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Abstract—Accurately obtaining channel state information 

(CSI) in wireless systems is significant but challenging. This 

paper focuses the technique of machine-learning-based channel 

estimation. In particular, a jointly optimized echo state network 

(JOESN) is proposed to form a concept of the CSI prediction 

which is made up of two interacting aspects of output weight 

regularization and initial parameter optimization. First, in order 

to enhance noise robustness, a sparse regression based on L2 

regularization is employed to finely learn the output weights of 

ESN. Second, vital reservoir parameters (i.e., global scaling 

factor, reservoir size, scaling coefficient and sparsity degree) are 

learned by a linear-weighted particle swarm optimization (LW-

PSO) for further improve the prediction accuracy and reliability. 

The experiments about computational complexity and three 

evaluating metrics are carried out on two chaotic benchmarks 

and one real-world dataset. The analyzed results indicate that the 

JOESN performs promisingly on multivariate chaotic time series 

prediction. 

Keywords—Wireless communications, channel state information 

(CSI), channel estimation, fading channel, reservoir computing. 

I. INTRODUCTION 

In wireless communication systems, transmitted signal is 
inevitably suffering with degradation during the propagation 
process due to stochastic intercarrier interference and time-
varying channel fading [1]. In order to effectively overcome 
the interference and distortion, the receiver usually needs to 
obtain accurate channel state information (CSI). Consequently, 
efficient and precise channel estimation plays a core role to 
sustain wireless communication system be in stably health 
status. Generally, the CSI can be obtained either through a 
blind method utilizing the statistical knowledge of the channel 
or a training-based method based on priori known pilot 
symbols.[2]. However, the blind estimation techniques can be 
only applied to the relatively-slow-varying channel, while the 
training-based methods are reported to be inefficient for 
requiring dedicated time-frequency resources [3].  

In recent years, stimulated by many applications in artificial 
intelligence fields, a special group of training-based, namely 
machine-learning-based methods, are dedicated to deal with 
problems in wireless communication area by establishing a 
straightforward relation between the input and output of the 
system [4]. Inspired by this research trend, this paper makes 
attempt to find a potential solution to actively learn (or say 
predict) the time-varying rules of the CSI, comparing with the 
passive channel estimation. 
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Fig. 1. The flow chart of JOESN. 

As one of the most powerful reservoir computing scheme, 
the echo state network (ESN) performs much better than many 
other recurrent neural networks on computational expense and 
convergence speed, which has been innovatively used to 
accurately obtain CSI in MIMO-OFDM systems [5]. Notably, 
ESN has exhibited evident energy efficiency in next generation 
of green communications [3]. Imagine that ESN- based symbol 
detection is accepted in wireless communications, the tough 
task of channel estimation can be implicitly achieved by the 
CSI prediction. 

However, several crucial constraints such as collinearity 
problems limit the extensive applications of ESN, especially 
when data incorporate random noise, but data collected from 
actual wireless channel are always noisy. In this paper, a jointly 
optimized echo state network (JOESN) is proposed, where the 
fundamental ESN (FESN) is optimized from two aspects. (1) 
Outlet side: output weight regularization, and (2) Internal side: 
reservoir parameter optimization and status supervision. The 
main contributions of this work are summarized as follows. 

1) A sparse regression based on L2 regularization is 
employed to avoid ill-posed solutions. Then the sufficiently 
unbiased and small-amplitude output weights can be obtained 
in the L2-ESN version. 

2) A linear-weighted particle swarm optimization (LW-
PSO) is adopted in the L2-ESN to optimize network parameters 
intelligently and supervise the reservoir status implicitly. 



Hence, the L2-ESN optimized by LW-PSO (namely, JOESN) 
can escape from inefficient and unreliable manual settings. 

3) Extensive evaluations (i.e., computational complexity, 
root mean square error (RMSE), normalized RMSE (NRMSE), 
symmetric mean absolute percentage error (SMAPE)) are 
carried out and discussed on two chaotic benchmarks and one 
dataset of Rayleigh fading channel. 

The structure of this paper is as follows: In Section II, the 
basic theories of ESN and PSO are briefly reviewed, then we 
introduce the proposed JOESN in detail, and its computation 
complexity is analyzed in Section III. Section IV evaluates the 
performance of JOESN on two chaotic systems. And Section V 
illustrates and discusses the application performance of ESN 
on Rayleigh fading channel. Section VI concludes the paper. 

II. JOINTLY OPTIMIZED ECHO STATE NETWORK 

A. Echo State Network with L2 Regularization 

ESN was first proposed by Jaeger and Hass [6] for 
predicting chaotic systems. A typical ESN includes three 
layers, input layer, hidden layer (reservoir) and output layer. 
The state variables can be formulated as 
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where M L ℝU , N LℝX  and 1LℝY are input discrete 

time signals, internal neurons and output signals, respectively. 

And M, N and L are the dimension of the input layer, internal 

reservoir and output layer, respectively. 
The internal reservoir is updated by 

 ( )T T
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and the output data is obtained by 
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where ( )  and [ : ]i i  are the active function and matrix 

connection, respectively. It is noted that ( ) is often defined 

as the hyperbolic tangent function (tanh). And ,N M
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weights, updated weights, output weights and echo weights, 
respectively. The output weights Wout are calculated by 
minimizing the following square error 
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A sparse regression based on L2 regularization is employed 
to finely learn the output weights. Then the loss function in (4) 
is modified as 
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where (0 ,1)   is the penalty parameter of L2 regularization. 

Hence the estimated output weight Wout is calculated by 

 1([ : ][ : ] ) [ : ]T
out   W U X U X E U X Y  

where E is an identity matrix. There are four key parameters 

in the dynamic reservoir, jointly determining the final 

performance of ESN, which are spectral radius (SR), reservoir 

size (NZ+ ), input layer scaling coefficient (IS(0, 1]), and 

reservoir sparsity degree (SD(0, 1)). Finally, the output are 

estimated as [U: X]Wout. 

B. Linear-Weighted Particle Swarm Optimization 

The particle swarm optimization (PSO) is very specialized in 
searching fitting solutions for complex temporal problems. A 
standard PSO is expressed as 
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where t and i are the iteration index and particle index,  

Vi(t+1)and ( 1)i t   denote the flight velocity and spatial 

vector of the i-th particle in (t+1)-th iteration,   is the inertia 

factor, 1 and 2  are the acceleration parameters, r1 and r2 are 

two random values belonging to (0,1). Pi,d and Pg record the 
spatial vector with the optimal solution of the current particle 
and all particles, respectively. 

A linear-weighting scheme is imported to prevent PSO from 
ripping into local optimal locations. Then a well global search 
ability at the early optimization stage and a high local search 
performance at the later stage can be obtained simultaneously. 
This linear weight parameter is expressed as 
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where max  and min  are the maximum and minimum value 

of weight parameter, t and T denote current iteration and 
maximum iteration. In (9), the weight parameter decreases 

linearly from the maximum value max  to minimum value 

min , which guarantees that all particles hold higher searching 

speed in the early stage and higher searching accuracy in the 
later stage. 

C. Jointly Optimized Echo State Network 

Closely after the L2 regularization is employed to constraint 

the output weight outW  in (6), the LW-PSO is adopted to 

optimize the four key reservoir parameters (i.e., γ, N, IS, SD). 

The flaw chat of the proposed JOESN is given in Fig. 1. And 

the detailed processes are explained as follows. 

1) Initialize parameters in LW-PSO: the population size n, 

accelerate coefficient α1 and α2, the maximum iterations T, 

flight velocity and spatial vector of all particles V and χ, give 

each particle a random position within a certain range. 

2) Initialize parameters and collect data series of L2-ESN, 

including penalty coefficients λ, Win, W and Wback, training 

data xtrℝ 1×dtr and testing data xteℝ 1×dte, where dtr and dte 

are the lengths of training data and testing data. 

3) Train L2-ESN according to (1)-(3), (5) and (6), where (5) 

helps to calculate the fitness value of current particle 

application in the L2-ESN model. 

