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Summary  .  We discuss the electrodynamics of a rapidly rotating perfectly 

conducting magnetized sphere rotating with constant angular velocity about an axis 

which is inclined to the magnetic dipole field. An exact special relativistic solution is 

obtained for the electromagnetic field in the interior. The exterior solution is also 

determined and matched to the interior by using the appropriate boundary conditions. 

A formula for the relativistic energy emission from the sphere is derived, and 

compared with the known non-relativistic formula. It is shown that in the slow   

rotation limit, all the relativistic solutions and formulae obtained reduce to the known 

non-relativistic expressions in the literature. Some of the main objectives of this work 

are to obtain the expressions for the electromagnetic field vectors in the interior and 

exterior and to see how large the special relativistic corrections are in the energy 

emission formula. The latter, but also other expressions and formulae, may be of 

relevance to rapidly rotating neutron stars, because it will be found that the classical 

non-relativistic formula for the energy emission, is inaccurate for such stars.  

  

 
PACS 97.60.  Jd – Neutron stars 

PACS 03.30. + p – Special relativity 

 

 

 

1.  Introduction 

  

     The electromagnetic field of a slowly rotating magnetized star, was discussed by Deutsch 

[1] and this classic work was used in a number of astrophysical applications. Belinsky et al. 

[2], obtained special relativistic solutions for a rotating magnetic dipole and their paper is an 

elaborated version of a relativistic magnetized star model, or of a millisecond pulsar, given 

earlier by Belinsky and Ruffini [3]. More recently, we had discussed the special relativistic 

electrodynamics of a rapidly rotating perfectly conducting sphere in relation to pulsar 

electrodynamics [4]. A treatment of a slowly rotating magnetized neutron star in the context 

of general relativity, was given by Rezzolla et al. [5]. In addition to the references in [2] and 

[3], millisecond pulsars were also discussed in [6] and [7]. We shall denote the magnetic and 

electric intensities by H  and E respectively, with B  and D  the corresponding inductions. 

The non-relativistic expressions for the components of B  and E in eqs. (48)-(53) of [5], were 

assumed to be independent of .z  This may be clearly seen, if we transform these expressions 

to the coordinates ( ,  ,  ,  ).ct x y z  This assumption was also made in [4] where the expressions  

(48)-(53) of [5] were used as a first approximation for the components of B and .E  

      We shall now give a brief description of the aims of the work of [4] and of the 

present work and note some of their differences. The scope of the work of [4] was 

limited because its objectives were to obtain exact interior and exterior solutions for a 

conducting rotating sphere under the above restrictive assumption. As a consequence 
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of this assumption, both, the interior and exterior exact special relativistic solutions 

obtained in [4] contain the Bessel function of the first kind 1( sin )J kr   in its terms. 

Here, ( ,  ,  )r   are spherical polar coordinates with associated unit vectors  ˆˆ ˆ,  ,  r θ φ , 

the sphere is assumed to rotate about the z-axis with angular velocity of constant 

magnitude    and /k c  . The connection between the work of [4] and rotating 

stars, is through the slow rotation limit of the exact interior relativistic solution given 

by eqs. (18)-(19) of [4]. In this limit the latter eqs. reduce to the approximations (48)-

(53) of [5]. These eqs. will also be shown to be the slow rotation limits of the exact 

relativistic expressions we shall derive in Section 2. It is easy to see that eqs. (48)-(53) 

of [5] do not satisfy all of Maxwell’s eqs. in the interior. The role of these 

approximations in the derivation of the Deutsch solutions, will become clear in 

Section 6. By ‘Deutsch solutions’ we shall mainly mean the expressions for the 

components of H  and E  in the Appendix of [1]. The exact exterior solutions of [4], 

do not reduce to the approximate solutions (54)-(59) of [5] or to the Deutsch solutions 

of [1]. It is one of the objectives of this work to obtain special relativistic interior and 

exterior solutions for B  and E  that are not based on the above restrictive assumption 

and this is a major difference between the work of [4] and the present work. In the 

slow rotation limit, both, the exact interior and exterior solutions of the present work, 

will then reduce to the known approximate non-relativistic solutions of [1] and [5]. 

     Instead of the Bessel function of the first kind 1J  with argument sinkr  , we shall 

have spherical Bessel functions of various kinds and orders but with the same 

argument kr . As is the case in the works of [1, 4, 5], it will be seen that both, the 

interior and exterior solutions we shall obtain, are the sums of two different 

independent solutions. One of them has ‘ cos ’ as a factor in its terms, and the other 

has ‘ sin  ’ as a factor, where   is the angle between the dipole magnetic field and 

the rotation axis. We shall refer to them as the ‘ cos ’ and ‘ sin  ’ solutions 

respectively. By removing the assumption which is implicit in eqs. (48)-(53) of [5], 

we shall obtain in this work new and different interior and exterior ‘ sin  ’ solutions, 

but the ‘ cos ’ solutions will be the same as in [4]. Equally importantly, we shall 

derive a formula for the relativistic energy emission, which we shall compare with the 

corresponding well-known non-relativistic formula. This, we did not do in [4]. The 

new ‘ sin  ’ solutions in the interior and exterior will lead to significant new results, 

the most important of which is perhaps the relativistic energy emission formula.  We 

have described some of the aims of the work in [4] and of the present work and also 

some of their important differences. 

