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Abstract - This report provides a comparative study of three proposed self
organising neural network models that use forms of soft competition. The
use of soft competition helps the neural networks to avoid poor local minima
and so provide a better interpretation of the data they are representing. The
networks are also thought to be generally insensitive to initialisation
conditions. The networks studied are the Deterministic Soft Competition
Network (DSCN) of Yair et al., the Neural Gas Network of Martinetz et al
and the Generalised Learning Vector Quantisation(GLVQ) of Pal et al. The
performance of the networks is compared to that of standard competitive
networks and a Self Organising Map when run over a variety of data sets. The
three proposed neural network models appear to produce enhanced results,
particularly the Neural Gas network, but in the case of the Neural Gas
network and the DSCN this is at the cost of greater computational complexity.
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1.0 Introduction

A standard Competitive Learning Neural Network (CLNN) [ 1 ] uses gradient
descent on a cost function to settle into an equilibrium state. By using
gradient descent such networks are prone to finding local minima, the quality
of which is highly dependent upon the initial random state of the network.
Soft competition, where there is more than one winner, has been used to try
to prevent some the problems of finding poor local minima. Networks that
also use a temperature coefficient to reduce the "softness" of the competition
over time, employing a simulated annealing type approach, may be the most
successful in avoiding local minima. This report analyses and evaluates three
CLNNs [2,3,4] which use forms of soft competition. The three CLNNS all
claim to produce solutions independent of the initial state of the network,
and two claim to find near global solutions.

Section 2 of the report looks at clustering, standard CLNNs , vector
quantisation and the theory of simulated annealing. In section 3 the three
new network models are described. The three network models were run over
different types of data and the results of these tests are reported and discussed
in section 4.

2.0 Clustering and Competitive Learning Neural Networks

Most clustering algorithms reduce a cost function by iteratively altering the
prototype weight vectors in response to the inputs. The cost function that is
being reduced determines the form of the update rule used. The most
common cost function is based on the Mean Squared Error (MSE) measure
that is given as '

E=Y -yl (1)
where x is input \;(ector
Yi* is the winning node
2
and =y, <lx-y Vi 2)

A standard CLNN performs clustering on the input data by reducing the MSE
given in (1). The MSE is reduced by updating the winning node for each input
using the rule

yin) = y;(n-1) + alx(n) - yi(n - 1)] (3)

where a is the learning rate and is global to the whole network.
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This update rule is directly derived from the MSE and so the network
performs gradient descent on the MSE function. If an alternative cost
function is to be reduced by the network then a different update rule that is
derived from that cost function will be used.

In standard CLNNSs just the node that wins the competition to classify the
input updates its weight vector, as shown in Figure 1a all other nodes have
an update rate of 0, and they remain unchanged. Some types of CLNN may
update more than just the winning node with the other nodes moving to a
lesser extent, this is shown in figure 1b.

size of update

weight space weight space

winning node winning node

a) b)
Figure 1 a)the winning node has an update rate of o.. All other nodes whatever their position
in the weight space in relation to the input are not updated. In part b) the winning node again
has an update rate of a., other nodes may also be updated, the size of their update being
dependent upon their position relative to the winning node.

The update rule in (3) uses gradient descent to minimise the MSE and as
such may well find local minima. The quality of the minima found is very
dependent upon the initial random starting weight values of the competitive
units.

2.1 Vector Quantisation

Vector quantisation is a technique that can be used to map discrete vector
sources into a sequence of digital data for transmission or storage. A vector
quantiser maps an input vector to one of a finite set of predetermined
codevectors. The goal in designing a vector quantiser is to construct a set of
codevectors for which the expected distortion, caused by approximating an
input vector by a codevector, is minimised. The most common distortion
measure used is the mean squared error (MSE). To produce a low MSE two
necessary conditions that need to be met are the centroid and nearest
neighbour conditions [5]. The centroid condition requires that the prototype
vector of a class be at the centroid of the class of inputs it classifies. The
nearest neighbour condition states that any input vector must be classified by
the nearest prototype vector.
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CLNNSs can be used to build vector quantisers. A CLNN performs gradient
descent on the MSE function and produces a vector quantiser which meets
both the centroid and nearest neighbour conditions. The quality of the set of
codevectors found is dependent upon the quality of the minima the network
finds. But by using purely gradient descent techniques (albeit with on line
rather than batch training) the network can easily fall into poor local minima
especially if initial starting weight values are poor. A more reliable method of
reducing the MSE needs to be found before CLNN’s can be used for vector
quantiser design.

