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Abstract  

Demand Response (DR) programs are being introduced by some electricity grid operators as 

resource options for curtailing and reducing the demand of electricity during certain time 

periods for balancing supply and demand. DR is considered as a class of demand-side 

management programs, where utilities offer incentives to end-users to reduce their power 

consumption during peak periods. DR is, indeed, a promising opportunity for consumers to 

control their energy usage in response to electricity tariffs or other incentives from their energy 

suppliers. Thus, successful execution of a DR program requires the design of efficient 

algorithms and strategies to be used in the utility grid to motivate end-users to actively engage 

in residential DR.  

This thesis studies DR management using machine learning techniques such as Reinforcement 

Learning (RL), Fuzzy Logic (FL) and Neural Networks (NN) to develop a Home Energy 

Management System (HEMS) for customers, construct an energy customer behaviour 

framework, investigate the integration of Electrical Vehicles (EVs) into DR management at the 

home level and the provision of ancillary services to the utility grid such as Frequency 

Regulation (FR), and build effective pricing strategies for Peer-to-Peer (P2P) energy trading.  

In this thesis, we firstly proposed a new and effective algorithm for residential energy 

management system using Q-learning method to minimise the electricity bills and maximise 

the user’s satisfaction. The proposed DR algorithm aims to schedule household appliances 

considering dynamic electricity prices and different household power consumption patterns. 

Moreover, a human comfort-based control approach for HEMS has been developed to increase 

the user’s satisfaction as much as possible while responding to DR schemes. The simulation 

results presented in this Chapter showed that the proposed algorithm leads to minimising 

energy consumption, reducing household electricity bills, and maximising the user’s 

satisfaction.  

Secondly, with the increasing electrification of vehicles, emerging technologies such as 

Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) have the potential to offer a broad range 

of benefits and services to achieve more effective management of electricity demand. In this 

way, EVs become as distributed energy storage resources and can conceivably, in conjunction 

with other electricity storage solutions, contribute to DR and provide additional capacity to the 

grid when needed. Therefore, we proposed an effective DR approach for V2G and V2H 

energy management using Reinforcement Learning (RL) to make optimal decisions to charge 
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or delay the charging of the EV battery pack and/or dispatch the stored electricity back to the 

grid without compromising the driving needs. Simulations studies are presented to demonstrate 

how the proposed DR strategy can effectively manage the charging/discharging schedule of 

the EV battery and how V2H and V2G can contribute to smooth the household load profile, 

minimise electricity bills and maximise revenue. In addition, the potential benefits of EVs 

battery and V2G technology to provide grid frequency response services have also been 

investigated. We have designed an optimal real-time V2G control strategy for EVs to perform 

supplementary frequency regulation using Deep Deterministic Policy Gradient (DDPG). The 

main feature that distinguishes the proposed approach from previous related works is that the 

scheduled charging power of an individual EV is optimally tracked and adjusted in real-time 

to fulfil the charging demand of EV's battery at the plug-out time without using the forced 

charging technique to maximise the frequency regulation capacity. 

Finally, a Peer-to-Peer (P2P) model for energy transaction in a community microgrid has been 

proposed. The concept of P2P energy trading can promote the implementation of DR by 

providing consumers with greater control over their energy usage, incentivising them to 

manage their energy consumption patterns in response to changes in energy supply and 

demand. It also stimulates the adoption of renewable energy sources. The proposed P2P 

energy-sharing mechanism for a residential microgrid with price-based DR is designed to 

engage individual customers to participate in energy trading and ensures that not a single 

household would be worse off. The proposed pricing mechanism is compared with three 

popular P2P energy sharing models in the literature namely the Supply and Demand Ratio 

(SDR), Mid-Market Rate (MMR) and Bill Sharing (BS) considering different types of peers 

equipped with solar Photovoltaic (PV) panels, EVs, and domestic energy storage systems. The 

proposed P2P framework has been applied to a community consisting of 100 households and 

the simulation results demonstrate fairness and substantial energy cost saving/revenue among 

peers. The P2P model has also been assessed under the physical constrains of the distribution 

network. 

 

 

 



Acknowledgements 

 3 

Acknowledgements 

I would like to express my deepest appreciation and gratitude to my esteemed supervisors, Dr. 

Mouloud Denai and Prof. Yichuang Sun, for their unwavering support, expert guidance, and 

invaluable mentorship throughout my PhD journey. Their insightful comments, constructive 

feedback, and encouragement have been invaluable in shaping the direction of my research and 

in helping me achieve my academic goals. 

I am also immensely grateful to the University of Hertfordshire for providing me with a 

conducive and stimulating environment for pursuing my doctoral studies. The resources, 

facilities, and opportunities offered by the university have been crucial in facilitating my 

research and enhancing my skills as a researcher. 

My heartfelt thanks go to my family for their unending love, unwavering support, and constant 

motivation. Their sacrifices, understanding, and unwavering belief in my abilities have been 

the driving force behind my success, and I am forever grateful for their unwavering presence 

in my life. 

I would also like to extend my sincere appreciation to my friend (Zaid) for his constant support, 

encouragement, and unwavering faith in my abilities. His unwavering support, listening ear, 

and valuable insights have been a source of inspiration and motivation throughout my PhD 

journey. 

Finally, I would like to acknowledge the contributions of all those who have directly or 

indirectly supported me in completing this research. I am grateful for their support, 

encouragement, and guidance, and I am committed to making them proud. 

 

 

 

 

 



Table of Contents 

 4 

Table of Contents 

Abstract .................................................................................................................................................. 1 

Acknowledgements ............................................................................................................................... 3 

Table of Contents .................................................................................................................................. 4 

List of Figures ........................................................................................................................................ 7 

List of Tables ....................................................................................................................................... 10 

List of Abbreviations .......................................................................................................................... 11 

Chapter 1 Introduction ................................................................................................................. 12 

1.1 Background ........................................................................................................................... 12 

1.2 Research Aim and Objectives ............................................................................................... 13 

1.3 Key Contributions ................................................................................................................. 16 

1.4 Thesis Organisation .............................................................................................................. 17 

1.5 List of Publications ............................................................................................................... 18 

Chapter 2 Background and Literature Review .......................................................................... 19 

2.1 Introduction ........................................................................................................................... 19 

2.2 Smart Grid ............................................................................................................................. 22 

2.3 Demand Response in Smart Grid .......................................................................................... 25 

2.3.1 Concept ......................................................................................................................... 25 

2.3.2 Classification of DR programs ..................................................................................... 26 

2.4 Enabling DR Technologies ................................................................................................... 29 

2.4.1 Smart meters ................................................................................................................. 30 

2.4.2 Information and Communication Technologies (ICT) .................................................. 30 

2.4.3 Meter Data Management Systems ................................................................................. 32 

2.5 Benefits of DR programs ...................................................................................................... 33 

2.6 DR Applications .................................................................................................................... 34 

2.6.1 Home energy management system ................................................................................ 34 

2.6.2 Electric vehicles ............................................................................................................ 35 

2.6.3 Peer-to-peer energy trading .......................................................................................... 35 

Chapter 3 Overview of Machine Learning Approaches for Demand Response ..................... 36 

3.1 Introduction ........................................................................................................................... 36 

3.2 Fuzzy Logic (FL) .................................................................................................................. 37 

3.3 Artificial Neural Networks (NN) .......................................................................................... 39 

3.4 Reinforcement Learning (RL) ............................................................................................... 40 

3.5 Deep Reinforcement Learning (DRL) .................................................................................. 42 

Chapter 4 Demand Response Strategy for Home Energy Management .................................. 44 



Table of Contents 

 5 

4.1 Introduction ........................................................................................................................... 44 

4.2 HEMS Components .............................................................................................................. 45 

4.3 Home Energy Management Model ....................................................................................... 47 

4.4 Methodology ......................................................................................................................... 49 

4.4.1 Background on Reinforcement Learning ...................................................................... 49 

4.4.2 Q-Learning model ......................................................................................................... 49 

4.4.3 Home energy management algorithm using Q-learning ............................................... 54 

4.4.4 User’s satisfactions ....................................................................................................... 56 

4.5 Results and Discussion.......................................................................................................... 61 

4.5.1 Implementation of the proposed strategy ...................................................................... 61 

4.5.2 Implementation of comfort-based control strategy ....................................................... 66 

4.6 Conclusion ............................................................................................................................ 70 

Chapter 5 Integration of Electric Vehicles into Demand Response .......................................... 72 

5.1 Introduction ........................................................................................................................... 72 

5.2 Overview on V2G technology .............................................................................................. 73 

5.2.1 V2G technology ............................................................................................................. 74 

5.2.2 V2H technology ............................................................................................................. 75 

5.3 Modelling of the Grid Integration Framework ...................................................................... 75 

5.3.1 Modelling of V2G and V2H systems ............................................................................. 75 

5.3.2 Modelling of EV driving patterns .................................................................................. 77 

5.3.3 Modelling of the household load profile ....................................................................... 78 

5.4 V2G Demand Response Based on Q-Leaning ...................................................................... 79 

5.4.1 Q-learning model for the EV ......................................................................................... 80 

5.4.2 EV energy management strategy using Q-learning ...................................................... 84 

5.5 Results and Discussion.......................................................................................................... 85 

5.5.1 Implementing the proposed strategy with a single EV in a household ......................... 85 

5.5.2 Implementing the proposed strategy on a fleet of EVs connected to the distribution 

network 94 

5.6 Conclusion ............................................................................................................................ 98 

Chapter 6 Optimal V2G Control for Supplementary Frequency Regulation ....................... 100 

6.1 Introduction ......................................................................................................................... 100 

6.2 Electrical Vehicles Participation in Supplementary Frequency Regulation (SFR) ............. 104 

6.2.1 Overview of frequency response in power systems ..................................................... 104 

6.2.2 Participation of EVs in SFR ........................................................................................ 105 

6.2.3 Dispatch Strategies of EVs Participating in SFR ....................................................... 105 

6.3 Deep Reinforcement Learning for V2G Control ................................................................ 108 



Table of Contents 

 6 

6.3.1 V2G Control Based on DDPG .................................................................................... 108 

6.4 Results and Discussion........................................................................................................ 112 

6.4.1 Impacts of the proposed V2G strategy on the EV battery ........................................... 115 

6.4.2 Impacts of EVs on grid frequency regulation ............................................................. 118 

6.4.3 Impacts of different SOC distribution on regulation ................................................... 122 

6.5 Conclusion .......................................................................................................................... 123 

Chapter 7 P2P Electricity Market Model for a Community Microgrid with Price-Based 

Demand Response ............................................................................................................................. 125 

7.1 Introduction ......................................................................................................................... 125 

7.2 Modelling of the Residential Microgrid Components ........................................................ 128 

7.2.1 Household categories .................................................................................................. 128 

7.2.2 Modelling of household components ........................................................................... 129 

7.2.3 Home Energy Management System ............................................................................. 132 

7.2.4 Consideration of physical network constraints ........................................................... 132 

7.3 P2P Energy Sharing Model ................................................................................................. 135 

7.3.1 P2P Energy Sharing Structure .................................................................................... 135 

7.3.2 P2P Energy Sharing Mechanism ................................................................................ 136 

7.3.3 Cost Function .............................................................................................................. 138 

7.4 Results and Discussion........................................................................................................ 141 

7.4.1 Simulation Setup ......................................................................................................... 141 

7.4.2 Evaluation of the proposed HEMS .............................................................................. 146 

7.4.3 Evaluation of the Proposed P2P Price Mechanism .................................................... 152 

7.5 Conclusion .......................................................................................................................... 160 

Chapter 8 Conclusions and Future Work ................................................................................. 161 

8.1 Main findings and contributions ......................................................................................... 161 

8.2 Future works ....................................................................................................................... 163 

References .......................................................................................................................................... 165 

Appendixes ........................................................................................................................................ 174 

Appendix A: MATLAB/Simulink model of HEMS ....................................................................... 174 

Appendix B: MATALB/Simulink of Low-voltage (LV) distribution network .............................. 178 

Appendix C: DDPG agent Model and two-area power system model in MATLAB/Simulink ...... 178 

Appendix D: P2P energy model and formulation ........................................................................... 183 

Appendix D.1: Formulation of proposed P2P pricing mechanism ............................................. 183 

Appendix D.2: formulation of BS, MMR and SDR mechanisms ................................................. 184 

Appendix D.3: MATALB code of P2P energy model .................................................................. 186 

 



List of Figures 

 7 

List of Figures 

Figure 2-1 Global electricity demand in 2021 [4]. ................................................................................ 19 

Figure 2-2 Electricity generation from fossil fuels. [5] ......................................................................... 20 

Figure 2-3 Annual CO2 emissions. [6] .................................................................................................. 20 

Figure 2-4 Market value of SGs worldwide from 2017 to 2023, by region. ......................................... 23 

Figure 2-5 General architecture of a smart grid infrastructure [18]. ..................................................... 25 

Figure 2-6 Demand Response programs. .............................................................................................. 26 

Figure 2-7 Architecture of the Advanced Metering Infrastructure (AMI) system. ............................... 29 

Figure 2-8 Communication networks of smart grid. ............................................................................. 32 

Figure 2-9 Meter Data Management functions. .................................................................................... 32 

Figure 2-10 Benefits of DR programs. .................................................................................................. 33 

Figure 3-1 Block diagram of a FLC. ..................................................................................................... 38 

Figure 3-2 Architecture of a typical artificial neural network .............................................................. 39 

Figure 3-3 Reinforcement learning process. ......................................................................................... 40 

Figure 3-4 Deep reinforcement learning process [40]. ......................................................................... 42 

Figure 4-1 Smart HEMS components. .................................................................................................. 46 

Figure 4-2 HEMS model developed in MATLAB. .............................................................................. 49 

Figure 4-3 FIS system of the reward function. ..................................................................................... 51 

Figure 4-4 Fuzzy sets and MFs of power demand input. ...................................................................... 52 

Figure 4-5 Fuzzy sets and MFs of electricity price input. ..................................................................... 52 

Figure 4-6 Fuzzy sets and MFs of output variables. ............................................................................. 53 

Figure 4-7 Example of FIS process. ...................................................................................................... 54 

Figure 4-8 Simple example of Q-matrix updating. ............................................................................... 55 

Figure 4-9 Household power consumption and average power region. ................................................ 57 

Figure 4-10 Real time price (blue) and average price (green) signals. ................................................. 62 

Figure 4-11 Total power demand of the smart home. ........................................................................... 62 

Figure 4-12 All different states based on the price signal and power demand. .................................... 64 

Figure 4-13 Action taken based on the current state and convergence of Q-matrix; Mode 1: Do 

nothing, Mode 2: Shifting and Mode 3: Valley filling. ......................................................................... 64 

Figure 4-14 Power consumption profile after the implementation of RL algorithm. ........................... 65 

Figure 4-15 Electricity cost without Q-learning. .................................................................................. 65 

Figure 4-16 Electricity cost with Q-learning. ....................................................................................... 65 

Figure 4-17 Real time energy price signal. ........................................................................................... 66 

Figure 4-18 Power demand of household appliances. .......................................................................... 67 

Figure 4-19 Output of DR strategy consisting of three modes. ............................................................ 67 

Figure 4-20 Status of the shiftable appliances after implementing the proposed strategy; WM: 

Washing Machine, DW: Dish Washer, CD: Clothes Dryer, HD: Hair Dryer and HS: Hair Straightener.

 .............................................................................................................................................................. 69 

Figure 4-21 Power demand and power consumption after implementing both strategies. ................... 69 

Figure 4-22 Electricity cost; CS0: cost without HEMS, CS1: cost using without considering user’s 

comfort, CS2: cost under proposed strategy. ........................................................................................ 70 

Figure 4-23 Dissatisfaction index during Shifting and valley filling modes. ....................................... 70 

Figure 5-1 V2G using bidirectional converters. V2G, vehicle to grid. ................................................. 74 

Figure 5-2 Selection of EV operation modes. ....................................................................................... 76 

Figure 5-3 User-interface for scheduling trips. ..................................................................................... 78 

Figure 5-4 Typical household energy consumption. ............................................................................. 79 

Figure 5-5  Fuzzy sets and MFs of input variables for States. .............................................................. 81 



List of Figures 

 8 

Figure 5-6 Fuzzy sets and MFs of output variable for States. .............................................................. 81 

Figure 5-7 Fuzzy sets and MFs of output variable for States. .............................................................. 83 

Figure 5-8 Real time price (blue) and average price (green) signals. ................................................... 86 

Figure 5-9 Total power demand of the smart home. ............................................................................. 86 

Figure 5-10 Initial SOC = 70 % (a) Actions, (b) SOC changes, (c) Power consumption. .................... 88 

Figure 5-11 Initial SOC = 50 % (a) Actions, (b) SOC changes, (c) Power consumption. .................... 89 

Figure 5-12 Initial SOC = 30 % (a) Actions, (b) SOC changes, (c) Power consumption. .................... 91 

Figure 5-13 Hourly household electrical demand of weekend and weekday. ...................................... 92 

Figure 5-14 Weekend days with Initial SOC = 50 % (a) Actions, (b) SOC changes, (c) Power 

consumption. ......................................................................................................................................... 93 

Figure 5-15 Cumulative electricity cost ................................................................................................ 94 

Figure 5-16 Test residential LV network. ............................................................................................. 95 

Figure 5-17 Number of EVs with different (a) capacity (b) initial SOC (c) departure and arrival times.

 .............................................................................................................................................................. 96 

Figure 5-18 Load profile of the residential area.................................................................................... 97 

Figure 5-19 Network power profile after implementing the proposed strategy. ................................... 97 

Figure 6-1 SFR in the traditional power system. ................................................................................ 104 

Figure 6-2 ACE and ARR signals for regulation (a) ACE, (b) ARR. ................................................. 105 

Figure 6-3 Hierarchical control of EVs in the power system. ............................................................. 106 

Figure 6-4 Available frequency regulation capacity of an individual EV. ......................................... 108 

Figure 6-5 Architecture of the actor and critic networks. ................................................................... 111 

Figure 6-6 Two-area power system model [100]. ............................................................................... 113 

Figure 6-7 Thermal power generator for frequency control [100]. ..................................................... 113 

Figure 6-8 Load profile in Area A, adapted form [100]. .................................................................... 113 

Figure 6-9 Random wind turbine power fluctuations, adapted form [100]. ....................................... 114 

Figure 6-10 Implementation of ACE and ARR signals on EVs of Type I; (a) ACE dispatch (b) ARR 

dispatch (c) SCP of Type I under ACE (d) SCP of type I under ARR (e) SOC battery of Type I under 

ACE (f) SOC battery of Type I under ARR. ....................................................................................... 116 

Figure 6-11 Implementation of ACE and ARR signals on EVs of Type II; (a) ACE dispatch (b) ARR 

dispatch (c) SCP of Type II under ACE (d) SCP of type II under ARR (e) SOC battery of Type II 

under ACE (f) SOC battery of Type II under ARR. ........................................................................... 117 

Figure 6-12 Implementation of ACE and ARR signals on EVs of Type III; (a) ACE dispatch (b) ARR 

dispatch (c) SCP of Type III under ACE (d) SCP of type III under ARR (e) SOC battery of Type III 

under ACE (f) SOC battery of Type III under ARR. .......................................................................... 118 

Figure 6-13 FRC of regulation-up and regulation-down under different number of EVs in the charging 

station. ................................................................................................................................................. 119 

Figure 6-14 EVs’ FRC of regulation-up and regulation-down under CS1, CS2 and CS3. ................. 120 

Figure 6-15 ACE signal after implementing CS0, CS1 and CS2. ...................................................... 120 

Figure 6-16 System frequency deviation after implementing CS0, CS1 and CS2. ............................ 121 

Figure 6-17 Dispatch power allocated to generators units for frequency regulation. ......................... 121 

Figure 6-18 SOC curves for (a) Type I and (b) Type II with normal and uniform distributions. ....... 123 

Figure 7-1 Different types of households participating in P2P energy sharing. ................................. 128 

Figure 7-2 Flowchart of the proposed HEMS. .................................................................................... 132 

Figure 7-3 Flowchart of the proposed bus voltage control strategy. ................................................... 134 

Figure 7-4 P2P energy sharing structure. ............................................................................................ 135 

Figure 7-5 Different values of alpha 𝛼 and among different values of surplus power 𝐸𝑆(𝑡) and 

deficiency power 𝐸𝐷(𝑡). ..................................................................................................................... 137 



List of Figures 

 9 

Figure 7-6 P2P market prices under the proposed price mechanism with different values of 𝛼 and 𝛽.

 ............................................................................................................................................................ 138 

Figure 7-7 Distribution of household size by number of bedrooms. .................................................. 142 

Figure 7-8 Distribution of EVs categories. ......................................................................................... 143 

Figure 7-9 Probability density of departure and arrival times. ........................................................... 143 

Figure 7-10 Probability of battery capacity of EVs’ categories. ......................................................... 144 

Figure 7-11 Probability of EV travelling distance. ............................................................................. 145 

Figure 7-12 Probability of energy consumption of each EV category. ............................................... 145 

Figure 7-13 Stochastic PV generation. ............................................................................................... 146 

Figure 7-14 Random scenario of the power profiles for the six household types throughout the day 

under the proposed HEMS. ................................................................................................................. 148 

Figure 7-15 Average amount of deficit/surplus for each group of households under 1000 scenarios of 

MCS. ................................................................................................................................................... 150 

Figure 7-16  Average values of 1000 scenarios of (a) EVs’ capacities and SoCs, (b) BESs’ capacities 

and SoCs, (c) household demand, (d) SCR of Type 1, (e) SCR of Type 2, and (f) SCR of Type 3. .. 151 

Figure 7-17 Surplus and deficiency power throughout a day. ............................................................ 153 

Figure 7-18 Real time price (RTP) and feed-in tariff (FiT). ............................................................... 153 

Figure 7-19 Alpha (𝛼) and Beta (𝛽) values. ........................................................................................ 153 

Figure 7-20 Internal P2P prices (buying and selling prices) under the proposed mechanism. ........... 154 

Figure 7-21 Evaluation results of three existing P2P energy sharing models (SDR, MMR and BS) 

under 1000 scenarios of MCS. ............................................................................................................ 155 

Figure 7-22 Community demand that needs to be purchased from the main grid under different 

scenarios. ............................................................................................................................................. 156 

Figure 7-23 Energy exported to the main grid under different scenarios. .......................................... 157 

Figure 7-24 11-bus distribution system diagram. ............................................................................... 158 

Figure 7-25 Consumers’ energy deficiency throughout a day. ........................................................... 158 

Figure 7-26 Prosumers’ energy surplus throughout a day. ................................................................. 159 

Figure 7-27 Bus voltages with and without considering network constraints. ................................... 159 

Figure 7-28 Power flow in different lines with and without considering network constraints. .......... 160 

 

  

  



List of Tables 

 10 

List of Tables 

Table 4-1 Indexing of all states. ............................................................................................................ 50 

Table 4-2  Fuzzy rules of FIS system. .................................................................................................. 53 

Table 4-3 Home energy management using Q-learning algorithm. ...................................................... 55 

Table 4-4 Convergence Q-matrix after 10000 iterations. ..................................................................... 56 

Table 4-5 Selection procedure of shiftable appliances. ........................................................................ 61 

Table 4-6 Rated power for non-shiftable appliances. ........................................................................... 63 

Table 4-7 Rated power for shiftable appliances with priority. .............................................................. 63 

Table 4-8 Selection process of sample hours for the proposed strategy ............................................... 68 

Table 5-1 Different Type of EV. ........................................................................................................... 76 

Table 5-2 Fuzzy rules of FIS system for the state space. ...................................................................... 82 

Table 5-3 Fuzzy rules of FIS system for reward function. ................................................................... 84 

Table 5-4 EV energy management using Q-learning algorithm. .......................................................... 85 

Table 5-5 Contribution of EVs to energy reduction during morning and evening peak periods. ......... 98 

Table 6-1 Pseudo-code of the DDPG algorithm. ................................................................................ 112 

Table 6-2 Parameters of two areas power system. .............................................................................. 112 

Table 6-3 EVs Parameters used in the simulations. ............................................................................ 114 

Table 6-4 Frequency Deviations in Area A. ....................................................................................... 121 

Table 6-5 ACE in Area A. .................................................................................................................. 122 

Table 7-1 Proposed cost function. ....................................................................................................... 140 

Table 7-2 Types of households ........................................................................................................... 141 

Table 7-3 Typical household’s energy usage in UK ........................................................................... 141 

Table 7-4 Details of the six test houses. .............................................................................................. 147 

 

  



List of Abbreviations 

 11 

List of Abbreviations  

ACE Area Control Error 

ADLC Advanced Direct Load Control 

AMI Advanced Metering Infrastructure 

AMM Automatic Meter Management 

AMR Automated Meter Reading 

ANNs Artificial Neural Networks 

ARR Area Regulation Requirement 

BESS Battery Energy Storage Systems 

BS Bill Sharing 

CPP Critical Peak Pricing 

DDPG Deep Deterministic Policy Gradient 

DLC Direct Load Control 

DR Demand Response 

DRL Deep Reinforcement Learning 

DSM Demand Side Management 

EDP Extreme Day Pricing 

EVs Electric Vehicles 

FiT Feed-in Tariff 

FR Fuzzy Reasoning 

HANs Home Area Networks 

HEMS Home Energy Management System 

HMI Human-Machine Interface 

I/C Interruptible/Curtailable 

IBR Inclining Block Rate 

ICT Information and Communication Technologies 

LFC Load Frequency Control 

MDMS Meter Data Management System 

MDP Markov Decision Process 

MGs Microgrids 

MMR Mid-Market Rate 

NANs Neighbourhood Area Networks 

P2P Peer-to-Peer 

PTR Peak-Time Rebate 

PV Photovoltaic 

RESs  Renewable Energy Sources 

RL Reinforcement Learning 

RMS Root Mean Square  

RTP Real-Time-Pricing 

SDR Supply and Demand Ratio 

SFR Supplementary Frequency Regulation 

SG Smart Grid 

SOC State-of-Charge 

TOU Time-of-Use 

V2G Vehicle-to-Grid 

V2H Vehicle-to-Home 

WANs Wide Area Networks 



Introduction 

 12 

Chapter 1 Introduction 

1.1 Background 

Electricity demand is increasing rapidly due to the global population and economic 

growth. The current global energy demand mainly relies on fossil fuel resources such as oil, 

natural gas, and coal which are contributing to high carbon emissions and are subject to 

fluctuating prices.  Further, due to the limited fossil fuels reserves, meeting the future energy 

demand has become a great challenge.  

Renewable Energy Sources (RESs) are considered as clean energy and offer a promising 

solution to mitigate global warming and reduce the environmental impacts. However, the wide-

scale integration of RESs may have negative impacts on the stability of the power grid. 

Increased penetration of intermittent RESs causes fluctuations in the generation side, and this 

leads to mismatching energy between the demand and supply, resulting in significant 

deviations in the system frequency.  