     As in Deutsch [1], we shall assume that the material of the sphere has infinite 

conductivity. The relativistic and non-relativistic electrodynamics of such a sphere is 

given in [8] and [9] respectively, for the case where the rotation axis is aligned with 

the dipole magnetic field and so 0.   We shall take the magnetic permeability and 

electric permittivity of the sphere to be those of the vacuum [1] and use units in which 

 and . E D H B  These are the same units as in [2, 3]. Our choice of units 

corresponds to setting 
1

0 0  c    in the Deutsch paper [1], as it is also done in [2]. 

The radius of the star is denoted by R in [5] and by a in the present work and in [1, 4, 

8, 9]. The symbol 0B  in the present work and in [4, 9], but also 0H  in [8], denotes the 

Deutsch parameter 1( ) R a in [1], so that 0B  and 0H  correspond to 1( ).R a  The 

magnitude of the angular velocity is denoted by   here and in [4, 5, 8], but in [1, 2, 
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3, 9], it is denoted by  . The symbol   is used for the total dipole moment in [2, 3, 5] 

and in terms of our symbols we have 3

0 / 2.a B    

 

 

2.  The relativistic interior electrodynamics 

 

     We shall deal with a rapidly rotating perfectly conducting sphere without any direct 

reference to any star or neutron star. Aspects of the work which may be of relevance to 

rapidly rotating neutron stars, will be noted. The solutions for the exterior components 

of the magnetic induction B  and electric intensity E  obtained by Deutsch, are 

displayed in the Appendix of [1]. The interior solutions are not explicitly given, but 

they may be found in [5]. As already noted, these solutions are for a slowly rotating 

sphere and in this work we shall derive exact interior and exterior solutions for a 

rapidly rotating sphere using the same assumptions as Deutsch in [1]. Deformations of 

the sphere to an oblate spheroid due to centrifugal forces or to a prolate spheroid due to 

strong toroidal magnetic fields [6] will not be considered. Indeed, separate treatments 

are required for each one of these deformations involving the use of oblate and prolate 

spheroidal coordinates.  In this work we shall ignore both of these distortions, but in Section 

8 we shall briefly discuss ways to deal with them. There are effects in the electrodynamics that 

arise purely from fast rotation and these may be most efficiently investigated without the 

inclusion of these complications. Gravity was not considered in [1] and also there was no 

discussion of the detailed physics and structure of the interior. These will therefore be 

absent from our treatment as well. It is one of the objectives of this work, to see how 

different the special relativistic expressions are from the non-relativistic ones and how  

large the resulting corrections are, in the case of the energy emission.  

     Our treatment will be physically different from that of Belinsky et al. in [2], since 

both the interior and exterior electrodynamics will be given and the solutions will be 

matched on the boundary using the appropriate conditions. One of the most important 

quantities we shall obtain is the energy emission. It will be seen that this depends on the 

exterior field as well as on the interior one through the boundary conditions. Attention 

will be focussed on the energy emission in the relativistic and non-relativistic regimes. 

We shall further show that our eqs. and formulae reduce to the non-relativistic ones that 

are known in the literature. 

    The 3-vectors B and E are given by  

 

(1)    0

1
,     ,A

c t


    



A
B A E    

                                                                   

where 0A  is the electric scalar potential and A  the magnetic vector potential, with 

physical components ,   ,  rA A A  .  We shall take 0A  to be time-independent, so that the 

Lorentz condition becomes  

 

 (2)    0. A  

                                                                                                                              

The magnetic induction B  is a solenoidal vector field, which we shall choose to be derived 

from the 3-vector potential A  satisfying (2). The vectors B  and E  together with the 

electric charge and 3-current densities e  and j  satisfy Maxwell’s eqs. in the form  
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(3)    
1 4 1

0,     4 ,     ,      .e
c t c c t




 
         

 

E B
B E B j E     

                         

Bearing in mind the time-independence of 0A  and eqs. (1) and (2), we may show that the 

second and third of eqs. (3), may be written in the forms  

 

(4)    
2

0 =4 ,eA    

                                                                                                                                                                                          

(5)    

2
2

2 2

1 4
.

c t c


   



A
A j     

                                                                                                    

It is important to note that in obtaining the interior solutions, we have to impose the 

requirements that their ‘ cos ’ parts must be the same as in eqs. (18)-(19) of [4] and that 

their slow rotation limits, must give the non-relativistic solutions (48)-(53) of [5]. It was 

possible to show that these requirements are met, if we assume that (i) 0A  is time-

independent and (ii) the electric charge density e  and the non-zero components of 

the electric 3-current j  are given by  

 

 (6)    
4

02 cos ,   e B k                                                                                                           

 

(7)    

0
32

4 20
3 02

52
= sin sin ,  

52
sin cos cos cos sin .

B
j j

c kr

B
j j B k r

c kr






 


    



   

                                                           

 

Here, t    and nj  is the spherical Bessel function of the first kind of order n and 

argument kr. If the argument of nj  is kr, we shall simply write nj . On the other hand, with 

ka   we shall always write ( )nj   for the value of nj  at  r a . The symbol ,  denotes  

the Lorentz factor of the fluid at any point in 0 r a  , 0     and so we have 

 
1/ 2

2 2 21 sin .k r 


    It is easy to show that the 3-current j whose components are 

given by (7), is a solenoidal or transverse current [10] and so we have 

 

(8)    0.  j  

 

Since, according to (6), e  is time-independent, eq. (8) is the eq. of continuity.  

     The components of the 4-potential A  may now be obtained by solving eqs. (4) and (5) 

with e  as in eq. (6) and the components of  j as in eqs. (7). Note that 0,  1,  2,  3   gives 

the covariant components and 0,  ,  ,  r    gives the physical components of the 4-

potential A ; the latter are the components to be used in this work. We shall find 0 A by 

solving the Poisson eq. (4), and A by solving the inhomogeneous vector wave eq. (5). The 

components of 
2 A  on the left side of this eq. in spherical polar coordinates are too 

complicated to display here, but see Morse and Feshbach [11] or the Appendix here. It may 

be shown that if e  and  j are given by eqs. (6) and (7) respectively, then  
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(9)     

 

 

2 2 20
0

0
22

20 2
1

2 2 20

2

cos ln 1 sin ,
2

15
sin sin cos sin ,

5 2
sin sin sin ,

cos
ln 1 sin

2 sin

r

B
A k r

k

B
A j

k r

B j
A j

k kr

B
A k r

k r





 

   

  






 



 
   

 

  

         

           

are solutions of the Poisson eq. (4) and of the inhomogeneous vector wave eq. (5).  

     The magnetic induction B  and electric intensity E  are now calculated by using eqs. (1) 

and (9). Their non-zero components may be shown to be  

 

(10)     

2 0 2
0 1

2 0 2
0 2 2

2 2
0 2 2 2

5 2
cos cos sin sin cos ,     

15
cos sin sin cos cos ,

3
5 sin sin sin .

r

B j
B B j

kr kr

B j
B B

k r

j
B B j

k r





    

    

  

 
    

 

   

 
  

 

                                        

 

(11)     

2 2 0 2
0

2 22
0 0 1

15
cos sin sin sin cos cos ,   

2
cos sin cos 5 sin sin cos .

r

B j
E B kr

kr

j
E B kr B j

kr


     

     

   

 
     

 

  

 

An arbitrary constant factor in the components rA  and A  on which subsequent expressions 

depend, was taken as 05B k  so that in the slow rotation limit, the components of B  and E  

give the corresponding non-relativistic expressions in eqs. (48)-(53) of [5]. We note that the 

forms of B  and E  in eqs. (10)-(11) are consistent with the  assumption that  the material of  

the sphere is a perfect conductor, because we have  

 

 (12)     sin ,       sinr rE kr B E kr B                                                                                                                

 

and these, are the component eqs. of 

(13)     
1

,
c

  E u B                                                                                                                      

where 0,  0,  sinru u u r       are the physical components of the 3–velocity u  at 

any point x  inside the sphere or on its boundary. The form of E  in eq. (13) implies infinite 

conductivity. It may be shown that e , ,  j B  and E whose components are given in eqs. 

(6)-(7) and (10)-(11) respectively, satisfy Maxwell’s eqs. (3) and in addition A and j  

satisfy eqs. (2) and (8) and so they are solenoidal. 

     Regarding the geometry of the interior electromagnetic field, we first note that B  and ,E  

are perpendicular, because it may be shown that 

  

(14)     0. E B     
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Also, we find the following limits as 0:    

 

1 2,     1,     0,     0, j j     2 2

1 2 21 3,    0,    1 15. j kr j kr j k r    

 

Using these expressions, eqs. (10) and (11) for the components of B  and E give  

 

0 0

0

(cos cos sin sin cos ),      ( cos sin sin cos cos ),  

sin sin ;     0,      0,     0.

r

r

B B B B

B B E E E



  

         

 

    

    
 

 

The magnitudes of B and E therefore, become 0B  and 0 respectively and we deduce that if  

it were not for the rotation, we would have a uniformly magnetized sphere at rest and no 

electric field. The part 
4 2

0( / 2 ) cos sinc B k r     of the current j  in eqs. (7), is the 

convection current associated with the charge density e  in eq. (6), because it may easily be 

seen that this current is sin ,   sine r r     being the magnitude of the linear velocity at 

any point in 0 ,  0 .r a        

 

 

3.  The relativistic exterior electrodynamics   

         

     We shall now deal with the exact exterior solutions for the components of B  and E . We 

shall take the ‘ cos ’ terms of these components to be the same as in eqs. (25)-(26) of [4]. 