2.2 Simulated Annealing

Annealing is a process whereby a collections of atoms is reduced to its lowest
energy state. Simulated annealing was first introduced by Metropolis et al.[6]
who proposed a simple algorithm that can be used to simulate a collection of
atoms in equilibrium at a given temperature. In each step of this algorithm

an atom is given a small random displacement and the resulting change AE,
in the energy of the system is computed. If AE <= 0 the displacement is

accepted and the state is changed. If AE > 0 then the state is accepted with
probability
AE

P(AE)=e KT (4)

where Ky is the Boltzman constant, and T is the temperature

This choice of P(AE) means that the system evolves to a Boltzman Gibbs
distribution, where the probability of the system being in a state s is

P(S) :'%e_BE(S) (5)

where 3 =1/T and Z is a normalisation factor defined so that the sum of P(s)
over all possible states is unity, and so conforms to a probability density
function.

By gradually reducing T over time simulated annealing is performed [7 ]. For
high values of T there is an element of random movement in the system as
states that increase E have a fairly high probability of being accepted. This
random movement allows the system to escape local minima. At low
temperatures a state that increases E is less likely to be accepted. As T is
reduced so is the probability of accepting states that increase E and the system
gradually evolves towards gradient descent. If the temperature schedule is
correct for the problem the global minima should be reached[7].
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3.0 The Three Networks

The neural networks that are analysed and evaluated in this report are :
* Yair et al's Deterministic Soft Competition Network (DSCN) [4],
* The Neural Gas network of Martinetz et al[2]
* Generalised Learning Vector Quantisation (GLVQ) of Pal et al[3].

3.1 The Deterministic Soft Competition Network

This network provides a deterministic form of Soft Competition derived
from the principles of simulated annealing .

DSCN does not produce winners and losers, but updates all of the nodes for
each input. The nodes are updated at differing rates, the rate of learning for
each node being dependent upon: its distance from the input, the current
temperature of the network and the current size of its individual counter.

3.1.1DSCN Learning Rates
The update rule for each vector is
yi =yi + aiPn®x - yjl (6)

Hence the elements that effect the rate of learning (the size of the update step)
are the values of P, (i) and a;

P, () is the probability of output node y; winning according to a Gibbs
distribution

—Bx-y;|*
e
Y=o (7)
L) -
where B=1/T (8)
2
and Z= Ee_ﬁux_y il is the normalisation factor 9)
i

This means that at high temperatures the Pn(i) value is relatively even
between nodes as it is not overly sensitive to the distance between a node and
the input vector. As the temperature decreases the Pn(i) values become very

sensitive to the distance between a node and the input vector, nodes close to
the input gain relatively high values and those further away very low values.
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a; is inversely proportional to the node’s individual counter.

1
) ) (10)
n; is the counter for each unit that is updated for each input by the rule
nj(n) = nj(n -1) + Py (i) (11)

This means that the more often the unit has a high P,,(i) , the smaller the a;
value becomes. This adds a form of "conscience" mechanism to the network.

3.1.2 How the learning rates vary according to system temperature and
time

Initially when the temperature is high P, (i) values are approximately
uniform so the output nodes are not yet attracted to certain clusters and all
migrate towards each input vector. As the temperature lowers those near to
the input take a larger step size and those further away a smaller one, as
shown in Figure 2. It should be noted that nodes which are close together
will have a similar Pp(i) value and are likely to have a similar aj value. Hence
nodes that become close together have very similar learning rates and so can
become "stuck' together. Since at high temperatures the nodes all tend to
migrate to the same point it is very important the network is not given too
high an initial temperature or all the nodes may become merged.

g >
0 0
+ lIx-yll * lIx-yll
winning node winning node
a) b)

Figure 2 Network Py values : the Py, values for nodes at a) high temperatures b) low
temperatures.