4) Iterate for parameter optimization according to (7)-(9), 

utilize step 3) to recalculate the fitness value. Compare the 

current fitness value to the optimal fitness value in history, if it 

is smaller, update optimal fitness value with current value of 

(5), if not, then keep optimal fitness value. The four optimized 

parameters are updated under the same manner during the 



same loop. 

5) Judge whether there are iteration ends. If end, jump to 

step 6), if not, jump back to step 4). 

6) Output the four optimal dynamic reservoir parameters for 

the prediction model. 

Herein, we get the final JOESN with optimal parameters, 

being ready for the upcoming prediction task. 

III. COMPUTATION COMPLEXITY ANALYSIS 

Computation complexity is a significant aspect to evaluate 
the performance for algorithms. As described, the JOESN 
includes two key aspects, L2 regularization and LW-PSO. The 
former is utilized for solving the ill-posed solutions by re-
constraining output weights Wout. The latter is employed to 
obtain the optimal initial or intermediate parameters in the 
reservoir of L2-ESN. According to [7], the computation 
complexity includes two parts, function operation in (2) and 
matrix production in (3). For WinU, WX and W

T 

back Y
T, their 

computation complexities are Ѻ(NML), Ѻ(NnzL) and Ѻ(NL), 

respectively, where Nnz is the number of nonzero elements in 
W. Because W is a sparse matrix, the Nnz is generally small. As 
for the active function in (2), the complexity is Ѻ(NL). When it 

comes to (3), the complexity is Ѻ(L(M+N)). So the total 

complexity is
 
Ѻ(max(NML, NnzL, NL L(M+N))). As M, N, Nnz 

and L are all positive integers, NM > N > Nnz, NM > (N+M), so 

the total complexity of JOESN is Ѻ(NML). Because that the 
output weights Wout are learnt in advance but issued only once, 
while the prediction process is produced relatedly in 
engineering practice. The total complexity of JOESN can be 
approximated to that of series prediction, which is at the same 
level of FESN. 

IV. PERFORMANCE EVALUATION OF JOESN 

A. Evaluation Setup 

In this section, one open benchmark of 3-D Lorenz chaotic 
system is used to verify the performance of JOESN. The 
fundamental ESN (FESN) [6] is taken as the baseline, two 
state-of-the-art enhanced ESN models (i.e., support vector echo 
state machine (SVESM) [8] and ridge regression-ESNs 
(RESN) [9]) are implemented for longitudinal contrastive 
analysis. Furthermore, two neural-network-based regression 
algorithms (i.e., Elman network [10] and extreme learning 
machine (ELM) [11]) are selected for crosswise contrastive 
analysis. Three landmark criterions are considered for 
performance evaluation, which are root mean square error 
(RMSE), normalized RMSE (NRMSE), and symmetric mean 
absolute percentage error (SMAPE) [12]. 

In order to facilitate readers to reproduce experiments, here 
we list the related parameters as follows. The tree constants of 
Lorenz: a=10, b=28, c=8/3; Series: the embedding dimensions 
are 2, 1, 7 and the time delays are 8, 8, 12 for x, y, z series in 
Lorenz; Data setup: 4000 samples for training with 100 of 
them washed out, 1000 samples for test, Data1 are noise-free 
and Data2 stands for noisy time series suffered with 20 dB 
Gauss white noise. JOESN: λ=0.0001, n=30, α1=α2=1.5, T = 
100, Vmax=[5,1,1,1], Vmin=[-5,-1,-1,-1], χmax=[500,1,1,1], χmin= 

[1,0.01,0.01,0.01], max 0.9  , min 0.2  . 

