On the geometry of the orthogonal momentum amplituhedron

Łukowski, Tomasz, Moerman, Robert and Stalknecht, Jonah (2022) On the geometry of the orthogonal momentum amplituhedron. ISSN 1126-6708
Copy

In this paper we focus on the orthogonal momentum amplituhedron Ok, a recently introduced positive geometry that encodes the tree-level scattering amplitudes in ABJM theory. We generate the full boundary stratification of Ok for various k and conjecture that its boundaries can be labelled by so-called orthogonal Grassmannian forests (OG forests). We determine the generating function for enumerating these forests according to their dimension and show that the Euler characteristic of the poset of these forests equals one. This provides a strong indication that the orthogonal momentum amplituhedron is homeomorphic to a ball. This paper is supplemented with the Mathematica package orthitroids which contains useful functions for exploring the structure of the positive orthogonal Grassmannian and the orthogonal momentum amplituhedron.

picture_as_pdf

picture_as_pdf
13130_2022_Article_19742.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads