted S-matrix is indeed 
unitary.

We thus conclude that for our purposes, the relevant notion of equivalence is always (pertur-
bative) semi-classical equivalence, either in its strict or its weak form, because semi-classical 
theories admit quantizations leading to S-matrices related by a similarity transformation.

3.5. Field redefinitions and the S-matrix

Perturbatively, an S-matrix S is a formal power series in h̄,

S = S0 + h̄S1 + h̄2S2 + · · · , (3.11)

and we recover a classical or tree-level S-matrix by taking the limit h̄ → 0 for the classes of the-
ories that we consider.9 If two field theories are semi-classically equivalent, then their tree-level 
S-matrices are linked by a similarity transformation. Such a similarity transformation amounts 
to a coordinate change on the space of external states. If the theories are strictly semi-classically 
equivalent, and their full field spaces are isomorphic, then this coordinate change induces a (per-
turbatively invertible) field redefinition.

At the quantum level, the infinities arising from loop integrals require regularization and 
renormalization, which make the situation more involved. As remarked above, a classical field 
theory corresponds to a family of quantum field theories, which differ in terms that are at least 
first order in h̄. We will denote any such terms as counterterms, irrespective of their roles in 
the quantization of the field theory. Clearly, some choices of counterterms will lead to the same 
S-matrix, while other choices will yield discrepancies proportional to positive powers of h̄.

Generally, counterterms can restore or break unitarity (often due to a broken gauge symme-
try) as well as desirable symmetries such as global symmetry or supersymmetry. If unitarity is 
broken, we usually regard the theory and the resulting S-matrix as pathological. We note that 
as usual in the context of CK duality and the double copy, we will merely be interested in the 
integrands of loop diagrams. Up to renormalizability and consistency of our field theory, we can 
therefore safely ignore all questions about regularization and renormalization. As we will explain 
in Section 3.9, ignoring the counterterms is harmless for most purposes.

Despite these complications, the equivalence theorem of quantum field theory still allows us 
to consider very general field redefinitions. Consider an action functional S[φ] depending on 
some general field φI with I a DeWitt index.10 The generating functional reads as

Z[J ] =
∫

Dφ μ(φ) e
i
h̄
(S[φ]+JI φI )

, (3.12)

9 In general, there are subtleties when comparing the h̄ expansion (whose leading order is the classical limit) with the 
loop counting (whose leading order is the tree level), cf. e.g. [50–52] and e.g. [53]. The class of theories that we consider, 
however, are massless theories where every n-ary vertex comes with (n − 2)th power of a coupling constant. Under 
these assumptions, in the perturbative regime (hence ignoring bound states, confinement, etc.) on a flat trivial classical 
background, these subtleties evaporate.
10 Recall that DeWitt indices bundle the space–time coordinate x (or, after a Fourier transform, momentum) and all 
other required indices for field species, Poincaré representations, global and local symmetry representations, etc., as one 
might in a condensed-matter context.
12
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where μ(φ) is the measure arising from the Hamiltonian form of the path integral, cf. [54, Sec-
tion 9.3]. In the case of theories with canonical kinematic terms, the measure μ(φ) is simply a 
constant that is absorbed in the normalization of Z[0], and thus it can be dropped. Furthermore, 
after a field redefinition φ = F(φ̃), we obtain the action S[φ] = S[F(φ̃)] with a corresponding 
generating functional

Z̃[J ] =
∫

Dφ̃ μ̃(φ̃) e
i
h̄
(S[F(φ̃)]+JI φ̃I ) (3.13a)

with

μ̃(φ̃) = μ(φ)det

(
δF (φ̃)

δφ

)
. (3.13b)

We note that this is almost the generating functional Z[J ] after the coordinate change φI =
FI (φ̃) except for a discrepancy in the source terms: we have JI φ̃

I in (3.13), but the coordinate 
change on (3.12) produces JIF

I (φ̃). As far as the S-matrix is concerned, however, this discrep-
ancy is irrelevant because we have to apply the Lehmann–Symanzik–Zimmermann reduction 
formula [55], and both φ̃I and F(φ̃I ) are valid interpolating fields,11 cf. e.g. the discussion 
in [56, Section 5]. More explicitly, the S-matrix is obtained as a time-ordered exponential of 
derivatives of Z[J ] with respect to J at J = 0, cf. e.g. [57, Section 9.2]. Since Z[0] = Z̃[0], 
it follows that the S-matrix only changes up to a possible wave function renormalization. The 
correlators, on the other hand, are not protected by this argument.12

Let us therefore consider the effect of field redefinitions on correlators more carefully. We will 
be interested in field redefinitions of the form

FI (φ̃) = φ̃I + g GI (φ̃) , (3.14)

where GI is analytic in the coupling constant g, such that all positive powers of g are treated as 
interaction terms in perturbation theory.

For local GI that depend analytically on the field φI and its derivatives, the situation is uncon-
troversial. One can use the usual Faddeev–Popov trick and exponentiate the determinant arising 
from the field redefinition as a functional integral over ghost fields,

det

(
1 + g

δG

δφ

)
=
∫

Dc̄Dc e
i
h̄

(
c̄I cI +gc̄I

δGI

δφJ cJ
)

. (3.15)

The propagator between the ghosts is the identity, and the interaction vertex is a polynomial in 
the momenta by locality. The ghost loops then vanish in dimensional regularization [59], see also 
the discussion in [60, Section 2].

For our discussion, however, we need field redefinitions of the form (3.14) with non-local 
functionals GI . Specifically, GI may contain factors

1

�O(x) =
∫

ddy �(x − y)O(y) (3.16a)

with

��(x − y) = δ(d)(x − y) , (3.16b)

11 I.e. interpolating between the free and the interacting regimes.
12 We note that there is a more general approach [58] towards the coupling JI φI that fixes also this difference.
13
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where O(x) is an expression local in the fields. We can still re-exponentiate the determinant 
arising from the field redefinition as in (3.15), but now we expect in general a non-vanishing 
contribution. This contribution will be proportional to a positive power of h̄, which clearly iden-
tifies it as a non-local counterterm that will have to be added to the naively field-redefined action.

The non-local nature of this counterterm is certainly unusual: it is incompatible with multi-
plicative renormalization, where we expect counterterms to be of the same forms as the terms 
in the bare Lagrangian. In the additive or Bogoliubov–Parasiuk–Hepp–Zimmermann renormal-
ization scheme, however, this is not an issue. Moreover, such non-local terms are familiar from 
quantizing gauge theories in axial gauges such as the light-cone gauge. The problem with non-
local terms is that they may destroy locality and unitarity (by introducing unphysical poles) of 
the S-matrix. In the case at hand, however, we already know that the quantum field theory is lo-
cal, unitary, gauge invariant, and renormalizable in a different parameterization. These properties 
then translate in an evident way via the field redefinition, provided we add the non-local countert-
erm arising from the additional ghost loops.13 Comparing the renormalization before and after 
the field redefinition, we have the same set of counterterms related by a field redefinition up to 
the additional non-local counterterms arising from the Jacobian determinants.

One may worry that the non-local field redefinition, while preserving renormalizability and 
unitary, somehow does not lead to a quantum equivalent theory. In [59, Section 10.4], it is shown 
diagrammatically14 that the insertion of the ghost terms cancels the additional contributions aris-
ing from the field redefinition and that quantum equivalence indeed persists.

Observation 3.2. Non-local field redefinitions lead to physically equivalent field theories, which 
will require the addition of non-local counterterms to the renormalized action. These countert-
erms, however, neither lead to anomalies nor affect the renormalizability of the theory.

This observation is essentially self-evident from our discussion in Section 3.4: field theories 
that are related by general field redefinitions are certainly semi-classically equivalent, and there-
fore they admit a choice of quantization such that their S-matrices agree.

Besides field redefinitions, we could also introduce or integrate out auxiliary fields in order 
to produce equivalent actions. A specialization of this transformation will be the subject of the 
following section.

3.6. Strictification

A standard technique in the theory of scattering amplitudes arises from the following obser-
vation.

Observation 3.3. Any field theory can be reformulated such that all interaction vertices are 
cubic.

Abstractly, this is a corollary, cf. [15] for details, of the strictification theorem for homotopy 
algebras [62,63]. More concretely, we can blow up interaction vertices by inserting auxiliary 

13 An interesting example in this context for the opposite phenomenon is the curing of the gauge anomaly in axial 
quantum electrodynamics by a non-local counterterm [61]. This counterterm then violates unitarity.
14 That is, purely combinatorially, without assuming the existence of a well-defined path integral.
14
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fields, as we shall show in the following. See also [12] for an example in the context of the 
double copy.

In many situations, fields carry internal labels that are connected at interaction vertices by sets 
of cubic structure constants. This is certainly the case for Yang–Mills theory coupled to matter, 
where the structure constants are those of a Lie algebra or those of a Lie algebra action on a 
particular representation. This internal structure then automatically induces a preferred way of 
blowing up a vertex. For example,

fab
f ff cg fde

gAaBbCcDdEe (3.17a)

for some structure constants fab
c and fields A, . . . , E is pictorially represented as

A E

B C D

(3.17b)

For each internal line i in each blown up interaction vertex, we then introduce a pair (Gi, Ḡi)

of auxiliary fields, resulting in a Lagrangian with exclusively cubic interaction vertices. In the 
above case, for example, we would use

Ḡ1aG
a
1 + Ḡ2aG

a
2 + fab

f AaBbḠ1f + ff cgG
f

1 CcG
g

2 + fde
gḠ2gD

dEe . (3.18)

Because such a strictification is undone by integrating out the auxiliary fields that appear purely 
algebraically and at most quadratically, strictification produces a quantum equivalent field theory 
in which all scattering amplitudes agree.

For our purposes, we will also need to strictify non-local actions of the form

EM
1

1

�E2
M , (3.19)

where E1 and E2 are polynomials in fields and their derivatives and M is some multi-index. This 
can be done by introducing auxiliary fields as follows:

−GM�ḠM + GME2
M + EM

1 ḠM . (3.20)

Because the strictified theory is weakly semi-classically equivalent to the original theory, quan-
tum equivalence of both theories is immediate. Explicitly, it is clear from the perturbative expan-
sion in terms of Feynman diagrams that there are no new loops formed by auxiliary fields; this is 
discussed in some more detail in [15].

When strictifying a full Batalin–Vilkovisky (BV) action, one must take into account the gauge 
transformations of the auxiliary fields. These are deduced from their on-shell gauge transforma-
tions, and the results are expressions that are cubic and higher in the fields. As a consequence, 
the BV action cannot be fully strictified for the auxiliary fields by simply blowing up vertices. 
Fortunately, this is also not needed for our argument. We note, however, that one can use the full 
machinery of homotopy algebras, leading to an enlargement of the field space to the loops on 
this field space. For further details, see [15].

We can thus rewrite any field theory in the form

S[	] = 1 GIJ 	I	J + 1 FIJK	I	J 	K , (3.21)
2 3!
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where I, J are DeWitt indices encoding all field labels, including particle species and position. 
The structure constants GIJ and FIJK encode the free action and the interaction terms, respec-
tively. As usual, we perform all summations and integrations over repeated indices.

3.7. Actions with manifest color–kinematics duality

First, let us make the following observation:

Observation 3.4. Given a field theory with CK-dual tree-level scattering amplitudes, we can 
always find a corresponding action whose Feynman diagrams yield a CK-dual parameterization 
of the tree-level scattering amplitudes.

For Yang–Mills theory, this observation was already made in [21], and in [13] a general al-
gorithm for the construction of the relevant action (with an implicit reparameterization of n-ary 
interaction vertices in terms of cubic vertices) was given. In the case of a generic CK-dual theory, 
we can construct the desired action using the following straightforward algorithm:

(i) Consider a perturbative quantum field theory given by an action principle S and tree-level 
scattering amplitudes that permit a CK-dual parameterization; choose one such parameter-
ization. The fields will have some internal labels (e.g. color or flavor labels), and there will 
be a set of structure constants in interaction terms. We explicitly allow terms in S that van-
ish once algebraic relations for these structure constants (e.g. anti-symmetry and the Jacobi 
identity of the Lie algebra structure constants as well as symmetry and invariance of the 
metric) are taken into account. Set S3 = S, where Sn denotes the action with CK duality 
manifest up to n points. Now proceed with the algorithm starting at n = 4.

(ii) The n-point tree Feynman diagrams produced by Sn−1 naturally partition the n-point tree 
scattering amplitude into pieces corresponding to different pole structures produced by 
propagators corresponding to internal edges. Compare these partitions to the CK-dual pa-
rameterization of the n-point scattering amplitudes. The sum of the differences must vanish, 
as the tree-level scattering amplitudes must agree.

(iii) Add the (vanishing) sum of the differences to the action Sn−1 as an n-point vertex, pro-
ducing the action Sn. The m-point tree Feynman diagrams produced by Sn then agree with 
those in the CK-dual parameterization of the m-point scattering amplitudes for all m � n.

(iv) If we have reached the maximal order that is of relevance for the scattering amplitudes we 
are interested in, halt. Otherwise, increment n, and go back to (ii).

We note that the form of the action Sn automatically comes with a preferred choice of strictifi-
cation, which we can readily perform. The Feynman diagrams of the strictified action are then 
literally the cubic trees of the CK-dual parameterization of the scattering amplitudes with each 
cubic vertex and interaction vertex.

We will only ever be interested in n-point, L-loop scattering amplitudes for finite n and L, 
allowing us to ignore interaction vertices beyond order n + 2L. For our purposes, the above 
algorithm thus completes after finitely many steps.

Using the above algorithm, we can specialize our Observation 3.4 a bit further:

Observation 3.5. Given a field theory with a CK-dual parameterization of all its tree-level scat-
tering amplitudes and an action whose Feynman diagrams produce this parameterization up to 
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n points, we can add vanishing terms to this action such that the Feynman diagrams produce this 
parameterization up to n + 1 points.

We will present the lowest order terms arising from our algorithm for the case of Yang–Mills 
theory in Section 5.5.

3.8. Loop integrands

As mentioned in the discussion of CK duality in Section 3.1, the notion of loop integrand is 
unphysical and not uniquely defined. Let us therefore briefly consider how they arise and what 
the implications of quantum equivalence are.

Given a particular action, we can evidently read off the corresponding Feynman rules and 
produce the expressions corresponding to Feynman diagrams involving loops. Working in mo-
mentum space, we will encounter a momentum integral for each individual loop, and the loop 
integrands will be rational functions with poles at the locations of propagators.

Performing a field redefinition, however, the loop integrands will change. The question

Question 3.6. Do the loop integrands of a theory satisfy CK duality?

Should therefore be replaced by the refinement

Question 3.7. Is there a formulation of the theory such that the resulting loop integrands satisfy 
CK duality?

The need for this refinement should not be surprising and is similar to the fact that there 
are many ways of strictifying, i.e. rewriting the action in terms of exclusively cubic interaction 
vertices, even though most of these will not produce manifestly CK-dual parameterizations of 
the tree-level scattering amplitudes.

Concretely, we note again that the fundamental physical object of a perturbative field theory 
is the S-matrix S . We assume that we are given the expansion of the S-matrix in powers of h̄
as in (3.11) so that we can extract a classical limit, implying a family of actions belonging to 
semi-classically equivalent field theories. From our discussion in Section 3.4 it is then clear that, 
for these actions, there are choices of quantization that recover the full, original S-matrix S . We 
can thus reword Question 3.7 more precisely:

Question 3.8. Given the S-matrix S of a theory, is there a renormalizable classical action that 
reproduces the classical limit S0, possibly as a restriction of its full tree-level S-matrix, and 
that allows for a quantization such that the resulting loop-level scattering amplitude integrands 
satisfy CK duality?