The value of a; for each unit can be seen as a secondary temperature that
reduces over time. The size of the reduction being dependent upon P}(i), so

units with little probability of being the winner maintain a larger learning
rate.
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Figure 3 : Network Learning rates for a; . Periodically all n; are set to unity , so the
value of a; becomes 1. The size of a; then decreases. The length of time between resetting

the values increases over time, allowing the learning rate of the network to become more
settled.

The value of T is reduced at the start of each pass through the input data set.
The secondary temperature aj is set to unity each time the number of passes
through the data set equals a perfect square, as shown in Figure 3. The
periodic increase in the secondary temperature makes the networks
movements more random and so can help to jog the network out of local
minima. As the network completes more passes through the data set the
periods between re-initialisation of aj become longer, allowing the network
to settle on a solution.

3.2 Neural Gas Network

Martinetz et al [2] propose the Neural Gas network that uses soft competition
and a temperature coefficient to effect the softness of the competition over
time. The network minimises the cost function

N
E= 2 ze—ﬁ(ki(x,y))‘nx ~y, "2 (12)

x i=1
where
B=1/T
ki(x,y) is a function which represents the ranking of each input
vector x with each weight vector y; . If y; is closest to input x then

k = 0, for the second closest k = 1 and so on.

At high temperatures many of the nodes in the network add to the cost
(error) of the network. As the temperature is reduced only the nodes close to
the input contribute significantly to the error, and at very low temperatures
effectively just the winning node produces an error. Thus the cost function is
reduced to the MSE function in (1) for very low temperature values.

The update rule, that is applied to all nodes, and which reduces the cost
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function in (12) is
yi(n) = y;(n =1+ ae PHED (x —y (n 1)) (13)

where o is in the range 0 to 1 and is global to the network.

Figure 4 shows how the size of the temperature effects the update rates for the
network. At very low values for T the update is reduced to that of standard
CLNNSs shown in Figure 1.

update rate
update rat

\_ k

* ranking * ranking

winning node winning node

a)
Figure 4 Network update rates : the update rate values for nodes at a) high
temperatures b) low temperatures.

This method was compared by Martinetz et al[2] to k-means clustering, a Self
Organising Map (SOM) [8] network and the simulated annealing clustering
method of Rose et al. [9]. In their tests the Neural Gas network performed the
best, converging to better solutions. Although it does not use the simulated
annealing theory that is the basis of the DSCN it may well be that in practice
this method is as effective.

2.3 GLVQ network

A Generalised LVQ (GLVQ) method is proposed by Pal et al [3]. It uses soft
competition as all of the nodes are updated unless the input is classified
perfectly. The cost function being minimised is

E-3 Yeph-vil 04
where

j is the winning unit
and  gji =1 if i=j otherwise gji— 1 (15)

- -
2lx-yx]
k=1

where N is the number of nodes

There is just one learning rate for all of the losers, that is partially dependent
upon the classification error produced by the winning node.
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The update rules for the network are

D? —D+||x—yi“2

for the winner y, =y, +o(x—-y,) o (16)
-y

for the losers  y, =y, +0c(x—-yi)D—2x (17)

where D= Zux —-Y; ”2 (18)

o is global to the network and reduces over time

When the match between winner and input is perfect then losing nodes are
not updated. As the mismatch between the winning weight vector and input
vector increases the impact on the losing nodes also increases.

The GLVQ performs gradient descent on a cost function other than the MSE .
In so doing it may be able to find a solution that provides a lower MSE than
can be found by performing gradient descent on the MSE function itself,
particularly if the initial starting conditions are poor.

4.0 The Comparative tests.

The DSCN, Neural Gas network and the GLVQ network were implemented
and run over a variety of data sets. A standard CLNN , a SOM, and CLNNs
with conscience[10] and leaky learning [1] mechanisms were also run over
some of the data sets to provide performance comparisons. The CLNN with a
conscience mechanism is equivalent to the Frequency Sensitive Competitive
Learning method (FSCL) [11,12].

The networks were run over a model problem where the global minima
could be calculated, data from more than one Gaussian cluster and data from

a single Gaussian cluster.

For the sake of comparison when an error measure was required the same
MSE measure was used for each network type.

3.1 Squares data - a model problem

To test the performance of the networks in minimising the MSE, a data
distribution was chosen for which the MSE global minimum can be
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calculated for a large number of vectors. This data distribution was used by
Martinetz at al. in their Neural Gas paper[2].