Recent advances in Information and Communication Technologies (ICT) and the deployment 

of Advanced Metering Infrastructure (AMI), are paving the way to the emerging concept of a 

Smart Grid (SG) and demand side programs via enabling bidirectional communication between 

utility and consumer. In general, these programs encourage consumers to use less energy while 

receiving the same or improved quality of energy services.  

Demand Side Management (DSM), when integrated into the smart grid concept, means that 

electricity demand is adjusted to electricity generation and the available electricity in the grid. 

With DSM electricity demand is reduced, especially during peak hours therefore leveraging 

congestion in the grid. Demand Response (DR) is one of these DSM techniques which focuses 

on providing price signals to end-users to incentivise them to manage their electricity usage. 

DR provides a great opportunity for residential consumers to play a significant role in the 

operation of the electric grid by reducing or shifting their electricity consumption during peak 

demand hours in response to price signals.  

Key enabling technologies such as smart meters, smart sensors, bidirectional communication, 

smart home appliances, Home Area Network (HAN) and Home Energy Storage 

System (HESS), etc. have experienced a significant development in recent years. This has 

provided the foundation for the development of Home Energy Management Systems (HEMS). 

Smart HEMS are an essential technology for the successful implementation of DSM strategies 

https://www.sciencedirect.com/topics/engineering/smart-sensors
https://www.sciencedirect.com/topics/engineering/energy-storage-system
https://www.sciencedirect.com/topics/engineering/energy-storage-system
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in SGs. HEMS allows end-users to monitor and control their home appliances in real-time, 

based on their preferences to achieve a cost-effective and efficient electricity usage. According 

to DR objectives, HEMS enables automated and/or manual shifting and curtailing electricity 

demand during peak hours in response to DR signals without affecting the customer's 

preferences. 

More recently, there has been a gradual shift towards the adoption of Electric Vehicles (EVs) 

in the automotive industry. The main drivers are the economic and environmental benefits, the 

technological improvement in batteries’ energy density, and government policies offering 

financial rewards such as tax breaks or rebates to EV owners. Therefore, emerging technologies 

such as Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H), or in short, Vehicle-to-

Everything (V2X) have the great potential to offer a broad range of valuable services and 

benefits hence promoting DR implementation. EVs are seen as distributed energy storage 

resources and can conceivably, in conjunction with other electricity storage technologies, 

contribute to DR and provide additional capacity to the grid when needed.  Indeed, the 

emerging V2G technology with a bi-directional flow of power provides the grid with access to 

mobile energy storage for DR, frequency regulation and demand-supply balancing in the local 

distribution system. 

In recent years, smart consumers along with the expansion of distributed renewable energy 

resources such as roof-top solar panels and EVs at the residential demand side are considered 

as prosumers. Prosumers can trade their energy excess with the main grid for further 

minimising their electricity cost under the Feed-in Tariff (FiT) scheme. However, the benefits 

to prosumers when participating in FiT are not significant. In addition, the amount of exported 

energy to the grid may pose some issues in the system, such as reverse power flow and over-

voltage issues. Peer-to-Peer (P2P) energy sharing, where prosumers directly trade their excess 

of electricity generated from solar with consumers, has recently emerged as a potential solution 

to overcome the limitations of the FiT scheme. Furthermore, it contributes towards the wide-

scale adoption of renewable energy sources. In addition, P2P energy sharing not only offer 

economic benefits to prosumers but also contributes to the enhancement of the stability of the 

utility grid. 

1.2 Research Aim and Objectives 

As energy demand continues to increase, DR programs are gaining momentum and their 

adoption is set to grow gradually over the years ahead. DR schemes seek to support grid 
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balancing of supply-demand, facilitate large adoption of green energy resources and improve 

the stability and reliability of the power grid.  

The residential sector is more attractive for the implementation of DR programs than the 

industrial and commercial sectors, due to several reasons. Firstly, electricity consumption in 

the residential sector has increased rapidly because of the global trend towards a modern 

lifestyle. Currently, the residential sector consumes 30-40% of the energy supplied from fossil 

fuels across the world, which is responsible for the larger seasonal and daily peak demand 

followed by industrial and then commercial sectors [1]. In the UK, households are the 

largest consumers of electricity. In fact, domestic electricity consumption has registered a year-

over-year growth in 2020, reaching roughly 108 terawatt-hours [2].  

Unlike industrial and commercial loads, residential loads are more elastic, interruptible, and 

shiftable. However, some challenges regarding the implementation of DR in residential areas 

must be addressed.  One of these challenges is how to ensure the balance between cost saving 

and convenience. As DR programs seek to change energy consumption patterns by shifting the 

household loads from peak hours when the electricity prices are high to off-peak, this may 

compromise the consumers’ preferences leading to the unwillingness of consumers to 

participate in the DR scheme. Thus, optimal DR strategies must be proposed to ensure a balance 

between cost-saving and user’s comfort while implementing DR programs. Furthermore, most 

household consumers do not want to spend time calculating and analysing their energy 

consumption and scheduling their household appliances to reduce their electricity bills. 

Therefore, the monitoring, controlling, and scheduling of household loads must be completely 

automated to stimulate consumers to participate in DR programs.  

Another issue related to residential DR is the diversity of household appliances which can be 

divided into schedulable and non-schedulable loads, where the schedulable loads can further 

be classified into interruptible or non-interruptible loads. Flexibility is crucial in DR strategies, 

to manage and control these types of appliances and deal with different types of household 

sources such as renewable energy sources and home energy storage systems. The key 

motivating factor for consumers to participate in DR programs is the monetary benefits. Thus, 

fairness in users’ electricity payments must be considered in pricing mechanisms to encourage 

them to actively participate in DR. The pricing mechanism is fair only if those users who 

actively contribute to the program pay less than the others.  

https://www.statista.com/statistics/550592
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With the increase in the electrification of transportation, EVs have become an essential source 

of schedulable loads in residential areas. What distinguishes EVs from other loads is that they 

can also be used as an energy storage system. EVs can supply power to the electricity grid at 

peak demand periods and store the excess of generation at low consumption periods. Therefore, 

the integration of EVs into DR strategies necessitates a comprehensive investigation of owner 

driving patterns, diverse EV types, varying battery capacities, and distinct arrival and departure 

schedules. This holistic analysis ensures the effective management of EV batteries, facilitating 

optimised participation of EVs in DR initiatives. On the other hand, EVs can provide frequency 

regulation services in the power grid due to their fast response characteristics. Therefore, to 

benefit from EVs when they are charged and not being used, a V2G control strategy should be 

developed to contribute to frequency regulation services while satisfying the driving needs of 

EV owners.   

This, therefore, inspires the main aim of the research which can be stated as: 

To develop and design efficient algorithms and strategies for successful demand side 

management to be utilised in smart grid in order to motivate end-users to actively and 

widely participate in residential demand response, aiming to an increase in energy usage 

efficiency, reduction in electricity bills, larger adoption of intermittent renewable energy 

sources, better supply-demand balance, and more stable and reliable power grid. 

To achieve the main aim of this thesis, the following objectives have been set: 

• Study of the residential energy usage patterns, modelling of the HEMS including solar 

panels, power electronic devices, and household appliances, developing a DR strategy 

for HEMS and improving the satisfaction of residents while participating in DR 

programs. (This objective has been addressed in Chapter 4). 

• Analysis the availability of EVs to be integrated into DR programs, which depends on 

several factors, such as the EV owners’ travelling patterns and usage, EVs’ type, the 

capacities of their batteries, and the arrival and departure times, investigating the impact 

of V2G and V2H technologies on the increase of energy efficiency at both home and 

distribution network levels. (This objective has been addressed in Chapter 5).  

• Investigation of the potential benefits of EVs battery storage and V2G technology to 

provide grid frequency response services and proposing an optimal strategy for EV 

charging management aiming to stabilise the power grid and fulfil the driving demand 

of EV’s owners. (This objective has been addressed in Chapter 6). 
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• Modelling and investigation of Peer-to-Peer energy sharing with stochastic models of 

different types of households equipped with PV distributed generation and EVs.  

Evaluation of the impact of the P2P market on smoothing of the electricity demand in 

community microgrids through the participation of residents in such markets. (This 

objective has been addressed in Chapter 7). 

1.3 Key Contributions 

This section outlines the main contributions of this thesis, which are discussed from both the 

home-level and the power grid perspectives.  

At the home level, firstly in Chapter 4, we have proposed a new and flexible DR strategy to 

make optimal decisions to schedule the operation of smart home appliances by shifting 

controllable appliances from peak periods to off-peak hours. RL, a goal-oriented decision 

method, is used to deal with dynamic electricity prices and different power consumption 

patterns. We have also designed a human comfort-based control approach for HEMS to 

increase the user’s satisfaction as much as possible while participating in DR schemes. Four 

comfort-factor have been used namely, the priority of the appliance to be shifted, the appliances 

power rating, the operating time interval, and the waiting time. In Chapter 5, we have designed 

an effective DR strategy for V2G and V2H energy management to make optimal decisions to 

charge or delay the charging of the EV battery pack and/or dispatch the stored electricity back 

to the grid without compromising the driving needs. In this chapter, simulations are presented 

to demonstrate how the proposed DR strategy can effectively manage the charging/discharging 

schedule of the EV battery and how V2H and V2G can contribute to smooth the household 

load profile, minimise electricity bills and maximise revenue. 

On the power grid side, we have developed an optimal real-time V2G control strategy for EVs 

to perform frequency regulation in Chapter 6.  In the proposed V2G control strategy, a Deep 

Deterministic Policy Gradient (DDPG) agent is used to dynamically adjust the V2G power 

scheduling to satisfy the driving demand of EV users and simultaneously perform frequency 

regulation services. The proposed strategy is validated on a two-area interconnected power 

system with 100 EV charging stations each accommodating 500 EVs. The EV parameters such 

as arriving time, departure time, and the initial and the expected State-of-Charge (SOC) of EV 

batteries are generated randomly using Monte Carlo simulations. Along with the higher local 

consumption of renewable energy, P2P electricity trading can help reduce investments related 

to the generation capacity and transmission infrastructure needed to meet the peak demand. To 
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this end, we have addressed the energy cost minimisation problem associated with P2P energy 

sharing among smart homes in Chapter 7. A P2P pricing mechanism is proposed to motivate 

individual customers to participate in energy trading and ensure that not a single household 

would be worse off. The P2P energy trading market is modelled considering the uncertainties 

in household demands, PV generation and EVs flexibility. The performance of the proposed 

pricing mechanism is compared with three popular P2P sharing models in the literature namely 

the Supply and Demand Ratio (SDR), Mid-Market Rate (MMR) and bill sharing (BS) 

considering different types of peers equipped with solar panels, electric vehicle, and domestic 

energy storage system. 

1.4 Thesis Organisation 

The rest of this thesis is organized as follows:  

Chapter 2 firstly provides a comprehensive background on smart grids and related 

technologies and discusses the current developments of smart grids across the globe. Secondly, 

we present a state-of-the-art of DR management and its enabling technologies. Finally, DR 

programs, benefits and applications are highlighted in this chapter.  

Chapter 3 discusses the application of Machine Learning tools to DR in more detail, with a 

focus on fuzzy logic, neural networks, and deep reinforcement learning. This Chapter provides 

an overview of Machine Learning methods utilised for DR applications.  

Chapter 4 focuses on energy management at the home level. In this chapter, we propose an 

effective energy management system for residential DR using Reinforcement Learning (RL) 

and Fuzzy Reasoning (FR). The proposed strategy aims to make optimal decisions to schedule 

the operation of smart home appliances by shifting controllable appliances from peak periods, 

when electricity prices are high, to off-peak hours, when electricity prices are lower without 

affecting the customer's preferences.  

Chapter 5 investigates the integration of EVs into DR programs, and how consumers can 

benefit from their EVs while parked at home in smoothing their household load profile, 

minimising electricity bills and maximising revenue.  

Chapter 6 focuses on the potential benefits of EVs battery storage and V2G technology to 

provide grid frequency response services and improve the stability of the power grid. Thus, an 

optimal real-time V2G control for EVs is proposed to perform supplementary frequency 
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regulation and simultaneously maximise the benefits of EV owners while fulfilling the driving 

needs of EV owners.  

Chapter 7 focuses on the energy sharing problem within a residential community. A P2P 

pricing mechanism is proposed and tested on a community consisting of 100 households to 

incentivise individual customers to participate in energy trading and to ensure that not a single 

household would be worse off with considering the physical network constraints.  

Chapter 8 concludes the work presented in the thesis. The main findings of the research are 

summarised, and some future research directions are given. 
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Chapter 2 Background and Literature 

Review 

2.1 Introduction  

Electricity demand has dramatically increased over the past few years along with the rapid 

growth in the world’s population, the industrial and technological developments, reaching 

approximately 25,300 terawatt-hours in 2021 as shown in Figure 2-1. Between 1980 and 2021, 

electricity consumption has more than tripled, while the global population increased by 

roughly 75 %. Industrialisation and economic growth across the globe have further boosted 

electricity demand [3].  

 

Figure 2-1 Global electricity demand in 2021 [4]. 

This energy production largely relies on fossil fuel resources such as oil, natural gas, and coal, 

as 80 % of the current global primary energy demand covered by fossil fuel sources. Figure 

2-2 presents the electricity generation from fossil fuels in different countries [5]. For example, 

the United States produced 2500 terawatt-hour of electricity from fossil fuels in 2021. 

However, when fossil fuels are burned to generate electricity, they release large amounts of 

greenhouse gases, such as carbon dioxide and methane, into the atmosphere, which trap heat 

and contribute to global warming. Figure 2-3 shows the trend in global emissions of carbon 

dioxide (CO2) over time. It can be noted that the increase in CO2 emissions was relatively slow 

https://www.statista.com/statistics/262875
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until the mid-20th century. In 1950, a total of 6 billion tonnes of CO2 has been recorded. 

By 1990, the global emissions have reached more than 22 billion tonnes. Indeed, these 

emissions have continued to grow rapidly and reached over 35 billion tonnes in 2021 [6].  

 

Figure 2-2 Electricity generation from fossil fuels. [5] 

 

Figure 2-3 Annual CO2 emissions. [6] 

Furthermore, the rapid increase in energy demand had a negative impact on the flexibility and 

reliability of the electricity network. In addition, this unprecedented demand for energy 

imposed new investments for the reinforcement and expansion of power grid infrastructures to 

ensure the balance between supply and demand which has led to higher electricity prices. 

According to the International Energy Agency (IEA) reports published in January 2022 [7], the 

price index for major wholesale electricity markets, across the globe, has almost doubled. In 
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Europe, the average wholesale electricity prices in the fourth quarter of 2021 were more than 

four times those experienced during 2015-2020.  Besides Europe, there were also sharp price 

increases in Japan and India. 

Consequently, the supplier-consumer unidirectional model has been transformed into a 

bidirectional model that allows two-way flows of both electricity and information. This 

transformation has introduced the Smart Grid (SG) concept which is considered as an 

intelligent electric network that ensures efficient energy flow control from generation to 

consumption. SG seeks to improve the power systems in terms of reliability, security, 

economics and efficiency. The reliability of the power system is improved by reducing the 

frequency and duration of outages, providing adequate power quality, and improving consumer 

services. The security of the power system is enhanced by increasing its resilience to cyber-

attacks and natural disasters and hazards. In terms of economics, SG helps with reducing future 

electricity prices and offering consumers options to manage and control their energy 

consumption leading to reduced electricity bills. SG improves the efficiency of the power 

system by reducing transmission and distribution losses, maintenance and expenditures. In 

addition, SG brings great environmental benefits by enabling the large-scale deployment of 

renewable energy resources leading to reduced emissions of greenhouse gases.  

Advanced Information and Communication Technologies (ICT) enable consumers to become 

key players in the future SG since they can adjust their electricity usage patterns and 

preferences in response to signals received from the utility (incentives and disincentives). This 

leads to another term in SG called Demand Side Management (DSM), which can be defined as 

“the technologies, actions and programmes on the demand-side of energy metres that seek to 

manage or decrease energy consumption, in order to reduce total energy system expenditures 

or contribute to achieve policy objectives such as emissions reduction or balancing supply and 

demand.” [8]. 

Therefore, Demand Response (DR) is considered one of the DSM’s techniques, where power 

utilities provide incentives to consumers to reduce their energy usage during peak hour periods. 

DR is, indeed, a promising solution for end-users to manage their power consumption based 

on different techniques such as peak clipping, valley filling, or load shifting in response to 

electricity tariffs or other incentives from their energy suppliers. 

This chapter presents a comprehensive literature review on SGs, DR management in SGs and 

different approaches to promote DR implementation in the residential sector, such as Home 
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Energy Management System (HEMS), Vehicle-to-Grid (V2G) and Peer-to-Peer (P2P) energy 

sharing to maximise the benefits for both power utilities and consumers.  

2.2 Smart Grid 

Future electricity grids are expected to make extensive use of modern ICT to enhance the 

resilience and performance of the network and provide secure, flexible, and cost-effective 

services. Various definitions of the SG have been used by different countries across the globe 

and no single universal definition has been agreed on. According to the European Technology 

Platform, “A Smart Grid is an electricity network that can intelligently integrate the actions of 

all users connected to it—generators, consumers and those that do both—in order to efficiently 

deliver sustainable, economic and secure electricity supplies." [9].  

Another definition for SG by the US Department of Energy stating that: "An automated, widely 

distributed energy delivery network, Smart Grid will be characterized by a two-way flow of 

electricity and information and will be capable of monitoring everything from power plants to 

customer preferences to individual appliances. It incorporates into the grid the benefits of 

distributed computing and communications to deliver real-time information and enable the 

near-instantaneous balance of supply and demand at the device level"  [10]. 

In 2014, the UK Government set out its vision for SG and defined it as: “A modernised 

electricity grid that uses information and communications technology to monitor and actively 

control generation and demand in near real-time, which provides a more reliable and cost-

effective system for transporting electricity from generators to homes, business and 

industry.”[11] 

Figure 2-4 depicts the worldwide market development of modern networks from 2017 to 2023 

by region [12]. It is noted that SG technologies are growing gradually around the world and 

the global market is expected to triple in size reaching a total of $61 billion.  The leading 

countries which are currently upgrading and modernising their electricity networks with SG 

technologies include Europe, North America, and Asia Pacific with investments’ values $15.4, 

$16.8, and $17.9 billion, respectively. It can be noted that Asia Pacific has the highest 

investment in SG technology development and is predicted to be the largest market for SG 

technologies.  

 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/285417/Smart_Grid_Vision_and_RoutemapFINAL.pdf
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Figure 2-4 Market value of SGs worldwide from 2017 to 2023, by region. 

Many countries have focused on developing their power grids and adopting different 

approaches and roadmaps according to their needs. The United States has started working on 

this by establishing policies for SG, which was echoed in two Acts, the first one is the Energy 

Independence and Security Act of 2007 [13] that aimed to specify and establish a coordinated 

fund program to invest in SG. The second policy was the American Recovery and 

Reinvestment Act of 2009, that aimed to modernise the country’s infrastructure to achieve 

energy independence by 2020 [14].  

In the UK, a significant progress has been made in the deployment of SG technologies, 

including research, development, and demonstration projects. These projects have been 

delivered through a range of initiatives, including the Office of Gas and Electricity Markets 

(Ofgem) price control model, which aimed to place great emphasis on supporting grid 

innovation; and the creation the Low Carbon Networks Fund (LCNF) that devoted £500 million 

to network companies to undertake innovation projects and implement new SG 

technologies and solutions. The UK has already started deploying mart meters in all residential 

areas and small businesses. A total of £8.6 billion have been spent on the replacement of gas 

and electricity meters. The total suppliers’ benefits reached £6.33 billion, including £2.69 

billion saved from manual meter reading, and £1.13 billion from reducing inquiries and 

customer overheads. On the other hand, the total consumer’s benefits were £6.43 billion, 

including energy savings (£4.23 billion) and load shifting (£1.06 billion).  

In Europe, the deployment of SGs is one of the three priority thematic areas under the Trans-

European Networks for Energy (TEN-E), aiming to integrate renewable energy sources and 
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allow consumers to better regulate their energy consumption. By 2024, it is expected that 225 

million smart meters will be deployed in the European Union (EU) [15].  

According to the European Environment Agency (EEA) report “Trends and Projections in 

Europe 2021”,  European Union (EU) has achieved its three 2020 climate and energy targets 

of reducing greenhouse gas emissions by 20%, increasing renewable energy to 20% and 

making 20% energy efficiency improvement [16]. 

Essentially, SG seeks to improve energy generation, transmission, and distribution by 

integrating smart metering/monitoring and bi-directional communication. Figure 2-5 illustrates 

a general architecture of a SG infrastructure which integrates energy and information flow, 

with a communication infrastructure to support: 1) advanced electricity generation, delivery, 

and consumption; 2) advanced information metering, monitoring, and management; and 3) 

advanced communication technologies. 

This smart infrastructure offers a reliable energy delivery from generation sources including 

local, renewable, and distributed generation to end users including industrial, commercial, and 

residential consumers. Using remote control and condition monitoring, power disturbances and 

outages caused by equipment failures, capacity constraints, and natural accidents and disasters, 

can be largely avoided.  Integrating large-scale energy storage technologies into the SG will 

enhance the stability and flexibility of the power grid. Energy storage contributes to different 

services to the power system such as energy management, load shifting, frequency regulation 

and peak shaving. End-users can also benefit from residential energy storage systems which 

allow a more efficient exploitation of their local renewable energy sources, less dependent on 

the grid and lower electric bills. Smart meters, which enable two-way communication, ensure 

more accurate bills for consumers, and enable them to better control their energy usage. The 

distribution automation is associated with smart meters, by collecting information faster and 

providing a wide-area monitoring and linking devices across the grid.      

https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2021
https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2021
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Figure 2-5 General architecture of a smart grid infrastructure [17].  

With the development of SGs, the influence of various energy management programs has been 

enlarged and promoted. In general, these programs aim to reduce consumption in peak demand 

periods or shift consumption from peak demand periods to off-peak demand periods. Among 

these programs, DR has received increasing interest due to its ability to engage customers and 

increase their flexibility during their energy consumption.  

2.3 Demand Response in Smart Grid 

2.3.1 Concept   

DR programs are being introduced by some electricity grid operators as resource options for 

curtailing and reducing the electricity demand during certain time periods for balancing supply 

and demand. DR is considered as a class of DSM programs, where utilities offer incentives to 

end-users to reduce their power consumption during peak periods [18]. DR is, indeed, a 

promising opportunity for consumers to control their energy usage in response to electricity 

tariffs or other incentives from their energy suppliers [19], [20]. Therefore, DR refers to 

“changes in electric usage by end-use customers from their normal consumption patterns in 

response to changes in the price of electricity over time, or to incentive payments designed to 

induce lower electricity use at times of high wholesale market prices or when system reliability 

is jeopardized” [21]. DR aims to promote the interaction and responsiveness of the customers 

to achieve short-term impacts on the electricity markets, leading to economic benefits for both 

the customers and the utility. Moreover, by improving the reliability of the power system and, 



Background and Literature Review 

 26 

in the long term, lowering peak demand, it reduces the overall plant and capital cost 

investments and postpones the need for network upgrades. 

2.3.2 Classification of DR programs 

Generally, DR schemes are commonly classified into two categories namely incentives-based 

programs and price-based programs as shown in Figure 2-6. According to some studies, these 

schemes have other names, such as “system-led” and “market-led,” “emergency-based” and 

“economic-based” or “direct” and “indirect” DR. 

 

Figure 2-6 Demand Response programs. 
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A. Incentive-based DR 

In incentives-based programs, participants receive fixed or time-varying payments for their 

consent to reduce power consumption during peak demand or system contingencies. They can 

be classified into two categories: classical programs and market-based programs. Participating 

in classical programs offers participation payments such as bill credits or discount rates. In 

market-based programs, customers receive monetary rewards depending on their performance 

after they consent to reduce their power consumption during peak periods [22].  

Incentive-based programs include Direct Load Control (DLC), Interruptible/Curtailable (I/C) 

and Emergency DR programs. DLC programs are considered as classical incentive-based 

programs. They enable utility companies to remotely turn off consumers’ electrical loads. 

Participants in this program receive payments in return of reducing their energy usage below a 

pre-defined threshold.  

Many studies have been undertaken on load management using DLC to design optimisation 

methods aiming to achieve different objectives such as peak load reduction, cost saving and 

power shortage minimisation. Using DLC, it is essential to encourage end-users to actively 

participate in the program to maintain their comfort level and gain financial benefits. In [23], 

the authors proposed an Advanced Direct Load Control (ADLC) model to temporarily shut 

down the electric connection between the power grid and smart houses. The simulation results 

show that smart houses equipped with ADLC can reduce operating costs and lower their CO2 

emissions. In [24], a thermodynamic model has been designed for a water heater and controlled 

using the DLC program. The results show that electricity usage has been significantly reduced 

for consumers without affecting their lifestyle. DLC program is also used in [25] to control air 

conditioners considering the users’ comfort.  

In I/C DR programs, the power utility can curtail a specific part of the total users’ consumption 

to a certain level during emergency situations and, in return, participants are offered economic 

incentives. Consumers who do not reduce their energy consumption receive penalties as per 

the program's pre-defined terms and conditions. Emergency DR programs are a combination 

of both DLC and I/C programs and are considered as market-based programs. The authors in 

[26] studied the impacts of changes in incentives and penalties on the microgrid using I/C 

program considering the operation cost, customer profit and load reduction. In [27], the authors 

investigated the effect of emergency DR in improving the reliability of the power system in 

case of failure of generation units.  



Background and Literature Review 

 28 

B. Price-based DR 

Price-based programs, on the other hand, can be considered as an indirect means of controlling 

customers’ loads. Using these programs, time-varying prices are offered to customers based on 

electricity costs at different time periods. Customers willing to reduce their energy usage during 

peak hours, when electricity prices are high, can participate in these programs. They are 

expected to adjust their demand in response to electricity price signals [28]. Price-based 

programs are of: Time-of-Use (TOU) pricing, Real-Time-Pricing (RTP), Critical Peak Pricing 

(CPP), Peak-Time Rebate (PTR), Extreme Day Pricing (EDP), and Inclining Block Rate (IBR).  

In the TOU tariff plan, electricity pricing varies depending on the time of the day, day of the 

week and season. It includes three time periods namely, off-peak, mid-peak and on-peak. TOU 

pricing is easy to follow and gives participants the opportunity to take control of their energy 

usage by shifting their electricity consumption to lower-price hours. The study presented in  

[29] investigated the impacts of TOU implementation on consumption patterns in residential 

customers. The results show that an effective TOU is urgently required with a high penetration 

level of renewable energy. The authors in [30], studied the implementation of the TOU program 

for industrial consumers. However, while TOU pricing reduces electricity demand during peak 

hours, the risk is this may create a similar or larger peak demand during off-peak periods [31]. 