Starting from a concrete action that leads to the S-matrix S , this question merely amounts to 
a parameterization of the field space in the vicinity of the vacuum which we use for quantization. 
This parameterization or coordinatization is evidently not unique – different parameterizations 
are linked by field redefinitions or coordinate changes – and we end up with the following further 
specialization:
17
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Question 3.9. Given an action functional S, is there a weakly semi-classically equivalent ac-
tion15 such that the resulting Feynman diagram expansion produces CK-dual loop integrands?

It is this last question that we will answer affirmatively for a number of field theories.

3.9. Potential absence of unitarity in loop integrands

As stated in Section 2, we will use a sequence of potentially non-local field redefinitions in 
order to rephrase our BRST action in a manifestly CK-dual form. These field redefinitions may 
introduce Jacobians into the path integral, which we will drop. This may break BRST invariance 
of the path integral measure when dealing with gauge theories. More fundamentally, unitarity 
may also be broken. The question is now whether this is a problem, and the answer depends 
largely on whether one wants to study CK duality in its own right or as a means for the double 
copy.

Relevance of unitarity Let us briefly recall why unitarity of loop integrands is so ubiquitous in 
the usual discussion of CK duality.

(i) It is clear that the S-matrix of a physically meaningful theory must be unitary as to be 
compatible with the usual probabilistic interpretation.

(ii) Many works on amplitudes start from an ansatz for the amplitudes or integrands of a field 
theory. In order to verify that the ansatz is valid and in particular that it belongs indeed to 
the field theory under consideration, agreement on unitarity cuts is verified.

(iii) There is the above-mentioned proof [21] that CK duality of the integrands implies the va-
lidity of the double copy prescription, which is based on unitarity methods. The same holds 
for establishing CK duality at the tree level.

(iv) It is more convenient to work with unitary integrands, both because of the tools available 
and because of the computational simplicity.

(v) One of the key practical goals for considering CK duality and double copy at the loop level is 
to study the UV behavior of supergravity theories, cf. [24]. That is, the focus lies on finding 
out whether potential counterterms are absent or not. One may expect that the important 
cancellations originate from unitarity.

We can now show that these points are circumvented from our perspective on CK duality.

(i) It is clear that unitarity of the S-matrix is indispensable. As stressed in the previous section, 
however, we are concerned with unphysical objects (the BRST action and loop integrands) 
which require renormalization to be turned into meaningful quantities. For that reason, the 
existence of a unitarity restoring counterterms is sufficient, which will be guaranteed in our 
formalism.

(ii) We will never work with an ansatz for an amplitude or an integrand. Our amplitudes and in-
tegrands arise from the Feynman rules of a field theory action principle, which is manifestly 
classically equivalent to the field theory we are interested in. There are no validity checks 
to be performed.

15 I.e. an action arising from S by introducing auxiliary fields and performing field redefinitions.
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(iii) We are interested in establishing the double copy at the loop level, and for this we have an 
independent proof that merely relies on the validity of the double copy at the tree level. Our 
proof is independent on how the tree-level validity is demonstrated.

(iv) We currently study the computational simplicity of our framework from a homotopy alge-
braic perspective, and our results so far are very encouraging [64]. They seem to imply that, 
particularly at higher loop, the non-unitary action perspective may be simpler.

(v) There is evidence that a CK-dual set of loop level integrands for ordinary Yang–Mills the-
ory with all ideally desired properties does not exist and one has to compromise. Consider 
e.g. [16], where full CK duality was relaxed to CK duality on a spanning set of generalized 
unitarity cuts of the amplitude. The question is now which property is more relevant for 
identifying cancellations between loop integrands and thus for the absence of counterterms. 
One may argue [64] that gravity is properly regularized within string theory and string 
theory exhibits our kind of loop level CK duality. Therefore, it may be the latter and not 
unitarity which ought to be preserved when dropping desired properties from field theory 
integrands.

(vi) Our recent results [17] strongly suggest that for particular field theories, such as N = 4
super Yang–Mills theory, there is an implementation of our algorithm that neither breaks 
BRST symmetry nor unitarity.

Recovering the counterterms after the double copy Points (iii) and (v) are the crucial ones, and 
the key question is whether one can make statements about the UV structure of the double copied 
supergravity theory working with our non-unitary formulation. Let us therefore sketch a way of 
discriminating between unitarity-restoring counterterms and ‘true’ counterterms that need to be 
inserted in order to make supergravity finite also in a unitary formulation.

First, we note that, from the raw double-copied BRST action, the unitarity-restoring coun-
terterms are trivially recovered. Having integrated out the auxiliary fields, suppose that the 
double-copied action contains a non-local term of the form �hO where O is some non-local 
operator. This non-local term can be removed by a field redefinition of the form h 
→ h +αO for 
some coefficient α. (This will produce more non-local terms at higher order which are dealt with 
iteratively.) Such redefinitions then correspond to the Jacobian counterterms that are required to 
restore unitarity of the raw double-copied action, modulo any Jacobians corresponding to local 
field redefinitions (which are irrelevant, as they are automatically removed in dimensional regu-
larization, for example). The other type of non-local terms that can appear in the double-copied 
action are those proportional to e.g. ∂μhμ

ν , originating from non-local terms in the gauge-fixing 
sector of Yang–Mills theory; such terms correspond to non-local terms in the gauge-fixing sector 
of gravity and, as such, do not necessitate Jacobians.

Thus, we do not have to refer to the action explicitly to identify which apparent UV di-
vergences are actually due to Jacobian counterterms and which are due to ‘real’ divergences 
requiring ‘true’ counterterms. Any divergences arising from a term in the numerator propor-
tional to p2, where p is the momentum through an internal edge, is due to a possibly non-local 
term in the action that can be canceled by a field redefinition. In this way, one can determine 
whether a given gravity loop diagram ‘really’ diverges and requires ‘true’ counterterms in a way 
that accords with traditional methods.

Altogether, we believe that the advantages of having a manifestly CK-dual BRST action as 
an organizing principle at our disposal is well worth the slight disadvantages of working with 
integrands that do not manifest the unitarity of the scattering amplitudes.
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4. Example: the non-linear sigma model

As in [15], let us start with a discussion of the non-linear sigma model, also known as the 
principal chiral model, to illustrate our construction lifting on-shell tree-level CK duality to the 
loop level. This model, despite its simplicity, provides a good description of mesons in the regime 
where their masses can be neglected.

4.1. Field theoretic setup

Consider d-dimensional Minkowski space Md := R1,d−1 equipped with the mostly-plus met-
ric (ημν) = diag(−1, 1, . . . , 1) with μ, ν, . . . = 0, 1, . . . , d − 1 and coordinates xμ together with 
a semi-simple compact matrix Lie group G. The kinematical data of the non-linear sigma model 
on G are maps g : Md → G, which yield the flat current g−1∂μg, that takes values in the Lie 
algebra g of G. With respect to the anti-Hermitian basis ea of g with a, b, . . . = 1, 2, . . . , dim(g), 
we introduce structure constants by [ea, eb] =: fab

cec with [−, −] the Lie bracket on g, and 
〈ea, eb〉 := −tr(eaeb) = gab with tr the matrix trace. The corresponding action reads as

SNLSM = − 1
2λ2

∫
ddx (g−1∂μg)a(g

−1∂μg)a , (4.1)

where λ is a coupling constant of mass dimension 1 − d
2 . This action is invariant under the global 

left–right G-action g 
→ g−1
L ggR for gL, R ∈ G.

Using the exponential parameterization16 g := exp(λφ) for φ : Md → g and setting
adλφ(−) := λ[φ, −], the formula

g−1∂μg = 1 − e−adλφ

adλφ

(λ∂μφ) =
∞∑

n=0

(−1)n

(n + 1)! λn+1adn
φ(∂μφ) (4.2)

allows us to rewrite (4.1) as

SNLSM =
∫

ddx

∞∑
n=0

λ2n

(2n + 2)! tr
{
∂μφ ad2n

φ (∂μφ)
}
. (4.3)

Because of the evident symmetry φ 
→ −φ which, in turn, corresponds to the symmetry g 
→
g−1 of (4.1), there are only interaction terms (and, correspondingly, Feynman vertices) of even 
degrees in φ, each of which contains exactly two derivatives.

4.2. Example: the four-point scattering amplitude

Before discussing the general case, let us consider the four-point tree-level scattering ampli-
tude as it nicely illustrates the key idea. Explicitly, the first two terms in the action (4.3) are

SNLSM = − 1
2

∫
ddx ∂μφa∂

μφa − λ2

4!
∫

ddx fab
efcdeφ

a∂μφbφc∂μφd + · · · , (4.4)

where we used the shorthand fabc := fab
dgdc, which is totally anti-symmetric. Hence, upon 

taking all the momenta incoming, the four-point tree-level correlator is

16 Another often used parameterization in this context is the Cayley parameterization, cf. e.g. [65].
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C4,0 =

1 4

2 3

=
iλ2

2 · 3!
[
f a1a2bfb

a3a4(p1 · p3 + p2 · p4 − p1 · p4 − p2 · p3)

+ f a1ba4fb
a2a3(p1 · p3 + p2 · p4 − p1 · p2 − p3 · p4)

+ f a1ba3fb
a4a2(p1 · p2 + p3 · p4 − p1 · p4 − p2 · p3)

]
,

(4.5a)

and analogously to scattering amplitudes, we can introduce (off-shell) kinematic and color nu-
merators

C4,0 = iλ2

4!
[
f a1a2bfb

a3a4︸ ︷︷ ︸
=: cs12

(s13 + s24 − s14 − s23)︸ ︷︷ ︸
=: 2ns12

s12

+ f a1ba4fb
a2a3︸ ︷︷ ︸

=: cs14

(s13 + s24 − s12 − s34)︸ ︷︷ ︸
=: 2ns14

s14

+ f a1ba3fb
a4a2︸ ︷︷ ︸

=: cs13

(s12 + s34 − s14 − s23)︸ ︷︷ ︸
=: 2ns13

s13

]

= iλ2

2 · 3!
(

cs12ns12

s12
+ cs14ns14

s14
+ cs13ns13

s13

)
,

(4.5b)

where sij := (pi + pj )
2 for i = 1, . . . , 4 are the usual Mandelstam variables. Using momentum 

conservation 
∑4

i=1 pi = 0, we obtain

ns12 = s12(s13 − s14) , ns14 = s14(s13 − s12) , ns13 = s13(s12 − s14) . (4.6)

Evidently, the kinematic numerators (4.6) satisfy

ns12 − ns14 − ns13 = 0 , (4.7)

and likewise, by the Jacobi identity, we also have

cs12 − cs14 − cs13 = f ba1a2fb
a3a4 + f ba1a3fb

a4a2 + f ba1a4fb
a2a3 = 0 . (4.8)

The tree-level scattering amplitude A4,0 is obtained by putting the external momenta p1, . . . , p4
on shell. Even without explicitly introducing strictification auxiliary fields, we see that A4,0 can 
be understood as a sum over cubic graphs, and both A4,0 and C4,0 enjoy CK duality. CK duality 
at four points is already manifest in the standard action.

However, we can further improve our action to obtain the final line in (4.5b) directly from the 
Feynman diagrams. When expressing the scattering amplitude in Mandelstam variables, we have 
effectively used the fact that terms containing squared momenta, p2

i for i = 1, . . . , 4, mutually 
cancel from the expressions. This is similar to what happens in the case of Yang–Mills theory, 
where the CK-compliant form17 is a result of suitably adding terms to the Lagrangian which 
vanish due to the Jacobi identity [12,13]. In order to see what terms we need in the present case, 
we rewrite (4.4) as

17 Off shell at four points and on shell beyond four points at the tree level.
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SNLSM
4 = 1

2

∫
ddx φa�φa

− λ2

2·4!
∫

ddx fab
efcdeφ

aφc
[�(φbφd) − φd�φb − φb�φd

]+ · · · ,

(4.9)

which, using the anti-symmetry fab
c = −fba

c of the structure constants, we can simplify to

SNLSM
4 = 1

2

∫
ddx φa�φa − λ2

2·4!
∫

ddx fab
efcdeφ

aφc�(φbφd) + · · · . (4.10)

The four-point tree-level correlator is now manifestly of the form

C4,0 = iλ2

4!
[
cs12(s13 + s24 − s14 − s23) + cs14(s13 + s24 − s12 − s34)

+ cs13(s12 + s34 − s14 − s23)
]
,

(4.11)

where the color numerators csij are defined as in (4.5) and the sij are again the Mandelstam 
variables. Hence, contrary to the case of Yang–Mills theory, where the vanishing of the extra 
terms in the action is guaranteed by the Jacobi identity, the vanishing in (4.9) is due to the anti-
symmetry of the structure constants fab

c .

4.3. Lifting on-shell to off-shell color–kinematics duality

To illustrate our procedure that lifts on-shell CK duality off shell by field redefinitions, let us 
assume that we started not from SNLSM, but from the following action, which is semi-classically 
equivalent to SNLSM and satisfies on-shell CK-duality:

SNLSM
4

′ = SNLSM
4

+ λ2
∫

ddx
(

fabcfde
aφb(�φc)∂μφd�∂μφe︸ ︷︷ ︸

=:L ′
4

+ 1
2fabcfde

aφb(�φc)φd�2φe︸ ︷︷ ︸
=:L ′′

4

)
.

(4.12)

The two additional contributions to the original correlator (4.5) are

− iλ2[f a1a2bfb
a3a4︸ ︷︷ ︸

=: cs12

((p2
1 − p2

2)(p
2
3 − p2

4)(p1 · p2 + p3 · p4))︸ ︷︷ ︸
=:− n′

s12
2·3! s12

+ f a1ba4fb
a2a3︸ ︷︷ ︸

=: cs14

((p2
1 − p2

4)(p
2
3 − p2

2)(p1 · p4 + p3 · p2))︸ ︷︷ ︸
=:− n′

s14
2·3!s14

+ f a1ba3fb
a4a2︸ ︷︷ ︸

=: cs13

((p2
1 − p2

3)(p
2
2 − p2

4)(p1 · p3 + p2 · p4))︸ ︷︷ ︸
=:− n′

s13
2·3!s13

]

= iλ2

2 · 3!
(

cs12n′
s12

s12
+ cs14 n′

s14

s14
+ cs13 n′

s13

s13

)

(4.13a)

and
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− iλ2

2

[
f a1a2bfb

a3a4︸ ︷︷ ︸
=: cs12

× (p2
1p

2
3(p

2
1 + p2

3) − p2
1p

2
4(p

2
1 + p2

4) − p2
2p

2
3(p

2
2 + p2

3) + p2
2p

2
4(p

2
2 + p2

4))︸ ︷︷ ︸
=:− n′′

s12
3!s12

+ f a1ba4fb
a2a3︸ ︷︷ ︸

=: cs14

× (p2
1p

2
3(p

2
1 + p2

3) − p2
1p

2
2(p

2
1 + p2

2) − p2
3p

2
4(p

2
3 + p2

4) + p2
2p

2
4(p

2
2 + p2

4))︸ ︷︷ ︸
=:− n′′

s14
3!s14

+ f a1ba3fb
a4a2︸ ︷︷ ︸

=: cs13

× (p2
1p

2
2(p

2
1 + p2

2) − p2
1p

2
4(p

2
1 + p2

4) − p2
2p

2
3(p

2
2 + p2

3) + p2
3p

2
4(p

2
3 + p2

4))︸ ︷︷ ︸
=:− n′′

s13
3!s13

]

= iλ2

2 · 3!
(

cs12n′′
s12

s12
+ cs14 n′′

s14

s14
+ cs13 n′′

s13

s13

)
,

(4.13b)

coming from L ′
4 and L ′′

4 , respectively, where again the sij are the Mandelstam variables.
On shell, the contributions n′

sij
and n′′

sij
vanish, so that the kinematic Jacobi identity (4.7) is 

not modified. Off shell, we have

−(n′
s12

− n′
s14

− n′
s13

) = 12(p1 + p2)
2[(p2

1 − p2
2)(p

2
3 − p2

4)(p1 · p2 + p3 · p4)
]

− 12(p1 + p4)
2[(p2

1 − p2
4)(p

2
3 − p2

2)(p1 · p4 + p3 · p2)
]

− 12(p1 + p3)
2[(p2

1 − p2
3)(p

2
2 − p2

4)(p1 · p3 + p2 · p4)
] (4.14a)

and

− (n′′
s12

− n′′
s14

− n′′
s13

)

= 6(p1 + p2)
2[p2

1p
2
3(p

2
1 + p2

3) − p2
1p

2
4(p

2
1 + p2

4)

− p2
2p

2
3(p

2
2 + p2

3) + p2
2p

2
4(p

2
2 + p2

4)
]

− 6(p1 + p4)
2[p2

1p
2
3(p

2
1 + p2

3) − p2
1p

2
2(p

2
1 + p2

2)

− p2
3p

2
4(p

2
3 + p2

4) + p2
2p

2
4(p

2
2 + p2

4)
]

− 6(p1 + p3)
2[p2

1p
2
2(p

2
1 + p2

2) − p2
1p

2
4(p

2
1 + p2

4)

− p2
2p

2
3(p

2
2 + p2

3) + p2
3p

2
4(p

2
3 + p2

4)
]
.

(4.14b)

Summing the terms in (4.14) and using momentum conservation p4 = −p1 −p2 −p3, we obtain

− (n′
s12

− n′
s14

− n′
s13

) − (n′′
s12

− n′′
s14

− n′′
s13

)

= 12s2
12(p

2
1 − p2

2)(s12 + s23 + s13 − p2
1 − p2

2 − 2p2
3)

− 12s2
23(p

2
3 − p2

2)(s12 + s23 + s13 − 2p2
1 − p2

2 − p2
3)

− 12s2 (p2 − p2)(s + s + s − p2 − 2p2 − p2) ,

(4.15)
13 1 3 12 23 13 1 2 3
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which is generically non-vanishing, rendering the kinematic Jacobi identity invalid.
In our prescription, we now perform the appropriate field redefinition to fix the failure of the 

kinematic Jacobi identity, which is here the inverse of the field redefinition

φa 
→ φa + λfbc
aφb�φc , (4.16)

linking SNLSM
4 to SNLSM

4
′
.

Altogether, we saw an example of a situation in which the kinematic Jacobi identity is valid 
on shell but violated off shell by terms containing �. These terms could be absorbed in a field 
redefinition. This neatly captures the basic intuition that off-shell failures of CK duality are due 
to physically irrelevant terms that may be encoded in the action by taking advantage of its re-
dundancies. More precisely, for an analytic action any failure of CK duality due to any off-shell 
extension of the S-matrix can be repaired by introducing new vertices in the action that are in-
visible for on-shell field configurations, i.e. those fields φ satisfying �φ = 0. These vertices are 
necessarily proportional to �φ and, thus, may be realized through the kinetic term φ�φ by a 
field redefinition.

4.4. Lifting on-shell color–kinematics duality to the loop level

With this intuition in mind, let us now present the general algorithm that lifts on-shell tree-
level CK duality to the loop level, up to potential counterterms. This becomes mostly straightfor-
ward with the observations we made in Section 3. Recall that on-shell CK duality of tree-level 
scattering amplitudes of the non-linear sigma model has been established in [66].

(i) Choose a CK-dual parameterization of the tree-level scattering amplitudes, and pick a set 
of master color numerators c(n)

m for all numbers n of external legs we are interested in, 
cf. Section 3.2.

(ii) Choose one of the equivalent actions for the non-linear sigma model, for example (4.3); the 
specific chosen form is inconsequential as long as the kinetic term is of the canonical form. 
Denote this action by S3,18 where the subscript indicates the number of points up to which 
CK duality is manifest, and start with n = 4.

(iii) Use Observation 3.5 to add a term that is identically zero to the action Sn−1 such that its 
Feynman rules produce the chosen form of the CK-dual tree-level scattering amplitudes up 
to n points. Note that the thus produced action Son-shell

n generically contains non-local terms 
of the type EM

1
1�E2

M , cf. (3.19), as is well-known from the case of Yang–Mills theory, 
cf. [21,13].

(iv) Using the Feynman diagrams19 of Son-shell
n , we can now compute the off-shell master nu-

merators n̂(n)
m corresponding to the color master numerators c(n)

m and complete them to a full 
set of CK duality manifesting kinematic numerators n̂(n) = J (n)n̂(n)

m . These numerators give 
rise to a manifestly CK-dual amputated correlator ˆA ′

n,0 that is obtained from c(n)TD(n)n̂(n)

by symmetrizing over the external legs20:

18 For the choice of action (4.3) we already have manifest CK duality at four points, but let us ignore this as we would 
like to make the argument for a generic choice of weakly semi-classically equivalent action.
19 As previously mentioned, this yields a canonical choice of off-shell continuation to the amputated correlator ˆA ′

n,0 , 
but we could have used any other reasonably well-behaved choice.
20 Note that symmetrization preserves manifest CK duality.
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ˆA ′
n,0 =

[
c(n)TD(n)n̂(n)

]
σ

. (4.17)

This expression necessarily agrees with the actual amputated correlator ˆAn,0 of the theory 
on shell. Off shell, however, the two expressions may differ by sums of terms p2Fi , where 
p is the momentum of an external line and Fi is the sum of products of rational functions 
of momenta and Lie algebra structure constants. These terms can be canceled by terms in 
the Lagrangian of the form F̃i�φ, where F̃i is a polynomial of (n − 1)-st order in the fields 
containing derivatives as well as the operator 1� , acting on certain parts of the contained 
monomials. Such terms can be constructed from the kinematic terms by field redefinitions 
of the form

φ 
→ φ +
∑

i

F̃i , (4.18)

where we suppressed all flavor indices. We perform this field redefinition to obtain an ac-
tion Soff-shell, non-local

n . The Jacobian determinants for the required field redefinitions lead to 
additional counterterms that must be included in the renormalization. They do not affect the 
consistency of our theory, cf. Section 3.5.

(v) If we have not reached the maximum order that is of relevance for the scattering amplitudes 
in which we are interested, then increment n, and go back to (iii). Otherwise, continue 
to (vi).

(vi) Use Observation 3.3 to strictify the order k interaction vertices in the action Sn for k ≤ n. 
Non-local terms are strictified to local ones. For details on this strictification, see Section 3.6
or [15, Section 3].

For arbitrarily large but finite n, the action Sn obtained in this manner is local up to order n, 
and its Feynman rules produce fully CK-dual tree-level scattering amplitudes up to n points. 
By Observation 3.1, this suffices to ensure loop-level CK duality of the scattering amplitude 
integrands, up to potential counterterms.

As an aside, we note that the field redefinitions performed in (iv) in the above algorithm can 
also be obtained by a combination of strictifications and purely local field redefinitions. Let us 
assume that the field redefinition we need to implement is

φ 
→ φ + E1
1

�E2 (4.19)

for some expressions E1 and E2 which are local in the fields, and such that E1 is at least of 
linear order in the fields. We can simply multiply the integrand in the partition function by the 
expression∫

DGDḠ e
∫

ddx
(
Ḡ�G−ḠE2

)
, (4.20)

where G and Ḡ are auxiliary fields. This merely adds a volume factor, which is evidently irrele-
vant in perturbative quantum computations. We can then perform the local field redefinition

φ 
→ φ + E1G , (4.21)

which, after imposing the equation of motion for the auxiliary field G,

�G = E2 , (4.22)
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is equivalent to the desired field redefinition (4.19). The fact that this field redefinition is local 
then makes it uncontroversial that the tree-level scattering amplitudes have not been affected.21

The new loop corrections arising off shell then reproduce the additional counterterms that we 
would have expected from the non-local field redefinition.

The above algorithm proves that up to potential counterterms, on-shell CK duality can be lifted 
off shell and, thus, to loop-level CK duality for all diagrams having the sigma model scalar field 
φ on their external legs. We now argue that this trivially extends to arbitrary diagrams, including 
those with auxiliary fields on external legs. Evidently, any diagram with one or more auxiliary 
fields on external legs, called auxiliary diagrams in the following, is necessarily a subdiagram of 
a diagram with fields from exclusively the BRST-extended Hilbert space on external legs, called 
standard diagrams in the following. Correspondingly, any pair or triple of auxiliary diagrams 
whose sum vanishes due to the algebraic properties of the structure constants and the Killing 
form, for example

(4.23)

where a dashed line denotes an external auxiliary field, is contained in a pair or triple of standard 
diagrams, for example

(4.24)

where a dashed line denotes the propagator for a conjugate pair of auxiliary fields. Note that the 
completion of an auxiliary diagram to a standard diagram is unique. This completion is moreover 
a non-degenerate operation by definition: if the completion were to have a non-trivial kernel, then 
we could remove these auxiliary field modes from our theory because their whole purpose is to 
reproduce a standard diagram. As no modes or terms can be projected out, the duality for standard 
diagrams necessarily implies CK duality for auxiliary diagrams.22 This completes the proof of 
the validity of off-shell CK duality up to potential counterterms for the non-linear sigma model.

4.5. Color–kinematics duality manifesting action

Using the preceding algorithm we can construct an action whose Feynman rules lead to man-
ifestly CK dual parameterizations of the scattering amplitudes for the non-linear sigma model. 
In the following, we comment on its explicit form. For a rather distinct approach to a CK duality 
manifesting action see [42].

21 If E1 were to have a non-zero constant term, then the field redefinition (4.21) would be non-trivial at the linear order, 
thus mixing the scattering amplitudes of φ with those of G; then the scattering amplitudes of the redefined φ would differ 
from those of the original φ.
22 The same evidently also holds in any strictified CK-dual theory, e.g. Yang–Mills theory discussed in Section 5.4.
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As explained in detail in [15], a CK-dual parameterization of scattering amplitudes involves a 
factorization of fields, propagators, and interactions of the schematic form

color/flavor ⊗ kinematics ⊗ scalar field . (4.25)

CK duality relates properties of the color or flavor part and the kinematics part; the scalar field 
part does not participate. The action of the kinematic algebra on fields involves differential op-
erators, and therefore the fields’ components transforming under the kinematic algebra are most 
conveniently labeled by DeWitt indices i, j, . . ., i.e. indices indicating field species as well as 
space–time position (or, after a Fourier transform, momentum). This, however, breaks the sym-
metry between the color/flavor and kinematics parts; it is therefore convenient to promote also 
the color indices to DeWitt indices ā, ̄b, . . . encoding both the color or flavor index and the 
space–time position, with the understanding that the space–time positions in both types of De-
Witt indices are taken to be the same. For a very detailed discussion of this issue in the case of 
Yang–Mills theory, see [15, Section 9.3].

Using the DeWitt indices over a common space–time point, we can manifest full CK duality 
in the action of the non-linear sigma model using the concise and suggestive action

SNLSM
CK-dual = 1

2 gijḡāb̄	
iā�	jb̄ + 1

3! fijkf̄āb̄c̄	
iā	jb̄	kc̄ . (4.26)

CK duality then amounts to the fact that the flavor and kinematic algebraic data

( ḡāb̄ , f̄b̄c̄
ā ) and (gij , fjk

i ) (4.27)

with

fāb̄c̄ = ḡc̄d̄ f̄āb̄
d̄ and fijk = gklfij

k (4.28)

have the same algebraic properties, namely anti-symmetry and the Jacobi identity of the Lie 
algebra structure constants as well as symmetry and invariance of the metric:

ḡ[āb̄] = 0 , f̄(b̄c̄)
ā = 0 , f̄ē[ād̄fb̄c̄]ē = 0 , ḡā(b̄fc̄)ē

ā = 0 ,

g[ij] = 0 , f(jk)
i = 0 , fn[imfjk]n = 0 , gi(jfk)m

i = 0 .
(4.29)

Here (−) and [−] denote total symmetrization and antisymmetrization of enclosed indices, as 
usual.

The suggestive but condensed notation used in (4.26) certainly requires some more detailed 
explanation. We have the fields

(	iā) = (
φa(x),Yma(x)

)
,(

Yma(x)
)= (

φa(x),Ca
μ(x), C̄a

μ(x),Da(x), D̄a(x), . . .
)
,

(4.30)

with m labeling the various auxiliary fields Ca
μ(x), C̄a

μ(x), . . . introduced to strictify the theory. 
Note that 	iā carries DeWitt indices, while the indices of the individual fields are standard flavor 
indices, running over the adjoint of g, or Lorentz indices, and the space–time dependence is made 
explicit.

The flavor metric ḡāb̄ is simply the Cartan–Killing form gab on g, decorated by a space–time 
delta-function as not to affect the space–time index. We also have the kinematic metric gij, which 
can be described by the block-diagonal symmetric matrix

(gij) = diag(12, σ+ ⊗ η⊗n1 , σ+ ⊗ η⊗n2, . . .)δ(d)(x − y) , (4.31)
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where

σ± =
(

0 1
±1 0

)
(4.32)

(with σ− defined for later use), ni is the tensor rank of the ith pair of auxiliary fields, η is the 
Minkowski metric, and x and y are the space–time coordinates of the first and second arguments, 
respectively.

The interactions are encoded in the flavor algebra structure constants f̄āb̄
c̄ and the kinematic 

structure constants fijk. As indicated in (4.28), the indices of these structure constants are raised 
and lowered with the respective metrics.23

For our discussion, it is convenient to absorb the coupling constant λ into the flavor algebra 
structure constants. Moreover, in order to have both the flavor and the kinematic algebras on 
an equal footing (which will be particularly useful in the discussion of the double copy to the 
special theory of galileons in Section 6.2), we want to ensure that their respective structure con-
stants have matching mass dimensions. We thus identify the flavor algebra structure constants 
f̄b̄c̄

ā with the product of two space–time delta-functions and the rescaled Lie algebra structure 
constants λ√

μ
fbc

a , where μ is the coupling of the special galileon. This additional factor is then 

compensated by regarding the fijk as the structure constants for a CK-dual kinematic algebra for 
the non-linear sigma model, rescaled by a factor of 

√
μ. Note that the fijk are differential opera-

tors (with constant coefficients), acting on each of the three fields 	iā, 	jb̄, and 	kc̄ individually 
before taking the product of the results.

Finally, we recall that an overall space–time integration is implicit in the contraction of DeWitt 
indices (with the caveat that the color and kinematic DeWitt indices are to be taken over the same 
point, so that one integration drops out).

The action (4.26) now manifests full CK duality in the sense that, by construction, the kine-
matic structure constants obey the same algebraic identities as the flavor structure constants, 
cf. (4.29). Consequently, the amplitude integrands given directly by the Feynman diagrams 
of (4.26) satisfy CK duality to all orders in perturbation theory.

5. Example: Yang–Mills theory

We now turn our attention to Yang–Mills theory. Our field theoretic setup is the Batalin–
Vilkovisky (BV) formulation of Yang–Mills theory, which allows us to work with general choices 
of gauge [67]. Usually, the BV formalism is introduced in situations where the gauge algebra is 
open, i.e. the gauge transformations only close on shell or, equivalently, Q2

BRST = 0 only on 
shell. In the BV formalism, we introduce a dual, second copy of each field appearing in the 
BRST complex; such a second copy is called an anti-field. The BRST differential QBRST can 
then be lifted to the BV differential QBV that captures both gauge symmetries and equations of 
motion, allowing for Q2

BV = 0 also off shell. This lift also uniquely defines the BV action of a 
field theory. The dual anti-fields enhance ordinary field space to a symplectic manifold similar 
to classical phase space, and gauge fixing amounts to a canonical transformation that selects a 

23 The position-space inner product 
∫

ddx
∫

ddy δ(d)(x − y) Fourier-transforms to momentum space as 
(2π)−d

∫
ddp

∫
ddq δ(d)(p + q). The difference is important: in momentum space, the structure constants fij

k only 
depend on p2 and p3, where p1, p2, p3 are the momenta corresponding to the indices i, j, k respectively. When the index 
i is lowered with the kinematic metric gij, we get an overall δ(d)(p1 + p2 + p3), which allows the kinematic structure 
constants fijk to be totally anti-symmetric.
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Table 5.1
The full set of BV fields for Yang–Mills theory on Md with gauge Lie algebra g, including their 
ghost numbers and their mass dimensions.

fields anti-fields

role | − |gh dim | − |gh dim

ca ghost field 1 d
2 − 2 c+a −2 d

2 + 2

Aa
μ gluon field 0 d

2 − 1 A+a
μ −1 d

2 + 1

ba Nakanishi–Lautrup field 0 d
2 b+a −1 d

2

c̄a anti-ghost field −1 d
2 c̄+a 0 d

2

Lagrangian submanifold of this BV field space. For a suitably good choice of this Lagrangian 
submanifold, the Hessian of the kinetic term in the path integral becomes non-degenerate, and 
the goal of gauge fixing has been attained. For a general description of BV quantization, see 
e.g. [68].24

Here, we will only use the BV formalism to impose a very general choice of gauge fixing 
that we can fine tune according to our needs later. This choice of gauge fixing is conveniently 
encoded in the gauge fixing fermion �, which is a functional on ordinary field space of degree 
−1. The canonical transformation then reads as

(	I ,	+
I ) 
→ (	̃I , 	̃+

I ) =
(

	I ,	+
I + δ�

δ	I

)
, (5.1)

where 	I and 	+
I denote the collection of (ordinary) fields and their corresponding anti-fields. 

The gauge fixed action is then the BRST action SBRST that is given by the BV action for the 
transformed field, restricted to vanishing anti-fields:

SBRST = SBV[	̃I , 	̃+
I ]
∣∣∣
	+

I =0
. (5.2)

For a detailed exposition of our formalism, see also [15].

5.1. Gauge-fixed Batalin–Vilkovisky action

We consider Yang–Mills theory over Minkowski space Md := R1,d−1 with a semi-simple 
compact matrix Lie algebra g as the gauge Lie algebra, and we use the same notation as in 
Section 4.

The BV action of Yang–Mills theory contains the fields listed in Table 5.1 and reads as

SYM
BV :=

∫
ddx

{
− 1

4FaμνF
aμν + A+

aμ∇μca + g
2 fbc

ac+
a cbcc − bac̄+

a

}
(5.3)

with g the Yang–Mills coupling constant. All the fields are rescaled in such a way that the Yang–
Mills coupling constant g appears in all interaction vertices; the mass dimension of the coupling 
constant g is 2 − d

2 . The curvatures and covariant derivatives are defined as

Fa
μν := ∂μAa

ν − ∂νA
a
μ + gfbc

aAb
μAc

ν and ∇μca := ∂μca + gfbc
aAb

μcc . (5.4)

24 We note at this point that the BV formalism also provides a direct link between classical field theories and homotopy 
algebras [23].
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As usual, the canonical symplectic form on the field–anti-field space induces a Poisson 
bracket, which in turn leads to the BV operator QBV = {SBV, −} with Q2

BV = 0. This opera-
tor acts on individual fields as

QBVca = − g
2 fbc

acbcc, QBVc+a = −∇μA+a
μ − gfbc

acbc+c ,

QBVAa
μ = ∇μca , QBVA+a

μ = ∇νF a
νμ − gfbc

aA+b
μ cc ,

QBVba = 0 , QBVb+a = −c̄+a ,

QBVc̄a = ba , QBVc̄+a = 0 .

(5.5)

As explained above, we implement gauge fixing as a canonical transformation encoded by a 
gauge fixing fermion, and we start from the choice

� = −
∫

ddx c̄a

(
∂μAa

μ + 1
2ba

)
(5.6)

for Feynman gauge. After gauge fixing, we perform a further field redefinition, given by the 
following symplectomorphism or canonical transformation on the field–anti-field space:

c̃a := ca , c̃+a := c+a ,

Ãa
μ := Aa

μ , Ã+a
μ := A+a

μ + ∂μb+a ,

b̃a := ba + ∂μAa
μ , b̃+a := b+a ,

˜̄ca := c̄a , ˜̄c+a := c̄+a .

(5.7)

Restricting to the Lagrangian submanifold 	+
I = 0, we thus arrive at the action

S̃YM
BRST :=

∫
ddx

{
1
2 Ãaμ�Ãaμ − ˜̄ca�c̃a + 1

2 b̃ab̃
a
}

+ S̃
YM, int
BRST . (5.8)

5.2. BRST-extended Hilbert space

The tree-level scattering amplitudes of Yang–Mills theory can be expressed in terms of the 
incoming and outgoing gluons’ momenta (pμ) = (p0, �p) and helicities. Instead of using discrete 
labels parameterizing the helicities, it is convenient to work with a linearly independent set of 
polarization vectors εμ satisfying

(εμ) =
(

0

�ε
)

, �p · �ε = 0 , and |�ε | = 1 . (5.9)

As we will see, it will prove useful to consider states from a larger Hilbert space,25 extending 
the conventional Hilbert space HYM

phys of perturbative physical states26 to the full BRST field 

space HYM
BRST, cf. [69] or [19, Section 16.4]. This extension, among others, includes the two 

additional unphysical polarizations of the gluon, the forward and backward ones, denoted by 
A

↑a
μ and A↓a

μ , respectively. For general gluons with non-zero light-like momenta, the forward 
polarization vector ε↑

μ is the normalized momentum, and the backward polarization vector ε↓
μ is 

obtained by reversing the spatial part,

25 Or, more properly, a Krein space, as it comes with an indefinite metric.
26 I.e. the Fock space of on-shell transverse gluons; this differs greatly from the true physical Hilbert space due to 
confinement.
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(ε↑
μ) = 1√

2| �p |
(

p0

�p
)

and (ε↓
μ) = 1√

2| �p |
(

p0

− �p
)

, (5.10a)

so that

ε↑ · ε↑ = 0 , ε↓ · ε↓ = 0 , and ε↑ · ε↓ = −1 . (5.10b)

A further addition are states containing ghosts or anti-ghosts. We will be interested in scattering 
amplitudes for the states belonging to the extended Hilbert space HYM

BRST. The perturbative phys-
ical S-matrix for the states in the physical Hilbert space HYM

phys is a restriction of the S-matrix for 

the states in the BRST-extended Hilbert space HYM
BRST. Note that the latter contains transitions 

of physical gluons in HYM
phys to unphysical particles in HYM

BRST. The restriction of the S-matrix, 
however, is consistent, and unitarity of the restricted S-matrix is a consequence of the BRST 
symmetry and of the S-matrix on HYM

BRST being unitary (with respect to the canonical indefinite 
metric on HYM

BRST), cf. [19, Section 16.4].
After gauge fixing, the BV transformations (5.5) restrict to the full BRST transformations 

because the gauge-fixing fermion is independent of the anti-fields. We have

QYM
BRSTca = − 1

2gfbc
acbcc , QYM

BRSTc̄a = ba ,

QYM
BRSTAa

μ = ∇μca , QYM
BRSTba = 0 ,

(5.11)

and (QYM
BRST)2 = 0 off shell.

Importantly, the linearized BRST operator Qlin
BRST still acts on HYM

BRST. The physical (i.e. trans-
versely polarized) gluon states A⊥a

μ are singlets under the action of the linearized BRST operator, 

Q
YM, lin
BRST A⊥a

μ = 0. The remaining four states form two doublets,

Q
YM, lin
BRST A↑a

μ = ∂μca and Q
YM, lin
BRST c̄a = ba = 1

2∂μA↓a
μ . (5.12)

This is most easily seen in the momentum representation.

5.3. On-shell color–kinematics duality on the BRST-extended Hilbert space

As mentioned in Section 3.1, CK duality of the Yang–Mills tree-level scattering amplitudes 
is well-established. In order to lift CK duality to the loop level using Observation 3.1, we first 
must extend CK duality to the extended BRST Hilbert space introduced above.27 The heuristic 
rationale is clear. We would like to glue the tree-level CK-dual diagrams into loop-level CK-dual 
diagrams. In the latter, however, unphysical modes run inside the loops, so we must allow them 
to also live on the external lines of the tree-level diagrams prior to gluing. As shown in [14,15], 
this can be achieved via field redefinitions and the on-shell BRST Ward identities, and we will 
review these two ingredients in some detail in the following.

The first step is to ensure CK duality for scattering amplitudes with arbitrarily polarized glu-
ons on external legs. The key insight here is that the amputated amplitude with non-transverse 
gluons is not gauge-invariant and so can be adjusted through the choice of gauge fixing.

First, forward-polarized gluons can be absorbed by residual gauge transformations, so they 
cannot affect CK duality. For backward-polarized gluons, CK duality violating terms can be 

27 See [70] for a distinct approach to establishing CK duality respecting loop-level amplitudes using the pure spinor 
superstring BRST cohomology.
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corrected by the introduction of terms Scorr in the action that are proportional to ∂μAa
μ and do 

not contain the Nakanishi–Lautrup field ba . Clearly, we can produce such terms by performing a 
shift of the Nakanishi–Lautrup field

ba 
→ ba + Za (5.13)

with Za at least of cubic order in the fields. This shift does not introduce a Jacobian functional 
determinant, and in order to avoid the introduction of new interaction terms linear in ba, we 
adjust our gauge by shifting the gauge-fixing fermion by

� 
→ � + � with Za − δ�

δc̄a
= 0 , (5.14)

cf. [15] for more details. Both operations clearly leave the scattering amplitudes of our theory 
invariant, and we can conclude the following.

Observation 5.1. Terms in an action that are proportional to ∂μAa
μ can be absorbed by a field 

redefinition of the Nakanishi–Lautrup field as well as choice of gauge.

More specifically:

Observation 5.2. Let S be a BRST action of Yang–Mills theory whose Feynman rules produce 
on-shell CK-dual scattering amplitudes for 0 < k < n external physically polarized gluons and 
n − k external gluons of arbitrary polarization. Then there is a field redefinition and a change of 
gauge such that the Feynman rules of the resulting action S̃ produce on-shell CK-dual scattering 
amplitudes for n − k + 1 arbitrarily polarized gluons.

The change of gauge as well as the shift of the Nakanishi–Lautrup field modify the BRST 
operator QBRST. Its action on the states in the BRST-extended Hilbert space, however, is de-
termined by its linearization QBRST|g=0, which remains unmodified. We thus have the on-shell 
BRST Ward identities at our disposal, which follow from the BRST invariance of the vacuum:

0 = 〈0|[QYM, lin
BRST ,O1 · · ·On]|0〉 . (5.15)

Considering the special case

O1 · · ·On = A↑c̄(cc̄)kA⊥
1 · · ·A⊥

n−2k−2 (5.16)

with A↑a
μ forward-polarized and all other gluons of physical polarization, we obtain

〈0|(cc̄)k+1A⊥
1 · · ·A⊥

n−2k−2|0〉 ∼ 〈0|A↑(cc̄)kbA⊥
1 · · ·A⊥

n−2k−2|0〉 , (5.17)

and we conclude:

Observation 5.3. Any scattering amplitude in the BRST-extended Hilbert space with k+1 ghost–
anti-ghost pairs and all gluons transversely polarized is given by a sum of scattering amplitudes 
with k ghost pairs.

As a result of this observation, we have an iteratively induced CK-dual parameterization of 
the scattering amplitudes with k + 1 ghost–anti-ghost pairs from the CK-dual form of the scat-
tering amplitudes with k ghost–anti-ghost pairs, starting from k = 0. This parameterization is 
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obtained by literally copying the relevant cubic Feynman diagrams for k and replacing the two 
unphysically polarized gluon modes by a ghost–anti-ghost pair. We can then use Observation 3.4
to obtain an action whose Feynman rules produce these parameterizations.

Observation 5.4. If the Feynman rules for a Yang–Mills theory action produces CK-dual n-point 
tree-level scattering amplitudes for k ghost–anti-ghost pairs, then its n-point tree-level scattering 
amplitudes are also CK-dual for k + 1 ghost–anti-ghost pairs.

Starting from a Yang–Mills action whose Feynman rules yield a CK-dual parameterization 
of tree-level scattering amplitudes for physical gluons, we can use iteratively Observations 5.2
and 5.4 to create an action whose Feynman rules produce CK-dual parameterizations of scat-
tering amplitudes for the whole BRST-extended Hilbert space. CK duality for non-transverse 
gluons amounts to a gauge choice, which then implies CK duality for ghosts by the BRST sym-
metry.

5.4. Lifting on-shell color–kinematics duality to the loop level

We are now in the same situation as in the case of the non-linear sigma model in Section 4.4: 
CK duality holds on shell, and any violation can be compensated by terms that can be produced 
by field redefinitions. The field redefinitions necessary for n-point scattering amplitudes, how-
ever, will affect the on-shell scattering amplitudes at higher points. Therefore, we will refine the 
algorithm presented in Section 4.4 as follows:

(i) Choose a CK-dual parameterization of the tree-level scattering amplitudes for physical 
(transversely polarized) gluons, and pick a set of master color numerators c(n)

m for all num-
bers n of external legs we are interested in, cf. Section 3.2.

(ii) Set Soff-shell
3 = S̃YM

BRST as given in (5.8). Then proceed with the algorithm starting at n = 4.
(iii) Use Observation 3.5 to add a term that is identically zero to the action Sn−1 such that its 

Feynman rules produce the chosen form of the CK-dual tree-level scattering amplitudes up 
to n points. Note that the thus produced action Son-shell

n generically contains non-local terms 
of the type EM

1
1�E2

M , cf. [21,13].
(iv) In the following step, we extend CK duality for amplitudes to amputated correlators on the 

BRST-extended Hilbert space. We do this by iterating over the number k of ghost–anti-ghost 
pairs, starting at k = 0.
(a) Prepare the action Son-shell

n,k . For k = 0, this action is simply Son-shell
n,k = Son-shell

n . For 
k > 0, we use Observation 5.4 to rewrite the ghost sector in such a way that the tree-
level amplitudes are given in CK-dual form.