The clusters of data points are of a square shape and are separated from each
other. The number of nodes was chosen to be four times the number of
clusters, hence the final optimal configuration of the weight vectors is four
vectors for each cluster arranged in the known optimal configuration for a
single square. Figure 5 shows an example of the square positions ( the
positions were selected at random). The networks were run with initial
starting positions for the weight vectors that were well spread over the input
area, as shown in Figure 5a, and with starting positions that were not evenly
spread over the input area, shown in Figure 5b.

a) b)
Figure 5 Typical weight vector starting positions for the Squares data.
The large squares represent the 15 regions where the input vectors are generated with
equal probability. The small squares represent the weight vectors of the nodes, two initial
starting positions are shown, a) where the vectors are well spread out over the input area,
and b) where the vectors are grouped in one corner of the potential input area.

4.1.1 Neural Gas network Performance

a) b)
Figure 6 Neural Gas representation . The neural gas network representation of the

data distribution after 60000 adaptation steps. For the configuration of the square clusters
in a) the network has found the optimal state. b) shows a more frequently occurring
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situation where the network has come close to the optimum.

The Neural Gas network performed well over this data. For some
configurations of the clusters it was able to find a global minimum, as shown
in Figure 6 a), and for all configurations found a solution that was close to the
optimum. On average the Neural Gas performance was 12 % worse than the
optimum.

The solution found by the network did appear to be independent of the
starting position of the network, with the difference in the quality of the
solution being less than 0.1% for differing start positions.

4.1.2 DSCN performance

This network was originally designed as a vector quantiser for single source
data and did not prove to be very suited to clustered data such as this. The
problem with the network is finding the correct temperature schedule. If the
temperature is too high the weight vectors of the nodes tend to merge
together, if it is too low the network freezes before it has found a good
solution. The authors of the network provide a heuristic for start temperature
of the network over single source data but not for clustered data.

] DD =] [-]
N O ]
U e O Dy o
]

] [+]
] 0 O [-] ]
O O gy ©

a) b)
Figure 7 DSCN representation of Squares data
The DSCN representation of the "Squares" data. The left picture shows the result if the
temperature is too high, all the vectors have converged to the same position. The right hand
picture shows the best representation I was able to gain from the network over this data.
Again some of the nodes have merged together but each square is represented by at least
one vector, most squares have between 2 and 5 vectors merged at their centre.

Suitable temperature schedules for the network were investigated
empirically. Figure 7 a) shows the result formed using too high a
temperature, where all of the weight vectors have converged to the same
point. Once the weight vectors become very close the network is not able to
separate them due to its method for calculating the learning rate for the
nodes. ( Nodes that are close together will have the same learning rate).

Kate Butchart p11




The tendency of the nodes to stick together also occurs at lower
temperatures. Figure 7 b) shows the best solution the network found over this
data , and here again the nodes have become very close together but this time
in groups , with each square having a group of nodes at its centre. Inevitably
with nodes so close together the network is not able to reduce the distortion
error as would be hoped. This solution represents an ideal solution given just
15 of the 60 nodes. The local clustering of the other 45 nodes added nothing to
the functionality of the network. The average distortion values for the
network were 370% greater than the optimum.

The network converged to similar states independent of the starting
positions and so was not effected by changes in the starting positions.

4.1.3 GLVQ network performance

The network performed reasonably well over this data, but it was not able to
bring all the nodes into the competition. On average one third of the nodes
did not move into a position to be able to classify any of the data points. This
prevented the network from getting close to the optimum value. The value
of E for this network was on average 180% greater than the optimum.

: v
Hoss o g
oo -~g. o "
DE' S " a ] E'...

Figure 8 A typical GLVQ representation of the data.

The initial starting positions of the weight vectors is shown in the left hand picture. The
final positions of the vectors are on the right picture, which shows that many of the weight
vectors have not moved into positions to classify input data points.