 

TABLE I.  OPTIMAL PARAMETERS IN JOESN FOR LORENZ 

Data γ SR N IS SD 

Data1 0.5245 1.1958 454 0.0966 0.0100 

Data2 0.9657 1.4468 310 1.0000 0.0100 

TABLE II.  PREDICTION PERFORMANCE OF LORENZ 

Model Data RMSE NRMSE MAPE 

FESN [6] 

Data1 

0.0618 0.0088 0.0083 

SVESM [8] 0.0090 0.0012 0.0054 

RESN [9] 0.0100 0.0013 0.0085 

ELman [10] 0.1577 0.0205 0.0800 

ELM [11] 0.0080 0.0010 0.0060 

JOESN 0.0037 0.0005 0.0006 

FESN [6] 

Data2 

1.4657 0.2097 0.0720 

SVESM [8] 0.4503 0.0578 0.3485 

RESN [9] 0.2114 0.0275 0.1394 

ELman [10] 0.6181 0.0802 0.5771 

ELM [11] 0.2507 0.0326 0.2239 

JOESN 0.1037 0.0148 0.0575 

B. Results and Discussions 

After the LW-PSO optimization, we obtain the optimal 
parameters of JOESN listed in Table I. The three evaluation 
criterions of all the comparative networks for two distinct 
datasets are listed in Table II. Evidently, whether for noise-free 
Data1 or noisy Data2, our proposed JOESN shows more 
competitive accuracy than the other five methods. Notably, the 
JOESN obtains the best prediction scores with 0.0037 of 
RMSE, 0.0005 of NRMSE and 0.0006 of MAPE for Data1. 
When it comes to Data2, all the six competitors experience 
performance decrease in varying degrees, nevertheless, our 
proposed JOESN performs also better than all other five 
competitors. These results prove that JOESN possesses 
promising anti-noise ability. 

V. EXPERIMENT RESULTS AND DISCUSSIONS 

A. Rayleigh Fading Channel 

Considering channel fading of wireless communication as a 
chaotic process, Sun et al. proposed a chaos-based short-term 
fading channel predictor to obtain CSI [13]. Besides, Jaeger, 
the inventor of ESN, prophesied that ESN is a promising 
network for equalizing communication channel [6]. Hence in 
this subsection, we first apply our proposed JOESN to forecast 
the Rayleigh fading channel, so as to evaluate its prediction 
performance. In order to estimate the channel parameter h(t) of 
Rayleigh fading channel, we simulate Rayleigh fading channel 
by sinusoids superposition method. The h(t) is modeled as 

 0

0

( ) { ( ) ( )}
2 1

I Q

E
h t h t jh t

N
 


 

where E0 is the average amplitude of fading channel. N0=(N/2-
1)/2, N denotes the number of the plane waves. hI(t) and hQ(t) 
denote the fading channel real and imaginary component, 
respectively, which are estimated by 
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TABLE III.  OPTIMAL PARAMETERS FOR RAYLEIGH FADING CHANNEL 

Data γ SR ℕ  IS SD 

Data1 0.0100 1.0355 478 1.0000 0.4598 

Data2 0.0100 0.2417 500 1.0000 0.0100 

TABLE IV.  OPTIMAL PARAMENTERS FOR RAYLEIGH FADING CHANNEL 

Model Data RMSE NRMSE MAPE 

AR [14] 

Data1 

0.0150 0.0365 0.0581 

SVM [15] 0.0816 0.1975 0.1532 

DWT-AR-LR [16] 0.0175 0.0388 0.0218 

FESN [6] 0.0216 0.0524 0.0367 

JOESN 0.0127 0.0309 0.0262 

AR [14] 

Data2 

0.1526 0.3577 0.4324 

SVM [15] 0.2044 0.4787 0.2930 

DWT-AR-LR [16] 0.0454 0.0995 0.0761 

FESN [6] 0.1724 0.4069 0.2289 

JOESN 0.1334 0.3158 0.1823 

where ϕn and ϕN are the initial phases of n-th Doppler-shifted 
sinusoid and maximum Doppler frequency fd, respectively. 
And the frequency of the Doppler-shifted sinusoid {wn}

N0 

n=1 can 

be expressed as cosn d nw w   2 cos(2 / )df n N  , where 

n=1, 2, 3,…,N0. 
According to the abovementioned method, we simulate 

several sets of CSI for Rayleigh fading channel with 
parameters of N0=8, E0=1, fd=500Hz, ϕN=0 and sampling 
period Ts=5*10-5s. And all parameters of JOESN are inherited 
from Section IV.A. Some classical channel estimation 
schemes, autoregressive algorithm (AR) [14], support vector 
machine (SVM) [15] and DWT-based autoregressive and 
linear regression algorithm (DWT-AR-LR) [16], are selected 
and implemented for crosswise contrastive analysis. The 
related parameters are defined as follows. AR: the order is 9; 
SVM: the type of SVM is epsilon-SVR, the epsilon in loss 
function of epsilon-SVR is 0.01, and the kernel function type is 
radial basis function, where the gamma value is 2.8; DWT-AR: 
the wavelet function is set as bior3.3, the decomposition level 
is 4, and the orders of LR and AR are 9.  