(b) Compute the off-shell master numerators n̂(n)
m for arbitrary external legs that are un-

restricted in their polarization, momentum and species, up to the fact that precisely k
ghosts and k anti-ghosts are present. Extend these to a full set of numerators n̂(n) =
J (n)n̂(n)

m and further to the amputated correlator

ˆA ′
n,0 =

[
c(n)TD(n)n̂(n)

]
σ

, (5.18)

cf. (4.17). The latter agrees with the actual amputated correlator ˆAn,0 of Yang–Mills the-
ory for external states that are physical (on-shell) external states in the BRST-extended 
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Hilbert space. Any difference between ˆAn,0 and ˆA ′
n,0 must therefore be due to the un-

physical polarization of a gluon or to the fact that a gluon is off shell. Contributions 
of forward-polarized gluons can be absorbed by residual gauge transformations, and 
therefore the difference must be given by terms proportional to εi · pi or p2

i , where 
εi and pi are polarization and momentum vectors associated with the external leg i. 
We note that potential differences due to unphysical polarizations can only appear for 
k = 0, as the rewriting of the ghost sector in (iv.a) yields on-shell CK duality for the full 
BRST-extended Hilbert space. Any difference between ˆAn,0 and ˆA ′

n,0 for k > 0 is thus 
proportional to p2

i .
(c) Any potential difference proportional to εi · pi is removed by introducing appropriate 

terms into the action that are proportional to ∂μAa
μ. This can be done using Observa-

tion 5.2, i.e. by a field redefinition of the Nakanishi–Lautrup field ba and a subsequent 
change of gauge.

(d) Any difference in the amputated correlators proportional to p2
i can now be absorbed by 

a field redefinition, just as in the case of the non-linear sigma model. Explicitly, such 
expressions can be canceled by adding interaction terms of the form F̃i�	i , where 
	i ∈ {Aa

μ, ca, c̄a} and F̃i is a polynomial of (n − 1)-st order in the fields containing 
derivatives as well as the operator 1� . The color indices are fully contracted by the 
structure constants of the gauge Lie algebra. Such interaction terms can be produced by 
a field redefinition of the form

	i 
→ 	i +
∑

i

F̃i . (5.19)

(e) If 2k � n − 2, increase k by one and return to (iv.a).
(v) If we have not reached the maximum order that is of relevance for the scattering amplitudes 

we are interested in, then increment n, and go back to (iii). Otherwise, continue to (vi).
(vi) Use Observation 3.3 to strictify the order k interaction vertices (including those containing 

ghosts and gauge-fixing terms) in the action Soff-shell, non-local
n for k ≤ n.

The above algorithm proves that on-shell CK duality can be lifted off shell and, a fortiori, loop-
level CK duality for all diagrams, as always up to potential counterterms. Moreover, just as in the 
case of the non-linear sigma model, off-shell CK duality extends to Feynman diagrams having 
auxiliary fields on external legs, cf. the discussion in Section 4.4. This completes the proof of 
off-shell CK duality for Yang–Mills theory up to potential counterterms.

Importantly, the algorithm requires tree-level computations only, avoiding all need to tackle 
the loop-level CK duality relations directly. The most direct approach to the latter involves 
super-exponentially growing ansätze, which quickly become computationally expensive. This 
tree-level-only route, therefore, potentially offers computational advantages, particularly in the 
context of the various applications of the double copy and especially when combined with the 
homotopy-algebraic framework that we are currently developing [64].

5.5. Color–kinematics duality manifesting action

The preceding discussion implies the existence of a strict, local Yang–Mills BRST action 
with manifest exact CK duality. Analogously to Section 4.5, the factorization of the fields and 
kinematic and interaction terms into the form
34
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color ⊗ kinematics ⊗ scalar field (5.20)

is most conveniently described by pairs of DeWitt indices over a common space–time point. We 
use again i, j, . . . and ā, ̄b, . . . for the kinematic and color DeWitt indices, respectively. A de-
tailed discussion of the factorization is found in [15, Section 9.3]. The action obtained from our 
algorithm is then of the form

SYM
BRST, CK-dual = 1

2 gijḡāb̄Aiā�Ajb̄ + 1
3! fijkf̄āb̄c̄AiāAjb̄Akc̄ , (5.21)

and CK duality amounts again to the fact that the color and kinematical data

( ḡāb̄ , f̄b̄c̄
ā ) and (gij , fjk

i ) (5.22)

with

fāb̄c̄ = ḡc̄d̄ f̄āb̄
d̄ and fijk = gklfij

k (5.23)

have the same algebraic properties, namely anti-symmetry and the Jacobi identity of the Lie 
algebra structure constants as well as symmetry and invariance of the metric:

ḡ[āb̄] = 0 , f̄(b̄c̄)
ā = 0 , f̄ē[ād̄fb̄c̄]ē = 0 , ḡā(b̄fc̄)ē

ā = 0 ,

g[ij] = 0 , f(jk)
i = 0 , fn[imfjk]n = 0 , gi(jfk)m

i = 0 .
(5.24)

As before, (−) and [−] denote total symmetrization and antisymmetrization of enclosed indices, 
as usual.

To summarize, the fjki are the structure constants of an infinite-dimensional kinematic Lie al-
gebra, generalizing the kinematic algebras [71–75] to the complete BRST field space.28 This 
provides a natural field theoretic notion of CK duality, as opposed to one based on on-shell am-
plitudes. CK duality is now a manifest property of the BRST action. Consequently, the loop 
integrands computed directly from the corresponding Feynman rules will satisfy CK duality au-
tomatically. CK duality of the loop integrands may be anomalous since the Jacobian determinants 
generated by the field redefinitions induce counterterms that may break it. However, CK duality 
of the BRST action itself is not only a very natural interpretation of the concept; it also suffices 
for the double copy.

Let us unpack the above. As the Nakanishi–Lautrup field does not participate in the interac-
tions, we can integrate it out, which will also prove to be useful in the discussion of the double 
copy later. The field content is then

(Aiā) = (
Aa

μ(x), c̄a(x), ca(x),Yma(x)
)
, (5.25a)

containing the infinite list of auxiliary fields(
Yma(x)

)= (
Ya

μνρ(x),Y a
μν(x), Ȳ a

μν(x), . . .
)
. (5.25b)

The index m ranges over the various auxiliary fields, and all other indices on the component 
fields are color or Lorentz indices with space–time dependence made manifest.

All structure constants are relatively evident analogues of those encountered in Section 4.5, 
and more detailed explanations are found in [15, Section 9.3]. The color metric ḡāb̄ is the invari-
ant quadratic form on the gauge Lie algebra g with accompanying space–time delta functions. 

28 See also [76] for a Lie algebra structure on the data of the tree-level amplitudes directly related to the BCJ amplitude 
relations.
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The kinematic metric gij can be described explicitly by the block-diagonal graded-symmetric 
matrix

(gij) = diag(η, σ−, σs1 ⊗ η⊗n1, σs2 ⊗ η⊗n2, . . .) δ(d)(x − y) , (5.26)

where σ± was defined in (4.32), ni is the tensor rank of the ith pair of auxiliary fields, si ∈ {±}
is the ghost parity of the ith pair of auxiliary fields, η is the Minkowski metric, and x and y are 
the space–time coordinates of the first and second arguments, respectively. Upon restricting to 
the field subspace parameterized by (Aa

μ, c̄a, ca), the kinematic metric gij restricts to the matrix⎛
⎝ημν 0 0

0 0 1
0 −1 0

⎞
⎠ δ(d)(x − y) . (5.27)

The rest of gij is simply a constant, graded-symmetric matrix pairing the conjugate strictification 
auxiliary fields, i.e.

1
2 gijḡāb̄Aiā�Ajb̄ =

∫
ddx

(· · · + Yμνρ�Ȳ μνρ + Yμν�Ȳ μν + · · · ) , (5.28)

where the grading accounts for the ghost degrees of the auxiliary fields.
We can use the color and kinematic metrics and their respective inverses to raise and lower 

the indices on the color algebra structure constants f̄āb̄
c̄ and the kinematic algebra structure 

constants fijk.
We identify the ̄fāb̄

c̄ with products of two space–time delta functions with rescaled29 color Lie 

algebra structure constants g
√

2
κ
fab

c , where κ = 4
√

2πG is Einstein’s gravitational constant. 

This rescaling is compensated by a corresponding rescaling by 
√

κ
2 of the kinematic algebra 

structure constants fijk. Note that in the action, the fijk are differential operators acting on each 
field 	iā, 	jb̄, and 	kc̄ individually before taking the product of the results.

As usual, repeated DeWitt indices involve a space–time integration. Note, however, that since 
we are considering DeWitt indices over the same point, there is only one integration for each pair 
of color and kinematic DeWitt indices.

The action (5.21) now manifests full CK duality in the sense that, by construction, the kine-
matic structure constants obey the same algebraic identities as the color structure constants, 
cf. (5.24). Consequently, the amplitude integrands given directly by the Feynman diagrams 
of (5.21) satisfy CK duality to all orders in perturbation theory.

Already here, we note that the action of the BRST operator can similarly be written as

QBRSTAiā = qi
jδ

ā
b̄
Ajb + 1

2 qi
jkf̄b̄c̄

āAjb̄Akc̄ . (5.29)

This observation will be helpful in discussing the BRST–Lagrangian double copy in Section 6.3. 
In (5.29), qi

j is a linear differential operator, and qi
jk is a bidifferential operator, both of ghost 

degree 1. For example, the restriction of qi
j to the (Aa

μ, c̄a, ca) subspace is given by the matrix

29 Just as in Section 4.5, this rescaling ensures that color and kinematic Lie algebras are truly on an equal footing 
with structure constants of matching mass dimensions, making the discussion of the double copy in Section 6.3 more 
convenient.
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⎛
⎝ 0 0 ∂μ

−∂ν 0 0
0 0 0

⎞
⎠ . (5.30)

Again, a more detailed discussion of the structure of the BRST operator is found in [15, Sec-
tion 9.3].

5.6. Supersymmetric Yang–Mills theories

To underline the generality of our lift of CK duality from on-shell tree to off-shell loop level, 
let us briefly consider the extension to supersymmetric Yang–Mills theories. This is particularly 
relevant as our recent result [17] strongly suggests that the potentially problematic counterterms 
can be avoided in our procedure for N = 4 super Yang–Mills theory.

Again, it is well-established that the scattering amplitudes of supersymmetric Yang–Mills the-
ory can be parameterized in a CK-dual manner, cf. [5,6] from string theoretic arguments as well 
as [77] for a field theoretic argument based on recursion relations. Instead of relying on these 
arguments, we could have simply employed the supersymmetric on-shell Ward identities, similar 
to Observation 5.4, in order to proof that a CK-dual parameterization of the physically polarized 
Yang–Mills scattering amplitudes at the tree level implies the existence of a CK-dual parameter-
ization of all tree-level scattering amplitudes in supersymmetric Yang–Mills theory. Evidently, 
this argument applies only in the case of irreducible supersymmetric Yang–Mills multiplets. Even 
in this case, if one supersymmetrically adds higher-dimensional operators then this argument can 
fail. For example, N = 2 supersymmetric Yang–Mills theory with a ∼ (φF 2 + fermions) defor-
mation has non-trivial superamplitudes where the all gluon components are identically zero.30

Once the existence of a parameterization of the scattering amplitudes in terms of Feynman 
diagrams that exhibit CK duality has been established, we can follow again our algorithm from 
Section 5.4 to extend it first to the BRST-extended Hilbert space and then further to the general 
tree-level Feynman diagrams. We note that the kinematic terms of fermionic fields ψ are of the 
form

SDirac =
∫

ddx ψ̄ /∂ψ , (5.31)

where /∂ := γ μ∂μ with γ μ the gamma matrices. Using field redefinitions, we can thus produce 
both the unphysical polarizations ε that violate /pε = 0 as well as off-shell violations propor-
tional to �ψ . All other arguments remain the same,31 and we will present some more details in 
Section 6.4.

Because the loop integrands in Feynman diagrams behave nicely under dimensional reduction, 
we can start with N = 1 supersymmetric Yang–Mills theory in any space–time dimension d =
3, 4, 6, 10, establish full off-shell CK duality, and then infer the same statement for theories with 
extended supersymmetry.

5.7. No-go theorems about the kinematic algebra

After the Yang–Mills action has been recast into the cubic form (5.21), color and kinematics 
are on an equal footing. In particular, the kinematic algebra, like that for color, is a Lie alge-

30 We are grateful to Henrik Johansson for bringing this possibility to our attention.
31 An alternative, slightly more involved argument can be constructed using (fractional) off-shell supersymmetry to-
gether with off-shell supersymmetric Ward identities.
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bra equipped with an invariant inner product. It is infinite-dimensional (because of the DeWitt 
indices), but otherwise it is just another symmetry of the action, in apparent contradiction with 
well-known no-go theorems about exotic symmetries. In particular, the Coleman–Mandula the-
orem [78] states that, under certain weak assumptions,32 the most general symmetry algebra of 
a quantum field theory that leaves its S-matrix invariant is the direct sum of the space–time sym-
metry algebra and a finite-dimensional Lie algebra. In other terms, space–time symmetry cannot 
combine with internal symmetry in any non-trivial way. Also, the Weinberg–Witten theorem [79]
states that, under certain weak assumptions, a theory with conserved vector currents cannot con-
tain massless higher-spin particles. The reader may now wonder whether the Yang–Mills action 
manifesting the kinematic algebra violates these theorems. After all, the kinematic algebra is a 
continuous symmetry whose generators carry non-trivial Lorentz representations; and the refor-
mulated Yang–Mills action contains auxiliary fields with multiple Lorentz indices, indicative of 
high helicity.

Potential contradictions can only arise if we include the strictification auxiliaries in the scat-
tering states on which the S-matrix acts. If we do not include the auxiliaries on external legs, 
that is, if we regard them as mere composites of the gluons, ghosts, and anti-ghosts, then the 
kinematic algebra is, strictly speaking, not a symmetry of the S-matrix insofar as the auxiliary 
fields transform under the kinematic algebra in a way inconsistent with their decomposition into 
gluons etc. Hence, the Coleman–Mandula and Weinberg–Witten theorems simply do not apply. 
We can, however, include the strictification auxiliaries on external legs and formally regard them 
as independent fields. In this case, the Coleman–Mandula and Weinberg–Witten theorems break 
down because the kinematic metric for the auxiliaries is not positive definite in the bosonic sector, 
cf. (5.26).33 We note that both no-go theorems are readily violated in theories without positive-
definiteness of the Hilbert space norm. For example, it is quite straightforward to couple a gauge 
symmetry to a vector field V aμ whose kinetic term is V aμ�Vaμ.

6. Double copy and generalizations

As we show in the following, we can double-copy a perfect-CK duality-manifesting parent 
action, yielding an action SDC

BRST that is, under some mild assumptions, invariant with respect to 
the double-copied BRST operator QDC

BRST. Working with a parent action in Feynman gauge to 
quadratic order, the double copy action SDC

BRST is clearly consistently gauge-fixed. The existence 
of a nilquadratic QDC

BRST annihilating SDC
BRST then implies that we have consistent BRST action 

ready for quantization. In the case of a parent Yang–Mills theory, the off-spring is weakly semi-
classically equivalent to N = 0 supergravity, essentially by construction. Then, by the existence 
of QDC

BRST, there is a choice of quantization such that this theory is fully quantum equivalent to 
N = 0 supergravity to all orders in perturbation theory. From this point of view, the field theory 
notion of CK duality is particularly natural; it is a symmetry that makes the validity of the double 
copy transparent. In particular, diffeomorphisms, as well as any other required local symmetries, 
arise as the double copy of gauge symmetries.

32 And leaving out supersymmetry.
33 Another obvious loophole is that the cubic form of the action contains an infinite number of fields, in contradiction 
with the assumptions in the Coleman–Mandula theorem. But this proves a red herring: one can truncate the theory to 
only those auxiliaries that strictify (for example) the quartic interaction – this is consistent if the theory does not contain 
gauge symmetry, like the non-linear sigma model – and then one obtains a fully CK-dual action with finitely many fields.
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This streamlines the arguments for a loop-level double copy procedure which we gave 
in [14,15], where the starting theory satisfies CK duality only on shell and, correspondingly, 
QDC

BRSTSDC
BRST will be proportional to terms that vanish when imposing the equations of motion. 