Under RTP, electricity prices change over short time periods typically hourly or less and are 

announced in advance by energy suppliers. RTP is considered as one of the most efficient DR 

programs. With RTP, smart homes receive the electricity price signals in real-time and users 

can instantly and adequately control and manage their energy consumption in response to the 

energy prices. CPP programs are used when the reliability of the system is compromised, or 

the generated energy cost is higher. Thus, electricity prices under these conditions will be 

higher than standard rates (based on the TOU program). The period of this critical peak occurs 

usually only a few days or hours per year. Therefore, the CPP tariffs are like the TOU rates, 

which provide higher prices during peak hours.  Under PTR, which is also called Critical Peak 

Rebate (CPR), small residential and commercial users will be offered flat prices. Consumers 

are be rewarded if they reduce their energy usage during peak hours, otherwise they are 

required to pay the electricity price at the standard rate. The EDP scheme uses a similar 

technique to TOU program, but it applies a higher electricity price for a limited number of 

days. The EDP has only one difference from the CPP, which is that the standard electricity 

price is provided only one day before the actual implementation. Therefore, the Extreme Day 

CPP (ED-CPP) program can also be used as a DR program which has the specifications of both 
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CPP and EDP schemes. The IBR program has a two-level rate structure with lower and higher 

electricity prices. It aims to incentivise users to avoid high prices by distributing their 

consumption across different periods of the day.  

2.4 Enabling DR Technologies 

DR management requires collecting and storing massive data on the power consumption of 

each consumer, generation from renewable energy resources, and energy storage state of 

charge. It also seeks to exchange this amount of data in real-time with power utilities to provide 

services such as time-based pricing signals, load management, and electricity bills. Thus, an 

AMI must be in place. AMI is an integrated system containing smart meters with 

communication networks, such as home area networks (HANs), wide area networks (WANs), 

and neighbourhood area networks (NANs), which provides several improvements over the 

previous Automated Meter Reading (AMR) and Automatic Meter Management (AMM) 

technologies. Figure 2-7 illustrates the information and data flow in an AMI.    

 

Figure 2-7 Architecture of the Advanced Metering Infrastructure (AMI) system. 

AMI aims to efficiently facilitate DR implementation by improving the measurement and 
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to automatically and remotely record energy usage, control/manage loads, detect tampering, 

identify and isolate outages, and monitor voltage. Combined with customer technologies, such 

as a Human-Machine Interface (HMI), programmable communicating thermostats and HEMS, 

AMI also enables end-users to be better aware of their power usage and make sensible decisions 

to control and manage their energy consumption and storage, hence reducing their electricity 

bills and contributing to peak demand minimisation.   

2.4.1 Smart meters  

A smart meter is an advanced electricity measurement device that collects consumers’ total 

energy consumption data and sends it to the power utility to be utilised for different purposes 

such as monitoring and billing. In addition, the smart meter is an enabling technology for the 

deployment of DR programs in the residential sector due to its ability to, remotely, 

disconnect/reconnect some specific loads. The smart meter also plays an important role in the 

implementation of HEMS in smart homes by monitoring and controlling the user’s appliances 

based on the preference settings of the user.  

From the end user’s perspective, smart meters inform customers how much energy they are 

using through an In-Home Display (IHD). This information helps customers manage their 

energy use and save on their energy bills hence contributing to GHG emissions reduction. 

Furthermore, smart meters communicate automatically with energy suppliers, which avoids 

manual meter readings and provides customers with more accurate bills. From the power grid’s 

perspective, real-time electricity pricing can be issued based on the data collected from smart 

meters, and then sent to consumers in order to incentivise them to reduce their electricity usage 

during peak demand periods. This can help in improving the reliability and stability of the 

power system.  

Nowadays, several millions of smart meters have been deployed all over the world. In the UK, 

smart meters were introduced in 2011. According to the report published by the UK 

government in Smart Meter Statistics in Great Britain, 28.8 million smart and advanced meters 

were installed in homes and small businesses across the UK at the end of March 2022. In the 

UK, 51% of all energy meters are now smart or advanced meters, with 25.2 million operating 

in smart mode [32].  

2.4.2 Information and Communication Technologies (ICT) 

The collected information using smart meters needs to be transferred to Meter Data 

Management System (MDMS) for analysis to enable power utilities make decisions regarding 
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pricing, billing, energy management and other operational commands. This issued data is then 

sent back to end-users to inform them about new electricity prices and their energy costs. This 

makes users more aware of their bills hence motivating them to better manage their energy 

consumption. Considering the high number of end-users and installed smart meters at their 

premises, an effective and reliable communication network is needed for transferring that high 

volume of data. Thus, two-way communication plays a crucial role in AMI. 

To design an appropriate communication network, some factors must be carefully considered, 

such as the transmission of a massive amount of data, restrictions on data accessibility, 

confidentiality of sensitive data and others. Generally, communication networks can be divided 

into three main categories based on the geographical area namely Home Area Network (HAN), 

Neighbourhood Area Network (NAN) and Wide Area Network (WAN) as presented in Figure 

2-8. HAN represents the interface between the smart meter and various household appliances 

such as solar PV panels, EV and HEMS (managing energy consumptions, storage and 

generation devices for the home). Therefore, the logged data in this network area does not 

require a high transmission rate. For HAN, Zigbee communication technology is used and 

developed according to the IEEE 802.15.4 standard to transmit data at a rate of 250 kbps at 2.4 

GHz frequency. Although this technology can cover only a small area, it shows good 

performance in HAN due to its lower power consumption characteristic, lower installation 

costs and higher reliability. Bluetooth technology is another communication technology used 

for HAN that is developed based on IEEE 802.15.1 standard to transmit data at a rate of 721 

kbps and a frequency of 2.4 GHz. Since Bluetooth has a lower power consumption, its 

capability of massive data transmission is limited.  

NAN provides an information flow between consumers and the power utility via smart meters. 

This network enables various services such as monitoring, controlling and pricing energy 

delivery to each end-user, demand response, distribution automation and outage management. 

Due to the huge amount of data collected, this requires a high data rate and large coverage 

distance. Different communication technologies such as Wi-Fi and Power Line 

Communication (PLC) are widely used for NAN. The third network is WAN which is 

considered as the backbone of the communication network in the power grid. This network 

connects smaller distributed networks such as transmission substations, and control centres for 

different applications including real-time monitoring, control and protection. Therefore, these 

applications require a higher number of data points at high data rates (10 Mbps - 1 Gbps), and 
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long-distance coverage (10 - 100 km). The communication technologies used for WAN are 

GSM, 3G, and WiMAX. 

 

Figure 2-8 Communication networks of smart grid.  

2.4.3 Meter Data Management Systems  

MDMS is considered as the key element in AIM. This system aims to collect the data from 

different smart meters, then process and store them properly to be used for various functions 

such as DR implementation, load forecasting and load management as shown in Figure 2-9. 

According to [33], MDMS can be defined as “a meter data management system (MDMS) 

collects and stores meter data from a head-end system and processes that meter data into 

information that can be used by other utility applications including billing, customer 

information systems and outage management systems”.  

 

Figure 2-9 Meter Data Management functions. 
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2.5 Benefits of DR programs 

In a power system, there are many independent players who can benefit from DR programs, 

these include transmission and distribution system operators, end-users and the environment. 

Figure 2-10 summarises the benefits that can be obtained from DR for end-users, the grid, and 

the environment.  

 

Figure 2-10 Benefits of DR programs. 

• Grid perspective: DR programs can provide a more efficient and cost-effective way of 

reducing the energy demand during peak periods and limiting the activation of 

expensive peak generators. This results in an overall reduction of carbon emissions and 

electricity prices. In addition, DR schemes can improve the reliability of the power grid 

due to the dynamic curtailment in loads leading to reduction of outages risks and power 
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electricity prices to minimise their energy costs. End-users can also obtain financial 

rewards upon agreeing to control their loads during peak demand hours or higher 

generation from RES. In addition, DR programs increase the awareness of consumers 

regarding their electricity consumption, thus contributing to promote the increased 

adoption of renewable energy [34]. 

• Environment perspective: the electric power system relies largely on fossil fuel 

resources such as oil, natural gas, and coal to generate electricity. The utilisation of DR 

programs can reduce the high carbon emissions of peak generators shifting the 

electricity demand to off-peak hours. DR brings great environmental benefits by 

enabling the large-scale deployment of RES leading to a further reduction of 

greenhouse gases. 

2.6 DR Applications   

Technologies regarding energy control/management systems, metering infrastructures 

including smart meters and ICT, and other technologies associated with EVs such as V2G all 

have, in fact, significantly promoted the adoption of DR programs at the residential level. These 

technologies have increased the opportunity for residential consumers to monitor and adjust 

their electricity usage.  Therefore, these enabling technologies are crucial to successfully 

achieve the DR objectives.  

DR schemes can be applied for residential, commercial or industrial consumers. To implement 

DR programs, AMI including smart meters, communication devices and energy controllers 

need to be installed at the consumers’ premises to monitor and record the energy consumption 

in real-time and communicate the data to the power utility.  

Domestic appliances are more curtailable, shiftable, interruptible, and flexible than other types 

of loads. In addition, the deployment of a two-way communication network between the power 

utility and homes makes residential loads suitable for DR programs among all types of 

consumers. 

2.6.1 Home energy management system 

HEMS is considered as a key technology in implementing DR programs. HEMS enables 

residential customers to actively participate in DR programs by controlling their energy usage 

and reducing or shifting their consumption outside periods of grid stress in response to financial 

rewards such as tax breaks or rebates. However, DR trials across the world have shown that 

most of the customers remain reluctant to enrol into these programs due to unwanted 



Background and Literature Review 

 35 

interruptions and strict guidance from the utilities which cause inconvenience to the consumers. 

In addition, most of household consumers do not want to spend time on calculating and 

analysing their energy usage and scheduling their household appliances to reduce electricity 

consumption. Therefore, to promote DR implementation at residential customers’ premises, 

HEMS should be more flexible and able to manage different types of household resources, 

such as RERs and Home Energy Storage System (HESS), and household appliances. Power 

consumption and electricity pricing should be offered to users in real-time to enable them to 

choose their preferences to schedule the operation time of various appliances via a Human-

Machine Interface (HMI) which in turn improves their energy usage efficiency.  

2.6.2 Electric vehicles 

The widespread adoption of Electric Vehicles (EV) has led to the introduction of larger 

electricity consumers due to their larger energy consumption compared to all other appliances 

in a household, leading to severe grid problems such as network congestion and peak power 

demand. However, with the concept of V2G and V2H technologies, a broad range of benefits 

and services may be offered to achieve more effective management of electricity demand hence 

enabling EV owners to save on energy costs and generate revenue through price arbitrage. 

Therefore, EVs are considered as an important resource for managing DR, provided that an 

effective and flexible energy management strategy is designed for EV charging and discharging 

operations without compromising the owner's driving needs and convenience to maximise the 

profits for both the utilities and EV owners. 

2.6.3 Peer-to-peer energy trading 

Consumers owning local energy resources such as solar PV panels, small-scale wind turbines, 

and EV battery storage are referred to as Prosumers. Prosumers can directly trade their excess 

of local energy resources with each other without the need to go through an intermediate 

retailer. As some appliances in the smart home can be scheduled by using DR implementation 

based on RTP, the implementation of Peer-to-Peer (P2P) energy sharing in the smart home can 

also provide a further reduction in the electricity cost of the consumer due to energy sharing 

with other prosumers instead of the grid. 
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Chapter 3 Overview of Machine 

Learning Approaches for Demand 

Response 

3.1 Introduction  

Artificial Intelligence (AI) is a broader concept that encompasses the simulation of human 

intelligence in machines, aiming to perform tasks that typically require human intelligence, 

such as problem-solving, understanding natural language, and making decisions. AI can 

encompass various techniques, including Machine Learning (ML). On the other hand, ML is a 

subset of AI that focuses on the development of algorithms and statistical models that enable 

computers to learn from and make predictions or decisions based on data without explicit 

programming. Essentially, while AI represents the broader goal of creating intelligent 

machines, ML serves as one of the key methodologies within AI to achieve that goal, primarily 

by training models to improve their performance over time through data-driven learning 

processes. The widespread adoption of ML is revolutionising industries such as healthcare, 

finance, transportation, manufacturing, and more. It enables organisations to use the power of 

data and advanced analytics to gain valuable insights, automate processes, and optimise 

performance, leading to improved outcomes and competitive advantages.  

For example, in healthcare, ML is being used for disease prediction, diagnosis, personalised 

treatment plans, and drug discovery, leading to improved patient care and outcomes [35]. In 

finance, ML is being applied for fraud detection, risk assessment, portfolio optimisation, and 

trading strategies, contributing to more accurate financial decision-making [36]. In 

transportation, ML is being employed for autonomous vehicles, traffic prediction, route 

optimisation, and smart logistics, leading to enhanced transportation efficiency and safety [37]. 

In manufacturing, ML is being used for predictive maintenance, quality control, supply chain 

optimization, and smart manufacturing, resulting in improved production processes and cost 

savings [38].  

These are just a few examples of the wide-ranging applications of ML in various fields. The 

adoption of ML is rapidly increasing due to their ability to analyse vast amounts of data, detect 

patterns, and make intelligent decisions. Furthermore, with advancements in technologies such 
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as deep learning, natural language processing, and reinforcement learning, ML is continuously 

evolving and enabling even more sophisticated applications.  

In recent years, there has been a heightened interest in utilising DR as a means of enhancing 

flexibility and improving the cost-effectiveness and reliability of energy systems. However, the 

high complexity of the tasks associated with DR, the utilisation of extensive data, and the need 

for rapid and optimal decision-making have highlighted the significance of ML as key 

technologies for enabling demand-side response. ML techniques can address a broad spectrum 

of challenges, including acquiring knowledge of customers attributes and preferences, 

implementing dynamic pricing, scheduling and controlling devices, incentivising participants 

in DR schemes, and ensuring they are compensated fairly and efficiently. 

Fuzzy logic (FL) is regarded as an AI-based method which emulates human reasoning and 

decision-making. FL allows for imprecise data analysis and can handle multiple variables. It 

has been used to develop control strategies for DR by adjusting heating and cooling systems 

based on occupancy levels and outside temperature. Neural Networks (NN), on the other hand, 

are a type of ML that can learn and model complex and nonlinear relationships between inputs 

and outputs. They have been used in DR for predicting energy consumption patterns based on 

historical data. Finally, Deep Reinforcement Learning (DRL) is a more advanced form of ML 

that uses trial-and-error to optimize energy consumption. It has been used to develop DR 

strategies for large industrial consumers. 

In this chapter, we will discuss the application of these ML tools to DR in more detail, with a 

focus on fuzzy logic, neural networks, and deep reinforcement learning. This Chapter provides 

an overview of ML methods utilised for DR applications.  

3.2 Fuzzy Logic (FL) 

FL, by Lotfi Zadeh in the 1960s, is based on the idea that numerous concepts and variables in 

the real world cannot be precisely defined using crisp numerical values. This is due to the fact 

that certain terms, such as "hot," can hold different meanings for different people and may not 

be associated to an exact temperature value that corresponds to the concept of "hot." As a result, 

FL provides a more adaptable and refined method of representing these concepts by assigning 

degrees of membership to values that capture them. 

FL has been used in a variety of applications, such as control systems, decision-making, pattern 

recognition, and data modelling. In control systems, it can be used to adjust the output of a 
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system based on multiple input variables, such as temperature and humidity, and their degrees 

of membership in the fuzzy sets. In decision-making, FL can be used to evaluate the uncertainty 

and imprecision of data and make decisions based on fuzzy rules.  

As FL deals with approximate values rather than exact values. A Fuzzy Inference System (FIS) 

provides the mapping from the inputs to the outputs, based on a set of fuzzy rules and associated 

fuzzy Membership Functions (MFs). There are two types of FIS, Mamdani-type FIS and 

Sugeno-type FIS. Figure 3-1 shows the block diagram of Fuzzy Logic Controller (FLC). 

 

Figure 3-1 Block diagram of a FLC. 

FL can be applied to a problem by taking following steps: 

• Define the problem and identify the variables involved to determine the inputs and 

outputs of the fuzzy logic system. 

• Determine the fuzzy sets and their membership functions: The next step is to determine 

the fuzzy sets for each input and output variable. This involves defining the range of 

values for each variable and assigning membership functions that describe the degree 

of membership of a particular value to a particular fuzzy set. 

• Define the rules: The rules define how the inputs are combined to produce the output. 

These rules are usually expressed in the form of "if-then" statements, where the "if" 
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• Fuzzification: The next step is to fuzzify the input variables. This involves determining 

the degree of membership of each input value to each fuzzy set. 
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• Defuzzification: The final step is to defuzzify the output variables to obtain crisp values. 

This involves determining the degree of membership of each output value to each fuzzy 

set and combining them to obtain a single crisp value for each output variable. 

• Evaluate the performance of the system: The performance of the fuzzy logic system can 

be evaluated using metrics such as accuracy, precision, and speed. The system can be 

refined by adjusting the membership functions and rules to improve its performance. 

FL has been integrated into many software packages, including MATLAB and Python, which 

provide libraries for FL programming. In addition, FL has been combined with other AI 

techniques, such as neural networks and genetic algorithms, to create hybrid intelligent systems 

that can handle complex problems. 

3.3 Artificial Neural Networks (NN) 

Artificial Neural Networks (ANNs) are ML models inspired by biological neurons of the brain. 

They are used in various fields due to their ability to learn complex patterns and relationships 

in data. ANNs consist of interconnected layers of nodes (neurons), which process input signals 

and produce output signals that are passed to other neurons as shown in Figure 3-2. ANNs are 

trained using backpropagation, which adjusts the weights between neurons to minimise error. 

ANNs are successful in applications such as image recognition and natural language processing 

and continue to be an active area of research in AI. 

 

 

Figure 3-2 Architecture of a typical artificial neural network  
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ANNs have been widely used in smart grids due to their adaptability and efficiency as 

predicting energy demand and supply, optimising energy consumption, managing distributed 

energy resources, load balancing, and DR. For instance, ANNs can be employed to forecast 

future energy demand based on historical records and weather predictions, allowing for 

optimised energy production and distribution, thus improving the system's efficiency. 

3.4 Reinforcement Learning (RL) 

Reinforcement Learning (RL) has emerged as a promising approach to address the challenges 

of optimising energy management in smart grids. RL algorithms allow for the optimisation of 

complex decision-making processes in dynamic and uncertain environments. RL does not 

require a mathematical model and is suitable for complex and real-time applications. 

In the context of smart grids, RL has been used to develop control policies for DR, energy 

storage management, and renewable energy integration. RL's ability to learn from experience 

makes it particularly suitable for addressing the challenges of optimising energy consumption 

and minimising costs, which involve large amounts of data and require near real-time decision 

making.  

RL algorithm has six parameters namely, the agent, environment, state space 𝑆, action space 

𝐴, rewards 𝑅, and action-value 𝑄(𝑠, 𝑎). Generally, the RL-agent interacts with an environment 

as illustrated by Figure 3.4. 

 

Figure 3-3 Reinforcement learning process. 
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policy 𝜋 at a current state 𝑠𝑡  ∈ 𝑆. The environment then computes the new state 𝑠𝑡+1 ∈ 𝑆 and 
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as shown in Figure 3-3. Based on the reward received, the agent is able to optimise its policy 𝜋 

and hence maximise the total rewards it will receive in the future. 

The action-value function which indicates how good is the action taken in each state is denoted 

by  𝑄𝜋(𝑠𝑡 , 𝑎𝑡). According to a certain policy 𝜋, 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) expresses the value of action taken 

𝑎𝑡 and is selected from a valid set of actions space 𝐴 in the current state 𝑠𝑡:     

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[∑ 𝛾𝑘𝑟𝑘+1
∞

𝑘=0
| 𝑠𝑡 = 𝑠0, 𝑎𝑡 = 𝑎0]                                       (3.1) 

𝐸𝜋 denotes the expectation of total rewards defined by policy 𝜋. 𝑠0 and 𝑎0 are the initial state 

and initial action, respectively. 𝛾 is called the discount rate and indicates the relationship 

between the future and current rewards. It takes a fraction between [0, 1]. When 𝛾 = 0, the 

agent considers only the current reward, while 𝛾 = 1 means that the agent will strive for the 

future rewards. For each state, there is at least one optimal action which receives the highest 

reward.  Therefore, the policy works by selecting the action with the highest Q-value as 

follows: 

𝜋(𝑎𝑡|𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑄(𝑠𝑡 , 𝑎𝑡)}                                                                            (3.2) 

 Q-Learning algorithms are RL techniques that are adopted to acquire the optimal policy 𝜋. The 

main procedure of Q-Learning is to assign a Q-value 𝑄(𝑠𝑡 , 𝑎𝑡) to each state-action pair at time 

step 𝑡, and then update this value at each iteration in order to optimise the agent’s performance. 

The optimal  𝑄𝜋
∗(𝑠𝑡 , 𝑎𝑡) expresses the maximum discounted achieved with the future reward 

𝑟(𝑠𝑡 , 𝑎𝑡) for action 𝑎𝑡 taken at state 𝑠𝑡, which is expressed as follows: 

 𝑄𝜋
∗(𝑠𝑡 , 𝑎𝑡) =  𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾.max𝑄(𝑠𝑡+1 , 𝑎𝑡+1)                                         (3.3) 

Once the action 𝑎𝑡 is taken based on a certain policy 𝜋, the defined reward 𝑟(𝑠𝑡 , 𝑎𝑡) (or 

calculated using reward function) will be received, and then the agent assumes a new state 𝑠𝑡+1. 

Simultaneously, the action-value 𝑄(𝑠𝑡 , 𝑎𝑡) is updated using the following equation: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 . 𝑎𝑡) + 𝛼[𝑟(𝑠𝑡 , 𝑎𝑡) +  𝛾.maxQ(𝑠𝑡+1, 𝑎𝑡+1)]                   (3.4) 

Where 𝛼 denotes the learning rate which determines how much the new reward affects the old 

value of the 𝑄(𝑠𝑡 , 𝑎𝑡). For example, 𝛼 = 0 means that the new information acquired is not used 

in the leaning process and hence the reward received does not affect the Q-value. When 𝛼 = 1, 

only the latest information is considered. 
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3.5 Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) is an advanced subfield of RL that has recently gained 

significant attention and is being applied in various domains, including smart grids. DRL 

models use ANNs to learn complex representations of states and actions, enabling them to 

make informed decisions on how to act in a given environment as shown in Figure 3-4. 

 

Figure 3-4 Deep reinforcement learning process [39]. 

In contrast to traditional RL methods, DRL is capable of handling high-dimensional and 

continuous state and action spaces, making it very suited for complex tasks such as DR 

management in smart grids. 

One of the most common deep RL algorithms is Deep Deterministic Policy Gradient (DDPG) 

due to its ability of solving continuous state and action optimisation problems. Using the DDPG 

agent, two neural networks are employed to approximate the Q-function given by Equation 

(3.1) and the policy function π. These neural networks are known as critic network 

𝑄(𝑠𝑘 , 𝑎𝑘|𝜃
𝑄) and actor network 𝜇(𝑠𝑘|𝜃

𝜇), with 𝜃𝑄 and 𝜃𝜇 being parameters of these networks, 

respectively. For a certain state, the actor network will take an action as an output. Then the 

state-action pair will be transmitted to the critic network as an input returning the Q-value based 

on the state-action pair. In addition, two other networks, namely, the target actor network 

𝑄′(𝑠, 𝑎|𝜃𝑄
′
)  and the target critic network 𝜇′(𝑠|𝜃𝜇

′
)  are used to continuously update the 

parameters of the actor and critic networks, which significantly improve the stability of the 

optimization. Under these conditions, the target networks’ parameters (𝜃𝑄
′
 and 𝜃𝜇

′
) are used 

to update the traditional networks’ parameters (𝜃Q and 𝜃𝜇) at every time step using the 

smoothing factor τ as follows: 
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{
𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′                                                                               (3.5) 

To allow the agent to explore the environment and interact with it during the training process, 

the number of episodes must be defined where each episode consists of a series of steps. After 

each iteration, a sampled noise 𝑁(𝜎) generated from the Ornstein-Uhlenbeck (OU) process is 

added to the output of the actor network: 𝑎𝑘 = 𝜇(𝑠𝑘|𝜃
𝜇) +𝒩(𝜎) , while the hyperparameter 

𝜎 is utilised to evaluate the exploring process of the environment. Then the experience replay 

memory 𝒟 (experience buffer) is used to store the tuple (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘, 𝑠𝑘+1), and take the 

minibatches (independent and identically distributed sets of samples) for training. The critic 

network will be updated by minimising the loss function across all selected experiences (𝑁): 

𝐿(𝜃𝑄) =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑁

𝑖=1

                                                             (3.6) 

Where the sample 𝑦𝑖 is determined from the sum of the present reward and the expected Q-

value at the next state 𝑠𝑖+1 considering the outputs of target actor and critic networks: 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1, 𝜇

′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄

′
)                                                         (3.7) 

To improve the policy, the score function is minimized by using the gradient ascent to the actor 

network. The gradient is approximated by averaging the gradients of the policy score function 

across the minibatch: 

∇𝜃𝜇𝐽 ≈
1

𝑁
∑(∇𝑎𝑄(𝑠𝑖 , 𝑎|𝜃

𝑄)|𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠𝑖|𝜃
𝜇))                                 (3.8)

𝑁

𝑖=1
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Chapter 4 Demand Response Strategy 

for Home Energy Management  

4.1 Introduction 

HEMS provides the interface for consumers to monitor and control their various household 

electrical devices in real time. HEMS can be considered as the enabling technology for 

realizing the potential of DR strategies and enabling consumers to improve energy usage and 

minimise electricity bills by shifting and curtailing their loads in response to electricity tariffs 

during peak periods without compromising their lifestyle and preferences [18], [19], [40], [41]. 

User comfort has mainly been considered in HEMS. In [42], the authors proposed a scheduling 

model for HEMS considering energy payment and user preferences level as a comprehensive 

objective in the optimization process. A HEMS is proposed in [43] with the objective to reduce 

electricity costs and avoid compromising consumers’ lifestyles and preferences. The authors 

in [44] focused on the HEMS algorithm considering customer preferences setting, the priority 

of appliances and comfortable lifestyle.  

Although HEMS technology is still in its early stages, in the past few years, the market for 

HEMS has been on the rise and is quickly expanding. Many researchers have worked on 

developing HEMS using rule-based control strategies. In [45], the author proposed a Hybrid 

Genetic Particle Swarm Optimisation (HGPO) to schedule the appliances of a house with local 

generation from RES. However, this algorithm attempts to minimise electricity bills without 

considering consumer’s preferences. Optimisation techniques based on Integer Linear 

Programming (ILP) and Dynamic Programming (DP) have been used to manage energy usage 

and reduce the electricity cost in smart homes.  

In [46], household appliances are divided into two types; appliances with a flexible starting 

time and a fixed power, and other appliances with a flexible power and a predefined working 

time. This approach aimed to achieve the desired trade-off between electricity bill reduction 

and discomfort where the users can modify the starting time of the first type of appliances or 

reduce the energy consumption of the second appliances to reduce the bills. However, this 

algorithm does not consider consumer’s comfort. The authors in [47] focused on load 

scheduling problems and power trading using DP algorithm. This enables users to sell their 

surplus of generated power to the power grid or other local users. However, due to its 
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computational complexity, the model is difficult to implement in real-time. Recently, much 

attention has been devoted to the development of controllers based on computational 

intelligence and machine learning techniques for HEMS [48], [49]. According to RTP program, 

end-users receive energy prices from power utility an hour-ahead in order to make a decision 

to shift or reduce their energy consumption. Therefore, in [49], Artificial Neural Networks 

(ANN) have been used to design energy price forecasting models and overcome the uncertainty 

in future prices. The ANN approach is used due to its ease of implementation, good 

performance and it is less time-consuming. 

Recently, Reinforcement Learning (RL) has emerged as a potential machine learning algorithm 

for energy management, decision and control. RL models have excellent decision-making 

ability due to their potential to solve problems without a priori knowledge of the environment. 

Multi-agent reinforcement learning has been proposed for the optimal scheduling of household 

appliances to optimise the energy utilisation [48], [50]. However, multi-agents RL requires 

setting several agents, where each household appliances represents an environment that has its 

own agent with different actions and rewards. Therefore, the learning process becomes more 

complex [51]. Other studies have focused on using Q-learning and SARSA (State-Action 

Reward-State-Action) algorithms in HEMS to schedule controllable appliances and shift the 

operation time of shiftable devices [52], [53]. However, these algorithms require many state-

action pairs and consequently the convergence speed of the Q-values is reduced. 

In this chapter, we proposed a new and flexible strategy for HEMS, to smooth the power 

consumption profile without compromising user comfort and preferences. The proposed 

approach works with a single agent and uses a reduced number of state-action pairs and fuzzy 

logic for rewards functions.  

4.2 HEMS Components 

Figure 4-1 presents the general architecture of a HEMS, which comprises the following 

components: 

• Sensing and measuring device. 

Sensors provide monitoring and tracking in real-time routine activities to help with a wide 

range of smart home functions. These sensors can record and detect physical quantities such as 

motion, temperature, sound and light, and then send data to HEMS via user-interface about 

user’s activities and environment changes.    
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Figure 4-1 Smart HEMS components. 

Smart meters are commonly used by HEMSs, which are responsible for collecting energy 

consumption data of individual appliances and other energy resources such as the renewable 

energy and the main grid.  The main advantage of smart meters is that they provide a two-way 

communication between HEMS and the utility. 

• Smart appliances 

Smart household appliances contain typical devices such as dishwasher, refrigerators or air 

conditioning units, and energy generation devices such as solar PV panels and wind turbines, 

EV and energy storage. Smart appliances communicate with a central platform which handles 

all measured data and coordinates appliance uses. 

• User interface 

The information regarding energy consumption and energy cost can be displayed via user 

interface device. In other words, interfaces allow for the interaction between the user and 

HEMS. It also enables users to specify their preferences, including appliance priorities, comfort 

parameters or scheduling goals. User interface could be a touch screen or mobile application.   

• Central platform 
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The central platform aims to manage and control energy consumption in smart home. It 

receives the collected data via smart meters and then implements a scheduling mechanism in 

order to optimise the energy usage and then minimise the energy cost.     

In a HEMS, smart meters are continuously aggregating information regarding the energy usage 

of household appliances. Disaggregation techniques such as Non-Intrusive Load Monitoring 

(NILM) can be used to collect data for the individual appliance [54]. The collected data is then 

sent to the central platform for storing, processing and then making decisions regarding the 

power flow and appliances scheduling. To meet the user preferences, a scheduling strategy 

based on DR programs must be designed to analyse the operating times of the household 

appliances and then select which appliance needs to be shifted in order to minimise the 

electricity bills without affecting user comfort.   

4.3 Home Energy Management Model  

The proposed HEM system works based on RTP, which is considered as a dynamic pricing. 

Using this DR program, customers receive price signals on hour-ahead and day-ahead basis as 

the electricity price varies at different time intervals of a day. Therefore, smart meters are used 

to receive the RTP signal from a utility and record the current power consumption data of all 

household appliances in near real-time (every time-step) in order to re-schedule them, and then 

send the collected data to the HEM system. In addition, this proposed algorithm works based 

on load priority and customer comfort preference. A user-interface is used to enable customers 

to set the priority of shiftable appliances. Consequently, the HEM system can shift the 

operating time of appliance that has the lowest priority during peak demand when required, 

and then turn on the appliance that has the highest priority during off-peak hours.  

The household appliances are divided mainly into two categories; shiftable appliances that have 

the ability to re-schedule their operating time based on load priority and preference setting such 

as washing machine, dish washer and electric vehicle. Non-shiftable appliances require a 

permanent power supply during operating time regardless of the electricity price.  

The household appliances are divided into shiftable and non-shiftable appliances, and the total 

energy demand (in kWh) of shiftable 𝐸𝑑
𝑠ℎ𝑖𝑓𝑡(𝑡) and non-shiftable 𝐸𝑑

𝑛𝑜𝑛(𝑡) appliances are 

calculated by: 

𝐸𝑑
𝑠ℎ𝑖𝑓𝑡(𝑡) =  ∑ 𝑒𝑡

𝑛,𝑠ℎ𝑓𝑡
. 𝐽𝑡
𝑛

𝑁

𝑛=1

                                                                             (4.1) 
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𝐸𝑑
𝑛𝑜𝑛(𝑡) =  ∑ 𝑒𝑡

𝑚,𝑛𝑜𝑛. 𝐽𝑡
𝑚                                                                              

𝑀

𝑚=1

(4.2) 

𝐸𝑑(𝑡) =   𝐸𝑑
𝑠ℎ𝑖𝑓𝑡(𝑡) + 𝐸𝑑

𝑛𝑜𝑛(𝑡)                                                                      (4.3) 

Subject to: 

𝐸𝑑
𝑚𝑎𝑥 > 𝐸𝑑(𝑡) > 𝐸𝑑

𝑚𝑖𝑛                                                                                     (4.4) 

Where 𝑒𝑡
𝑛,𝑠ℎ𝑓𝑡

 and 𝑒𝑡
𝑛,𝑛𝑜𝑛

 represent the rated power of each shiftable appliance and non-

shiftable appliance, respectively. 𝐽𝑡
𝑛  denotes the status of the appliance and takes values 0 (off) 

or 1 (on). 𝑡 ∈ {1, 2, 3, … , 24} represents the hour of the day where the sample time is set to 5 

minutes, 𝑛 ∈ {1,2, … , 𝑁} is the appliance number and 𝑁 is the total number of the shiftable 

appliances. 𝑚 ∈ {1,2, …𝑀} refers to the appliance number and 𝑀 is the total number of the 

non-shiftable appliances. The cost of energy usage indicates as: 

𝐶𝑡 = min {0,∑𝐸𝑑(𝑡) × 𝑃ℎ(𝑡)

24

𝑡=1

}                                                                    (4.5) 

𝑃ℎ(𝑡) is the electricity price (in £/kWh) received from the utility grid and 𝐶𝑡 is the total cost of 

energy consumption (in £). The proposed HEMS works based on RTP, which is considered as 

a dynamic pricing.  

A useful simulation platform for HEMS algorithms has been designed to enable researchers 

and developers to implement and test their proposed control algorithms. The proposed HEM 

model includes mainly solar PV panel, power electronic devices, household appliances, energy 

storage system and user-interface as shown in Figure 4-2 (see Appendix A for more details). 

The household appliances can be supplied by the PV generation, discharging the battery or 

importing energy from the main grid. The DC/DC converter controls the bidirectional power 

flow by using current control technique. The DC/DC converter can act as a buck or boost 

converter during charging or discharging mode, respectively. The AC/DC converter, on the 

other hand, converts the DC PV and battery power to AC to supply the household appliances. 

The user-interface is used to manage the power flow among the PV, battery and power grid.  
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Figure 4-2 HEMS model developed in MATLAB. 

4.4 Methodology 

4.4.1 Background on Reinforcement Learning 

Household Energy Management (HEM) is an optimisation problem, which aims to minimise 

the total power consumption of electrical appliances and reduce the electricity bills in a smart 

home. A typical HEMS can neither be adapted to a variety of appliances with varying 

scheduling complexity nor it is appropriate for real-time application. Reinforcement Learning 

(RL) algorithms have been recently proposed as potential candidates to address these issues 

due to their adaptability and ability to learn customer’s preferences and optimise the 

management of energy systems which are often subject to various inputs such as dynamic 

electricity prices, forecast data and energy consumption patterns [55].  

4.4.2 Q-Learning model 

RL is adopted to make an optimal decision in a stochastic environment (dynamic electricity 

prices and different energy consumption patterns) using an intelligent agent. Practically, the 

agent can control a dynamic system by executing sequential actions. Where the dynamic 

system could be characterised by a state-space and a numerical reward that evaluates the new 

state when a given action is taken. In this work, the Q-learning model components are defined 

as follows: 

• State space 

The state-space here is represented by the energy demand and the electricity price signal. To 

reduce the computation time and make the model much simpler, the energy demand (𝐸𝑡,𝑖𝑛𝑑𝑒𝑥
𝑡𝑜𝑡𝑎𝑙 ) 

is divided into three levels namely; low, average and high-power demand. Whereas the price 

signal (𝑃𝑡
𝑖𝑛𝑑𝑒𝑥) is categorised into cheap and expensive price as follows: 
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𝐸𝑡,𝑖𝑛𝑑𝑒𝑥
𝑡𝑜𝑡𝑎𝑙 = {

𝐸𝑙𝑜𝑤
𝑡𝑜𝑡𝑎𝑙      if 𝐸𝑑(𝑡) ≤  𝐸𝑑

𝑚𝑖𝑛

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙               if 𝐸𝑑

𝑚𝑖𝑛 < 𝐸𝑡
𝑡𝑜𝑡𝑎𝑙 < 𝐸𝑑

𝑚𝑎𝑥

𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙      if 𝐸𝑑(𝑡) ≥ 𝐸𝑑

𝑚𝑎𝑥

                       (4.6) 

                                  

𝑃𝑡
𝑖𝑛𝑑𝑒𝑥 = {

𝑃𝑡
𝑐ℎ𝑒𝑎𝑝

          if 𝑃ℎ(𝑡)  ≤ P𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑃𝑡
𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒

    if 𝑃ℎ(𝑡)  > Paverage
                                        (4.7) 

Where 𝐸𝑑
𝑚𝑖𝑛 and 𝐸𝑑

𝑚𝑎𝑥  represent the lower and upper limits of the average energy demand in 

kWh, respectively. P𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the acceptable electricity price in (£/kWh). Where these values 

are set by the user according to their energy consumption profile. In this work, we set the 

acceptable price to 0.1 £/kWh. For each time step (5 minutes), the state is defined to contain 

both power demand and electricity price indexes: 

𝑠𝑡 = [𝐸𝑡,𝑖𝑛𝑑𝑒𝑥
𝑡𝑜𝑡𝑎𝑙   , 𝑃𝑡

𝑖𝑛𝑑𝑒𝑥]                                                                                  (4.8) 

 Table 4-1 summarises all available states that can be created from power demand and real-

time electricity price. It also shows the index of each state. 

Table 4-1 Indexing of all states. 

 

 

 

 

 

 

 

 

 

 

• Action space 

The aim is to shift the operating time of the specific appliance that has the lowest priority during 

peak demand when required, and then turn on the appliance that has the highest priority during 

off-peak hours.  

Power Demand (kWh) Price (£/kWh) State Index 

Ehigh
total Pt

expensive
 6 

Ehigh
total Pt

cheap
 5 

Eaverage
total  Pt

expensive
 4 

Eaverage
total  Pt

cheap
 3 

Elow
total Pt

expensive
 2 

Elow
total Pt

cheap
  1 
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Based on the relationship of the real-time price, the total power demand of all household 

appliances, taking into account load priority and customer preferences, the agent (HEMS) 

chooses one action from the action space 𝐴 that given by:  

 

𝐴 = ["𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔" "𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔"  "𝑣𝑎𝑙𝑙𝑒𝑦 𝑓𝑖𝑙𝑙𝑖𝑛𝑔"]                                  (4.9) 

Where shifting action shifts the lowest priority device. This mode occurs always during peak 

demand when the price and the power consumed are high. Valley-filling action seeks to turn 

on the shifted appliance with the highest priority, usually during off-peak demand hours. When 

do-nothing is set, the system works in normal conditions and there is no need to shift any 

appliance. 

• Rewards function implementation using fuzzy logic 

Let 𝑟(𝑠𝑡 , 𝑎𝑡) denote the numerical reward that the agent receives after executing a random 

action and observing a new state. The aim of this reward is to evaluate how much the action 

taken 𝑎𝑡 is suitable for a certain state 𝑠𝑡. Fuzzy logic is used here to evaluate the action taken 

at a certain state. Fuzzy reasoning is a decision-making model that deals with approximate 

values rather than exact values. A Fuzzy Inference System (FIS) provides the mapping from 

the inputs to the outputs, based on a set of fuzzy rules and associated fuzzy Membership 

Functions (MFs). There are two types of FIS, Mamdani-type FIS and Sugeno-type FIS. 

Mamdani method is used in this study because it offers a smoother output. The inputs variables 

to the fuzzy reward model are the power demand 𝐸𝑡
𝑡𝑜𝑡𝑎𝑙  and the electricity price 𝑃𝑡  (referred 

to as “states” in Q-learning) and the outputs variables are the evaluation of shifting, valley-

filling and do-nothing (refer to as “actions” in Q-learning) as shown in Figure 4-3. 

 

Figure 4-3 FIS system of the reward function. 
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Based on the relationship between the power demand and the electricity price, the FIS system 

will firstly determine a state, then take a random action from the action space (shifting, valley 

filling or do-nothing). The FIS reward system will evaluate the taken action by providing a 

numerical reward. The MFs for the input variable “power demand” are triangular and are 

labelled as: Low, Average and High. The universe of discourse of power demand is chosen as 

[0 6300] (Watt) as shown in Figure 4-4. 

 

Figure 4-4 Fuzzy sets and MFs of power demand input. 

The fuzzy sets of electricity price are defined as “cheap” and “expensive”. The MFs are 

Gaussian and the universe discourse is [0 0.16] (£/kWh) as shown in Figure 4-5. The outputs 

of the system are the evaluation of the random action which was defined in Q-learning. For 

each action taken (output), the fuzzy sets are determined as Bad Action (BA), Good Action 

(GA) and Very Good Action (VGA). The universe of discourse of MFs is defined as [0 100] 

to evaluate all possible actions with values out of 100 as shown in Figure 4-6.  

 

Figure 4-5 Fuzzy sets and MFs of electricity price input. 
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Figure 4-6 Fuzzy sets and MFs of output variables.  

Table 4-2 shows the list of fuzzy rules. Figure 4-7 illustrates an example of how the FIS 

evaluates the possible actions for each state. The example shows that the power demand is 5500 

Watts, and the electricity price is 0.14 £/kWh which refers to state index 6 according to Table 

4-1. The values of the three actions are 86.5 for shifting action, 13.5 for valley-filling action 

and 13.5 for do-nothing action. Therefore, if the agent selects shifting and will receive a reward 

of 86.5. Conversely, it will receive a reward of only 13.5 if either valley-filling or do-nothing 

action is selected. 

Table 4-2  Fuzzy rules of FIS system. 

Power Demand           Electricity Price Shifting Valley filling Do nothing 

Low Cheap BA VGA GA 

Low Expensive BA GA GA 

Average Cheap BA GA VGA 

Average Expensive BA BA VGA 

High Cheap BA BA VGA 

High Expensive VGA BA BA 
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Figure 4-7 Example of FIS process. 

4.4.3 Home energy management algorithm using Q-learning 

Q-learning is considered as an off-policy RL algorithm that seeks to make the best decision at 

a given state. Off-policy means that the Q-learning function learns from taking random actions 

without following a current policy. Therefore, a policy is not needed during a training process. 

The Q-matrix, which has a dimension of [𝑠𝑡𝑎𝑡𝑒𝑠 × 𝑎𝑐𝑡𝑖𝑜𝑛𝑠], should be initialised to zero (i.e. 

the Q-value of each state-action pair is assigned a value zero). Then, the agent will interact 

with the environment and update each pair in that matrix after each action taken at a certain 

state using Equation (3.4). 

In this study, a random action called “exploring” is applied. In this case, a sufficient number of 

iterations will be required to explore and update the values of 𝑄(𝑠𝑡 , 𝑎𝑡) for all state-action pairs 

at least once. After convergence of the Q-matrix the optimal Q-values will be obtained. 

The pseudo-code listed in Table 4-3 (Algorithm 1) illustrates the procedure of the main 

algorithm of the HEM using Q-learning. Firstly, the numerical rewards are defined using fuzzy 

logic. The parameters 𝛾 and 𝛼 are set to 0.8 and 0.2 respectively and Q-value matrix entries 

are initialised to zeros. For each current state, all possible actions are specified, and then an 

action will be selected randomly. After the selected action is executed, the numerical reward 

(using fuzzy logic) for that action and the new state will be observed by the agent. The 

maximum Q-value for the next state should be also determined and then the Q-value of the 

state-action pair will be updated using Equation (3.4). Finally, the next state will be used as a 

current state. 
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Table 4-3 Home energy management using Q-learning algorithm. 

 

Figure 4-8 shows an example of Q-matrix updating. Each row indicates a state, and each 

column indicates an action. Assume that the current state index at time step 𝑡 is 6 (which 

represents high power demand and expensive price [𝐸ℎ𝑖𝑔ℎ
𝑡𝑜𝑡𝑎𝑙 , 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
]), the random selected 

action is ‘𝑠ℎ𝑖𝑓𝑡𝑖𝑛𝑔’. Using the fuzzy model, the reward will be obtained as a value of shifting 

action. The next state is observed as 4 (i.e. state [𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙 , 𝑃𝑡

𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒
 ]). max𝑄(𝑠𝑡+1 , 𝑎𝑡+1)  is 

3.19 which is found in Q-matrix based on the next state. Using Equation (3.4), the new Q-value 

for [state: 6, action: 1] is 2.60.  

 

Figure 4-8 Simple example of Q-matrix updating. 

To allow the agent to visit all state-state pairs and learn new knowledge, the training process is 

set to 1000 iterations, The average computational time required to determine the optimal policy 

ALGORITHM 1 

1. Set 𝜸,𝜶 parameters and environment rewards in matrix. 

2. Initialise 𝑸(𝒔𝒕, 𝒂𝒕) , ∀𝒔 ∈ 𝑺, ∀𝒂 ∈ 𝑨. 

3. For each time step 𝑡 do 

4.           Choose a random initial state from the electricity price and household 

power consumption. 

5.           While hour = 1:24 

6.                    Determine all available actions as shown in equation (4.9). 

7.                    Select random action from all possible actions for the current state.  

8.                    Execute the selected action 𝒂𝒕, and observe the new state 𝒔𝒕+𝟏                 

and numerical reward  𝒓(𝒔𝒕, 𝒂𝒕).  

9.                    Determine the maximum Q-value for next state in Q-matrix. 

10.                    Update the 𝑸(𝒔𝒕, 𝒂𝒕) using Equation (3.4).  

11.                    Set the next state as current state. 

12.          End while 

13. End for                        
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of the Q-learning is 2 hours with 10,000 iterations. The convergence of the Q-Matrix after 

execution of this number of iterations is shown in Table 4-4. 

Table 4-4 Convergence Q-matrix after 10000 iterations. 

 

 

 

 

 

 

4.4.4 User’s satisfactions 

An effective energy management system for residential demand response using Reinforcement 

Learning (RL) and Fuzzy Reasoning (FR) is proposed to reduce energy usage and minimise 

electricity bills by scheduling household appliances, in response to electricity price signal. 

However, in this section, DR strategy is developed to improve the user’s satisfaction. Using 

the proposed DR strategy presented in previous section, the customers receive price signals on 

hour-ahead or day-ahead basis as the electricity price varies at different time intervals of a day. 

Therefore, smart meters are used to receive the RTP signal from a utility and record the current 

power consumption data of all household appliances during their operation times, and then 

send them to the HEMS. The HEMS manages and schedule the shiftable appliances by taking 

an optimal action whether Shifting, Valley filling or Do-nothing:  

a) Mode 1: Shifting 

According to the proposed strategy described in Section 3.4.3, the Shifting Mode occurs when 

𝑃ℎ(𝑡) is higher than 𝑃𝑎𝑣𝑔,  𝐸𝑑(𝑡)  is greater than 𝐸𝑑
𝑚𝑎𝑥 and 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡) is greater than zero. In 

this case, the power deficiency to meet the average power demand as shown in Figure 4-9 by 

shifting the shiftable appliances to off-peak period is calculated as:  

𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) =  |𝐸𝑑(𝑡) − 𝐸𝑑

𝑚𝑎𝑥|                                                                         (4.10) 

𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) is the deficiency power of shifting mode. 𝐸𝑑

𝑚𝑎𝑥 and 𝐸𝑑
𝑚𝑖𝑛 denotes the upper and lower 

limit of the average power, respectively. 

          Action 

State 
Shifting Valley filling Do nothing 

1 2.57 3.21 2.96 

2 2.62 3.01 3.17 

3 2.62 3.00 3.27 

4 2.92 2.47 3.30 

5 2.62 2.87 3.21 

6 3.34 2.72 2.67 
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Figure 4-9 Household power consumption and average power region. 

To shift the appliances, there are two possible scenarios, firstly, when the deficiency power is 

higher than the total power demand of the deferable appliances that are working at that time 

step: 

𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡)  ≥ 0                                                                             (4.11) 

In this case, all deferable appliances will be shifted.  However, when the deficiency power is 

lower than the demand of the deferable appliances, there is no need to shift all appliances to 

meet the average power demand.: 

𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡)  < 0                                                                              (4.12) 

In this case, the system selects the appliances based on user-comfort factors to achieve the 

user’s satisfaction as much as possible namely, priority of the appliance to be shifted, the power 

rate of the appliances, the operating time interval and the waiting time which are defined below: 

• priority of each appliance set by the user, and this means how much the user can manage 

without this appliance at this time step: 

𝛿𝑠 = [𝛿𝑠
1, 𝛿𝑠

2, … , 𝛿𝑠
𝑁]                                                                                         (4.13)  

 𝛿𝑛 indicates the priority value of 𝑛 appliances, hence each appliance takes a value 

between 0 and 1 to evaluate the priorities, where 1 means the appliance is not essential 

to be working. 

• When 𝐸𝑑𝑒𝑓
𝑠ℎ  (𝑡) is lower than 𝐸𝑛

𝑠ℎ𝑖𝑓𝑡
(𝑡), the power rate 𝑒𝑡

𝑛 of each appliance is 

considered for selecting which appliance is to be shifted compared to 𝐸𝑛
𝑠ℎ𝑖𝑓𝑡

(𝑡). 

𝐸𝑑𝑒𝑓
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Consequently, the probability of each appliance to be shifted based on power rate (𝜔𝑠
𝑛) 

of each appliance is calculated as:  

𝜔𝑠
𝑛 = 1 − |

𝑒𝑡
𝑛 − 𝐸𝑑𝑒𝑓

𝑠ℎ (𝑡) 

𝑒𝑡
𝑛 + 𝐸𝑑𝑒𝑓

𝑠ℎ (𝑡)
|                                                                          (4.14) 

Where the appliance that has the power rate (𝑒𝑡
𝑛) closer to the power deficiency 𝐸𝑑𝑒𝑓

𝑠ℎ (𝑡) 

will have the highest probability.  

• The operating time interval (𝑇𝑛) of each appliance is considered. The appliance that has 

shorter operating time interval to finish its task will have the higher probability to be 

shifted to off peak period. The shifting probability (𝛽𝑠
𝑛)  based on the operating time 

interval 𝑇𝑛,𝑜 of each appliance is calculated as: 

𝛽𝑠
𝑛 = {

0          when 𝑇𝑛,𝑜 =  𝑡
𝑡

𝑇𝑛,𝑜
       when 𝑇𝑛,𝑜 ≠  𝑡

                                                                   (4.15) 

• The system considers the shifted appliances (appliances that have been shifted before). 

The shifting time 𝑇𝑛 of each appliance is calculated and compared to the time step 𝑡. 

The shifting probability based on the shifting time (𝜑𝑠
𝑛) of each appliance is calculated 

as:  

𝜑𝑠
𝑛 = {

0          when 𝑇𝑛,𝑠 =  𝑡
𝑡

𝑇𝑛,𝑠
       when 𝑇𝑛,𝑠 ≠  𝑡

                                                                   (4.16) 

The total shifting probability 𝛾𝑛 for each appliance will be calculated by adding up the four 

previous calculated probabilities, hence, the highest 𝛾𝑠
𝑛 will shift first:  

𝛾𝑠
𝑛 =

𝛿𝑠
𝑛 + 𝜔𝑠

𝑛 + 𝛽𝑠
𝑛 + 𝜑𝑠

𝑛 

4
                                                                       (4.17) 

 

b) Mode 2: Valley Filling 

This mode occurs when 𝑃(𝑡) <  𝑃𝑎𝑣𝑔  and 𝐸𝑑(𝑡) <  𝐸𝑑
𝑚𝑖𝑛. This mode aims to turn on the 

appliances that have been shifted during on peak period. Therefore, the total power demand of 

the shifted appliances (𝐸𝑛
𝑠ℎ𝑖𝑓𝑡𝑒𝑑

) to be operating again is calculated as: 

𝐸𝑛
𝑠ℎ𝑖𝑓𝑡𝑒𝑑

= ∑𝜌𝑛

𝑁

𝑛=1

× 𝑒𝑡
𝑛                                                                               (4.18) 
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𝜌𝑛 indicates the shifting signal of each appliance and takes value 1 if the appliance has been 

shifted during shifting mode and 0 if not. The power deficiency (𝐸𝑑𝑒𝑓
𝑣 (𝑡)) required to meet the 

lower limit of average power (𝐸𝑑
𝑚𝑖𝑛) is: 

𝐸𝑑𝑒𝑓
𝑣 (𝑡) =  |𝐸𝑑(𝑡) − 𝐸𝑑

𝑚𝑖𝑛|                                                                          (4.19) 

To select which appliance needs to be turned on, 𝐸𝑑𝑒𝑓(𝑡) is compared to the 𝐸𝑛
𝑠ℎ𝑖𝑓𝑡𝑒𝑑

. 