4.1.4 Comparisons with Other Networks

Figure 9 shows the average performance of all seven types of network used.
The Neural Gas network was certainly the best performer over this data and
proved to be resilient to poor initial conditions. The GLVQ was clearly better
than any of the others. Its distortion measure doubled from 1.47 to 2.99 under
poor starting positions which was a little surprising given its claim to be
position independent. However even taking the worst figure it still
outperformed all the networks except the Neural Gas.
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Figure 9 Average performance of the networks
The average performance of each network is shown from both good and poor initial
positions.E0 is the known global minimum of E.

The DSCN network performed comparably with the Competitive network
with a conscience mechanism, and a little worse than the SOM. All three
were not badly effected by poor starting positions. The standard competitive
network , and the competitive network with a leaky learning mechanism
produced acceptable performances over the data with good starting positions .
Both networks did very badly with poor initial conditions thus emphasizing
the random nature of the solution found with such networks, unless good
initial positions can be guaranteed.

4.1.5 Convergence Rates

80 T

L =

number of epochs (1000's)

NGas DSCN GLVQ Comp Comp Comp SOM
+LL  +Cons
Figure 10 : the number of presentations of inputs required for each network to converge to
its optimum solution.

Figure 10 shows the number of input presentations required by the networks
to converge to their optimum solutions. It should be noted that the networks
that took longer to find their optimum solutions , such as the Neural gas
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network and the SOM would still converge to a reasonable solution with a
smaller number of presentations.

The Neural Gas network clearly outperformed the others over this data, as
was to be expected given that Martinetz et al. used this data in the original
Neural Gas paper. The Neural Gas network is well suited to clustered data, as
also it appears is the GLVQ. The DSCN was not suited to this type of data and
performed badly (although this could possibly be accounted for by the fact that
a suitable temperature schedule was not found).

4.2 Gaussian Clusters

The three networks were also run over more standard data consisting of
Gaussian clusters.

Figure 11 : Test 1 input data
4.2.1 Testl

The first test consists of four clusters , three of which contained 100 data
points and the fourth 50 data points, as shown in Figure 11. All clusters had a
normal Gaussian distribution. The networks had seven competitive nodes.
The optimal solution is for each of the clusters consisting of 100 data points to
be represented by two of the output nodes , and the smaller cluster by just
one.

For a good initial state of the weight vectors both the Neural Gas and GLVQ
networks were able to find a solution close to the optimal configuration. The
DSCN did not find a solution as close to the optimal configuration and
consequently produced a poorer MSE.

For a poor initial weight vector state the Neural Gas performed the best with

an MSE almost the same as for the good initial state data. The SOM network
performed well in comparison with the other networks and outperformed
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the DSCN network.

300 T " 1
good
250 4 . initial state
200
150
100
50 -

leoor"
initial state

Mean Squared Error

NGas GLVQ DSCN SOM

Figure 12: Networks Mean Squared Error Performance for Testl. A good initial
state exists where the initial positions of the output nodes are evenly spread across the input
space. Poor initial states are defined as ones where the output nodes are initialised in asmall
area of the input space away from any of the inputs.

4.2.2 Tests2and 3

The networks were also run over two dimensional Gaussian data with more
noisy inputs . For the second test there were three dense clusters of 200 points
each , and one sparse cluster covering the whole input area that gave the
effect of a lot of noisy inputs. The networks had 64 competitive units.

The data was extended to four dimensions for test 3.

160 - 100 -
140 - 2 90 -
- (o]
8 120 A = 80
=400 - g 70
T 80 - E 60
5 2]
% 60 A g 50
40 - a3 40
g %5
$ 20 - 5 30
Ngas GLVQ DSCN SOM Ngas GLVQ DSCN SOM
a) test 2 b) test 3

Figure 13 : Mean Squared Error performance for tests 2 and 3

As in all the previous tests the Neural Gas network performed the best in test
2. In test 3, where the input data was in four dimensions and effected by quite
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a lot of noisy inputs the GLVQ network outperformed the Neural Gas
network, though both were much better than the DSCN and SOM networks.

The problem the networks had to solve was determining how many of nodes
should cover the clusters and how many the sparse noisy inputs. GLVQ
tended to spread the nodes across the whole area as did the SOM. The Neural
Gas network provided significantly more nodes in the dense clusters but still
provided cover for the noisy inputs.