Moreover, as our discussion showed that tree-level CK duality implies full CK duality up to 
counterterms, our observation directly leads to a growing family of consistent, double-copy con-
structible theories.

The standard argument to extend the validity of the double copy prescription to the loop level 
relies on generalized unitarity [12]. Anticipating the discussion in Section 7, we remark here 
that in our approach counterterms are needed to restore unitarity for CK-dual loop integrands. 
The violation of unitarity before the introduction of counterterms prevents us from following the 
loop-level proof of [12]. As summarized above, however, our Lagrangian approach affords an 
alternative and independent demonstration of the double copy.

6.1. BRST–Lagrangian double copy and syngamies

In order to explain the general procedure, we start from a general cubic theory as obtained by 
the strictification procedure explained in Section 3.6. We directly specialize the form of the cubic 
action (3.21) as follows:

S = 1
2 GIJ 	I�	J + 1

3!FIJK	I	J 	K , (6.1)

where, as before, I, J are DeWitt indices and GIJ and FIJK are some structure constants. Recall 
that by Observation 3.3, any Poincaré-invariant field theory can be cast in this form (after gauge 
fixing if necessary), even with the introduction of the wave operator in the kinematic term.

If the theory is invariant under a gauge symmetry, this will be encoded in the action of a 
BRST operator QBRST. As mentioned in Section 3.6, it requires some serious modifications of 
the theory to cast the BRST operator in a cubic ansatz; we therefore allow for a generic ansatz

QBRST	I = QI
J 	J + 1

2 QI
JK	J 	K + 1

3!Q
I
JKL	J 	K	L + · · · , (6.2)

in which QI
JK··· is a multilinear differential operator acting on the subsequent fields individually, 

before the product of the results is taken. Poincaré invariance restricts the field theory such that all 
the structure constants GIJ , FI

JK , QI
J , etc. introduced are constructed from constant coefficient 

differential operators and have no further space–time dependence.34

We further specialize to theories whose fields split into left and right components over com-
mon space–time points similar to the factorization (4.25) exhibiting CK duality. This allows us to 
express the DeWitt indices as I = (α, ᾱ), J = (β, β̄) etc., which are, just as in the special cases 
discussed in Section 4.5 and Section 5.5 to be regarded over a common space–time point. We 
can thus write

GIJ = g(α,ᾱ);(β,β̄) =: gαβ ḡᾱβ̄ ,

FIJK = f(α,ᾱ);(β,β̄);(γ,γ̄ ) =: fαβγ f̄ᾱβ̄γ̄ ,

fαβγ = gγ δ fαβ
δ , and f̄ᾱβ̄γ̄ = ḡγ̄ δ̄ f̄ᾱβ̄

δ̄ .

(6.3)

We attach no specific meaning to the indices α and ᾱ here. In the examples of the non-linear 
sigma model considered in Section 4.5, ᾱ is identified with the flavor DeWitt index ā, and 

34 In particular, since they have constant coefficients, they commute on the flat Minkowski space–time that we consider.
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(ḡᾱβ̄ , ̄fᾱβ̄
γ̄ ) specialize to the flavor metric and structure constants (ḡāb̄, ̄fāb̄

c̄). In the case of Yang–
Mills theory, considered in Section 5.5, the index ᾱ is identified with the color DeWitt index ā, 
and the metric and structure constants are those of the color algebra. In both cases, α is identified 
with the kinematic DeWitt index i, and (gαβ, fαβ

γ ) are the metric and structure constants of the 
kinematic algebra.

The action (6.1) becomes

S = 1
2 gαβ ḡᾱβ̄	αᾱ�	ββ̄ + 1

3! fαβγ f̄ᾱβ̄γ̄ 	αᾱ	ββ̄	γ γ̄ , (6.4a)

and (full) CK duality is tantamount to the same algebraic relations35 being satisfied by (gαβ, fαβ
γ )

and (ḡᾱβ̄ , ̄fᾱβ̄
γ̄ ).

Given the factorization of the indices and its linearity, it is natural to assume that the BRST 
operator factorizes similarly,

QI
J = qα

βδᾱ

β̄
+ δα

β q̄ᾱ

β̄
, QI

JK = fβγ
α q̄ᾱ

β̄γ̄
+ qα

βγ f̄β̄γ̄
ᾱ , . . . , (6.4b)

so that

QBRST	αᾱ = qα
βδᾱ

β̄
	ββ̄ + δα

β q̄ᾱ

β̄
	ββ̄ + 1

2 fβγ
α q̄ᾱ

β̄γ̄
	ββ̄	γ γ̄ + 1

2 qα
βγ f̄β̄γ̄

ᾱ	ββ̄	γ γ̄ + · · · .

(6.4c)

Let us now introduce a second such theory, with action

S = 1
2 gab ḡāā	

aā�	bb̄ + 1
3! fabc f̄āb̄c̄	

aā	bb̄	cc̄ (6.5a)

and BRST operator

QBRST	aā = qa
bδ

ā
b̄
	bb̄ + δa

bq̄ā
b̄
	bb̄ + 1

2 fbc
a q̄ā

b̄c̄
	bb̄	cc̄ + 1

2 qa
bc f̄b̄c̄

ā	bb̄	cc̄ + · · · . (6.5b)

Note that 	aā and all structure constants appearing here are completely independent of those 
in (6.4); we distinguish them only through their indices to keep the common structure manifest. 
We will refer to (6.4) and (6.5) as the left and right parent theories, respectively. Note that the 
parent theories could indeed be identical.

As discussed already in [14,15], we can produce offspring from our two parent theories by 
combining either the α or ᾱ components of all the fields and all the structure constants in the left 
parent theory with either the a or ā components of all the fields and the structure constants of 
the right parent theory. This process has clear analogies with the meiotic reproduction of diploid 
cells in biology, and we therefore term this process (as well as the resulting offspring theory) 
syngamy. As familiar from biology, we now have the four syngamies:

(i) 	αa , (gαβ,gab, fαβγ , fabc) , (qα
β,qa

b, . . .) ,

(ii) 	ᾱa , (ḡᾱβ̄ ,gab, f̄ᾱβ̄γ̄ , fabc) , (q̄ᾱ

β̄
,qa

b, . . .) ,

(iii) 	αā , (gαβ, ḡāb̄, fαβγ , f̄āb̄c̄) , (qα
β, q̄ā

b̄
, . . .) ,

(iv) 	ᾱā , (ḡᾱβ̄ , ḡāb̄, f̄ᾱβ̄γ̄ , f̄āb̄c̄) , (q̄ᾱ

β̄
, q̄ā

b̄
, . . .) .

(6.6)

Each syngamy evidently comes with its own action and BRST operator. For syngamy (i), for 
example, we have

35 I.e. anti-symmetry and the Jacobi identity of the Lie algebra structure constants as well as symmetry and invariance 
of the metric.
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S = 1
2 gαβ gab	

αa�	βb + 1
3! fαβγ fabc	

αa	βb	γ c (6.7a)

as well as

QBRST = QL
BRST + QR

BRST (6.7b)

with

QL
BRST	αa := qα

βδa
b	βb + 1

2 qα
βγ fbc

a	βb	γ c + · · · ,

QR
BRST	αa := δα

β qa
b	

βb + 1
2 fβγ

α qa
bc	

βb	γ c + · · · .
(6.7c)

To illustrate the various syngamies in (6.6), let us briefly consider the example in which both 
parent theories are CK-duality manifesting Yang–Mills theories that only differ in their color Lie 
algebras. As in Section 5.5, let us identify α and a with the kinematic DeWitt indices and ᾱ and 
ā with the color DeWitt indices. We then have the following four cases:

(i) The left kinematic part is combined with the right kinematic part. This is the syngamy that 
is usually called double copy. The resulting theory has the same field content as N = 0
supergravity, and, as we will show below, is quantum equivalent to this theory.

(ii) The left color part is combined the right kinematic part. This syngamy has the same defining 
constants as, and is thus identical to, the left parent theory.

(iii) The left kinematic part is combined with the right color part. This syngamy is thus identical 
to the right parent theory.

(iv) The left color part is combined with the right color part. This syngamy is sometimes called 
the zeroth copy, and the resulting theory is (quantum) equivalent to a theory of biadjoint 
scalars, cf. [15].

Consider now a general syngamy with action S and BRST operator QBRST. If (QBRST)2 = 0
and QBRSTS = 0, we have a consistent theory, ready to be quantized.

Let us assume that the terms Q2
BRSTφ for any field φ and QBRSTS are proportional to the 

generic algebraic relations satisfied by the metric and structure constants (gαβ, fαβγ , ̄gᾱβ̄ , ̄fᾱβ̄γ̄ ) of 
general CK-dual theories, i.e. anti-symmetry and the Jacobi identity of the Lie algebra structure 
constants as well as symmetry and invariance of the metric, cf. (4.29) and (5.24). It is then clear 
that in all mixtures of two such CK-dual theories, the conditions (QBRST)2 = 0 and QBRSTS =
0 are automatically satisfied because all defining constants are replaced by defining constants 
satisfying the same algebraic relations.

Let us briefly mention that the above prescription for constructing the BRST generators in a 
syngamy actually manifestly applies to the generator of any continuous (super)symmetry, as long 
as the symmetry generators do not include explicit appearances of the Minkowski coordinate 
xμ.36 Given this assumption, for every symmetry generator of the original theory one obtains 
left and right symmetry generators of the syngamy, which are guaranteed to (anti-)commute (but 
which are not guaranteed to be distinct nor non-anomalous). For example, the double copy of 
any theory on Minkowski space has left and right translation symmetry, which commute past 
each other – in fact, they coincide. Similarly, supertranslations and R-symmetries can be double-
copied. On the other hand, the generators of rotation or dilatation involve explicit appearance of 
the space–time coordinate xμ, so they lie outside the allowed ansatz.

36 Otherwise, xμ fails to commute with differential operators, which causes complications.
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6.2. Non-linear sigma model and the special galileon

As a concrete application, we consider the relatively simple example of the syngamy of two 
copies of the non-linear sigma model that is usually called the double copy. We are interested 
in the syngamy that combines the left kinematic part with the right kinematic part. The result-
ing theory is the special galileon. In this double copy construction, we can avoid the technical 
difficulties related to gauge symmetry appearing in Yang–Mills theory.

A galileon theory [80–84] is a scalar field theory invariant under the Galilean-like symmetry 
transformation37

ϑ(x) 
→ ϑ(x) + c + bμxμ (6.8)

with c and bμ constants. In d space–time dimensions, there exist exactly d + 1 independent in-
variants38 L Gal

n of the Galilean-like transformations; the general galileon action in d dimensions 
correspondingly reads as [84]

SGal =
∫

ddx

d+1∑
n=1

αnL
Gal
n ,

L Gal
n = εμ1···μd εν1···νd

⎛
⎝ d∏

j=n

ημj νj

⎞
⎠ (

n−1∏
i=1

∂μi
∂νi

ϑ

)
ϑ ,

(6.9)

where αn are real parameters. To avoid tadpole terms, we set α1 to 0, and we normalize α2 to 
have the standard kinetic term.

Generically, theories with Lagrangians that feature derivatives of order greater than two are 
plagued by the Ostrogradsky instability, leading to a Hamiltonian unbounded from below. Nev-
ertheless, this is not the case if the associated equations of motion are at most quadratic in the 
derivatives. The presence of the Galilean-like symmetry ensures this for galileon theories.

The choice for the coupling constants αn

α2n = 1

2n

(
d

2n − 1

)
μ2n−2 and α2n+1 = 0 , (6.10)

where μ has the mass dimension −1 − d
2 , corresponds to a particular instance of galileon theory 

that possesses several highly remarkable properties, known as the special galileon [85–87]. Im-
portantly, the special galileon is equivalent to the double copy of the non-linear sigma model as 
was demonstrated at the tree level in [87,42] and to all loop orders in [15].

The starting point of our construction is the local, cubic reformulation of the non-linear sigma 
model action that explicitly manifests loop-level CK duality, obtained from the algorithm pre-
sented in Section 4.4. We consider two copies of this theory, a left theory and a right theory, 
which may differ in their flavor Lie algebras. The double copy is now the syngamy where the 
kinematic indices, metric, and structure constants of the left theory are combined with the kine-
matic indices, metric, and structure constants from the right theory.

37 Not to be confused with Galilean symmetry on space–time: galileon theories are Lorentz-invariant, not Galilean-
invariant.
38 Up to total derivatives.
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Correspondingly, the double-copied field content is obtained by taking the tensor square of 
the flavor-stripped field content of the strictified, CK-dual non-linear sigma model, and the inter-
action vertices are the products of two of the interaction vertices of the non-linear sigma model. 
Except for the field ϑ := φ ⊗φ, all the double-copied fields are regarded as auxiliary. The action 
is then schematically of the following form:

SDC = 1
2	īigijḡī̄j�	j̄j + 1

3! fijk f̄̄ījk̄	̃
īi	j̄j	kk̄ ; (6.11)

since there is no gauge symmetry, there is only a trivial BRST operator.
We now sketch an argument to show that the double copy theory is perturbatively quan-

tum equivalent to the special galileon; for more details, see [15]. Since we are only interested 
in perturbative equivalence, it suffices to show that the loop-level scattering amplitudes of the 
double-copied theory and of the special galileon agree to any given order in the coupling con-
stants and number of loops, up to counterterms. Thus, only a finite subset of the interaction 
vertices of the two theories has to be considered.

After integrating out all auxiliary fields, the field contents of both theories are evidently the 
same. Moreover, it is known [87,88,42,9,89] that the tree-level scattering amplitudes of the 
special galileon and the double-copied theory agree. Equivalently, the double copy action has 
inherited its kinematic metric and structure constants from the CK duality manifesting parent 
action; they, therefore, obey the same identities as the flavor metric and structure constants. Cor-
respondingly, the actions can only differ in interaction terms, and these must vanish on shell. 
Explicitly, the difference between the double-copied action SDC and the special galileon action 
must be of the form∫

ddx F̃ i�ϑ , (6.12)

where the F̃ i , with i running over some index set, are some expressions in the field ϑ . Consider-
ing more closely the terms which are produced during the strictification procedure, these terms 
are local up to insertions of operators 1� . The potential discrepancies (6.12) can all be absorbed 
iteratively, order by order in the number of external legs, by field redefinitions of the form

ϑ 
→ ϑ +
∑

i

F̃ i . (6.13)

Note again that we only need to correct finitely many vertices, and there are only finitely many 
required field redefinitions.

6.3. Yang–Mills BRST–Lagrangian double copy

The BRST–Lagrangian double copy introduced in [14,15] is the syngamy (i) in (6.6) with two 
Yang–Mills theories that may differ in the choice of gauge Lie algebra as parent theories. That 
is, we combine the kinematic DeWitt indices of the left Yang–Mills theory with the kinematic 
DeWitt indices of the right Yang–Mills theory, obtaining the field Hij and corresponding kine-
matic metric and structure constants. The field Hij is decomposed into off-shell (not necessarily 
irreducible) Lorentz representations given by the BRST fields of strictified N = 0 supergravity 
as described in detail in [15],

(Hij) = (
hμν(x),Bμν(x),ϕ(x),X(x),Ym(x)

)
, (6.14)

where hμν , Bμν , and ϕ are the graviton, Kalb–Ramond 2-form, and dilaton, respectively. The full 
set of diffeomorphism and 2-form gauge symmetry ghosts and anti-ghosts of N = 0 supergravity 
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is collectively denoted by X. Furthermore, Ym correspond to the bosonic and ghost strictification 
auxiliary fields [15].

The double-copied BRST action is

SDC
BRST = 1

2 gikgjlHij�Hkl + 1
3! fijkflmnHilHjmHkn , (6.15)

and we note that the metric and the kinematic structure constants are indeed double-copied. 
Similarly, the double-copied BRST operator reads as

QDC
BRST = QL

BRST + QR
BRST , (6.16a)

where

QL
BRSTHij := qi

k δ
j
l Hkl + 1

2 qi
kl f̄mn

j Hkm Hln ,

QR
BRSTHij := δi

k qj
l Hkl + 1

2 fkl
i qj

mn Hkm Hln .
(6.16b)

We claim that the double copy BRST action (6.15) and BRST operator (6.16a) constitute 
a well-defined perturbative BRST quantization,39 quantum equivalent to the canonical BRST 
quantization of N = 0 supergravity. The latter is described in detail in [14,15], see also [47]. 
Concretely:

(i) We have QDC
BRSTSDC

BRST = 0 up to a total derivative, as well as (QDC
BRST)2 = 0 up to ex-

act operator identities; we can trivially reintroduce Nakanishi–Lautrup fields to ensure 
(QDC

BRST)2 = 0 if desired. This follows from the CK-dual Yang–Mills BRST action,40 as 
explained in Section 6.1. Moreover, the linear parts of QDC

BRST indeed agree with the ex-
pected form of the BRST operator of N = 0 supergravity, as is evident from the explicit 
form given in [15].

(ii) There is a gauge and a field redefinition such that, after putting the auxiliary fields Ym to 
zero, the kinetic terms agree [15],

SDC
BRST

∣∣∣
kin, Ym=0

= SN=0
BRST

∣∣∣
kin

. (6.17)

The linearized form of the double copy therefore evidently holds.
(iii) The physical tree-level scattering amplitudes of (6.15) agree by construction with those 

of N = 0 supergravity. The numerators of all physical tree-level scattering amplitudes 
derived from the Feynman diagrams of the action (6.15) are precisely those obtained by 
double-copying the physical tree-level kinematic numerators of the Yang–Mills theory. The 
action (6.15) is thus semi-classically equivalent to the N = 0 supergravity action. This 
matching can be extended to all bosonic fields by a suitable choice of gauge (tuned such that 
non-transversely polarized fields cannot produce a discrepancy), cf. Observation 5.1; then 
the (on-shell) BRST Ward identities of Observation 5.3 show that the matching extends to 
the full BRST-extended Hilbert space, including states containing ghosts and anti-ghosts.

(iv) We now integrate out all auxiliary fields, which can lead to non-local interaction terms. 
The discrepancy between the interaction terms in both theories must be proportional to �	

39 Note that this does not mean that the double-copied QDC
BRST is non-anomalous. As we note later, QDC

BRST might differ 
from a canonically obtained BRST operator QN=0

BRST by a trivial symmetry which may be anomalous.
40 The additional weak condition that Q2

BRSTφ for any field φ and QBRSTS are proportional to the generic algebraic 
relations are satisfied for Yang–Mills theory.
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for some field 	 as they are invisible to the tree-level scattering amplitudes. As argued 
before in the context of CK duality, such differences can be produced by field redefinitions. 
These field redefinitions may be non-local, but they do not affect the consistency or quantum 
equivalence of the theory; they merely introduce well-defined additional counterterms in the 
renormalization procedure. In fact, these counterterms will be the additive inverses of those 
needed to ensure the unitarity of the loop amplitudes of the double copy action. Removing 
the local terms corresponds to removing the need for the corresponding counterterms.

The field redefinitions and integrating out of the auxiliary fields lead to a transformed double-
copied BRST operator QDC

BRST. Having matched the double-copied BRST action with the BRST 
action of N = 0 supergravity, it is now natural to expect that also the corresponding BRST oper-
ators QDC

BRST and QN=0
BRST agree. This is almost the case. Because both QN=0

BRST and QDC
BRST describe 

symmetries of the action SN=0
BRST of N = 0 supergravity, their difference is also a symmetry. This 

difference could, in principle, consist of any other symmetry in the theory, but we know that the 
linear parts of QN=0

BRST and Q̃DC
BRST agree, and there are no candidates for perturbative, non-linear, 

non-trivial symmetries. The only remaining possibility is thus a trivial symmetry, cf. [90, Sec-
tion 2.5], [91, Theorem 3.1], see also [23, Section 4.2] for a large class of trivial symmetries that 
any theory possesses. These symmetries vanish on shell and do not lead to new Noether charges, 
so a potential difference by a trivial symmetry is irrelevant for most purposes.41 See also [92]
for a double copy construction of symmetries in the self-dual sectors of Yang–Mills theory and 
gravity, including both perturbative and non-perturbative symmetries, as well as the double copy 
of large gauge transformations that yields holomorphic supertranslations.

6.4. Double copy of supersymmetric Yang–Mills theory

Given CK duality for the BRST action of supersymmetric Yang–Mills theory, the BRST–
Lagrangian double copy follows straightforwardly following the general principles laid out in 
the above sections. Nonetheless, there are several interesting new features that we will briefly 
expand upon here.

Although the arguments are generic, for definiteness we will focus on the double copy of 
supersymmetric Yang–Mills theory in d = 10 space–time dimensions. This has the added benefit 
of implying the analogous results for all theories obtainable by toroidal dimensional reduction 
and field theory orbifolding, cf. [93]. This includes, for example, the products of any pair of 
supersymmetric Yang–Mills theories in any d � 10, as summarized in [94], as well as various 
supersymmetric Yang–Mills–matter theories, cf. e.g. [95,96,24].

For supersymmetry, we add a Majorana–Weyl gluino ψa
α to the d = 10 Yang–Mills BRST 

fields of (5.25a)

(Aiā) = (
Aa

μ(x),ψa
α(x), c̄a(x), ca(x),Yma(x)

)
, (6.18)

where now Yma also contains auxiliary superpartners. We adopt 32-component Majorana spinor 
conventions, so γ11ψ = ±ψ according to the chirality chosen for the gluino.

41 Recall that trivial symmetries are general coordinate transformations on field space that leave the action invariant. 
Generically, however, their actions on the path integral measure will introduce non-trivial Jacobian determinants. There-
fore, trivial symmetries, and hence QDC , may be anomalous.
BRST
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The double copy is given by the same syngamy as before, cf. (6.15). The result is IIA or IIB 
supergravity if the chiralities of the gluinos are taken to be opposing or matching, respectively, 
as implied by the tensor product of the on-shell gluon and gluino states,

IIA: 8v ⊗ 8s = 56c ⊕ 8c and 8c ⊗ 8v = 56s ⊕ 8s ,

IIB: 8v ⊗ 8s = 56c ⊕ 8c and 8s ⊗ 8v = 56c ⊕ 8c .
(6.19)

Let us first consider the Neveu–Schwarz–Ramond (NS–R) and R–NS sectors. The additional 
physical field content in the NS–R sector is

Hμβ ∼ Aμ ⊗ ψβ ∼ �μβ ⊕ λβ , (6.20)

where �μ and λ are the NS–R gravitino and dilatino, respectively. The R–NS sector follows 
similarly.

In addition, there are ghosts and anti-ghosts for each of the two gravitini, which follow from 
the product of the Yang–Mills (anti-)ghosts with the gluini [37]. In the NS–R sector, we have

Haβ ∼ c̄ ⊗ ψ ∼ η̄ and Hgβ ∼ c ⊗ ψ ∼ η , (6.21)

where η and η̄ are the local supersymmetry ghost and anti-ghost, respectively. If we had not 
integrated out the Yang–Mills Nakanishi–Lautrup field b, its product with the right gluino would 
produce Hnβ ∼ b ⊗ ψ ∼ χ , the Nielsen–Kallosh auxiliary spinor. The R–NS ghosts and anti-
ghosts are constructed similarly.

To be able to apply our Lagrangian double copy prescription, one should first rewrite the 
gluino kinetic term so as to manifest the ansatz (5.21):

ψ̄ /∂ψ = ψ̄ /∂
−1�ψ . (6.22)

This defines the extension of the kinematic metric (5.27) to the supersymmetric Yang–Mills 
BRST field space given by (6.18). The double copy then proceeds as before.

The supercharges QL, QR of the left and right parent supersymmetric Yang–Mills theo-
ries generate the IIA/B supercharges [97–99,94], in direct analogy to the BRST transforma-
tions (6.16a). Explicitly,

QAiā = Qi
j δ

ā
b̄
Ajb̄ + 1

2Q
i
jkfb̄c̄

āAjb̄Akc̄ (6.23)

gives rise to

QLHij = Qi
kδ

j
lHkl + 1

2Q
i
klfmn

jHkmHln (6.24)

with analogous formulas for QR. The invariance of the double copy Lagrangian under super-
symmetry then follows from a fully analogous argument to the discussion of BRST invariance. 
Note that the local supersymmetry parameter, not included in (6.24), is identified with the local 
supersymmetry ghost η.

As an explicit example, consider

QαAa
μ = δa

bγμα
βψb

β + · · · , (6.25)

where the higher order terms represented by the ellipsis are induced by the field redefinitions 
required for manifest CK duality. Setting (ij) = (μν) for instance, this double-copies to

QL
αHμν = γμα

βHβν + · · · . (6.26)
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L. Borsten, H. Kim, B. Jurčo et al. Nuclear Physics B 989 (2023) 116144
Applying QL to the graviton hμν and Bμν , which are given by Hij as in [15], then determines the 
NS–R gravitino in terms of Hαν . The same applies for the R–NS gravitino, using QR. Similarly, 
the NS–R and R–NS dilatini are determined by QL and QR acting on Bμν and the dilaton, given 
in terms of Hij as in [15].

The logic of the preceding discussion did not differ from the case of Yang–Mills theory, 
save for the graviton, the diffeomorphism gauge potential, replaced by the gravitino, the local 
supersymmetry gauge potential. However, the Ramond–Ramond (R–R) sector is rather more 
subtle and requires some new conceptual ingredients.

The key difference is that the product of two spinors in the context of a field theoretic double 
copy gives field strengths, not potentials [100].42 Roughly speaking, an R–R double copy field 
Hαβ ∼ ψα ⊗ ψβ is a bispinor that decomposes into a sum of p-form field strengths Fp,

Hαβ =
d∑

p=0

1

p! (γ
μ1···μpC)αβFμ1···μp (6.27a)

with

γ μ1···μp
α

β = γ [μ1
α

α1γ μ2
α1

α2 · · ·γ μp]
αp

β , (6.27b)

where C is the charge conjugation matrix and �Fp ≡ Fd−p . The particular set of field strengths 
generated depends on the space–time dimension and the class of spinors considered, but can 
be read off from the relevant so(d) tensor product decomposition. For example, in our cases of 
interest, we have

IIA: 16 ⊗ 16 = 1 ⊕ 45 ⊕ 210 ,

IIB: 16 ⊗ 16 = 10 ⊕ 120 ⊕ 126 .
(6.28)

For type IIA, the 45 and 210 correspond to the usual R–R 2-form and 4-form field strengths, 
respectively. The 0-form field strength corresponding to the singlet lacks degrees of freedom and 
can be integrated out (although it is tempting to regard it as the Romans mass). For type IIB, 
the 10, 120, and 126 correspond to the usual R–R 1-form, 3-form, and self-dual 5-form field 
strengths, respectively.

The necessity of identifying ψ ⊗ ψ with field strengths follows from three related observa-
tions. First, as is clear from the above example of type IIA/B supergravity, the tensor product of 
the off-shell gluino spinor representations yields tensor representations corresponding to those 
carried by the field strengths, not the potentials. Second, the BRST transformation of the gluino 
has no linear contribution, QBRSTψ = [c, ψ], so ψ ⊗ψ cannot transform as a gauge potential un-
der the double copy of the BRST transformations. Finally, the background R–R fields couple to 
the type II superstring worldsheet action through their field strengths only – the R–R superstring 
vertex operators, constructed from the products of open superstring vertex operators, correspond 
to field strengths. This is reflected in the scattering amplitudes involving R–R external states, 
which are always proportional to a power of their momenta and so have vanishing soft limits – 
superstrings are uncharged with respect to the R–R gauge potentials.

The key implication of the latter comment for the present discussion is that the IIA/B su-
pergravity actions can be written exclusively in terms of the R–R field strengths, once they are 
suitably defined. For example, the IIA supergravity R–R sector Lagrangian is

42 We are also grateful to A. Anastasiou, M.J. Duff, S. Nagy, and M. Zoccali for this observation, which was originally 
made in (as yet) unpublished joint work.
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F2 ∧ �F2 + F̃4 ∧ �F4 + B2 ∧ F4 ∧ F4 , (6.29a)

where

F2 = dC1 , F4 = dC3 , F̃4 = dC3 + H3 ∧ C1 , H3 = dB2 , (6.29b)

with the Bianchi identity

dF̃4 = −H3 ∧ F2 . (6.29c)

Up to total derivatives, (6.29a) can be rewritten as

F2 ∧�F2 + F̃4 ∧�F4 +B2 ∧ F̃4 ∧ F̃4 +B2 ∧B2 ∧F2 ∧ F̃4 − 1
3B2 ∧B2 ∧B2 ∧F2 ∧F2 , (6.30)

so the action may be formulated purely in terms of F2 and F̃4, with no bare R–R poten-
tials appearing. Similarly, the type IIB action admits a formulation in terms of only R–R field 
strengths [101].

This is implied by the double copy construction of the R–R sector: the identification of ψ ⊗ψ

with field strengths implies that there must exist a formulation of the type II supergravity ac-
tion with no bare R–R potentials. In fact, more is required by the double copy. Since the double 
copy action is written purely in terms of the R–R field strengths, they must be treated as elemen-
tary fields and still correctly reproduce scattering amplitudes involving the R–R sector through 
their Feynman diagrams. Interestingly, as we will explain below, the double copy Lagrangian 
achieves this automatically through a generalization of Sen’s mechanism [102,18] for imposing 
self-duality on d2 -form field strengths in d ≡ 2 (mod 4) space–time dimensions.

The double copy R–R sector is, in terms of the bispinor Hαβ and its Majorana conjugate Hαβ
, 

given by

SDC
R–R =

∫
ddxHαβ�−1 /∂α

α′
/∂β

β ′Hα′β ′︸ ︷︷ ︸
=:SDC

R–R, kin

+SDC
R–R, int . (6.31)

Next, upon decomposing the bispinor in terms of the field strengths as in (6.27), the kinetic terms 
for each elementary p-form field strength are of the form

SDC
R–R, kin = − 1

2

∫ {
F ∧ �F − dF ∧ ��−1dF

}
+ · · · , (6.32)

where we only displayed the terms relevant for our discussion below. In the free theory, the 
equation of motion for F implies the Maxwell equation d�F = 0 and the Bianchi identity dF =
0. In terms of the Hodge-dual field strength �F , the kinetic term can be written as∫

ddx (�F )μ1···μq+1P
μ1···μq+1

ν1···νq+1(�F )ν1···νq+1 , (6.33a)

where the appearance of the operator

P μ1···μq+1
ν1···νq+1 =

(
�δμ1

ν1
· · · δμq+1

νq+1 + ←
∂ [μ1

→
∂ [ν1δ

μ2
ν2

· · · δμq+1]
νq+1]

)
�−1 (6.33b)

can intuitively be interpreted as inserting a projector on each internal line of the Feynman di-
agrams that removes the unphysical modes, ensuring that the tree-level scattering amplitudes 
match those of the conventional Abelian p-form theory. The double copy yields a formulation 
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of the R–R sector in terms of elementary gauge invariant field strengths and, accordingly, with 
none of the usual gauge-fixing machinery. There simply are no double copy fields that could be 
identified with R–R ghosts or anti-ghosts. Since the double copy R–R sector tree-level scattering 
amplitudes match, by construction, those of IIA/B supergravity, they are semi-classically equiv-
alent. The complete absence (and irrelevance) of R–R gauge-fixing and ghost sectors implies 
that the matching of the physical tree-level scattering amplitudes alone suffices for full quantum 
equivalence.