B. Results and Analysis 

After learning the optimal parameters of JOESN (Table III), 
the three evaluation criterions of all the comparative networks 
for two distinct datasets are listed in Table IV. For Data1, 
JOESN performs better than its baseline, FESN, and even 
better than the other three classical methods (i.e., AR, SVM, 
DWT-AR) in varying degrees, with the nearly best scores of 
RMSE=0.0127, NRMSE=0.0309 and SMAPE=0.0262. When 
it comes to Data2, after addressing the noise sensitive problem 
of FESN by importing L2 regularization, the JOESN exhibits 
better noise-robustness (Fig. 2), producing higher scores than 
classical AR and SVM. However, DWT-AR-LR holds the best 
performance. The in-depth reason is that Data2 is decomposed 
into various components by discrete wavelet transform (DWT). 
And DWT is a noise-robust transformation, it can support 
DWT-AR-LR working better by avoiding noisy components 
selectively. Nevertheless, our JOESN is expected to catch up 
with or even exceed DWT-AR-LR if more appropriate 
embedding dimension and time delay could be set. 
Consequently, it is urgent to build a methodology to adaptively 
adjust these two vital settings in signal reconstruction stage by 
investigating the influencing mechanisms from temporal 
complexity and signal quality of time series in future work. 
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Fig. 2. Prediction performance of FESN and JOESN for noisy Data2. 

 

Fig. 3. BER/SER evaluation when using JOESN for CSI prediction. 

For further understanding, we continue to evaluate the data 
transmission quality of the wireless channel by estimating its 
bit error rate (BER) and symbol error rate (SER). For general 
purpose, 2-ary differential phase-shift keying (2-DPSK) is 
employed for signal modulation at the transmitter, and coherent 
demodulation is introduced for signal detection at the receiver. 
And to avoid any setup modification, the JOESN is directly 
selected from Table IV to predict a Rayleigh fading channel. 
Comparative testing results of BER and SER for the perfect 
CSI and predicted CSI are given in Fig.3. The lateral axis, 
Eb/N0 (dB) denotes the power spectral density ratio of 
transmitted bit streams to channel noises. It is fairly clear that 
the main trend of these four curves decease with the increase of 
Eb/N0, among of them, the BER curve with CSI prediction 
assisted by JOESN is very close to the theoretical BER curve.
When it comes to the SER, except for a slight performance 
degradation when Eb/N0 is extremely low (<-10dB), in most 
cases, the communication quality under our prediction scheme 
is close to that of the ideal channel with the expected CSI.  

VI. CONCLUSION 

In order to improve the prediction accuracy and noise 
robustness, a jointly optimized echo state network (JOESN) is 
proposed based on output weight regularization and initial 
parameter optimization. In this prediction model, ill-posed 
solutions can be avoided to a large extent due to the 



sufficiently unbiased and small-amplitude output weights 
regularized by L2 penalty in the loss function. The employed 
linear-weighted particle swarm optimization (LW-PSO) 
permits the JOESN intelligently learn its reservoir parameters. 
This automatic strategy for parameter optimization prevent our 
learning networks from inefficiency and unreliability of 
manual settings. The simulation tests on Lorenz chaotic system 
prove that our proposed JOESN performs better especially in 
the case of noises. Furthermore, the proposed JOESN yields 
acceptable precision and reliability in a preliminary application 
using a Rayleigh fading channel dataset. These positive results 
indicate that our proposed JOESN has considerable potential in 
obtaining CSI of fading channel, which shows a promising 
application prospect in wireless communications. 
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