4.3 Gauss Markov Source

All of the previous test have used data with the inputs clustered into groups.
The tests in this section were run over data with just one cluster of inputs
produced from first order Gauss-Markov processes of the form xn = oxn-1 +
wn, where wp, is an independent identically distributed Gaussian process
with zero mean and unit variance. The coefficient o defines the level of

correlation between inputs. The tests were run with data of 2, 4 and 8
dimensions, with differing degrees of correlation between inputs.

Correlation NGas GLVQ DSCN SOM Comp + Cons
0.0 162 ‘ 159 198 259 227

0.2 175 173 218 272 241

0.6 229 214 287 412 321

0.9 792 790 986 1356 1134

Table 1 MSE for networks over two dimensional data from a Gauss-Markov Source, with
varying correlation between inputs.

Correlation NGas GLV! DSCN SO Comp + Cons
0.0 356 341 376 420 385

0.5 459 446 472 579 478

0.9 1357 1380 1442 1773 1422

Table 2 MSE for networks over four dimensional data from a Gauss-Markov Source, with
varying correlation between inputs.

Correlation NGas GLVQ DSCN SOM Comp + Cons
0.0 1713 1717 1728 1908 1720
0.5 2282 2340 2398 2608 2263
0.9 6166 6215 6295 6958 6288

Table 3 MSE for networks over eight dimensional data from a Gauss-Markov Source,
with varying correlation between inputs.

Tables 1, 2 and 3 show the MSE for each network over 2 , 4 and 8 dimensional

data respectively. The lowest MSE for each correlation is underlined in each
table.
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Over this single source data the GLVQ and Neural Gas networks produced
very similar results. The DSCN did not perform as well as had been hoped
over this data, and, in fact, the Competitive network with a conscience
mechanism produced results that were similar and sometimes better than the
DSCN over this data.

5.0 Network Evaluations and Conclusions
5.1 Does Soft Competition provide enhanced performance

The Neural Gas and GLVQ networks consistently performed better than the
standard networks in terms of the MSE produced over all the tests performed.
The relative performance is improved most noticeably when the data consists
of more than one cluster and there are a large number of nodes. Over single
source data the enhancements are not as great especially when the
dimensionality is increased.

5.2 How the networks compare with each other .

The GLVQ and Neural Gas networks outperformed all the other networks
over all the tests run. Over data with more than one cluster Neural Gas is
certainly the best performer, in terms of the MSE reached. For single source
data Neural Gas and GLVQ produced fairly equal performances. The DSCN
network generally outperformed the standard networks but did not do as well
as the Neural Gas and GLVQ networks. The main problem encountered by
the DSCN was that the nodes converged to the same point if the temperature
was too high. The network therfore had to be started with a low temperature
that caused it to be too static and unable to find the optimum solution.

5.3 Sensitivity to parameters and initial conditions

The DSCN is very sensitive to the temperature value. If this value is too high
the network provides very poor performance, if it is too small the network
again performs badly. The GLVQ and Neural Gas appear to be relatively
resilient to alterations in parameter values.

A major strength of both the Neural Gas and DSCN networks is the fact that
they appear empirically to be resilient to the quality of the starting positions.
The other networks tended to be quite badly effected by poor starting
conditions.

5.4 Computational load and Speed of Convergence
The DSCN and Neural Gas networks both take up to twice as long to

converge than the other networks. This is caused by the need to allow time
for a suitable temperature schedule.
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Computationally the DSCN and Neural Gas are again the most expensive, the
Neural Gas network needs to rank all of the nodes for every input and
calculate their individual update rates. The DSCN has to calculate the
probability of each node winning according to a Gibbs distribution, then
calculate the update value for every node before updating them all. The
GLVQ network is not significantly more computationally expensive than a
FSCN or SOM.

5.5 Conclusions

The Neural Gas network provides a reliably good MSE over many different
data types , and is resilient to initial starting positions and variations in
parameter settings. This is however gained at the expense of an increased
computational load and slower convergence rate. The GLVQ network does
not perform quite as well as the Neural Gas network over certain types of data
and is not as resilient to poor starting conditions. It does, though, perform
better than the standard networks converging at a similar rate and with a
computational load equivalent to all but the standard (winner update only)
CLNN. The DSCN network is capable of better performance than the
standard networks but is overly sensitive to the temperature schedule
implemented.
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