Therefore, there are also two scenarios. First, when the power deficiency is higher than the 

total rated power of appliances (𝐸𝑑
𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)) which have shifted: 

𝐸𝑑𝑒𝑓
𝑣 (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)  ≥ 0                                                                          (4.20) 

In this case, all shifted appliances will be switched on as the demand will not exceed the lower 

limit of the average power, However, when the power deficiency is lower than the rated power 

of the shifted appliances, it is not desirable to run all shifted appliances. Therefore, the selection 

of the appliance depends on user-comfort factors, the priority of the appliances to be filled (𝛿𝑣), 

the power rating of the appliances (𝜔𝑣
𝑛), The operating time interval (𝜑𝑣

𝑛) and the waiting-time 

of the appliance (𝜀𝑣
𝑛): 

𝐸𝑑𝑒𝑓
𝑣 (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)  < 0                                                                         (4.21) 

• For how long the user needs to operate each specific shifted appliance. This value 

denoted by: 

𝛿𝑣 = [𝛿𝑣
1, 𝛿𝑣

2, … , 𝛿𝑣
𝑁]                                                                                       (4.22)  

𝛿𝑣
𝑛 is the valley filling priority for appliance 𝑛. The appliance with the highest priority 

has more chance to switch on.  

• When 𝐸𝑑𝑒𝑓
𝑣 (𝑡) < 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) , it is better to distribute the shifted appliances on the 

valley filling time period rather that switching on all shifted appliances at the same time 

to keep 𝐸𝑑(𝑡) in the average demand region. Therefore, the rated power of the shifted 

appliance is considered and the probability to be switch on (𝜔𝑣
𝑛) is calculated as:  

𝜔𝑣
𝑛 = 1 − |

𝑒𝑡
𝑛 − 𝐸𝑑𝑒𝑓

𝑣 (𝑡) 

𝑒𝑡
𝑛 + 𝐸𝑑𝑒𝑓

𝑣 (𝑡)
|                                                                          (4.23) 

When 𝜔𝑣
𝑛 is 1 (highest value), this means the appliance’s power rating equals the power 

deficiency (𝑒𝑡
𝑛 = 𝐸𝑑𝑒𝑓(𝑡)) and has the highest probability to be turned and meet the 

average power demand.  
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• In Valley Filling mode, the waiting-time of an appliance that has been shifted is 

considered. The appliance that has the longest waiting time has highest priority to 

operate. The probability of switching on (𝜀𝑣
𝑛) the appliance is defined as follows: 

𝜀𝑣
𝑛 = {

0                     when   𝑇𝑛,𝑤 =  𝑡

1 −
𝑡

𝑇𝑛,𝑤
       when  𝑇𝑛,𝑤 ≠  𝑡

                                                         (4.24) 

𝑇𝑛,𝑤 is the waiting time of appliance 𝑛 and 𝜀𝑣
𝑛 is the probability of switching on of the 

appliance.  

• The probability of the time interval (𝜑𝑣
𝑛) required by the appliance to finish its task is 

given by:   

𝜑𝑣
𝑛 = {

0                   when  𝑇𝑛,𝑠 =  𝑡

1 −
𝑡

𝑇𝑛,𝑠
       when  𝑇𝑛,𝑠 ≠  𝑡

                                                          (4.25) 

At each time step 𝑡, the system reads the profile of each appliance (𝑎𝑛) and determines the 

shifting and valley filling probabilities denoted by 𝑅𝑠 and 𝑅𝑣 respectively: 

𝑎𝑛 = [𝐽𝑡
𝑛 , 𝑒𝑡

𝑛 , 𝑇𝑛,𝑜 , 𝑇𝑛,𝑠, 𝑇𝑛,𝑤]                                                                      (4.26) 

𝑅𝑠 = [
𝛿𝑠
1 𝜔𝑠

1 𝛽𝑠
1 𝜑𝑠

1

⋮ ⋮ ⋮ ⋮
𝛿𝑠
𝑁 𝜔𝑠

𝑁 𝛽𝑠
𝑁 𝜑𝑠

𝑁
|
𝛾𝑠
1

⋮
𝛾𝑠
𝑁
]                                                                  (4.27) 

𝑅𝑣 = [
𝛿𝑣
1 𝜔𝑣

1 𝜀𝑣
1 𝜑𝑣

1

⋮ ⋮ ⋮ ⋮
𝛿𝑣
𝑁 𝜔𝑣

𝑁 𝜀𝑣
𝑁 𝜑𝑣

𝑁
|
𝛾𝑣
1

⋮
𝛾𝑣
𝑁
]                                                                   (4.28) 

 

The pseudo-code listed in Table (4-5) (Algorithm 2) illustrates the procedure for selecting the 

appliances to be shifted or turned on based on the user comfort-factors. Firstly, the upper and 

lower of the average power are set, with the priority of each appliance. Then the 𝑅𝑠 and 𝑅𝑣 will 

be set to zeros. For each time step, the system will read the total power demand and the status 

of all shiftable appliances with their power rate. Based on the detected mode (Shifting, Valley 

filling, do-nothing) that received from the RL agent, the system makes a decision which 

appliances need to be shifted during the Shifting mode, or which appliances need to be switched 

on during Valley filling mode, based on the calculated probability of each appliance.  
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Table 4-5 Selection procedure of shiftable appliances. 

 

4.5 Results and Discussion 

4.5.1 Implementation of the proposed strategy 

Based on the convergence Q-Matrix that shown in Table 3.6, an optimal decision could be 

made by HEMS system to shift the operating time of the shiftable the appliance that has the 

lowest priority during peak demand by activating Shifting Mode. Then the system will turn on 

the appliance that has been shifted and has the highest priority during off-peak hours by 

activating Valley Filling Mode. This process works based on the relationship between the real-

time price, the consumed power by all household appliances considering load priority and 

customer comfort preference. Figure 4-10 shows the electricity price in £/kWh received from 

the utility grid. 

 

Algorithm 2 

14. - Set 𝛿𝑠 and 𝛿𝑣 for all shiftable appliances, 𝐸𝑑
𝑚𝑖𝑛 , 𝐸𝑑

𝑚𝑎𝑥, and 𝑃𝑎𝑣𝑔. 

15. - Initialise 𝑅𝑠 and 𝑅𝑣.  

16. For each time step 𝜏 do 

17.  - Read 𝐸𝑑(𝑡)  and 𝑃ℎ(𝑡). 
18. - detects the active mode. 

19.         While Shifting mode is active and 𝐸𝑑
𝑠ℎ𝑖𝑓𝑡(𝑡)  > 0 

20.                 - Determine  𝐸𝒅𝒆𝒇
𝑠ℎ (𝑡) using Equation 6 and 

21.                    𝑎𝑛 = [𝐽𝑡
𝑛 , 𝑒𝑡

𝑛 , 𝑇𝑛,𝑜 , 𝑇𝑛,𝑠, 𝑇𝑛,𝑤]. 

22.                   If 𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡)  ≥ 0 

23.                  - Shift all deferable appliances. 

24.                   Elseif  𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡) < 0 

25.                         - Calculate 𝛾𝑠
𝑛  for each appliance using Equations (4.9-4.13). 

26.                         - Identify 𝑅𝑠, select and shift the appliance that has highest probability value 𝛾𝑠
𝑛. 

27.                         - Update 𝑎𝑛 and 𝑅𝑠.  
28.                   End if 

29.          End while 

30.          While Valley filling mode is active and 

31.                     𝐸𝑑
𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)  > 0 

32.                   - Determine  𝐸𝒅𝒆𝒇
𝑣 (𝑡) using Equation 15 and 

33.                      𝑎𝑛 = [𝐽𝑡
𝑛 , 𝑒𝑡

𝑛 , 𝑇𝑛,𝑜 , 𝑇𝑛,𝑠, 𝑇𝑛,𝑤]. 

34.                   If 𝐸𝑑𝑒𝑓
𝑣 (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)  ≥ 0 

35.                         - Shift all operating appliances. 

36.                  Elseif  𝐸𝑑𝑒𝑓
𝑣 (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) < 0 

37.                        - Detect the shiftable appliances that are working and read  𝑎𝑛 = [𝐽𝑡
𝑛 , 𝑒𝑡

𝑛 , 𝑇𝑛,𝑜 , 𝑇𝑛,𝑠, 𝑇𝑛,𝑤]. 

38.                        - Calculate 𝛾𝑣
𝑛  for each appliance using Equations (4.18- 4.21). 

39.                        - Identify 𝑅𝑣, select and run the appliance that has highest probability value 𝛾𝑣
𝑛. 

40.                        - Update 𝑎𝑛 and 𝑅𝑠.  
41.                  End if 

42.          End while 

43. End for                        
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Figure 4-10 Real time price (blue) and average price (green) signals.  

In Figure 4-11 is shown the total power demand in Watts of the smart home including all 

electrical appliances. These two values define the state and are passed to the agent at each time 

step. Based on the convergence Q-matrix, the action will be selected as the maximum Q-value 

for that current state. 

 

 

Figure 4-11 Total power demand of the smart home.   

 

 

Table 4-6 and Table 4-7 show the rated power of non-shiftable and shiftable appliances, 

respectively. For the shiftable appliances, the priority of each appliance is set by users and can 

be different from user to another based on their own preferences.   
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Table 4-6 Rated power for non-shiftable appliances. 

 

 

 

 

 

 

 

 

Table 4-7 Rated power for shiftable appliances with priority. 

 

 

 

 

 

 

Figure 4-12 shows all the states that are detected based on the relation between the electricity 

price and power demand signal using Equations 4.6-4.8. For instance, at 6:00 am the electricity 

price is low (£0.082/kW) and the power demand is average (4500 W). Thus, the state index is 

3 using Table 4-1. Using Table 4.4, the maximum value is 3.27 that refers to do-nothing action 

as shown in Figure 4-13.   

Appliance Rated Power (W)  

Iron 1000 

Oven 2000 

Laptop 20 

Microwave 600 

Television 200 

Lighting 100 

Refrigerator 200 

Water heater 2000 

Appliance Rated Power (W)  Priority order 

Washing machine 800 1 

Dish washer 1100 2 

Clothes dryer 400 3 

Hair dryer 450 4 

Hair straightener 20 5 

PEV 1200 6 
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Figure 4-12 All different states based on the price signal and power demand.   

 

Figure 4-13 Action taken based on the current state and convergence of Q-matrix; Mode 1: Do nothing, Mode 2: 

Shifting and Mode 3: Valley filling.   

At 8:00 am, the energy price is high (£0.15/kW) and the power demand is also high (5000 W). 

According to Table 4.4, the value is 3.34 which indicates that a shifting action should be 

applied. During night-time, for example at 23:00 pm, the action of valley-filling is desirable 

because the price of electricity is cheap (£0.08/kW) and the power consumption is low (3000 

W).  

Based on this technique, Figure 4-14 shows the final power consumption profile of the 

household appliances over 24 hours. The proposed RL shows that the power consumption has 

been reduced by 13.45% and 19.35% during morning and evening periods respectively. Three 

periods are identified namely, shifting which occurred during [7am-9am] and [15pm-18pm], 

valley-filling occurred during [21pm-5am] and do-nothing occurred during [5am-7am], [11am-

14pm] and [19pm-20pm].  
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Figure 4-14 Power consumption profile after the implementation of RL algorithm. 

 

Figure 4-15 Electricity cost without Q-learning. 

 

Figure 4-16 Electricity cost with Q-learning. 

Figure 4-15 and Figure 4-16 show the total electricity cost of all appliances for each hour 

without and with the Q-value algorithm.  The energy cost is reduced during peak demand (when 

the electricity price is higher). For example, during morning peak demand the energy cost is 

reduced from £0.8 to £0.7, and from £1.0 to £0.8 during evening peak period. Which 

demonstrates the effectiveness of the proposed Q-learning-based HEM scheme.    
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4.5.2 Implementation of comfort-based control strategy 

In the previous Section, an effective energy management system for residential demand 

response using RL and FR is proposed to minimise energy utilisation and electricity bills by 

scheduling household appliances, in response to electricity price signal. However, in this 

Section, DR strategy is developed to improve the satisfaction based on user’s comfort factors 

as discussed in Section 4.4.3. To demonstrate how this strategy can increase the user’s 

satisfaction, the electricity price signal received from the utility grid is used as shown in Figure 

4-17. The total household power demand that HEMS received from the smart meter is used as 

shown in Figure 4-18. Then, using Q-learning algorithm, HEMS detects the Shifting, Valley 

filling and do-nothing modes as shown in Figure 4-19. For example, at 8:00 am, the energy 

price (£0.14/kW) is higher than the average price and the power demand is higher than the 

upper limit of the average power demand, therefore the shifting mode is detected. At 3:00 pm 

the electricity price is low (£0.08/kW), and the power consumption is located between the 

upper and lower limits of the average demand. Thus, the do-nothing mode is active. During 

night-time, for example at 1:00 am, the valley-filling mode is detected because both the 

electricity price and power consumption are low. 

 

Figure 4-17 Real time energy price signal. 
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 Figure 4-18 Power demand of household appliances. 

 

 

Figure 4-19 Output of DR strategy consisting of three modes. 

During shifting and valley filling modes, Algorithm 2 is implemented to select which appliance 

needs to be shifted or turned on. The selecting process of sample hours is shown in  

Table 4-8. For example, at 8:00 am, Hair Dryer (HD), Clothes Dryer (CD) and Washing 

Machine (WM) are supposed to be operating, because the shifting mode is active during this 

hour and the deficiency power to meet the average demand is less than the total power 

consumption of these three appliances, only the HD is shifted. In the next hour (9:00 am), Dish 

Washer (DW), CD and Hair Straightener (HS) need to be operating but the DW and HS are 

shifted because they have the highest shifting priority to meet the average demand. After 

shifting these two appliances, the power consumption becomes lower than the upper limit of 

the average demand. Therefore, HD can be turned on as it has been shifted during the previous 

hour. The final operation status of the shiftable appliances is presented in Figure 4-20. The total 

power consumption of the household appliances throughout a day is shown in Figure 4-21. 
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Table 4-8 Selection process of sample hours for the proposed strategy 

 

 

 

Time Mode Appliance detail R matrices Actions 

8:00 

Shifting 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 1 800 1 0 0
2 0 1100 0 0 0
3 1 450 2 0 0
4 1 400 3 0 0
5 0 20 0 0 0 ]

 
 
 
 
 

 𝑅𝑠 = [

𝐼𝑛𝑥 𝛿𝑠
𝑛 𝜔𝑠

𝑛 𝛽𝑠
𝑛 𝜑𝑠

𝑛

1 0.1 0.7692 0.25 1
3 0.3 0.9474 0.25 1
4 0.4 0.8888 0.1667 1

|

𝛾𝑠
𝑛

0.5298
0.6243
0.6139

] 
Shift 

No.3 

9:00 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 0 0
2 1 1100 1 0 0
3 0 450 2 1 1
4 1 400 2 0 0
5 1 20 1 0 0 ]

 
 
 
 
 

 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 0 0
2 0 1100 1 1 0
3 1 450 1 0 0
4 1 400 2 0 0
5 1 20 1 0 0 ]

 
 
 
 
 

 

𝑅𝑠 = [

𝐼𝑛𝑥 𝛿𝑠
𝑛 𝜔𝑠

𝑛 𝛽𝑠
𝑛 𝜑𝑠

𝑛

2 0.2 0.7778 0.5 1
4 0.4 0.7272 0.25 1
5 0.5 0.0556 0.5 1

|

𝛾𝑠
𝑛

0.6195
0.5940
0.5139

] 

 

𝑅𝑠 = [
𝐼𝑛𝑥 𝛿𝑠

𝑛 𝜔𝑠
𝑛 𝛽𝑠

𝑛 𝜑𝑠
𝑛

4 0.4 0.2222 0.25 1
5 0.5 0.5714 0.5 1

|
𝛾𝑠
𝑛

0.4675
0.6435

] 

Shift 

No.2 

Turn on 

No.3 

Shift 

No.5 

10:00 𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 0 0
2 0 1100 1 1 0
3 1 450 1 0 0
4 1 400 1 0 0
5 0 20 1 1 1 ]

 
 
 
 
 

 𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡)  ≥ 0 Shift all 

23:00 

Valley 

filling 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 2 4
2 0 1100 0 1 14
3 0 450 0 3 13
4 0 400 0 2 13
5 0 20 0 3 14 ]

 
 
 
 
 

 

 

𝑅𝑠 =

[
 
 
 
 
 
𝐼𝑛𝑥 𝛿𝑣

𝑛 𝜔𝑣
𝑛 𝜀𝑣

𝑛 𝜑𝑣
𝑛

1 0.5 0.6777 0.875 0.75
2 0.4 0.5430 0.9643 0.5
3 0.3 0.9535 0.9615 0.8333
4 0.2 0.9876 0.9615 0.75
5 0.1 0.0930 0.9643 0.8333

|

|

𝛾𝑣
𝑛

0.7007
0.6018
0.7621
0.7248
0.4977]

 
 
 
 
 

 

 

Turn on 

No.3 

00:00 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 2 5
2 0 1100 0 1 15
3 0 450 0 2 6
4 0 400 0 2 14
5 0 20 0 3 15 ]

 
 
 
 
 

 

𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 2 5
2 0 1100 0 1 15
3 0 450 0 2 6
4 0 400 0 2 14
5 0 20 0 3 15 ]

 
 
 
 
 

 

𝑅𝑣 =

[
 
 
 
 
 
𝐼𝑛𝑥 𝛿𝑣

𝑛 𝜔𝑣
𝑛 𝜀𝑣

𝑛 𝜑𝑣
𝑛

1 0.5 0.75 0.9 0.75
2 0.4 0.6076 0.9667 0.5
3 0.3 0.9677 0.9177 0.75
4 0.2 0.9090 0.9643 0.75
5 0.1 0.08 0.9667 0.8333

|

|

𝛾𝑣
𝑛

0.725
0.6186
0.7339
0.7058
0.4950]

 
 
 
 
 

 

 

𝑅𝑣 =

[
 
 
 
 
𝐼𝑛𝑥 𝛿𝑣

𝑛 𝜔𝑣
𝑛 𝜀𝑣

𝑛 𝜑𝑣
𝑛

1 0.5 0.0722 0.9 0.75
2 0.4 0.0531 0.9667 0.5
4 0.2 0.1395 0.9643 0.75
5 0.1 0.5 0.9667 0.8333

|
|

𝛾𝑣
𝑛

0.5556
0.4799
0.5134
0.6000]

 
 
 
 

 

Turn on 

No.3 

Turn on 

No.5 

04:00 𝑎 =  

[
 
 
 
 
 
𝐼𝑛𝑥 𝐽𝑡

𝑛 𝑒𝑡
𝑛 𝑇𝑛,𝑜 𝑇𝑛,𝑠 𝑇𝑛,𝑤

1 0 800 0 0 0
2 0 1100 0 0 0
3 0 450 0 1 9
4 0 400 0 1 10
5 0 20 0 1 8 ]

 
 
 
 
 

 𝐸𝑑𝑒𝑓
𝑠ℎ (𝑡) − 𝐸𝑑

𝑠ℎ𝑖𝑓𝑡(𝑡)  ≥ 0 
Switch 

on all 
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Figure 4-20 Status of the shiftable appliances after implementing the proposed strategy; WM: Washing 

Machine, DW: Dish Washer, CD: Clothes Dryer, HD: Hair Dryer and HS: Hair Straightener. 

 

Figure 4-21 Power demand and power consumption after implementing both strategies. 

The cost of energy usage is calculated as: 

𝐶𝑡 = min {0,∑𝐸𝑑(𝑡) × 𝑃ℎ(𝑡)

24

𝑡=1

}                                                                    (4.5) 

𝑃ℎ(𝑡) is the electricity price received from the utility grid and 𝐶𝑡 is the total cost of energy 

consumption. The proposed HEMS works based on RTP, which is considered as a dynamic 

pricing. Figure 4-22 shows the comparison of the cost reduction using both algorithms. 

To evaluate how much the proposed strategy can increase the user’s comfort, the dissatisfaction 

index is calculated as:  
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𝜋𝑡 = (1 −
1

𝑆
∑𝛾𝑠

𝑛

𝑆

𝑛=1

)2 − (
1

𝑉
∑𝛾𝑣

𝑛

𝑉

𝑛=1

)                                                             (4.30) 

Where the first term indicates the user’s dissatisfaction rate occurred by shifting S appliances 

during shifting mode, which depends on the user-comfort factors. While the dissatisfaction 

index can be reduced by switching on V appliances during valley-filling mode as described by 

the second term. Figure 4-23 shows the variations of the dissatisfaction index throughout the 

day.   

 

Figure 4-22 Electricity cost; CS0: cost without HEMS, CS1: cost using without considering user’s comfort, 

CS2: cost under proposed strategy. 

 

Figure 4-23 Dissatisfaction index during Shifting and valley filling modes. 

 

4.6  Conclusion 

This chapter proposed a demand response algorithm to minimise energy utilisation and 

electricity bills by shifting load demand, in response to electricity price signal and consumer 

preferences, from peak periods when the electricity price is high, to off-peak demand when the 

electricity price is low. In this study, an effective household energy management is developed 
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using Q-learning to deal with the dynamic electricity prices and different power consumption 

patterns without compromising the users’ lifestyle and preferences. The proposed RL-based 

approach uses a single agent with a smaller number of states and actions to deal with 14 

household appliances which in turn makes the implementation much easier with a better 

performance and lower time-consuming as compared to other techniques. Fuzzy reasoning is 

also used to mimic human decision-making in evaluating the random action that the agent could 

take as a reward function.  

Simulation results have shown that the proposed DR approach results in a smooth energy usage 

profile and a reduction in the overall electricity costs by 16.4% and 17.5% during morning and 

evening peak periods respectively without using the user’s comfort strategy comparing to 15% 

and 18.5% with the implementation of the user’s comfort strategy, respectively. This is because 

without using the comfort-based strategy, all appliances are shifted during the Shifting mode, 

while the shifting process depends on the four factors by implementing the comfort-based 

strategy in order to increase the user’s satisfaction. Therefore, the proposed approach has 

reduced the dissatisfaction index by 18.2% with implementing user’s comfort strategy. 
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Chapter 5 Integration of Electric 

Vehicles into Demand Response  

5.1 Introduction 

More recently, there has been a gradual shift towards the adoption of Electric Vehicles (EVs) 

in the automotive industry. The main drivers are the economic and environmental benefits, the 

technological improvement in batteries’ energy density, and government policies offering 

financial rewards such as tax breaks or rebates to EV owners [56]. In a report published by the 

UK National Grid in Future Energy Scenarios, the number of EVs is expected to grow 

significantly to 11 million by 2030 and to 36 million by 2040 [57]. EVs charging during peak 

hours leads to the electricity price increase, additional demand and imposes severe stress on 

the distribution grid. This may create problems such as feeder congestion, distribution 

transformer overloads and excessive voltage drops which may impact the overall electricity 

network [58]. In contrast, off-peak EV charging benefits EV owners from lower electricity 

prices and helps reduce stress on the power grid. On the other hand, EVs could also serve as a 

temporary energy storage and supply power to home appliances during short-term outages, 

provide emergency charging to other EVs or feed power to the utility grid when needed. 

However, draining the complete EV battery energy during the day could potentially disrupt EV 

availability for travel needs [59]. Therefore, a more sophisticated management of the EV 

battery is required. As such, a holistic approach must be adopted for EVs to serve as a DR 

resource and close the energy gap. For example, in [60], a fair demand response with electric 

vehicles (F-DREVs) is proposed for a cloud-based energy management service to maximise 

incentives by minimising global cost within the given time period, and smooth fluctuations of 

EVs loads. In [61], a new scheduling approach is proposed for isolated microgrids (MGs) with 

renewable generations by incorporating demand response of EVs.  

V2G technology has attracted a great deal of research interest in recent years both within the 

academic community and industry. A review on the impact of V2G technology is presented in 

[62]. In [63], different control schemes to enable EV grid integration are reviewed and the 

advantages and disadvantages of V2G integration are discussed with respect to the transient 

stability of the power grid at the transmission and distribution levels. The authors in [64]  

proposed a combined control and communication approach to ensure efficient energy transfer 

and maintain a balance between energy suppliers and consumers. Energy management of EV 
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battery is proposed in [65]  by taking into consideration the V2G connection, prices for selling 

and purchasing electricity, and the daily load profile of household appliances. In [66], an 

optimised smart charging and discharging coordination scheme using Linear Programming 

(LP) based on a heuristic algorithm is proposed for V2G technology. The aim of the proposed 

algorithm is to cope with a variety of loads and departure times of EVs. Bayesian Neural 

Networks (BNN) have been proposed in [67] for predicting electricity prices for charging/ 

discharging EV battery while minimising charging costs over a long-term time horizon. 

Classical optimisation methods such as linear programming, dynamic programming and their 

counterparts have been applied to the scheduling of EV charging/discharging. However, these 

methods suffer from the curse of dimensionality and cannot adapt to the environment's 

stochasticity including unpredictable load profile, price signals and changing driving patterns. 

Global search methods such as genetic algorithm, swarm intelligence and their hybrids with 

the linear optimisation methods are also used for solving power management problems. 

However, these methods are generally slow and computationally intensive; thus they are not 

suitable for real-time. In addition, when using such methods, which do not have a learning 

component, optimisation iterations are needed for every new load and generation profile, which 

is also computationally intensive.  

Machine learning techniques such as reinforcement learning algorithms offer a better 

alternative as they can be trained offline for a general load and generation profile and then they 

can be applied online for any load profile, dynamic electricity price signal and various driving 

patterns. Multi-agent reinforcement learning has been proposed for the optimal scheduling of 

household appliances including V2G technology in smart home to optimise the energy 

utilisation [68]. However, multi-agents RL requires setting several agents, with each agent 

having different actions and rewards therefore making the learning process more complex. 

Other studies have focussed on using Markov Decision Process (MDP) algorithms in HEMS 

to determine the optimal strategy for the scheduling of EV charging and discharging [69]. 

However, these algorithms require historical data, such as electricity prices and battery SOC 

as inputs to compute the charging/discharging schedules in real-time.  

5.2 Overview on V2G technology 

V2G and V2H are two technologies in which EVs equipped with bidirectional power flow 

capability can connect to the charging station to draw power from the grid, deliver power to 

the grid or provide back-up electricity supply to a home. A typical bidirectional EV battery 
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charger consists of bidirectional AC/DC and DC/DC converters as shown in Figure 5-1 [70]. 

In charging mode, the bidirectional AC/DC converter is used to convert the AC grid power to 

DC for the battery and in discharging mode, the DC battery power is converted to AC power 

and injected back to the grid or used to supply the house. The DC/DC converter, on the other 

hand, controls the bidirectional power flow by using current control technique. The DC/DC 

converter can act as a buck or boost converter during charging or discharging mode, 

respectively. 

With the advancement in battery technologies, the energy storage capacity of EVs has 

significantly improved. Currently, the capacity of EV batteries varies from 1 to 100 kWh. 

Battery capacity of a Nissan Leaf 2018 is 40 kWh, that of a Tesla Model 3 is 80 kWh and Tesla 

Model S is 100 kWh. 

 

Figure 5-1 V2G using bidirectional converters. V2G, vehicle to grid. 