The ‘ sin  ’ parts of B  and E  are obtained from the expressions for the field vectors of the 

scattered wave in [12]. Due to the form of our interior solution in eqs. (10)-(11), only two of 

the constants involved in the linear combinations of the exterior solutions will be non-zero 

and the solutions reduce to just one or, at most, two terms. Consequently, the solution will be 

of the same form as the ‘ sin  ’ solution in the Appendix of [1]. Note however that, as we 

shall see, the constants L  and M  will be different. The complete solution is the sum 

of the ‘ cos ’solution from [4] and the ‘ sin  ’ solution. With ,  n nj y  and 
(1)

n n nh j iy   the spherical Bessel functions of the first second and third kinds 

respectively of order n  and argument kr  and a prime denoting differentiation with 

respect to kr , the complete solution may therefore be expressed in terms of the 

equations 

                                                                                                                              

(15)           

2

2 1 2 12 1
n=1

(1)

1
0

= cos 2 (2 1) (cos )     

      sin sin Re ,

n

r n nn

i

a
B D n n P

r

h
B L e

kr



 

 



 


 
  

 


               

                                           

(16)          

 

 

2 2

2 1 2 2 22 1
n=1

(1)

1(1)

0 2

cos 2 (2 1)
= (cos ) (cos )                 

sin 4 1

1
  sin cos Re ,

2

n

n n nn

i

n n a
B D P P

n r

krh
B Mh L e

kr






 



 



 






  
  

   
    



               



 7 

 

(17)          
 (1)

1(1)

0 2

1
 sin Re cos 2 ,

2

i
krh

B B Mh L ie
kr

 

  
  

   
    

         

                                   

                                                                                            

(18)           

2 1

2 22 2
1

(1)

2
0

cos (2 1) (cos )

3
        + sin sin 2 Re ,

2

n

r n nn
n

i

a
E C n P

r

h
B M e

kr



 

 






 

 
 
 


                   

 

                                                 

(19)         

 

 

2 1

2 2 1 2 12 2
1

(1)

2 (1)

0 1

cos 2 (2 1)
(cos ) (cos )

sin 4 1

1
       + sin Re cos 2 ,                 

2

n

n n nn
n

i

n n a
E C P P

n r

krh
B M Lh e

kr






 



 



 



 



  
  

  
    



                           

 

(20)             
 (1)

2 (1)

0 1

1
 sin cos Re .

2

i
krh

E B M Lh ie
kr



  

  
  

   
    

    

                                                

Here, (cos )nP   is the Legendre polynomial of order n and argument cos  and the 

constants 0 2 1 2 1,  ,  ,   ,   1,2,...n nC C D D n  were evaluated in eqs. (20), (23) and (22) of 

[8]
 1

,  by using the continuity of the potentials 0 A  and  A of the ‘ cos ’ solution at the 

boundary  r a . Note that the constant 0C  is required for the evaluation of 1D  in 

accordance with eq. (23) of [8]. Also in [8], the covariant components 4  and 3  were 

used in place of the physical components 0A  and  A  which we use here. Furthermore, in 

[8], cos 1,   sin 0   and so there is no ‘ sin  ’ solution, because the dipole magnetic 

field is aligned with the rotation axis and so 0.   

   The only non-zero constants L and M of the ‘ sin  ’ solution are evaluated from the    

boundary conditions, which require that ,  rB E  and  E  must be continuous on r a  [1].  

We find that their values are  

  
 

 

 

 

 1
Note the following trivial misprints in [8]: in the expression for 4  in eq. (16), here denoted by 0A , the 

power of / c  should be 2 1n   and not  2( 1)n  );  in the expression for 
2sin m  below eq. (19), the 

summation should be from 0n   to n m ;  in the expression for  0C   in eqs. (20), the factor 
12m

 must be 

replaced by 
2 12 .m
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 (21)      2 2
1 1(1)

(1)1
2

2 ( ) 2 ( )5 5
( ) ,       ( )

( )
( )

j j
L j M j

h
h

 
 

  
 

   
      

     

        

where 
(1)

2 ( )h      is the derivative of  (1)

2krh  with respect  to kr evaluated at r a . The 

values of these constants are exact, because they are the result of matching the exact interior 

and exterior solutions in eqs. (10)-(11) and (15)-(20) respectively, on the boundary r a . 

The surface charge density may be calculated from the discontinuity of rE  at .r a  

Likewise, there will be surface current densities in the   and   directions which may be 

calculated from the discontinuities of B  and B  respectively at .r a  Finally, after some  

considerable algebra, it may  be shown that  Maxwell’s equations  in  the exterior are 

satisfied exactly, in the form 

 

(22)     
1 1

0,      0,        =   ,     .
c t c t

 
         

 

Ε B
B E B E   

 

     The wave zone is the region r>a outside the sphere at distances that are large compared 

with a wavelength and it may therefore be defined by / ,r c   or equivalently, 

1.kr  Using the expressions for spherical Bessel functions of large arguments, it is 

sufficient for our purposes to use the asymptotic formulae in Born and Wolf  [12], which are  

 

(23)        (1) (1) (1) (1)

1 2 1 2,     ,     ,    . 
ikr ikr

ikr ikre ie
h h krh ie krh e

kr kr

 
        

  

Excluding inverse powers of r higher than 2 and using the expressions in (23), the exterior  

 solution in eqs. (15)-(20) is reduced to 

 

  

(24)    

 

 

 

02 2

0

0

1
sin sin Re exp ( ) ,

1
sin cos Re ( )exp ( ) ,

2

1
sin Re ( cos 2 )exp ( ) .