This formulation of the R–R sector in terms of elementary (p + 1)-form field strengths Fp+1, 
is perhaps less familiar, and it is not immediately obvious that it yields physics equivalent to 
that of the usual theory of Abelian p-form gauge potentials Ap. A first natural step towards 
establishing this equivalence would be to make the action (6.32) local. This can be done by 
introducing q-form auxiliary fields Bq , where q = d − p − 2, putatively Hodge-dual to the Ap. 
In doing so, one discovers that the double copy automatically reproduces a generalization of 
Sen’s mechanism.

6.5. Sen’s mechanism from the double copy

Sen’s mechanism is a method to construct action principles for differential form fields obeying 
a self-duality constraint, motivated by IIB string field theory [102,18], where the R–R sector 
is naturally given in terms of bispinors. Given the close kinship between the double copy and 
closed = open ⊗ open string relations, one may also expect this mechanism to appear in the 
current context. Indeed, the use of bispinors for the R–R sector has essentially the same origin in 
each case.

To illustrate this, let us start from Sen’s mechanism generalized to arbitrary (as opposed to 
self-dual) field strengths. Consider a (p + 1)-form field strength F that is treated as elementary, 
but required to be physically equivalent to an Abelian p-form potential A coupled to the other 
fields of the theory, collectively denoted by 	, only through its field strength. The generalization 
of Sen’s mechanism implementing this demand is given by the action

SgenSen =
∫ {− 1

2F ∧ �F − ξB ∧ dF + 1
2 dB ∧ �dB

}+ SgenSen, int[F,	] , (6.34)

where we have introduced a second q = (d −p − 2)-form B and a real parameter ξ . Note that 	
does not include B . In the absence of the dB ∧ �dB term, B is just the familiar Lagrange mul-
tiplier enforcing dF = 0, and for SgenSen

int linear in F we can integrate out F to obtain the dual 
(d − p − 2)-form Lagrangian in terms of B .43 When d ≡ 2 (mod 4) and F is self-dual, then 
F∧ � F = 0, and we recover Sen’s original ansatz, which is applicable to self-dual 5-form of 
IIB supergravity [18] and approaches to the 6-dimensional N = (2, 0) theory [104,105]. Gener-
ically, the equation of motion for B implies that the combination ξF + (−1)q�dB is closed, 
which determines B partly in terms of F with the remaining part decoupling from the sys-
tem. The equation of motion for F then implies the Bianchi identity dF̂ = 0 and the equation 

of motion d�F̂ = ξ2

1+ξ2 dR, where F̂ := F + (−1)(d+1)(p+1)

1+ξ2 �R and R is defined by the variation 

SgenSen, int[F + δF, 	] =: ∫ δF ∧ R +O((δF )2) up to total derivatives.

43 Since we are interested here in perturbative scattering amplitudes on a Minkowski background, we can ignore all 
subtleties regarding quantum equivalence due to topology and non-perturbative effects, cf. [103] and references therein.
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To make contact with the double-copied action (6.32), note that (6.34) remains invariant under 
the usual q-form gauge symmetry δBq := d�q−1, δ�q−1 := d�q−2, . . . , and δ�1 := d�0 [105]. 
Let us apply the standard Abelian q-form BRST quantization, choosing Feynman gauge and 
integrating out the Nakanishi–Lautrup fields, to leave

S
genSen
BRST =

∫ {− 1
2F ∧ �F − ξB ∧ dF − 1

2B ∧ ��B + · · ·} , (6.35)

where we have omitted the tower of ghost fields which decouple in Feynman gauge. Upon inte-
grating out B by its equation of motion

B = (−1)q(d−q)ξ�−1�dF , (6.36)

we recover the double-copied action (6.32) for an appropriate choice of ξ .
Even though we did not ask for it, the double copy produces (a generalization of) Sen’s mech-

anism automatically, reinforcing its naturalness as an approach to describing the physics of gauge 
potentials in terms of elementary field strengths.

7. Conclusions and outlook

In this paper, we have constructed a toolkit, not evident from a purely on-shell perspective, 
for boosting on-shell tree-level CK duality to off-shell loop-level CK duality up to counterterms. 
This toolkit uses the action of the underlying quantum field theory as an ordering principle, and 
full CK duality becomes a manifest feature of the action. This new perspective on CK duality 
implies a very direct proof of the double copy at the loop level.

Much as focusing on physical on-shell scattering amplitudes has dramatically advanced our 
understanding, stepping back off shell once again sheds new light on the scattering amplitudes 
themselves. One might say that off-shell is the new on-shell.44

CK duality links the internal color symmetry to a kinematic symmetry algebra acting on 
space–time, and the Coleman–Mandula theorem seems to imply a fundamental dichotomy. In 
this paper, we have shown that both symmetries are indeed on an equal footing such that the 
Yang–Mills field Aa

μ(x) is biadjoint in terms of the color index a and the kinematic index μ. 
We have explained in Section 5.7 how this perspective does not violate the Coleman–Mandula 
theorem.

Although our paper is couched in the language of actions, we stress that what we do is purely 
perturbative, that is, it concerns scattering amplitudes and correlators, in particular the usual 
scattering amplitude-theoretic CK duality and double copy conjectures. We do not claim here any 
direct implications for (among others) classical double copy of exact classical solutions [106–
112] and other non-perturbative double-copy-type relations [113–115].

An important point we stressed throughout the paper but may require further highlighting is 
the following. Step (iii) in our algorithm in Section 2 implies that counterterms arising from the 
Jacobian of the non-local field redefinitions may be required to ensure unitarity on the phys-
ical Hilbert space. Correspondingly the CK-dual loop integrands generated by the Feynman 
diagrams of (2.1) manifestly satisfy all desirable properties, as described in e.g. [16], but may 
violate unitarity, which must be restored by counterterms. In particular, we do not contradict 

44 We also remark that the homotopy algebraic perspective on field theories unifies scattering amplitudes and action 
principles.
50



L. Borsten, H. Kim, B. Jurčo et al. Nuclear Physics B 989 (2023) 116144
the result of [16] that there is no CK-dual 4-point, 2-loop integrand satisfying all properties de-
scribed therein. Due to the lack of unitarity before adding counterterms in our case, the standard 
proof [12] of the loop-level validity of the double copy is clearly not applicable directly, but the 
argument of [14,15], streamlined here in Section 6.3, is fully independent45 and valid nonethe-
less. The off-shell CK duality of (2.1) is sufficient for the double copy. Again, we stress that we 
do not double-copy counterterms, which nonetheless can be systematically accounted for. The 
latter observation is made clear by starting from SN=0

BRST and considering the field redefinitions 
required to produce the non-local terms that appear in SDC

BRST once the auxiliary fields have been 
integrated out. The counterterms required for unitary are just those induced by the Jacobian de-
terminants of these field redefinitions. Similarly, the ‘labeling problem’46 is naturally avoided by 
working at the level of the action.

To summarize: we have lifted the notion of CK duality from on-shell gluon scattering ampli-
tudes to the underlying BRST gauge-fixed action itself, up to the Jacobian counterterms. From 
this point of view, CK duality is rendered a manifest symmetry, in the usual sense, of an action 
that is perturbatively quantum equivalent to standard Yang–Mills theory.

The Feynman diagrams of this classical BRST action generate amplitude integrands that sat-
isfy CK duality to all loop orders. However, the potential Jacobian counterterms, required to 
ensure unitarity beyond one loop, will generically break this CK duality. We have seen no reason 
to think that the Jacobian counterterm contributions to the integrands can be made to manifest 
CK duality, at least not while preserving the properties inherited from a direct Feynman dia-
gram construction. CK duality can thus be understood as a classical symmetry that is generically 
anomalous. It is only in the case of very special field theories, such as N = 4 super Yang–Mills 
theory, that there is evidence [17] that our procedure can be implemented in a way that avoid 
problematic counterterms.

Let us reiterate that the CK-anomaly is harmless, at least for most applications and purposes, 
as explained in Section 3.9; quantum consistency is ensured from the outset. More precisely, the 
required counterterms exist, are unique in the appropriate sense, and preserve BRST invariance.

We close by mentioning a few points that we plan to address in future work. The results 
of this paper beg to be formulated in the language of homotopy algebras.47 The main result 
of the present contribution translates into the assertion that, with the requisite gauge fixing, field 
redefinitions, and auxiliary fields, Yang–Mills theory – and any other theory for which CK duality 
holds at tree level – is described by a homotopy algebra that contains a so-called BV�-algebra, 
which is the strict version of the concept of a BV�∞-algebra as defined in [11]; this algebra 
captures precisely the strong form of off-shell CK duality described in this paper. Furthermore, 
the double copy can also be naturally described in this formalism. We defer a detailed discussion 
of this formalism to an upcoming paper [64].

As mentioned several times, the results of this paper ignore CK duality and the double copy 
of counterterms. We argue in Section 3.9 that this is largely irrelevant, and in particular it does 
not matter for determining the UV behavior of supergravity theories. It is clear that we have to 

45 Note that our argument in [14,15] does assume the existence of a proof of the usual tree-level double copy for physical 
states. One such proof is certainly the standard proof of [12].
46 See, for example, the discussion of [20] and the references therein.
47 See [116–119] for a discussion of scattering amplitudes and Berends–Giele recursion relations in terms of homotopy 
algebras for both tree- and loop-level scattering amplitudes. See also [120] for related discussions of the S-matrix in the 
language of homotopy algebras, [121,122] for the tree-level perturbiner expansion, and [123] for a homotopy algebra 
interpretation of tree-level on-shell recursion relations.
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validate this claim with detailed computations, which we intend to perform in future work once 
the simplifying homotopy algebraic framework [64] is fully set up. We note that the precise form 
of the counterterms depends on the regularization and renormalization schemes, such that any 
statements one makes would depend on the scheme, which is clearly undesirable. For certain 
quantum field theories, however, nature does give us a regulator in the form of string theory: the 
infinite tower of stringy modes come in to render the Yang–Mills integrands finite. In this regard, 
a natural way to prove CK duality for Yang–Mills theory with counterterms should be to prove 
CK duality at the loop level for open string amplitudes.48
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[14] L. Borsten, B. Jurčo, H. Kim, T. Macrelli, C. Saemann, M. Wolf, BRST–Lagrangian double copy of Yang–Mills 

theory, Phys. Rev. Lett. 126 (2021) 191601, arXiv :2007 .13803 [hep -th].
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[23] B. Jurčo, L. Raspollini, C. Saemann, M. Wolf, L∞-algebras of classical field theories and the Batalin–Vilkovisky 

formalism, Fortschr. Phys. 67 (2019) 1900025, arXiv :1809 .09899 [hep -th].
[24] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban, The duality between color and kinematics and its 

applications, arXiv :1909 .01358 [hep -th].
[25] L. Borsten, Gravity as the square of gauge theory: a review, Riv. Nuovo Cimento 43 (2020) 97.
[26] J.J.M. Carrasco, H. Johansson, Five-point amplitudes in N = 4 Super-Yang–Mills theory and N = 8 supergravity, 

Phys. Rev. D 85 (2012) 025006, arXiv :1106 .4711 [hep -th].
[27] S. Oxburgh, C.D. White, BCJ duality and the double copy in the soft limit, J. High Energy Phys. 1302 (2013) 127, 

arXiv :1210 .1110 [hep -th].
[28] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, Simplifying multiloop integrands and ultraviolet 

divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014, arXiv :1201 .5366 [hep -th].
[29] Y.-J. Du, H. Luo, On general BCJ relation at one-loop level in Yang–Mills theory, J. High Energy Phys. 1301 

(2013) 129, arXiv :1207 .4549 [hep -th].
53

http://refhub.elsevier.com/S0550-3213(23)00073-1/bib992FDEBFBE0B599178CA4A6CB8140DCFs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib992FDEBFBE0B599178CA4A6CB8140DCFs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib42F9214B8A8ED4A739BE93D8549A19BBs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib42F9214B8A8ED4A739BE93D8549A19BBs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibBDAB30BC47C996913E77118299444DE9s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibBDAB30BC47C996913E77118299444DE9s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib1C2E175D06C3D5F7B9B4D868A1FE4374s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib1C2E175D06C3D5F7B9B4D868A1FE4374s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibED1D29D1A891B4CDA97724A1A74C6013s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibED1D29D1A891B4CDA97724A1A74C6013s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib1A0C8DE77381F8B6B56E9B2C5C9AA101s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibF9856D72D916FCC000C91B7137B1DA3Fs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibF9856D72D916FCC000C91B7137B1DA3Fs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib5F7EA7F4B9127D4E7C6AF283B4E1B950s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib5F7EA7F4B9127D4E7C6AF283B4E1B950s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib027EBAC70D01ACA399C6B0080216209Es1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib027EBAC70D01ACA399C6B0080216209Es1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibC2B2062948568A8C0E420FC9EED10CF1s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibC2B2062948568A8C0E420FC9EED10CF1s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib1BEFDB2B6516E6E059AE9E544218BB2Bs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib48BBA54CF62F0F0EC030413777F74B76s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib48BBA54CF62F0F0EC030413777F74B76s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8C3107EE392AF3D729E5C458A8E3497Ds1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8C3107EE392AF3D729E5C458A8E3497Ds1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib10D95855AEADEB6387BC568F2F048F6As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib10D95855AEADEB6387BC568F2F048F6As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib3E1508D4F41B99450AFE6CA576D505F9s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib3E1508D4F41B99450AFE6CA576D505F9s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib71D22F2ACE7E9B74F5EDAA5D01338440s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib71D22F2ACE7E9B74F5EDAA5D01338440s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib612A822869ED11210C60F472480B143As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib612A822869ED11210C60F472480B143As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib6995CAF00E3A5926C472F1739480B681s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib6995CAF00E3A5926C472F1739480B681s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibD384FC55D22528679AD034DB176F72FCs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8B0E11DD2D6BE2297077D6A75A1CEF77s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8B0E11DD2D6BE2297077D6A75A1CEF77s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib98CACD33FA87726DC4F2EFD4043EC5FAs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib98CACD33FA87726DC4F2EFD4043EC5FAs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibC423A914DC777E1569EB60E00EF84AD8s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibC423A914DC777E1569EB60E00EF84AD8s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8775AE7DF6BC8C23392F259ACB66BB9Ds1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib8775AE7DF6BC8C23392F259ACB66BB9Ds1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibA1FA83C3C6AD56C35F3D8A2621722AFAs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibA1FA83C3C6AD56C35F3D8A2621722AFAs1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibBA38E14D879BC5F1B980707D9E28B941s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibFB712D365AD43281CDF307E0A4B9BFC5s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibFB712D365AD43281CDF307E0A4B9BFC5s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib5824BE211E29B56DB3F074F828D7A2A3s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib5824BE211E29B56DB3F074F828D7A2A3s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib05CDCD2D06CC459F37A71F230FA3886As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bib05CDCD2D06CC459F37A71F230FA3886As1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibB41784201C344C43D01505C491F075C1s1
http://refhub.elsevier.com/S0550-3213(23)00073-1/bibB41784201C344C43D01505C491F075C1s1
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