5.2.1 V2G technology 

Using V2G technology, EVs can be connected to the power grid to charge, as well as feed 

energy back to the grid when required. V2G technology is attractive due to its benefits to grid 

operators and EV owners. EVs with V2G capability are considered as an alternative energy 

source for the grid and can provide ancillary services to the grid such as frequency/voltage 

support, load balancing, support to intermittent power of renewable energy, reactive power 

support, valley filling and peak shaving. Therefore, an effective energy management is required 

to coordinate the charging/discharging modes of the EV battery. Smart chargers and their 

energy management system are key factors in the implementation of bidirectional V2G scheme. 

In [71], the authors proposed a controllable EV charger that enables an autonomous smart 

energy management system in a residential sector. The proposed power converter topology 

allows charging/discharging operations at different power levels. Several V2G demonstrator 
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projects have been conducted around the world over the recent years most of them in Europe. 

Some of these V2G models have been adopted by leading car manufacturers and are already in 

the marketplace. In the UK, the Sciurus project is among the world's largest V2G projects 

aimed to develop and deploy a large number of chargers for domestic use. This project aims to 

validate the technical and commercial benefits of V2G technology to the power grid and 

demonstrate its value to EV manufacturers [72]. In Germany, the world's leading car 

manufacturer Nissan, the transmission system operator TenneT and The Mobility House 

energy supplier have successfully completed a substantial V2G pilot project. The project aims 

to respond to the increasing concern of Germany about saving the surplus of energy generated 

from renewable, intermittent sources such as wind energy. In this project, Nissan Leaf batteries 

are used for energy storage. When fully charged, the batteries feed the stored energy back to 

the grid when needed [73]. The SEEV4-City project, funded by the EU Interreg North Sea 

Region, aims to deploy V2G technology to use EV batteries as short-term storage of renewable 

energy to support the grid or redirect the available energy form vehicles to homes, 

neighbourhoods, or cities [74]. 

5.2.2 V2H technology 

V2H enables an EV to act as a backup power source and supply electricity to a home during 

short-term power outages or contribute to peak demand reduction, smooth home energy 

consumption, and minimise energy purchase from the grid. Some of the very significant and 

unique features of V2H technology is its simple implementation and some car manufacturers 

have already started deploying this technology. For example, Mitsubishi Motors Corporation 

(MMC) announced a new EV model called Dendo Drive House (DDH) at the 89th Geneva 

Motor Show [75]. This model is considered as a packaged system comprising an EV/PHEV, 

solar panel and a bidirectional V2H charger. DDH offers owners savings on charging costs and 

an emergency power source. Nissan Australia launched a new version of Nissan Leaf Plus that 

incorporates V2H capability [76] V2H-equipped Leaf can be used as energy storage with the 

capability to supply energy to household appliances. 

5.3 Modelling of the Grid Integration Framework 

5.3.1 Modelling of V2G and V2H systems 

Figure 5-2 depicts the overall structure of the EV model interfaced with the grid and the home 

and illustrates the operations modes and services it can provide during these modes.  
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Figure 5-2 Selection of EV operation modes. 

Table 5-1 shows different types of EVs with different battery capacity and brands. The Nissan 

LEAF 2018 model is used in the simulations. The battery has a maximum capacity of 40 kWh 

which gives a driving autonomy of 151 miles, a charging time empty to full of 8 hours (230 

VAC 15 A). 

Table 5-1 Different Type of EV. 

 

 

 

 

 

The total energy stored in the EV battery is given by: 

𝐸𝐸𝑉
𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑖𝑛𝑡 + ∆𝐸𝑐ℎ − ∆𝐸𝑑𝑖𝑠−𝐴 − ∆𝐸𝑑𝑖𝑠−𝑔𝑟𝑖𝑑 − 𝐸𝑡𝑟𝑖𝑝                         (5.1)  

Where 𝐸𝐸𝑉
𝑇𝑜𝑡𝑎𝑙 is the net energy stored in the battery, 𝐸𝑖𝑛𝑡  is the initial energy stored in the 

battery, ∆𝐸𝑐ℎ is the energy drawn from the grid to charge the EV battery, ∆𝐸𝑑𝑖𝑠−𝐴 represents 

the energy delivered to the household appliances, ∆𝐸𝑑𝑖𝑠−𝑔𝑟𝑖𝑑 is the energy fed to the grid and 

𝐸𝑡𝑟𝑖𝑝 denotes the total energy consumed by the EV during the trip.  

Manufacturer Model kWh Miles Battery type 

Ford 2018 Focus Electric 33.5 115 Liquid-cooled lithium-ion battery 

Volkswagen 2018 Volkswagen e-Golf 35.8 120 Lithium-ion battery 

Nissan 2018 Nissan LEAF 40 151 Lithium-ion battery 

Chevrolet 2018 Chevy Bolt 60 238 nickel-rich lithium-ion 

Tesla 2018 Tesla Model 3 75 285 Lithium-ion battery 
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Δ𝐸𝑐ℎ = 𝑚𝐺2𝑉 ∫ 𝑃𝑐ℎ(𝑡). 𝑑𝑡                                                                          (5.2)

𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

 

∆𝐸𝑑𝑖𝑠−𝐴 = 𝑚𝑉2𝐻 ∫ 𝑃𝑑𝑖𝑠(𝑡)

𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

. 𝑑𝑡                                                                   (5.3) 

∆𝐸𝑑𝑖𝑠−𝑔𝑟𝑖𝑑 = 𝑚𝑉2𝐺 ∫ 𝑃𝑑𝑖𝑠(𝑡). 𝑑𝑡

𝑡𝑜𝑢𝑡

𝑡𝑖𝑛

                                                               (5.4) 

Where 𝑃𝑐ℎ(𝑡) and 𝑃𝑑𝑖𝑠(𝑡) are the charging and discharging powers respectively. 𝑚𝑉2𝐻, 𝑚𝑉2𝐺 

and 𝑚𝐺2𝑉  represent the status of the EV connection mode and assume values 0 or 1. 

The proposed management strategy depends also on the SOC of the battery which is the key 

parameter in the EV as it is a measure of the amount of the energy stored in it.  The typical 

estimation of the SOC of the EV battery is based on the charging/discharging energy as follows: 

𝑆𝑂𝐶 =  𝑆𝑂𝐶𝑖𝑛𝑡 + 
∆Ech + ∆𝐸𝑑𝑖𝑠−𝐴 + ∆𝐸𝑑𝑖𝑠−𝑔𝑟𝑖𝑑

𝐸𝐸𝑉
𝑟𝑎𝑡                                      (5.5) 

Where 𝑆𝑂𝐶𝑖𝑛𝑡 is the initial SOC and 𝐸𝐸𝑉
𝑟𝑎𝑡 is the energy capacity of the battery. 

Considering the battery lifecycle, some constraints have been imposed on the power delivered 

by the EV to the grid (V2G) or to the home (V2H) and on the battery State-of-Charge (SoC). 

Equation (5.6) shows that the EV power is constrained between the minimum operating power 

𝑃𝑚𝑖𝑛 to be supplied to the EV and the maximum power range 𝑃𝑚𝑎𝑥 to be injected in the 

grid/home. 

𝑃𝑚𝑎𝑥 ≥ 𝑃𝑑𝑖𝑠, 𝑃𝑐ℎ ≥ 𝑃𝑚𝑖𝑛                                                                                  (5.6) 

Similarly, Equation (5.7) prevents deep discharging and over-charging of the EV battery by 

imposing a minimum SoC (𝑆𝑂𝐶𝑚𝑖𝑛) and a maximum SoC (𝑆𝑂𝐶𝑚𝑎𝑥) respectively:  

𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑎𝑥                                                                               (5.7)  

 

5.3.2 Modelling of EV driving patterns  

The EV model is interfaced to Google map via the App Designer Tool of MATLAB and allows 

the calculation of the distance, power required, arrival and departure time for each trip. This 
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information will be employed for scheduling the battery charging and discharging times to 

make sure the vehicle is always sufficiently charged for the next trip.  

The availability of EV refers to whether the vehicle is parked at home and accessible for either 

V2H or V2G connections and is defined as follows: 

𝐶𝑒𝑣 = {
1 EV available
0 EV not available

                                                                          (5.8) 

Using the designed user-interface, the EV owner can schedule his/her trip by selecting the 

destination and departure times as shown in Figure 5-3. 

 

Figure 5-3 User-interface for scheduling trips. 

Once the trip distance is determined, the energy required for the trip is calculated as follows: 

𝐸𝑡𝑟𝑖𝑝 = 
𝐷𝑡𝑟𝑖𝑝
𝐷𝑚𝑎𝑥

× 𝐸𝐸𝑉
𝑟𝑎𝑡                                                                                       (5.9) 

Where 𝐷𝑡𝑟𝑖𝑝 and 𝐷𝑚𝑎𝑥 are the distance of the trip and the maximum distance the EV can travel 

with full SOC, respectively, EEV
rat denotes the maximum energy capacity of the EV battery. 

5.3.3 Modelling of the household load profile 

Generally, the daily power consumption of a typical household contains two peaks occurring 

during the morning and evening times when energy prices are higher as shown in Figure 5-4.  
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Figure 5-4 Typical household energy consumption. 

The off-peak period corresponds to the period of the day when electricity prices are lower since 

household activities such as washing, cleaning, cooking, and watching TV are reduced. As 

mentioned before, the household appliances are divided into shiftable and non-shiftable 

appliances. Therefore, at each time step (considered as an hour in this work), the total power 

demand of all appliances during a certain hour is:   

𝐸ℎ
𝑇 = ∑𝑒𝑛

𝑠ℎ𝑓𝑡
. 𝐽𝑛
𝑠ℎ𝑓𝑡

𝑁

𝑛=1

 +  ∑ 𝑒𝑚
𝑛𝑜𝑛. 𝐽𝑚

𝑛𝑜𝑛  

𝑀

𝑚=1

                                                 (5.10) 

Where 𝑒𝑛
𝑠ℎ𝑓𝑡

 and 𝑒𝑚
𝑛𝑜𝑛 represent the rated power of each shiftable appliance and non-shiftable 

appliance, respectively. 𝐽𝑛/𝑚
𝑠ℎ𝑓𝑡/𝑛𝑜𝑛

  denotes the status of the appliance and takes values 0 (off) 

or 1 (on) respectively, 𝑡 ∈ {1, 2, 3, … , 24} represents the hour of the day, 𝑛 ∈ {1,2, … ,𝑁} is the 

appliance number and 𝑁 is the total number of the shiftable appliances. 𝑚 ∈ {1,2, …𝑀} refers 

to the appliance number and 𝑀 is the total number of the non-shiftable appliances. 

5.4 V2G Demand Response Based on Q-Leaning 

With V2G technology, EVs become a distributed energy storage and can offer a range of 

ancillary services by back-feeding power to the electricity grid such as DR, peak-load 

management, voltage support, frequency regulation. The provision of these grid services will 

enable EV owners to save on energy costs and generate revenue through price arbitrage. V2G 

technology is evolving at an accelerated pace and research is ongoing to enhance its 

functionality and implementation. In this chapter, an effective V2G-based DR approach for the 

energy management of residential loads using Q-learning and RTP is presented. 
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5.4.1 Q-learning model for the EV 

RL is adopted here to make an optimal decision on charging or discharging of EV battery under 

dynamic electricity prices and different energy consumption patterns using an intelligent agent 

which controls the dynamic process by executing sequential actions. The dynamic process is 

characterised by a state-space and a numerical reward that evaluates the new state when a given 

action is taken. In this study, the Q-learning model components are defined as follows: 

A. State-space implementation using fuzzy logic 

To reduce the number of states, the Fuzzy Logic toolbox of MATLAB software is used. The 

state-space here is represented by the total household loads profile, SOC of the EV battery, 

availability of the EV and the electricity price signal. To simplify the model and reduce the 

computation time, the household power demand is divided into four levels Extremely Low, 

Low, High and Extremely High. The SOC of the EV battery is defined as Extremely Empty, 

Low, High and Extremely Full; the EV availability can be Available or Unavailable. Finally, 

the price signal is categorised into Cheap and Expensive price.  

The state is formulated using Fuzzy Logic. Fuzzy reasoning is a decision-making model that 

deals with approximate values rather than exact values. The FIS based on Mamdani method is 

used because it offers a smoother output. The input variables of the fuzzy state model are the 

total home power demand (𝐸𝑡
𝑡𝑜𝑡𝑎𝑙) , the electricity price (𝑃𝑡) , the SOC of the EV battery 

(𝑆𝑂𝐶𝑡) and the availability of EV (𝐶𝑣), and the output variable is the States. 

The MFs for the input variable “Total household loads” are triangular and are labelled as: 

Extremely Low, Low, High and Extremely High. The universe of discourse of power demand 

is chosen as [0 6300] (Watt). The fuzzy sets of electricity price are defined as Cheap and 

Expensive. The MFs are Gaussian and the universe discourse is [0 0.16] (£/kWh). For the SOC, 

the universe discourse is defined [0 100] %, and the associated fuzzy sets are Extremely Empty, 

Low, High and Extremely Full as shown in Figure 5-5. The output of the system is the State, 

and there are 25 States in total as shown in Figure 5-6. The fuzzy rules are shown in Table 5-2. 
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Figure 5-5  Fuzzy sets and MFs of input variables for States.  

 

Figure 5-6 Fuzzy sets and MFs of output variable for States. 
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Table 5-2 Fuzzy rules of FIS system for the state space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Action space 

The proposed strategy aims to schedule the charging time of the EV to be during off-peak hours 

when electricity prices are lower. It also aims to manage the energy stored in the EV battery 

whether to supply the household appliances during high energy prices or outage (V2H), or to 

deliver the energy back to grid using (V2G) depending on the SOC and availability of the EV.  

Therefore, the actions set can be summarised as Charging, Discharging/Appliances, 

Discharging/Grid and Do nothing. Based on the current State, the agent chooses one action 

from the action space 𝐴 that given by:  

𝐴 = [𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔, 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 , 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑔𝑟𝑖𝑑 , 𝐷𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔]       (5.14) 

C. Reward function implementation using fuzzy logic 

The agent receives a numerical reward 𝑟(𝑠𝑡 , 𝑎𝑡 ) after executing a random action and observing 

the new state. This reward value aims to evaluate how good is the action taken by the agent for 

SOC 𝑬𝒕
𝑻𝑶𝑻𝑨𝑳 Price Cv State 

- - - Unavailable 1 

Extremely Low Low Cheap Available 2 

Low Low Cheap Available 3 

High Low Cheap Available 4 

Extremely High Low Cheap Available 5 

Extremely Low Average Cheap Available 6 

Low Average Cheap Available 7 

High Average Cheap Available 8 

Extremely High Average Cheap Available 9 

Extremely Low Average Expensive Available 10 

Low Average Expensive Available 11 

High Average Expensive Available 12 

Extremely High Average Expensive Available 13 

Extremely Low High Cheap Available 14 

Low High Cheap Available 15 

High High Cheap Available 16 

Extremely High High Cheap Available 17 

Extremely Low High Expensive Available 18 

Low High Expensive Available 19 

High High Expensive Available 20 

Extremely High High Expensive Available 21 

Extremely Low Low Expensive Available 22 

Low Low Expensive Available 23 

High Low Expensive Available 24 

Extremely High Low Expensive Available 25 
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a certain state. Fuzzy logic is also used here to evaluate the action that will be taken for a certain 

state.   

The input variable of the reward function’s FIS is the current state 𝑠𝑡  which is the output of 

the FIS system of the state space as shown in Figure 5-6. The outputs of the system are the 

evaluation of the random action which was defined in Q-learning. For each action taken 

(output), the fuzzy sets are determined as Bad Action (BA), Good Action (GA) and Very Good 

Action (VGA). The universe of discourse of MFs is defined as [0 100] to evaluate all possible 

actions with values out of 100 as shown in Figure 5-7. 

  

Figure 5-7 Fuzzy sets and MFs of output variable for States. 

 

Table 5-3 shows the list of fuzzy rules. The evaluation actions process works as follows; firstly, 

the FIS system of the state-space will identify the current state, based on the current space, the 

agent will take a random action from the actions space. The FIS system of the reward function 

evaluates all the possible actions with value out of 100 and then the agent will receive a 

numerical value corresponding to the action taken.  
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Table 5-3 Fuzzy rules of FIS system for reward function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 EV energy management strategy using Q-learning 

Using the Q-learning off policy, the agent learns from taking a random action at a certain state 

without following a current policy. This means that a policy is not required during a training 

process. The Q-matrix with a dimension of [𝑠𝑡𝑎𝑡𝑒𝑠 × 𝑎𝑐𝑡𝑖𝑜𝑛𝑠], should be initialised to zero 

(i.e. the Q-value of each state-action pair is assigned the value zero). Then, the agent will 

interact with the environment and update each pair in that matrix after each action taken using 

Equation (3.4). In the proposed model, a random action called “exploring” is applied in which 

case, an appropriate number of iterations will be required to explore and update the values of 

𝑄(𝑠𝑡 , 𝑎𝑡) for all state-action pairs at least once. After convergence of the Q-matrix, the optimal 

Q-values will be obtained.  

State Charging Discharging/Appliances Discharging Selling Do nothing 

1 BA BA BA VGA 

2 VGA BA BA BA 

3 VGA BA BA BA 

4 VGA BA GA BA 

5 BA BA GA VGA 

6 GA BA BA VGA 

7 GA BA BA VGA 

8 BA GA BA VGA 

9 BA GA BA VGA 

10 BA BA BA VGA 

11 BA BA VGA GA 

12 BA GA VGA BA 

13 BA GA VGA BA 

14 GA BA BA VGA 

15 BA GA BA VGA 

16 BA GA BA VGA 

17 BA GA BA VGA 

18 BA BA BA VGA 

19 BA VGA BA GA 

20 BA VGA BA GA 

21 BA VGA BA BA 

22 BA BA BA VGA 

23 BA BA VGA GA 

24 GA BA VGA BA 

25 BA BA VGA BA 
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The pseudo-code listed in Table 5-4 (Algorithm 1) illustrates the procedure of the main 

algorithm for training Q-learning agent which has been implemented in MATLAB. Firstly, a 

certain state and a numerical reward are defined using fuzzy logic. The parameters γ and α are 

set to 0.8 and 0.2 respectively and the Q-value matrix entries are initialised to zeros. For each 

current state, all possible actions are specified, and then an action will be selected randomly. 

After the selected action is executed, the numerical reward (using fuzzy logic) for that action 

and the new state will be observed by the agent. The maximum Q-value for the next state should 

also be determined and then the Q-value of the state-action pair will be updated using Equation 

(3.4). Finally, the next state will be used as a current state. To allow the agent to visit all state-

state pairs and learn new knowledge, the training process is set to 1000 iterations.  

Table 5-4 EV energy management using Q-learning algorithm. 

Algorithm 1 

- Set 𝜸,𝜶 parameters and environment rewards. 

- Initialise 𝑄(𝑠𝑡 , 𝑎𝑡) , ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴. 

For each time step 𝑡 do 

  - Choose a random initial state. 

          While hour = 1:24 

                  - Determine all available actions. 

                  - Select random action from all possible actions for the     

                    current state.  

                    - Execute the selected action 𝒂𝒕, and observe the new state    

                    𝑠𝑡+1 and numerical reward  𝑟(𝑠𝑡 , 𝑎𝑡).  

                         - Determine the maximum Q-value for next state in Q- 

                          matrix. 

                  - Update the 𝑄(𝑠𝑡 , 𝑎𝑡) using Equation (3.4).  

                  - Set the next state as current state. 

         End while 

End for                        

 

5.5 Results and Discussion 

5.5.1 Implementing the proposed strategy with a single EV in a household 

The proposed EV management strategy works based on the relationships between the 

household power demand, electricity price, and SOC and availability of EV. Once the EV 

arrives at home, HEMS will receive a signal of EV availability with the percentage of SOC. 
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Consequently, HEMS can make an optimal decision whether the EV battery needs to be 

charged from the grid, there is a need to supply the appliances or sell energy to the grid using 

the convergence Q-matrix. The time simulation is set for one day (24 hours) with 5 minutes 

time-steps in order to address the uncertainties with the variation in electricity prices. We 

assumed that the price signal received from the utility grid as shown in Figure 5-8. It is assumed 

that the user leaves the house by 09:00 am and returns at 14:00 pm.  

 

Figure 5-8 Real time price (blue) and average price (green) signals. 

The total power demand of the household appliances is shown in Figure 5-9. There are two 

peak periods, morning peak hours [7:00 am-10:00 am] when the households wake up and 

evening peak period [18:00 pm -21:00 pm] when they start cooking, watching TV and doing 

other activities. The mid-peak period occurs after and before these two peak periods. Off-peak 

period occurs usually after mid-night till the morning.     

 

Figure 5-9 Total power demand of the smart home. 
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A. Case 1: Weekdays with 70% of SOC 

In this case, the initial SOC of the EV battery is set to 70%. based on the relationship between 

the electricity price signal, the total power demand and the Q-values.  Figure 5-10 (a) shows 

all the actions taken.  For example, the total energy demand is low (3.5 kWh) during the period 

[5:00 am-7:00 am], the energy price is 0.07 £/kWh at 5:00 am and 0.08 £/kWh at 6:00 am, the 

SOC is high at 70 % and the EV is available 𝐶𝐸𝑉 = 1 . Therefore, the current state is defined 

as   𝑠𝑡 = [𝐿𝑜𝑤, 𝐶ℎ𝑒𝑎𝑝,𝐻𝑖𝑔ℎ, 1]. According to the Q-value, the maximum Q-value for this 

State refers to the Charging action. To protect the battery from the overcharging, the maximum 

SOC is set to 80%. Therefore, from Figure 5-10 (b), it can be observed that the charging mode 

is stopped during the last half an hour because the SOC reached 80%, and the Do-Nothing 

mode is active. At 7:00 am, the system moves to another State because the energy demand is 

average (4.3 kW), the price is high (0.11£/kWh) and the battery is fully charged with an SOC 

of 80 %. Therefore, it is better to sell energy to the grid using V2G connection during this hour. 

In the next hour (8:00 am), the demand jumps to 4.8 kW (High), the energy price is 0.14 £/kWh 

and the SOC remains high at 70%, then the best decision is to supply the household appliances 

using V2H connection during this hour. 

The user leaves his house with the EV at 9:00 am and returns at 14:00 pm, during this period 

the EV is not available, hence Do-Nothing mode is issued. When the EV returns home at 14:00 

pm, the SOC is low, and the energy demand and price are also low (3.8 kW and 0.08 £/kWh 

respectively). Therefore, the EV battery is charged for two hours from 14:00 pm -16:00 pm till 

the SOC reached 60 %.  During the next two hours (16:00 pm -18:00 pm), the action taken is 

Do-Nothing because the SOC is high, the energy price is low, and the energy demand is 

average. Therefore, there is no need to charge or discharge the battery. During the evening peak 

period from 18:00 pm to 21:00 pm, the energy demand and price are quite high, the EV battery 

has 60 % of SOC. 
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Figure 5-10 Initial SOC = 70 % (a) Actions, (b) SOC changes, (c) Power consumption. 

Discharging/Appliances mode is triggered to supply energy to the appliances and reduce the 

electricity cost as shown in Figure 5-10 (c). Finally, during the period from 21:00 pm to 23:00 

pm, Discharging/Selling mode is activated to export energy back to the grid since the SOC is 

at 50%. This period leads to a maximum user’s revenue and reduces the stress on the power 

utility. The SOC drops to 30% at 24:00 pm, hence Do-Nothing mode is issued. The Charging 

(a) 

(b) 

(c) 
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mode is activated at 24:00 pm till 5:00 am, and the SOC reaches 60 % to be ready for the next 

day. 

 

Figure 5-11 Initial SOC = 50 % (a) Actions, (b) SOC changes, (c) Power consumption. 

 

B. Case 2: Weekdays with 50% of SOC 

In this case, the initial SOC of the EV battery is set to 50 %. Because the SOC is reduced by 

20 % from Case 1, the amount of energy sold to the grid is also reduced. Figure 5-11 (a) 

illustrates all the actions taken.  The EV starts the day with a SOC of 50 % as shown in Figure 

(a) 

(b) 

(c) 
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5-11 (b). The first two hours [5:00 am-7:00 am], the Charging mode is active till the SOC 

reaches 60%. During the morning peak hours [7:00 am-9:00 am], the EV battery is used to 

inject power to the grid at 7:00 am and supply the household appliances with different states 

and actions at 9:00 am as shown in Figure 5-11 (c). When the EV returns home at 14:00 pm, 

the mode Charging is activated for the hours [14:00 pm-16:00 pm] to charge the EV battery at 

a lower price and to have it available for the evening peak period. The V2H model is active 

during [18:00 pm - 21:00 pm] to supply the household appliances using 

Discharging/Appliances action. From 24:00 pm to 5:00 am (off-peak period), the EV starts 

charging to be ready for the next day’s trips, the SOC reaches 60 %.     
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Figure 5-12 Initial SOC = 30 % (a) Actions, (b) SOC changes, (c) Power consumption. 

C. Case 3: Weekdays with 30% of SOC 

The initial SOC of the EV is 30 % in this case. All actions taken during this scenario are shown 

in Figure 5-12 (a).  The charging action is active during [5:00 am-7:00 am] as shown in Figure 

5-12 (b) till the SOC reaches 40%.  Although the SOC is lower, the battery is used as much as 

possible to supply the home appliances and sell power to the grid. This minimises the electricity 

bills and reduces the burden on the grid. Therefore, the EV exports energy to the grid only for 

one hour [7:00 am-8:00 am] in this case, The EV also supplies energy to the appliances for one 

(a) 

(b) 

(c) 



Integration of Electric Vehicles into Demand Response 

 92 

hour during the morning peak period [8:00 am- 9:00 am] as shown in Figure 5-12 (c). After 

midnight, the EV starts charging and the SOC reaches 50 %.  

D. Case 4: Weekend days 

Figure 5-13 illustrates the hourly power demand during weekends and weekdays. Hourly power 

consumption patterns of weekdays and weekends are quite different. The weekend pattern has 

a clear morning peak start at 10:00 am and lags weekday pattern. The different features are 

quite understandable because people usually start later during weekend mornings and generally 

spend more hours at home during the time slot from 10:00 am to 14:00 pm while they spend 

more time at work or on outdoor activities at the same time slot during weekdays. In this 

scenario, it is assumed that the EV leaves the home twice [13:00 pm - 15:00 pm] and [20:00 

pm - 22:00 pm], the EV starts the day with 50% of SOC.  

 

Figure 5-13 Hourly household electrical demand of weekend and weekday. 

 

During the time interval [5:00 am - 7:00 am], Charging mode is detected as shown in Figure 

5-14 (a) as the power demand (3 kWh) and electricity price are lower. The SOC increases from 

50 % to 70 % as shown in Figure 5-14 (b). Because it is weekend day, EV owner is staying at 

home, the SOC is quite high and power demand is low, therefore it is better to sell energy to 

grid.  



Integration of Electric Vehicles into Demand Response 

 93 

 

Figure 5-14 Weekend days with Initial SOC = 50 % (a) Actions, (b) SOC changes, (c) Power consumption. 