2

rB B L i kr
k r

B B i M L i kr
kr

B B M L i kr
kr





  

  

  

    

    

     

 

 

(25)    

 

   

   

02 2

0

0

3
sin sin 2 Re exp ( ) ,

2

1
sin Re cos 2 exp ( ) ,

2

1
sin cos Re exp ( ) .

2

rE B iM i kr
k r

E B M L i kr
kr

E B i M L i kr
kr





  

  

  

   

     

     

                                             

 

It is noted that unlike the non-relativistic eqs. (13)-(14) in [1], both, sin( )kr   and 

cos( )kr   terms, are present in all the components of B  and E  in the wave zone. We 

shall demonstrate this for the case of the first of (24) for rB  as an example, by using the 

expression for L  in eqs. (21); this gives  
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 
 

2
1

0 1 12 22 2

1 1

2 ( )
5 ( )

1
sin sin ( )cos( ) ( )sin( )

( ) ( )
r

j
j

B B j kr y kr
k rj y





     

 

 
 

     


. 

 

It will be seen later however, that in the slow rotation limit, eqs. (24) and (25) reduce to the 

non-relativistic eqs. (13) and (14) of [1]. 

 

 

4.  The  Poynting  vector and the electromagnetic energy emission 

 

     The rate at which energy is radiated away from the sphere is 

 

(26)       
4

S V

dW c
d c dV

dt 
      E B S j E                                                                       

where S is a spherical surface of  radius r>a concentric with the sphere r a  and V  is the 

volume bounded by S. With ,  B H the first integral on the right side of (26) is the flux of 

the Poynting vector / 4  c E B over the surface S where the components of B  and E  in 

this integral are given in (15)-(20). The quantity j E  in the volume integral on the right side 

of (26), may be calculated by using the components of j and E  in eqs. (7) and (11). This 

will not be necessary however, since we require the time average of (26) over the period of 

rotation 2 /  . It is easy to show, that the time-average of the volume integral will be zero.  

     The time-average of eq. (26) over a complete period, is therefore the time-average of the 

flux of the Poynting vector. Denoting this by .relI  and with ,  B B   and ,  E E   as in eqs. 

(16), (17) and (19), (20) respectively, we have     

 

(27)       
2

1

2

2

. 2

0 0
8

 sin ,

t

rel

t

c
I dt d E B E B r d

 

   


  


                                                                                   

 

with 1 2 and  2 /t t t t     . The calculations are quite involved, but this eq. eventually 

gives for the relativistic energy emission  

 

(28)      
2 2

. 4

2
sin ,

3
rel

c
I

a
 

 
  

 
          

                                                                                          

or since a c   this may also be written as                                                      

 

(29)      

4
2 2

. 4 3

2
sin

3
relI

c
 



  
  

 
                                                                                                 

 

where we have set 

 

(30)       

2

2
1

2 2 2 2 2

1 2 1 2 1 1

2 ( )5
( )

2

6 10
   .

[ ( ) 2 ( )] [ ( ) 2 ( )] [ ( ) ( )]

j
j

j j y y j y






        

 
   

 

 
  

    
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In the derivation of the formulae (28)-(30) for the relativistic energy emission, we used the 

known results 

2 (1) (1)* 2 2 2

1 2 2 1 1 1 1 12

(1) (1)* 2 2

2 2 1 2 1 2

1
( ) ( ) ( ) ( ) ,     ( ) ( )  [ ( ) ( )],

[ ( )] [ ( )] [ ( ) 2 ( )] [ ( ) 2 ( )]

y j y j h h j y

h h j j y y

         


         

   

     

 

 

where a star denotes complex conjugation. Also, we have used the relation 
3

0 2 /   B a in 

the expressions for ,  B B   and ,  E E   in eqs. (16)-(17) and (19)-(20) respectively. The 

relativistic expressions for the energy emission are given by eqs. (28)-(30) and these 

formulae are of relevance to millisecond pulsars. 

    The ultra-relativistic limit of our energy emission formula is the limit of (29) as 1  . 

This is finite, because it may be shown that the limit of   as 1   is finite. Using Maple 

we found that 
1

lim 0.405886


  correct to six decimal places; this leads to   

 

(31)     

4
2 2

. 3

2
(0.405886) sin .

3
ultrarelI

c
 

 
  

 
    

                                                                  

In the context of this work, the ultra-relativistic limit has no practical significance, since no 

surface velocity can reach the vacuum speed of light.  

     The interpretation and significance of the formulae (28)-(31) as well as comparisons with 

the energy emission formulae of Belinsky et al. in [2] and with the classical (non-relativistic) 

results, will be made in Sections 5 and 6.  

 

 

5.     Rapidly rotating neutron stars 

   

    Most neutron stars, are observed to rotate slower than a few times per second [7]. There are 

neutron stars however, that can reach spin rates of hundreds of times a second. Millisecond 

pulsars are defined in [6] as those with spin periods less than10 ms . We shall not give a 

comprehensive review of millisecond pulsars, because such reviews may be found in [2, 3, 7] 

and references cited therein. Some of these pulsars may have a large enough radius for linear 

speeds on the surface to reach appreciable fractions of the vacuum speed of light, resulting to 

significant relativistic effects near the stellar surface [3]. These effects have been described here 

by exact relativistic expressions. In particular, eqs. (28)-(30) are the relativistic energy emission 

formulae and eq. (31) gives their ultra-relativistic limit.   
     The electromagnetic field of a rapidly rotating magnetized sphere is an interesting problem 

in electrodynamics. Deutsch modelled a slowly rotating magnetized star as a sharply bounded 

perfectly conducting sphere in rigid rotation in vacuo [1]. Likewise, we shall model the 

electrodynamics of a rapidly rotating neutron star on the electrodynamics of such a sphere, 

which however, is rapidly rotating. All the relevant equations and formulae were obtained in 

the previous sections and they are appropriate for rapidly rotating neutron stars. 

      Another model of a millisecond pulsar is that of Belinsky et al. [2] and Belinsky and 

Ruffini [3]. They based their model on the electrodynamics of an infinitely thin 

magnetized rotating rod. They obtained special relativistic solutions for such a rapidly 

rotating magnetic dipole and their energy emission formula is 
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 (32)      
4

. 4 2 2

. 3

1 2
sin .

2 3

Bel

relI F
c

  
 

   
 

 

                                                                                                                                              

Here, we wrote   for the   in [2], but we used  
1/ 2

21 


   for their Lorentz factor with 

1 sin ,c l    2l  being the length of their dipole. As for the function F , there is no 

expression for it in terms of elementary functions; it is given by eq. (24) of [2] and since it 

depends on   and  , they have denoted it by ( , ).F F     

     Belinsky et al. in [2] calculated the ultra-relativistic limit of their energy emission formula in 

(32), which they define to be the limit of (32) as 1   and they obtained the expression 

 

(33)     

4
. 4 2 2

. 3

1 2
sin .

2 3

Bel

ultrarelI
c

  
 

  
 

                                                                   

 

Our formula (29) and the formula (32), depend in the same way on sin ,  through their 

common factor  4 2 2 3sin 3 .c   Formula (32) however, has another dependence on   

through the factor  4 ,F   which also depends on  . In our formula (29), the factor 

 4  does not depend on ,   but only on our parameter .  Furthermore, the radius a  of 

the star is absent from (32) and the other formulae in [2]. It follows that we can only make a 

meaningful comparison between our formula (29) and the formula (32) of Belinsky et al. in 

[2], in terms of their common factor, their ultra-relativistic limits and their slow rotation 

limits. Firstly, their common factor is  4 2 2 3sin 3 .c   Secondly, it is clear that both, (32) 

and (33) diverge as 1,   because 
4

1
lim .





   We must therefore conclude that the 

interpretation of the ultra-relativistic limit of the emission formula of Belinsky et al. in [2], 

must be that if   is sufficiently large so that F  is negligible compared with 
4 ,  then the 

energy emission is given by (33). Our ultra-relativistic limit on the other hand, is the limit of 

(29) as 1  . This was calculated in eq. (31) and is finite. As for the slow rotation limits of 

the energy emission, it will be shown in Section 6, that the limit of our formula in (29) and of 

the formula (32) of Belinsky et al., are equal.  

 

    

6.  The slow rotation limits and the Deutsch solutions 

 

     To test the consistency of our approach and the validity of our equations, we shall derive 

the slow rotation limits of all the relativistic expressions we have obtained. This process  

should lead to the  non-relativistic formulae that  are  known in the literature. In the case of 

slow rotation we have / 1r c  , or, equivalently, 1,kr   for any r  and   in 

0 ,   0r a      . We therefore take the Lorentz factor as 1,   and use the 

expressions of the Bessel functions for small values of their arguments in [12]. This implies 

that for small values of the argument x, we may write   

 

(34)        

   (1) (1) (1) (1)

1 2 1 22 3 2 3

2 3

1 2 3 1 22 3

3 6
 ,      ,     ,        ,

1 3
,    ,    ,   = ,   = .     

3 15 105

i i i i
h h xh xh

x x x x

x x x
j j j y y

x x

 
     

    
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Using these with x  , we calculate L  and M  in (21) and find the values  

(35)       

5
3,     .

6
L i M i


       

With 1,   the appropriate expressions from (34) and with ,  x kr we may calculate the 

slow rotation limits of the interior eqs. (10)-(11). We shall not display these limits here, 

because with 
3

0 2 / ,  B a  these are the same as the approximations (28)-(29) of [4] and 

with 
3

0 2 / ,  B R they are the same as the non-relativistic eqs. (48)-(53) in [5]. 

Furthermore, with 0,   they give the expressions (1a,b) of [9], but also the corresponding 

un-numbered eqs. of page 229 of [8].  

     We now find the slow rotation limit of the exact exterior solution in eqs. (15)-(20). It is 

first noted that because of the form of the approximate interior solution in (48)-(53) of [5], 

we must only use the first term 1n   in the infinite series of the exterior solution in eqs. 

(15)-(20). This will exclude all the inverse powers of  r  higher than the fourth and will 

reduce the ‘ cos ’ parts of the exact eqs. (15)-(20) precisely to the  ‘ cos ’ parts of 

Deutsch solution in the Appendix of [1]. If we now match this reduced solution to the 

approximate interior solution in (48)-(53) of [5], the boundary conditions regarding 

the continuity of the components  ,  rB E  and  E , give 
(1)

1/ ( )L h   

and  2 (1)

2 / ( ) .M h   
  We have shown how the Deutsch solutions in the 

Appendix of [1] were derived, where we have to note that 1 0( )  R a B and 
1

0 0 .c     This procedure was not described in [1], and the approximate interior 

solutions (48)-(53) of [5] were not given.  

      We stress the fact that the Deutsch solutions in the Appendix of [1], are valid for 

all values of r in a r   and that ‘slow rotation limit’ refers to small values of 

,  kr 1,kr   in the interior 0 .r a   In these cases, outside the star but near its 

surface, we may still have 1kr   and so we may use the approximations (34) to 

show that the Deutsch solutions reduce to the eqs. (18)-(19) of [1], or to the eqs. 

(54)-(59) of [5]. If 0,   these eqs. reduce to eqs. (2a,b) of [9] but also to the 

corresponding un-numbered eqs. on page 229 of [8].  
      The slow rotation limits of the relativistic eqs. (24)-(25) in the wave zone, are obtained 

by using eqs. (34) with x   or the approximate values of L  and  M  in (35). Powers of 

ka greater than 2, should be neglected in the final calculation and we have to set 
1

0 0 c     in all the eqs. of [1]. This procedure gives the solutions (13)-(14) of [1]. In 

this approximation 0,  rE  because from eqs. (25) it contains the factor M  which by (35) 

is 
5 / 6M i   and is therefore neglected. It follows that the vectors B  and E  are 

perpendicular, because with the approximation 0,rE   eqs. (13)-(14) of [1] lead to 

0. E B   

     Finally, the slow rotation limit of the rate at which energy is radiated away from the star, 

is obtained from our exact fully relativistic formulae (28)-(30) by using the appropriate 

expressions from (34) with x   and eqs. (35). In this procedure, we have to ignore the 
8  

term as too small compared to the 
4  term. This leads to 

 

(36)         
4 2 2

. 4

2
sin .

3
nonrel

c
I

a
  

 
  

 
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 Since ,a c    this may also be written as 

                        

 (37)        

4
2 2

. 3

2
sin .

3
nonrelI

c
 


                                                                                             

 

The slow rotation limit of the formula (32) of the model of Belinsky et al. in [2], is the same 

as the limit (37) of our formula, because for small values of  , 
4 1.F    It follows from 

(28) and from (36), that if we multiply the factor  2 2 42 sin 3c a  by  , we obtain  the 

fully relativistic energy emission in eq. (28) and if we multiply the same factor by 
4 , we 

obtain  the non-relativistic energy emission in eq. (36). Furthermore, the fully relativistic 

expression in (29) is the same as the non-relativistic one in (37), times the factor  4 .  

 

7.  Numerical results for the energy emission 

 

     The relativistic formula (28) for the energy emission with   given by (30), is very 

different from and more complicated than the non-relativistic formula (36). Despite this, for 

very small values of  , their numerical results are almost the same. The two sets of formulae 

begin to give different numerical results at higher values of .  For a star of a given radius, 

this means of course higher values of the magnitude   of the angular velocity.  Thus, for 

values of   smaller than about 0.1,  the magnitude of the percentage difference between the 

relativistic and non-relativistic energy emissions, is less than about 1.25, which may be 

regarded as negligible. Here, we have taken the relativistic value to be the correct value for 

the emission.  

      It was recently reported [7, 13], that a pulsar was discovered in the globular cluster of 

stars Terzan 5, located some 28,000 light years from Earth in the constellation of Sagittarius. 

The newly-discovered pulsar, named PSR J1748-2446ad, rotates with frequency 716 Hz and 

is the fastest spinning neutron star known. Taking its radius to be about 16 km as it was 

assumed in [13], we find that   is about 0.24. The fully relativistic formula (28), gives for 

the energy emission the value 
4 2 2(0.003095)(2 / 3 ) sin .c a    The non-relativistic formula 

(36), gives the value
4 2 2(0.003318)(2 / 3 ) sinc a    for the energy emission and so the 

magnitude of the percentage difference between them is about 7.2. This difference cannot be 

regarded as negligible. In any case, it was noted in [7, 13] that there may be many more 

pulsars in Terzan 5 and other clusters, some of which may be spinning even faster than this 

new one. The numerical difference therefore, between the fully relativistic formula (28) and 

the non-relativistic formula in (36), may even be greater. 

      In [2, 3] the possibility is mentioned, for the existence of pulsars with periods as short as 

0.5 milliseconds and 10 km radius. For such a pulsar we find that, 0.4192,   which is an 

appreciable fraction of the vacuum speed of light. The fully relativistic formula (28) gives for 

the energy emission the value 
4 2 2(0.02537)(2 / 3 ) sin .c a    If we use the non-relativistic 

formula in (36) instead, we shall find the value
4 2 2 (0.03112)(2 / 3 ) sinc a   . The 

magnitude of the percentage difference between these two values is about 22.66, which is 

considerable. In numerical calculations, the difference between the formulae (28) and (36) 

increases with increasing values of  . The limits of 
4  as 0   and as 1,   are 0 and 

1 respectively. We also find that 
0

lim 0


   and in Section 4 we found that correct to six 

decimal places, 
1

lim 0.405886,  


  which is the ultra-relativistic limit of .  From all these 

considerations and from the numerical calculations in this Section, it is obviously important to 
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have a relativistic formula to calculate the energy emission from rapidly rotating neutron 

stars, because the known non-relativistic formulae (36) and (37) are inaccurate. The required 

formula was derived here, in eqs.(28) or (29) where   is given by (30). 

 

 

8.  Concluding remarks  

 

     The problem of the electrodynamics of a rapidly rotating perfectly conducting sphere 

apart from being of importance in its own right, is also of interest for millisecond pulsars. In 

this work, we have considered an idealized star as a sharply bounded perfectly conducting 

sphere in rigid rotation in vacuo [1]. We solved the Poisson eq. (4) for the electric scalar 

potential 0A  and the inhomogeneous vector wave eq. (5) for the 3-vector potential A  in 

the interior, for the case where the electric charge and current densities e  and j  are given 

by eqs. (6) and (7). The forms of these densities are not arbitrary, but they were chosen so 

that the resulting components of the 4-vector potential A  are as in eqs. (9). The interior 

magnetic induction  B  and electric intensity E  calculated from the components of A  in 

(9) and the formulae in (1), are in eqs. (10)-(11). The slow rotation limits of  B and ,E  give 

the non-relativistic forms that are known in the literature. This was the ultimate aim of our 

choice of the forms of the charge and current densities e  and j  in eqs. (6) and (7). The 

components of  B and E in the exterior were also calculated and are given in eqs. (15)-(20). 

We derived from these the relativistic eqs. (24)-(25) in the wave zone.  

     The rate at which energy is radiated away from the sphere in the relativistic regime was 

calculated and displayed in eqs. (28)-(30). The slow rotation limits of all these expressions 

and formulae were shown to be the same as the non-relativistic expressions and formulae 

that are known in the literature. In particular, the slow rotation limit (37) of the energy 

emission, is the same as the corresponding limit of the formula (32) in Belinsky et al. [2].                                                                                                

    The existence of special relativistic effects is demonstrated in this work in terms of exact 

analytical results. In this respect, the formulae (28)-(30) for the energy radiated away from 

the star in the relativistic regime, are most important. If such emissions are calculated using 

the known non-relativistic formulae in eq. (36) or (37), the results of the calculations will be 

incorrect. It is therefore important to have an exact special relativistic formula to calculate 

the energy emission, since the greater the value of  , the greater the difference between the 

relativistic and non-relativistic calculations is going to be. 

     As it was seen in Section 7, if the non-relativistic formula (36) is used instead of the fully 

relativistic formula (28), the result for the 716 Hz pulsar in [7, 13], will be more than 7% 

wrong and for the pulsar described in [2, 3], it will be more than 22% wrong. We have thus 

shown that for a rapidly rotating star, the special relativistic corrections to the energy 

emission are large enough to be significant and this was demonstrated by exact analytical 

results in Section 4 and numerical calculations in Section 7.      

     We have considered here, an idealized model of a pulsar and consequently there are 

physical limitations in this work. The first one to note, is that it was assumed that the star has 

a sharply defined boundary separating it from the vacuum as was indeed also assumed in [1]. 

We had not therefore considered the plasma in the magnetosphere. Another limitation is that 

we ignored the deformation of the star by the centrifugal forces to an oblate spheroidal 

shape. The deformation to prolate spheroidal shape caused by strong toroidal magnetic fields 

was not considered either [6]. For each of these, separate treatments are required, using 

oblate and prolate spheroidal coordinates respectively [14]. For small deviations from 

sphericity, we may achieve higher accuracies by using the results already obtained and 

considering  a boundary which is a nearly spherical surface. For example, we may assume a 

surface with eq. 2 (cos ),r a P    instead of the sphere r a . Here   is a small positive 

number which represents the deformation parameter and numerical values must be given for 
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different pulsars. The value of  ,  depends on the angular velocity, the gravitational 

acceleration due to the star and the elastic moduli [15]. If we set / 2   in 

2 (cos ),r a P    we obtain  2r a    and 0   or ,   give r a   . The eq. 

2 (cos )r a P    therefore, represents a spheroid with equatorial radius ( / 2)a  , and 

polar radius  a   the axis of the spheroid being the 0   axis. Using the eq. of this 

spheroid, we may therefore calculate the perturbations in the various quantities. This is only 

meant as an illustration on how to deal with small departures from sphericity. There is no 

suggestion that the boundary of a pulsar and its equatorial and polar radii have to be given by 

the above equations. These are valid only if the pulsar is an oblate spheroid, in which case a 

numerical value for   must be pre-assigned.  
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Appendix  

 

If   and A  are respectively scalar and vector functions and if ˆˆ ˆ
rA A A   A r θ φ , where 

,  ,  rA A A   are the physical components of A  in spherical polar coordinates ,  ,  r    with 

associated unit vectors ˆˆ ˆ,  ,  r θ φ  and 
2  is the Laplacian operator, then we have [11] 
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