Therefore, Discharging/Selling mode is active from 7:00 am-10:00 am and SOC decreases to 

60%. The next three hours [10:00 am- 13:00 pm], the power demand is high as it is morning 

peak demand. Discharging/Appliances mode is issued to supply power to the home appliances. 

The EV leaves the home at 13:00 pm and comes back at 15:00 pm with a low SOC of 38%. 

Hence Charging mode is detected for three hours [15:00 am- 18:00 pm] and the SOC increases 

to 65%. During [18:00 pm- 20:00 pm], the SOC is quite high, and the electricity price is high, 

the demand is average, hence Discharging/Selling mode is active to feed energy back to the 

grid. The EV leaves the home at 20:00 pm and returns at 22:00 pm at which time, the evening 

peak demand begins. Therefore, the EV starts supplying the household appliances for two hours 
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till the SOC drops to 41%. At 24:00 pm, the off-peak demand is detected with low energy price. 

The EV starts charging till the SOC reaches 80% at 04:00 am and then Do-Nothing mode is 

active.    

Figure 5-15 shows the cumulative daily household energy cost for the base case and different 

cases (SOC = 30 %, 50 % and 80 %). It can be observed that the proposed method reduces the 

cost by 12 % when the EV starts the day with a low SOC of 30% and by 21% of the cost 

reduction when the SOC is at 50%. When the SOC is higher at 80%, the energy cost is reduced 

by 27%. 

   

Figure 5-15 Cumulative electricity cost 

5.5.2 Implementing the proposed strategy on a fleet of EVs connected to the distribution 

network 

A fleet of EVs with bi-directional power capability represents a considerable energy storage 

resource and has the potential to provide ancillary services to the utility grid. To evaluate the 

effectiveness of the proposed scheduling scheme, a low-voltage (LV) distribution network 

connected to a residential area is used. The residential area consists of 100 houses with 50 

households each owning an individual EV is used for the simulation using MATLAB software 

as shown in Figure 5-16. Since there are different EVs with different battery capacity in the 

market therefore, in the model, EVs battery capacities are selected randomly among [20, 30, 

40 and 50 kWh] as presented in Figure 5-17 (a). The random initial SOC for each EV is chosen. 

Figure 5-17 (b) shows the number of EVs with different SOCs.  
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Figure 5-16 Test residential LV network. 

In this model, three variables are defined for each EV which are the departure time, arrival time 

and energy consumption during a trip. Also, for simplicity, it is assumed that each EV performs 

only one trip during a day. However, the model can be easily extended to accommodate 

multiple trips for each EV. These three variables are modelled with a probability density 

function having a normal distribution. The intervals for departure and arrival times are [7 am - 

10 am] and [16 pm - 22 pm] respectively as shown in Figure 5-17 (c). The energy consumed 

by each EV during a trip is in the range [0-10 kWh]. 

Group K 

Group E 

Group A 

Group B 

Group C 

Group D 

Group F Group G 
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Figure 5-17 Number of EVs with different (a) capacity (b) initial SOC (c) departure and arrival times. 

 

The energy consumption in the residential area in real time is presented as follows: 

𝐸𝑀𝐺(𝑡) = 𝐸ℎ𝑠(𝑡) + ∆𝐸𝑐ℎ
𝑁𝑐ℎ(𝑡) − ∆𝐸𝑑𝑖𝑠

𝑁𝑑𝑖𝑠(𝑡)                                               (5.15) 

Where 𝐸𝑀𝐺(𝑡) is the consumed energy in the residential area. 𝐸ℎ𝑠(𝑡) refers to the energy 

consumption by households’ appliances. ∆𝐸𝑐ℎ
𝑁𝑐ℎ(𝑡) and ∆𝐸𝑑𝑖𝑠

𝑁𝑑𝑖𝑠(𝑡) are the charging and 

discharging energy by EVs, respectively.  

𝐸ℎ𝑠(𝑡) = ∑𝐸ℎ
𝑇

𝑁ℎ

𝑛=1

                                                                                              (5.16) 

∆𝐸𝑐ℎ
𝑁𝑐ℎ(𝑡) =  ∑𝑃𝑐ℎ(𝑡)                                                                                  (5.17)

𝑁𝑐ℎ

𝑛=1

 

(b) 

(a) 

(c) 
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∆𝐸𝑑𝑖𝑠
𝑁𝑑𝑖𝑠(𝑡) =  ∑ 𝑃𝑑𝑖𝑠(𝑡)                                                                                (5.18)

𝑁𝑑𝑖𝑠

𝑛=1

 

Figure 5-18 shows the power consumption profile of the residential area in a typical weekday 

without EVs charging load. The peak hours occur during morning time [7:00 am - 11:00 am] 

and evening time [18:00 pm - 21:00 pm].  

 

Figure 5-18 Load profile of the residential area.  

 

 

Figure 5-19 Network power profile after implementing the proposed strategy. 

Figure 5-19 shows the power profile curve of the residential area after implementing the 

proposed strategy for each EV in the network. Some users start charging their EVs during off 

peak [12 am- 7 am] based on the SOC, departure time of each EV, this results in filling the 

valley. It can be observed that the morning and evening peak periods have been reduced by 

23% and 15 % respectively. This is the result of EVs feeding power back to the grid via V2G 
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and supplying energy to the household to power the appliances via V2H which reduced the 

energy imported from the grid.   

Table 5-5 summarises the results of this simulation. The total peak reduction during morning 

hours is 23% (15 % using V2H and 8 % using V2G) and a reduction of 15 % occurred at 

evening time (10.49 % using V2H and 4.51 % using V2G). It can be observed that EVs with 

higher initial SOC have the highest probability to feed energy back to the grid and supply the 

household appliances. Therefore, the number of EVs that start the day with 70 % is 15. These 

EVs have the highest contribution in reducing the morning peak by 7.20 % and 6.0 % during 

evening peak hours. However, the EVs with lowest initial SOC (30 %) could not deliver energy 

during both morning and evening peak periods, but they are still able to power the household 

appliances and contribute to load reduction (1.61 % at morning and 1.05 % at evening). 

Table 5-5 Contribution of EVs to energy reduction during morning and evening peak periods. 

 

5.6 Conclusion 

This chapter proposed a DR strategy for charging/discharging energy management of EVs 

equipped with bidirectional V2G and V2H functionalities. The proposed strategy aims to 

minimise the household energy consumption and EV charging costs by charging the battery 

during off-peak hours when energy prices are lower or discharging to supply home appliances 

during peak periods or support the electricity grid during peak demands which also generates 

revenue to the EV owner. The EV energy management system is designed using Q-learning to 

coordinate the charging/discharging modes considering the travel needs of the EV owner. RL 

is employed as a decision model, where the EV is defined as an agent and utilises a signal agent 

to make an optimal decision. A signal agent approach is used to reduce the number of state-

action pairs which simplifies the implementation, leads to a better performance, and reduces 

the computation time as compared to other techniques. Fuzzy reasoning is introduced to define 

SOC 
No. of 

EVs 

EVs Capacity (kWh) 
Reduction of peak loads 

Morning Evening 

20 30 40 50  By V2H By V2G By V2H By V2G 

70% 15 7 1 5 2 5.20% 4.00% 3.90% 2.10% 

60% 12 2 6 1 3 4.5% 2.40% 2.35% 2.15% 

50% 2 0 1 1 0 0.59% 0.10% 0.28% 0.17% 

40% 11 6 1 2 2 3.10% 1.50% 2.91% 0.09% 

30% 10 4 2 4 0 1.61% 0.00% 1.05% 0.00% 

Total 50 19 11 13 7 
15.00% 8.00% 10.49% 4.51% 

23% 15% 
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the current state based on the input variables and evaluate the random action that the agent 

could take as a reward function. Fuzzy logic-based implementation of the state and reward 

function overcomes the limitation of rules-based technique (crisp values) and leads to a better 

performance. The proposed strategy was also successfully applied to a fleet of EVs of a 

simulated residential area. The results show that the scheduled charging load can contribute to 

reducing peak loads by 23 % at morning and 15 % at evening hours.  
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Chapter 6 Optimal V2G Control for 

Supplementary Frequency Regulation  

 

6.1 Introduction  

The raising penetration of intermittent RESs in the power grid causes fluctuations in the 

generation side and this results in power mismatch between supply and demand leading to 

system frequency deviations. In addition, RESs such as wind power generators, are composed 

of power electronic converters, and when decoupled from the electricity grid they contribute 

to the reduction of the total power system inertia, thus affecting the overall dynamic stability 

of the system [77], [78].  

Utility-scale Battery Energy Storage Systems (BESS) are a promising technology option to 

enhance the reliability and stability of the electricity grid and a key enabler for the transition 

towards a greener and reliable energy landscape. Owing to their rapid response time, BESSs 

are particularly well-suited for frequency regulation but can also provide other functions such 

as ramping, arbitrage and load following. Several recent studies have discussed the potential 

impact of BESS integration on the power grid’s stability [79], [80].  

The wide-scale adoption of EVs can pose great challenges to the power system operation, 

namely increasing peak demand, stress on the transmission lines, and impacting the power 

system security. V2G technology enables EVs to activity participate in the demand side 

management and contribute to frequency response services for grid stability enhancement. In 

this way, EVs to serve as mobile battery storage devices with a bidirectional power flow. EVs 

can contribute to suppressing the frequency deviation by compensating the supply-demand 

mismatch caused by intermittent energy sources such as wind and solar energy [82]. In 

addition, to the fast response of the EV battery, makes the EVs more attractive to provide 

various ancillary services [83]. 

Several V2G pilot projects have been carried out across the world over the past few years. 

These V2G technologies have also been adopted by the world’s largest car manufacturers and 

are already in the marketplace. In the UK, Vehicle to Grid Britain (V2GB) project evaluates 

the long-term integration of V2G into the UK’s utility network as well as the early opportunities 

for this technology in the UK power markets, offering services to the System Operator (SO), 
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mainly Firm Frequency Response (FFR) [84]. In Italy, Fiat Chrysler Automobiles (FCA), in 

partnership with ENGIE, has started the first phase of its V2G pilot project which will use EVs’ 

batteries to provide grid services [85]. 

The participation of EVs in the grid frequency regulation has been the subject of intensive 

research in recent years. In [86], the authors focused mainly on the EV contributions for 

primary frequency control to enable a secure and large-scale integration of intermittent RESs. 

In [87], the authors proposed a Load Frequency Control (LFC) strategy based on V2G 

technology. The simulation results show how the V2G power control can be applied to 

compensate for the inadequate LFC capacity and thereby to improve the frequency stability of 

power grids. In [88], the stability of the LFC system in a microgrid with EVs and 

communication delay is investigated. In [89], the authors analysed the impact of the integration 

of EVs and RESs on the grid stability. A standard IEEE 13-bus test feeder is used in this study 

under a number of scenarios which are critical for the grid stability. In [81], a droop-based 

control scheme has been developed to adjust the V2G power of the EV battery according to the 

frequency signal. A V2G control was proposed in [90] to enable EVs to actively participate in 

frequency regulation considering high frequency regulating signals. The authors in [91] 

developed a power model of EVs for effective frequency regulation considering wide-scale 

wind energy integration. 

However, the storage capacity of a single EV’s battery cannot provide frequency regulation 

services. Thus, a V2G aggregator agent is designated as a mediator between the utility 

network’s operator and the fleet of EVs providing grid ancillary services. The V2G aggregator 

plays an important role in managing the charging and discharging of each EV participated in 

frequency regulation to ensure the satisfaction of EVs’ driving demand and optimise the 

tracking performance of frequency control signal [92]. Thus, the optimal dispatch strategy is 

crucial for the V2G aggregator to ensure that the EV driving needs are fulfilled while providing 

optimal frequency regulation to the power grid. 

The dispatching strategy for V2G aggregator participating in frequency regulation is currently 

a research hotspot. Some researchers focused on proposing dispatch strategies based on 

economy problems to optimise the monetary benefits of EV owners or EV aggregators [93]–

[96]. In [93], the authors assessed the economic profits of EVs participating in the frequency 

regulation markets from the perspective of the EV owner. The simulation results show that the 

EV owner can make an annual profit ranging between €100 and €1100 when participating in 
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frequency regulation. In [94], a Mixed Integer Linear Programming (MILP) is used to optimise 

the daily benefits gained by EV users from providing frequency regulation. In [95], the 

expected V2G incomes from participating in frequency regulation has been estimated 

considering the EV battery price. The results show that the estimated benefits exceed the EV 

battery prices in the current markets indicating that V2G regulation is an economically viable 

grid service. Nevertheless, these studies mainly focused on benefits and costs from the 

electricity market, where the regulation tasks and the charging demand of the battery were not 

considered. 

Other studies have focused on the optimal dispatching strategies considering the capacity of 

EVs participating in frequency regulation. In [97], a queuing network model is used to predict 

the number of EVs to estimate the energy storage capacity required for frequency regulation 

based on a constant charging power for each EV. In [98], an optimal dispatch strategy for V2G 

aggregator is proposed to satisfy the driving demands of EVs and maximise the economic 

benefits of the aggregator while providing frequency regulation. However, the expected SOC 

of the EV battery was considered as an inequality constraint under which the scheduled 

charging of EVs could not be performed by the proposed optimal strategy. In [99], a V2G 

control strategy is proposed to achieve the frequency regulation considering the expected SOC 

levels of EV batteries while providing real-time adjustments of their scheduled V2G power. 

However, these adjustments on the V2G power reduce the EV battery capacity to perform 

frequency regulation. 

Several studies have focussed on the design of optimal V2G control strategies for EVs to 

maximise the frequency regulation capacity and maintaining SOC levels within the desirable 

range [81] [100][101] [102]. An optimal dispatch strategy is proposed in [81] using the modern 

interior point optimisation method to enhance EVs contribution in SFR considering the driving 

needs of EV owners. The dispatch signal is fairly distributed from the control centre among 

EVs using the Area Control Error (ACE) and Area Regulation Requirement (ARR) criteria. In 

[100], a dynamic strategy for EV frequency regulation is proposed considering the driving 

patterns of EV owners and the EV charging/discharging power is regulated based on the 

frequency signal. The authors in [101] and [102] proposed a real-time V2G control using a 

state-space model which offers higher computational efficiency, higher accuracy, and a lower 

real-time communication requirement. Although all previously mentioned studies have 

considered the charging demands of EVs participating in frequency response services, the 

underlying V2G control strategies are based on a forced charging process which allows EV 
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batteries to charge/discharge quickly with maximum charging/discharging power rates before 

the plug-out time (disconnection). However, this leads to other issues for both the grid and the 

EVs’ owners. For the power grid, forced charging may create a new EV charging peak demand, 

therefore imposing additional stress on the grid. This will also reduce the time during which 

EVs can offer frequency response services, since EVs will reach their maximum SOC and then 

become unable to participate in frequency regulation. For EVs’ users, the charging demands of 

EVs are not optimally satisfied, especially when ARR is dispatched for frequency regulation. 

In addition, EVs’ owners cannot use their vehicles while they are participating in frequency 

regulation, even for their essential travel needs. 

DRL combines the framework of RL with a multiple layer artificial neural network. DRL is 

most suitable for the optimal charging/discharging management of EVs connected to the 

electricity distribution grid. They have fast response and provide optimal and continuous 

control actions which is crucial for tracking the frequency of the power system in real-time. 

Multi-agent RL has been proposed for distributed EV charging coordination and fast V2G 

dispatch, considering the uncertainties and charging demands of EVs [103], However, multi-

agent RL requires setting several agents, with each agent having different actions and rewards 

therefore making the learning process more complex. Other studies have focussed on using 

Markov Decision Process (MDP) algorithms for V2G control considering the mobility of EVs, 

SOC of EVs, and the estimated/actual [104]. However, these algorithms require historical data, 

such as driving patterns and battery SOC as inputs to compute the charging/discharging 

schedules in real-time. 

In this chapter, an optimal real-time V2G control strategy is designed for EVs to perform SFR. 

The main feature that distinguishes the proposed approach from previous related works is that 

the scheduled charging power of an individual EV is optimally tracked and adjusted in real-

time to fulfil the charging demand of EV’s battery at the plug-out time without using the forced 

charging technique to maximise the frequency regulation capacity. Deep Deterministic Policy 

Gradient (DDPG), an improved class of DRL based on Deep Neural Networks (DNN) is used.  

DDPG is a model-free, off-policy actor-critic algorithm with reduced computational time. 

Furthermore, it can be used in continuous space using policy-function (actor) and Q-function 

(critic) framework, which is essential for tracking the frequency of the power system and taking 

continuous actions in response to varying load and generation. DDPG can be easily adapted to 

handle the randomness of the load disturbances and RESs.  
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6.2 Electrical Vehicles Participation in Supplementary Frequency 

Regulation (SFR) 

6.2.1 Overview of frequency response in power systems 

The grid frequency is an indicator of the balance between electricity supply and demand. If the 

total demand exceeds the total supply, then the frequency falls, while the frequency rises when 

the total supply is greater than the total demand. Thus, maintaining the frequency around the 

nominal value across the power network is of critical importance and requires a good control 

of the power output of the generator units in real time to ensure a reliable, secure and economic 

operation of the power grid. Therefore, the SFR seeks to keep the system frequency deviations 

within the normal limits.   

Figure 6-1 presents the concept of SFR in the traditional power system, where ∆𝑃𝑡𝑖𝑒 is the 

deviation occurring in tie-line power, the frequency bias constants are B, the speed regulation 

constants is R, and ∆𝑓 is the frequency deviation in the system. Where the Area Control Error 

(ACE) signal is generated as a weighted summation of the frequency deviation and the tie-line 

power changes and in general has a Gaussian type distribution with zero mean and fast 

switching between positive and negative values. Therefore, the SFR aims mainly to mitigate 

the ACE fluctuations as much as possible and maintain the frequency within an allowable limit 

by regulating the outputs of the generating units. While Area Regulation Requirement (ARR) 

refers to the supply-demand mismatch that needs to be restored by the generator units and 

generally remains positive or negative for a long period of time.  

 

Figure 6-1 SFR in the traditional power system. 
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6.2.2 Participation of EVs in SFR 

EVs with V2G technology can respond much faster to frequency response services than 

conventional generation units. Furthermore, EVs are usually utilised for about only 4 % of the 

day and are idle (parked at home or at the workplace) for the rest of time.  

When EVs participate in SFR, the signals ACE and ARR become readily available to be 

dispatched for V2G control as illustrated in Figure 6-2 (a) and Figure 6-2 (b) respectively. 

However, there are some differences between ACE and ARR which must be considered when 

they are dispatched to EVs. 

Since ACE has almost a zero-mean distribution, thus the average value of ACE is around zero 

and hence the charging demand of EVs may not be satisfied. Therefore, using ACE for 

frequency regulation will not affect EVs’ batteries SOC levels. Conversely, when ARR is 

dispatched for frequency regulation, the EVs’ batteries SOC levels will deviate from the initial 

values since ARR signal may have positive/negative mean. Consequently, EVs may lose their 

capacity for regulation which impacts the frequency stabilisation. Therefore, each of the ACE 

and ARR signals has its advantages and disadvantages when used for frequency regulation.  

 

Figure 6-2 ACE and ARR signals for regulation (a) ACE, (b) ARR. 

6.2.3 Dispatch Strategies of EVs Participating in SFR 

Recently, with the emerging V2G technology, EV dispatching strategies for SFR have been 

the subject of extensive research. Figure 6-3 illustrates the hierarchical dispatch strategy which 

has three levels: Control Centre, EV Aggregator and EVs fleet. Since the V2G power of a 

single EV battery is not large enough, mostly around 3 kW to 10 kW, EVs must be aggregated 

to participate in SFR.  
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Figure 6-3 Hierarchical control of EVs in the power system. 

➢ Dispatch strategy in the control centre 

To minimise the energy mismatch between demand and supply as much as possible, the 

regulation signals (ACE or ARR) are dispatched to the generating units and EVs performing 

frequency regulation. While the regulation dispatch to EVs depends on many factors, such as 

the RES generation, the capacity of the generator units and the frequency regulation capacity 

(FRC) of EVs. Therefore, the dispatch regulation task to an EV aggregator from the control 

centre is formulated as: 

𝑃𝑡
𝐴𝐺 = 𝐾 × {

max(𝑆𝑡 , −𝐶𝑡
𝑢𝑝
, ∆𝑓 ≤ 0)

min(𝑆𝑡 , 𝐶𝑡
𝑑𝑜𝑤𝑛, ∆𝑓 > 0 )

                                                          (6.1) 

Where 𝑆𝑡 is either the ACE or ARR signal at time 𝑡, 𝑃𝑡
𝐴𝐺 indicates the dispatch regulation task 

undertaken via an individual EV aggregator, 𝐾 is a ratio that determines the proportion dispatch 

based on which the EVs aggregator undertakes frequency regulation and takes a value between 

0 and 1. 𝐶𝑡
𝑢𝑝

and 𝐶𝑡
𝑑𝑜𝑤𝑛 represent the total capacity of regulation-up and -down uploaded by 

the EV aggregator to the control centre respectively, which can be calculated by adding up the 

FRC of all EV charging stations (𝐶𝑗,𝑡
𝑢𝑝
, 𝐶𝑗,𝑡

𝑑𝑜𝑤𝑛)  as follows: 

{
 
 

 
 𝐶𝑡

𝑢𝑝
=∑ 𝐶𝑗,𝑡

𝑢𝑝
          

𝐽

𝑗=1

𝐶𝑡
𝑑𝑜𝑤𝑛 =∑ 𝐶𝑗,𝑡

𝑑𝑜𝑤𝑛
𝐽

𝑗=1

                                                                                  (6.2) 
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➢ Dispatch strategy in the EV aggregator 

The role of the aggregator is to facilitate the integration of EVs in the electricity market. The 

aggregator agent acts as a commercial middleman or intermediary between EVs and the power 

grid. The aggregator receives the frequency control signal from the control centre and sends 

the power capacity collected from EVs back to the control centre. The aggregator then 

dispatches the charging or discharging commands to each EV considering the frequency 

control signals. Therefore, the grid operator (i.e. control centre) communicates with the 

aggregator agents only, and it does not need to manage each individual EV, as shown in Figure 

6.2. 

Once the regulation power signal reaches the EV aggregator from the control centre, the 

regulation power must be distributed proportionally among the charging stations based on their 

corresponding FRCs uploaded by the aggregator, the regulation power of each charging station 

is presented as follow: 

𝑃𝑗,𝑡
𝑠𝑡 = 

{
 
 

 
 𝑃𝑡

𝐴𝐺 ×
𝐶𝑗,𝑡
𝑢𝑝

𝐶𝑡
𝑢𝑝           𝑃𝑡

𝐴𝐺 ≤ 0 

𝑃𝑡
𝐴𝐺 ×

𝐶𝑗,𝑡
𝑑𝑜𝑤𝑛

𝐶𝑡
𝑑𝑜𝑤𝑛       𝑃𝑡

𝐴𝐺 > 0

                                                               (6.3) 

Where 𝑃𝑗,𝑡
𝑠𝑡 denotes the power regulation that needs to be provided by the 𝑗𝑡ℎ EV charging 

station at time 𝑡. 

➢ Dispatch strategy in EV charging stations 

In the charging station, the regulation power will be distributed to each EV based on the amount 

of FRC achieved in the previous time step: 

∆𝑃𝑖,𝑡
𝑟𝑒𝑔

= 

{
 
 

 
 𝑃𝑗,𝑡

𝑠𝑡 ×
𝐶𝑖,𝑡
𝑢𝑝

𝐶𝑗,𝑡
𝑢𝑝           𝑃𝑗,𝑡

𝑠𝑡 ≤ 0 

𝑃𝑗,𝑡
𝑠𝑡 ×

𝐶𝑖,𝑡
𝑑𝑜𝑤𝑛

𝐶𝑗,𝑡
𝑑𝑜𝑤𝑛      𝑃𝑗,𝑡

𝑠𝑡 > 0

                                                            (6.4) 

Where ∆𝑃𝑖,𝑡
𝑟𝑒𝑔

 denotes the power deviation for the regulation of the 𝑖𝑡ℎ EV at time 𝑡 and 

𝐶𝑗,𝑡
𝑢𝑝
/𝐶𝑗,𝑡

𝑑𝑜𝑤𝑛 is the total capacity regulation-up/regulation-down of the charging station, and can 

be calculated as follows: 
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{
 

 𝐶𝑗,𝑡
𝑢𝑝
= ∑ 𝐶𝑖,𝑡

𝑢𝑝
𝐼

𝑖=1
        

𝐶𝑗,𝑡
𝑑𝑜𝑤𝑛 = ∑ 𝐶𝑖,𝑡

𝑑𝑜𝑤𝑛
𝐼

𝑖=1

                                                                                   (6.5) 

Where 

{
𝐶𝑖,𝑡
𝑢𝑝
    = 𝑃𝑚𝑎𝑥 + 𝑃𝑖,𝑡

𝐶𝑖,𝑡
𝑑𝑜𝑤𝑛 = 𝑃𝑚𝑎𝑥 − 𝑃𝑖,𝑡

                                                                                     (6.6) 

With reference to as shown in Figure 6-4, when the V2G power is positive (negative), the FRC 

of regulation-up is higher (lower) than the FRC of regulation-down. Therefore, the regulation 

task, whether regulation-up or regulation-down, depends mainly on the corresponding FRC. 

This can lead to a deviation in the SOC of the EV battery from the expected level. To this end, 

the V2G power must be continuously regulated to ensure that the expected charging demands 

of EVs owners are satisfied while simultaneously providing frequency regulation services. 

 

 

Figure 6-4 Available frequency regulation capacity of an individual EV. 

6.3 Deep Reinforcement Learning for V2G Control 

6.3.1 V2G Control Based on DDPG 

The uncertain dispatches (ACE or ARR) from the control centre can be different since EVs 

have different FRCs. Consequently, this results in a change of the battery SOC from the 

expected level. Therefore, the Scheduled Charging/discharging Power (SCP) should be 

continuously regulated in real-time to satisfy the EV’s charging demand. 

However, when regulation-up is dispatched, the SCP needs to be increased for the next step, 

leading to an increase of the real-time V2G power. Consequently, the FRC of the EV will 

increase for regulation-up and will decrease for regulation-down. Conversely, when the SCP 
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decreases due to performing regulation-down, the FRC of the EV will decrease/increase for 

regulation-up/regulation-down. When the SCP reaches the maximum V2G power, EVs cannot 

perform SFR since, in this case, they have no capacity for regulation-down and performing 

regulation-up leads to a further loss in the battery SOC. Thus, in such a scenario, the only 

option is to charge the EV battery. Similarly, if the SCP reaches the negative maximum of V2G 

power, the EV battery is unable to perform SFR either. 

Normally, when an EV is not participating in SFC, the expected battery charging level can be 

achieved by charging the battery under the Expected Charging Power (ECP). Thus, the 

expected SOC of the EV battery is defined as: 

𝑆𝑂𝐶𝑖,𝑘
𝑒𝑥𝑝
|
𝑃𝑖
𝑒𝑐𝑝 = 𝑆𝑂𝐶𝑖

𝑖𝑛𝑖𝑡 +
∆𝑘. 𝑃𝑖

𝑒𝑐𝑝

𝐸𝑖
𝑟𝑎𝑡                                                              (6.8) 

Where the ECP can be calculated as: 

𝑃𝑖
𝑒𝑐𝑝

= 
(𝑆𝑂𝐶𝑖

𝑒𝑥𝑝
− 𝑆𝑂𝐶𝑖

𝑖𝑛𝑖𝑡)𝐸𝑖
𝑟𝑎𝑡

𝑡𝑜𝑢𝑡 − 𝑡𝑖𝑛
                                                                 (6.9) 

𝑆𝑂𝐶𝑖,𝑘
𝑒𝑥𝑝
|
𝑃𝑖
𝑒𝑐𝑝 denotes the real-time expected battery SOC undertaking only ECP, 𝐸𝑖

𝑟𝑎𝑡 is the 

capacity of the 𝑖𝑡ℎ EV battery. 𝑆𝑂𝐶𝑖
𝑒𝑥𝑝

 and 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 are the predefined expected SOC and initial 

SOC of 𝑖𝑡ℎ  EV, respectively, ∆𝑘 represents the time step for adjusting SCP, 𝑡𝑜𝑢𝑡 and 𝑡𝑖𝑛  are 

the plug-out and plug-in times, respectively.   

However, when the EV is performing SFC, its battery’s SOC of its battery will change based 

on the regulation undertaken and the scheduled charging power and can be calculated in real 

time as:  

𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔 = 𝑆𝑂𝐶𝑖
𝑖𝑛𝑖𝑡 +

∆𝑡. ∆𝑃𝑖,𝑡
𝑟𝑒𝑔

 +  ∆𝑘. 𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑

𝐸𝑖
𝑟𝑎𝑡                         (6.10) 

Where 𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔 is the actual battery SOC undertaking regulation and SCP, 𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑 

represents the SCP at time 𝑘 and ∆𝑡 is the time step for regulation. 

In order to achieve the charging demand of EV participating frequency regulation at the plug-

out time without the need for forced charging process, the expected battery SOC (𝑆𝑂𝐶𝑖,𝑘
𝑒𝑥𝑝
|
𝑃𝑖
𝑒𝑐𝑝) 

and the actual battery level (𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔) should be tracked in real-time. The SCP is then 
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continuously adjusted to minimise the difference between the actual SOC and expected SOC 

of the EV battery.  

Therefore, the objective function of the optimal V2G closed-loop control is a function of the 

change in SCP (∆𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑) and can be expressed as:  

min 𝑓(∆𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑) =  |

∆𝑡 × ∆𝑃𝑖,𝑡
𝑟𝑒𝑔

 +  ∆𝑘(𝑃𝑖,𝑘−1
𝑠𝑐ℎ𝑑 + ∆𝑃𝑖,𝑘

𝑠𝑐ℎ𝑑) − ∆𝑘 × 𝑃𝑖
𝑒𝑐𝑝

𝐸𝑖
𝑟𝑎𝑡 |    (6.11) 

 

Where  ∆𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑 is the change in SCP of the ith EV at time 𝑘 and 𝑃𝑖,𝑘−1

𝑠𝑐ℎ𝑑  is the SCP at time 𝑘 −

1. 

Therefore, the objective of the DRL-based V2G control agent is to provide optimal actions, 

which is the scheduled charging power of the EV battery to minimise the objective function 

given by Equation (6.11). The DDPG algorithm employing the actor-critic approach is used to 

solve the Q-function of Equation (6.7), The actor network generates a V2G control action, 

where the quality of the taken action will be evaluated by the critic network. The actor network 

takes the vector state 𝑠𝑘 of  𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔 , difference between the actual and expected SOCs 

of the EV battery as an error 𝑒𝑘, and its integral ∫ 𝑒𝑘 . 𝑑𝑘 as input, and directly generates a 

continuous action 𝑎𝑘 as the deviation of SCP (∆𝑃𝑖,𝑘
𝑠𝑐ℎ𝑑). The critic network, on the other hand, 

receives the state 𝑠𝑘 and the action 𝜇(𝑠𝑘|𝜃
𝜇) as input and produces a scalar Q-value 

(𝑄(𝑠𝑘, 𝑎𝑘|𝜃
𝑄)) as shown in Figure 6-5.  
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Figure 6-5 Architecture of the actor and critic networks. 

To evaluate the performance of the V2G control with the accumulated reward, the reward 

function  𝑟𝑘 in the DDPG algorithm is considered as:   

𝑟𝑘 = {

Positive reward (+𝑅𝑝)  ∀ |𝑒𝑘| ∈ [0, 0.05]

Negative reward (−𝑅𝑛) ∀ |𝑒𝑘| ∉ [0, 0.05]

Large penalty (−𝑅𝑒)       ∀ 𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔 ∈ [20, 80] 
           (6.12) 

Where 𝑆𝑂𝐶𝑖,𝑘|𝑃𝑖
𝑠𝑐ℎ𝑑,𝑃𝑖

𝑟𝑒𝑔 is the actual battery level of the EV, and 𝑒𝑘 represents the error, which 

is the difference between the actual and expected SOCs of the EV battery. When training the 

DDPG agent, 𝑀 episodes will be repeated, while each episode consists 𝑘 steps corresponding 

to the instants at which the agent-environment interactions take place. The training episodes or 

scenarios are created by selecting random variables to initialise the environment. The training 

procedure of the DDPG agent is described by the pseudo-code presented in Table 6-1. 
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Table 6-1 Pseudo-code of the DDPG algorithm. 

 

6.4 Results and Discussion 

Two-area interconnected power system is used for simulation, which has been extensively used 

to simulate the participation of EVs in frequency regulation in the literature. This is due to its 

simplicity and effectiveness in capturing the dynamic behaviour of the system, where the power 

system is modelled using transfer functions that are particularly well-suited for frequency 

regulation analysis. The two-area interconnected power system and the thermal power plant 

model, from [90] [100] , are shown in Figure 6-6 and Figure 6-7 respectively. The parameter 

values are listed in Table 6-2 [90]. The EVs are assumed to be connected to Area A. The 

random load and wind turbine power deviations follow a normal distribution with the zero 

mean as presented in Figure 6-8 and Figure 6-9, respectively. 

Table 6-2 Parameters of two areas power system.  

 

 

 

 

 

 

1:  Initialise critic 𝑄(𝑠𝑘, 𝑎𝑘|𝜃
𝑄) and actor 𝜇(𝑠𝑘|𝜃

𝜇) networks.  

2:  Initialise target networks 𝑄′(𝑠, 𝑎|𝜃𝑄
′
) and 𝜇′(𝑠|𝜃𝜇

′
) with traditional networks’ parameters 𝜃𝑄 and 𝜃𝜇    

3:  Set up empty reply buffer 𝒟. 

4:  for episode = 1, 2,⋯ ,𝑀, do 

5:      Generate random values for the environment’s variables. 

6:      Initialise the environment by simulating generated variables. 

7:      observe the initial state variables. 

8:      for 𝑘 = 1, 2,⋯ , 𝐾, do 

9:          Select the action using 𝑎𝑘 = 𝜇(𝑠𝑘|𝜃
𝜇) +𝒩(𝜎)   

10:        Take action and receive the immediate reward 𝑟𝑘 and the next state 𝑠𝑘+1. 

11:        Store tuples (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) in 𝒟. 

12:        Sample a random minibatch of tuples from 𝒟. 

13:        set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑠𝑖+1, 𝜇

′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄

′
) 

14:        Update critic network with the loss function:   𝐿(𝜃𝑄) =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2𝑁

𝑖=1    

15:        Update actor networks using sampled policy gradient:  ∇𝜃𝜇𝐽 ≈
1

𝑁
∑ (∇𝑎𝑄(𝑠𝑖 , 𝑎|𝜃

𝑄)|𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠𝑖|𝜃
𝜇))   𝑁

𝑖=1  

16:        Update target networks using: {
𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′                           

17:     end for 

18: end for 

Parameters Area A Area B 

Maximum load capacity (MW) 20,000 10,000 

Proportional and integral gains 10,0.01 1,0.01 

Frequency regulation sample time (s) 4 -- 

Scheduled charging power sample time(s) 60 -- 

Frequency bias factor (pu/Hz) 0.15 0.075 

Inertia constant (pu. s) 0.32 0.16 

Load damping coefficient (pu/Hz) 0.04 0.02 

Dead band of primary frequency detection (s) 0.033 0.033 

Communication delay (s) 1 1 

Dead band of ACE (MW) 10 10 
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Figure 6-6 Two-area power system model [100]. 

 

 

Figure 6-7 Thermal power generator for frequency control [100]. 

 

Figure 6-8 Load profile in Area A, adapted form [100]. 
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Figure 6-9 Random wind turbine power fluctuations, adapted form [100]. 

In this simulation study, the EV aggregator is assumed to manage 100 EV charging stations 

and each station accommodates 500 EVs, as illustrated in Table 6-3. The EVs initial SOCs, the 

expected SOCs, arrival times, and departure times are generated randomly using Monte Carlo 

simulation. Since the expected SOC levels depend on the driving behaviour of the EV owners, 

thus in this chapter, EVs are categorised into three types;  

▪ Type I refers to those EVs that need to be charged. 

▪ Type II are EVs that need to be discharged (selling energy). 

▪ Type III refers to EVs whose owners are not interested in charging from the utility grid 

or selling energy to the grid.   

The other parameters associated to EVs’ batteries, such as rated capacity, higher/lower limit of 

SOC, and maximum charging/discharging power are also given in Table 6-3. 

Table 6-3 EVs Parameters used in the simulations. 

 

 

 

 

 

 

 

 

Parameters 

Total number of charging stations 100 

Total number of EVs in charging 

station 

500 

Number of EVs of Type I 350 

Number of EVs of Type II 100 

Number of EVs of Type III 50 

Arriving time (h) Time ~ N (9,0.1) 

Departure time (h) Time ~ N (16,0.1) 

Initial SOC for Type I  SOC ~ N (0.4,0.01), SOC ∈ [0.3,0.5] 

Initial SOC for Type II  SOC ~ N (0.7,0.01), SOC ∈ [0.6,0.8] 

Initial SOC for Type III  SOC ~ N (0.6,0.01), SOC ∈ [0.5,0.8] 

Expected SOC for Type I  SOC ~ N (0.7,0.01), SOC ∈ [0.6,0.8] 

Expected SOC for Type II  SOC ~ N (0.4,0.01), SOC ∈ [0.3,0.5] 

Rated capacity of EV battery (kWh) [24, 28, 32, 36, 40] 

Rated charging and discharging 

power (kW) 

7 

Charging/discharging efficiency 0.9 

SOC of EV battery limits (p.u) 0.8/0.2 
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To evaluate the effectiveness of the proposed dispatch strategy denoted as CS3, the results have 

been compared to two dispatching strategies from the literature.  The first dispatch strategy is 

proposed in [99] and is termed CS1, which adjusts the SCP of the EV hourly to achieve the 

expected SOC level while participating in frequency regulation. The second dispatch strategy 

is proposed in [100] (referred to as CS2), which aims to satisfy the driving demand of EVs’ 

owners while performing frequency regulation using the forced-charging method.     

6.4.1 Impacts of the proposed V2G strategy on the EV battery 

To evaluate the robustness of the proposed V2G control strategy, the dispatch signals ACE and 

AAR received from the control centre and implemented on the chosen EVs are simulated with 

large fluctuations and large mean values respectively and the results are compared to other 

strategies. 

For EVs of Type I, the owners chose to charge their EVs’ batteries to the upper SOC level. 

Therefore, the proposed V2G strategy has been tested on this type of EVs by dispatching 

regulation using ACE with zero-mean and higher amplitude, and large negative-mean of ARR 

as shown in Figure 6-10(a) and Figure 6-10(b), respectively. 

Figure 6-10(c) and Figure 6-10(d) show the real-time SCP adjustments for the EV to satisfy 

the charging demand. Under CS0 (basic strategy), the SCP of the EV remains constant all the 

time while the EV is participating in frequency regulation. This leads to a poor performance 

while trying to fulfil the expected charging demand of the EV before the plug-out time as shown 

in Figure 6-10(e) and Figure 6-10(f). While using CS1, the EV is losing its capacity for 

regulation-down, and this is because of the increase in SCP at each hour to compensate for the 

accumulated decrement of the EV’s battery storage due to a large negative mean of ARR, even 

though it is not able to achieve the desired SOC. The forced charging method is used in CS2, 

where the EV can participate in the frequency regulation as needed and then charging at the 

maximum rate (7 kWh) to reach the expected SOC. Although the use of this technique can 

satisfy the driving demand of the EV, but it has some disadvantages. During the period of 

charging at the maximum rate, the EV will lose its capacity for the regulation-down leading to 

a poor performance in the quality of EVs’ participation in frequency regulation. On the other 

hand, the forced charging may cause a new EV charging peak demand, therefore imposing 

additional stress on the grid. In contrast to CS2, CS3 can keep the EV’s capacity for regulation 

up and down throughout the plug-in period by continuously adjusting the SCP while 

considering the expected charging demand of the EV at plug-out time. 
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Figure 6-10 Implementation of ACE and ARR signals on EVs of Type I; (a) ACE dispatch (b) ARR dispatch (c) 

SCP of Type I under ACE (d) SCP of type I under ARR (e) SOC battery of Type I under ACE (f) SOC battery 

of Type I under ARR. 

For Type II, EV owners may prefer to trade the extra energy stored in the EV battery with the 

utility grid, especially when the SOC is more than enough for travel needs. Therefore, this type 

of EVs may choose to discharge the battery’s stored energy to the predefined SOC level. The 

dispatched regulation tasks using ACE and ARR are presented in Figure 6-11(a) and Figure 

6-11(b), respectively. It can be observed that CS3 has advantages over CS0 and CS1 as it can 

participate in the regulation until the departure time due to its ability to keep the capacity for 

regulation-up as shown in Figure 6-11(c) and Figure 6-11(d). In addition, as shown in Figure 

6-11(e) and Figure 6-11(f), CS3 can guarantee the satisfaction of the charging demand, while 

CS0 and CS1 cannot fulfil the expected SOC levels when a large negative mean of ARR is 

(a) (b) 

(c) (d) 

(e) (f) 
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dispatched to the EV. Although CS2 can optimally achieve the expected SOC of the EV at the 

plug-out time as shown in Figure 6-11(e) and Figure 6-11(f), however by using this strategy, 

the EV cannot participate in regulation-up for some time due to the maximum discharging rate 

as shown in Figure 6-11(c) and Figure 6-11(d). 

    

 

Figure 6-11 Implementation of ACE and ARR signals on EVs of Type II; (a) ACE dispatch (b) ARR dispatch 

(c) SCP of Type II under ACE (d) SCP of type II under ARR (e) SOC battery of Type II under ACE (f) SOC 

battery of Type II under ARR. 

When EV owners have enough SOC in their EVs’ battery for a next trip, they may prefer to 

keep their battery at the same SOC level. However, EVs can participate in SFC during plug-in 

time provided that the same initial SOC is returned at plug-out time. The ACE and ARR 

(a) (b) 

(c) (d) 

(e) (f) 
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dispatched to this type of EV are shown in Figure 6-12(a) and Figure 6-12(b). It can be noted 

that the optimal strategy (CS3) leads to a better performance as compared to all CS0, CS1 and 

CS2 strategies considering the large fluctuations in ACE and large mean of ARR as illustrated 

in Figure 6-12(c) and Figure 6-12(d). Besides achieving the regulation task, CS2 has good 

ability to minimise the difference between the real-time and the expected SOC as shown in 

Figure 6-12(e) and Figure 6-12(f). 

   

 

Figure 6-12 Implementation of ACE and ARR signals on EVs of Type III; (a) ACE dispatch (b) ARR dispatch 

(c) SCP of Type III under ACE (d) SCP of type III under ARR (e) SOC battery of Type III under ACE (f) SOC 

battery of Type III under ARR. 

6.4.2 Impacts of EVs on grid frequency regulation  

The frequency response capacity from EVs is influenced by the travelling time. The driving 

behaviour of EV owners working from 9:00 am to 16:00 pm is likely to follow the same pattern 

(a

) 
(b) 

(c) (d) 

(e) (f) 
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every day. Therefore, a normal distribution is considered for the arrival and departure times of 

EVs as shown in Table 6-3. 

Due to this distribution of times, the total FRC of EVs, including regulation up/down capacities 

is affected by the number of the EV arrivals to the charging stations. As expected, the FRC will 

start increasing from zero and reach the maximum capacity at the arriving time according to 

the number of EV arrivals and decreasing from the maximum capacity to zero at the departure 

time according to the number of EV departures from the charging stations as shown in Figure 

6-13. The FCR of regulation-up and regulation-down will be uploaded in real-time to the 

control centre to dispatch the regulation tasks to EVs accordingly. 

 

 

Figure 6-13 FRC of regulation-up and regulation-down under different number of EVs in the charging station. 

 

The total number of EVs parked at the charging stations and able to participate in frequency 

regulation significantly influences the frequency response capacity. To assess the impact of 

EVs’ number to be used for frequency regulation, we have tested the model under different 

sizes of EV fleets. Figure 6-13 shows the frequency capacity for regulation-up and regulation-

down with different number of EVs participating in the frequency regulation. It can be observed 

that when the number of EVs is reduced to the half (250 EVs), the FRC also decreases 

accordingly, leading to a reduction in the capability of EVs for participating in frequency 

regulation.  Therefore, the larger the number of EVs participating in frequency regulation leads 

to more FRC for regulation-up and regulation-down, and therefore a better frequency 

regulation service.  

The dispatch strategy used for EVs to achieve the expected SOC can also influence the FRC. 

While considering CS1, CS2 and CS3, the regulation capacity of EVs under these strategies is 
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analysed and presented in Figure 6-14. It can be observed that EVs are gradually losing their 

FRC of regulation up and regulation down under CS1, and this reduction in FRC occurred 

because of the continuous adjusting SCP every hour to reach the EV’s charging demand at the 

departure time. It is also noted that the FRC under CS2 starts decreasing at 13:00 pm, this is 

due to the forced charging used to satisfy the expected SOC of the EVs after participating in 

frequency regulation, leading to the inability of the EVs to perform regulation-up and down 

during that time.  

 

Figure 6-14 EVs’ FRC of regulation-up and regulation-down under CS1, CS2 and CS3. 

 

In addition, to achieving the charging demand of EVs using CS3, it is also able to keep the 

capacity of EVs to participate in frequency regulation and that is because the fast adjustments 

in the SCP of EVs resulted in the best suppression of ACE, frequency deviations and generators 

units’ power as shown in Figure 6-15,  Figure 6-16and Figure 6-17 respectively.  

 

 
Figure 6-15 ACE signal after implementing CS0, CS1 and CS2.  
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Figure 6-16 System frequency deviation after implementing CS0, CS1 and CS2.  

 

 
Figure 6-17 Dispatch power allocated to generators units for frequency regulation. 

 

While considering CS1, CS2, and CS3 using ACE and ARR, the grid frequency deviation and 

ACE quality in Area A are given in Table 6-4 and Table 6-5, respectively.  The Root Mean 

Square (RMS) values of the frequency deviations and ACE are calculated and presented in 

Table 6-4 and Table 6-5 respectively, to demonstrate the improvement achieved in the 

frequency regulation of Area A using the proposed V2G control strategy. 

 

Table 6-4 Frequency Deviations in Area A. 

Strategy 
RMS of frequency 

deviation (Hz) 

Percentage of 

decrease (%) 

Basic Case 0.02784 -- 

CS1-ACE 0.02333 16.20 

CS1-ARR 0.02284 17.96 

CS2-ACE 0.02273 18.35 

CS2-ARR 0.02165 22.23 

CS3-ACE 0.02170 22.07 

CS3-ARR 0.01961 29.57 
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Table 6-5 ACE in Area A. 

Strategy RMS of ACE (MW) 
Percentage of 

decrease (%) 

Basic Case 129.52 -- 

CS1-ACE 107.81 16.76 

CS1-ARR 106.18 18.02 

CS2-ACE 101.09 21.95 

CS2-ARR 96.85 25.22 

CS3-ACE 99.54 23.15 

CS3-ARR 88.57 31.62 

 

 

Although all strategies (CS1, CS2 and CS3) were able to reduce the frequency deviation and 

ACE of the grid, there are some differences between them. Firstly, CS1-ACE and CS1-ARR 

strategies have the lowest RMS of frequency deviation (16.20 % and 17.96 %, respectively) 

and lowest RMS of ACE (16.76 % and 18.02 %, respectively). This is because when CS1 

strategy is used, the gradual adjusting in SCP causes a reduction in the regulation capacity of 

regulation-up or regulation-down throughout the plug-in period. In addition, this strategy 

exhibits poor performance in achieving the expected charging demand as discussed in Section 

6.4.1.   

CS2 has higher value of the reduction in the RMS of the frequency deviation (18.35 % and 

22.23 %) and RMS of ACE (21.95 % and 25.22 %) using CS2-ACE and CS2-ARR. It is also 

able to satisfy the driving demand of EVs’ owners. However, when compared to CS3, it can be 

noted that CS3-ACE and CS3-ARR have the highest reduction in the RMS of the frequency 

deviation (22.07 % and 29.57 %) and RMS of ACE (23.15 % and 31.62 %), besides their ability 

to optimally achieve the expected SOC levels of EVs. This is because using the proposed 

strategy, the SCP is tracking and regulating in real time according to the frequency regulation 

task and the expected SOC of the EV battery.  It is worth noting that the use of ARR signal in 

all strategies can ensure better frequency and ACE quality as compared to ACE dispatch. 

6.4.3 Impacts of different SOC distribution on regulation 

As presented in Table 6-3, a normal distribution with a variance of 0.01 is used to simulate the 

initial SOC of the EV battery. However, initial SOCs may also have a higher variance. 

Therefore, to demonstrate the impacts of different initial SOC of EV batteries on the frequency 

regulation, both normal and uniform distributions with the same mean value are considered as 

shown in Figure 6-18. Although different initial SOC distributions are applied, it can be 

observed that the regulation is maintained at the same level and the expected charging demands 

are always satisfied for all three types of EVs.  
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Figure 6-18 SOC curves for (a) Type I and (b) Type II with normal and uniform distributions. 
 

6.5 Conclusion 

This chapter proposed an optimal Vehicle-to-Grid (V2G) control strategy for Supplementary 

Frequency Regulation (SFR) considering the regulation tasks received from the control centre 

and the expected charging demands of Electric Vehicles (EVs). Deep Reinforcement Learning 

(DRL) is used for adjusting, in real-time, the scheduled charging power of the EV to satisfy the 

charging demand of the battery at plug-out time while performing frequency regulation. A 

Deep Deterministic Policy Gradient (DDPG) agent with a use of Neural Networks was utilised 

to automatically provide very fast decisions. Once the DDPG agent is trained, it can make 

decisions without a need for extensive calculations which leads to reduce the computational 

cost compared to other algorithms such as Q-learning or policy gradient methods. The 

advantages of using DDPG agent result in significantly improving the SFR of EVs and 

satisfying the preferences of EVs’ owners.   

It is worthy noted that the accuracy of this method is not evaluated. That is because the accuracy 

of DRL is not typically measured in the same way as traditional supervised learning tasks. In 

supervised learning, accuracy refers to the percentage of correctly predicted labels on a labelled 

dataset. However, in DRL, the goal is not to produce a specific output for a given input but to 

learn a policy that maximises cumulative rewards over time. 

The proposed dispatch strategy is validated on a two-area interconnected power system. In this 

study, the EV aggregator was assumed to manage 100 EV charging stations each 
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accommodating 500 EVs. The EV parameters such as arriving time, departure time, and the 

initial and the expected SOC of EV batteries are generated randomly using Monte Carlo 

method. The simulation results show an improvement in the quality of the frequency regulation 

while satisfying the charging demands of EVs.  

To evaluate the effectiveness of the proposed dispatch strategy, the results have been compared 

with two dispatching strategies from the literature.  The first dispatch strategy adjusts the SCP 

of the EV hourly to achieve the expected SOC level while participating in frequency regulation. 

The second dispatch strategy aims to satisfy the driving demand of EVs’ owners while 

performing frequency regulation using the forced-charging method. The proposed V2G 

strategy gives a better performance in achieving the expected charging demand for the EVs 

participating in SFR as compared to other strategies even under large fluctuations in the Area 

Control Error (ACE) and large negative means values in the Area Regulation Requirement 

(ARR) signals. The proposed strategy achieved highest reduction in frequency deviation 

(29.57%) and highest reduction in ACE (31.62%).    
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Chapter 7 P2P Electricity Market 

Model for a Community Microgrid with 

Price-Based Demand Response  

7.1  Introduction  

Electricity grids across the globe are undergoing a profound transformation from a rigid, fossil-

fuel based generation and distribution to a new decentralized low-carbon infrastructure. In this 

gradual shift towards the adoption of alternative, cleaner and renewable energy sources and 

smart technology, small-scale consumers have now the control over their energy consumption 

and are becoming what is known as prosumers (i.e. producers and consumers) [105]. Prosumers 

can purchase electricity from the grid and sell their energy surplus back to the grid. However, 

sell back rates or feed-in-tariffs (FiT) remunerations that prosumers receive when selling 

electricity to the utility are generally much lower than consumer tariffs for the purchase of 

electricity from the utility [106]. 

Peer-to-Peer (P2P) energy sharing, where prosumers directly trade their local energy resources 

with each other without going through an intermediate retailer, has recently emerged as a 

flexible and cost-effective energy management mechanism which is about to transform the 

traditional centralized energy market. The P2P electricity model allows prosumers and 

consumers to initially trade with one another in a local market at a domestic price and then 

trade with a retailer. The domestic price is generally bounded between the retail price and the 

export price. As a result, peers can generate revenue from P2P energy exchange regardless of 

whether they are sellers or buyers of electricity. 

The main advantage of the P2P energy exchange is that the locally generated electricity from 

renewable sources will not to be transported which will ultimately reduce transmission losses 

and the overall operation costs of the power system. Besides the monetary benefits it offers to 

consumers and prosumers, P2P electricity trading contributes substantially to increasing the 

deployment of RESs. Moreover, the adoption of P2P makes the community more resilient to 

power outages and improves electricity access to members of the community. 
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Creating a localized P2P energy market may also be beneficial to the power grid. P2P trading 

platforms enable an optimal management of decentralized generations through balancing local 

electricity demand and supply. Furthermore, an effective P2P energy trading scheme 

incentivizes end-users to consume electricity from the grid at appropriate times of the day 

which contributes to peak-load reduction. A number of P2P energy sharing pilot projects have 

been developed around the world mainly in Europe such as Piclo in the UK, Vandebron in the 

Netherland, Sonnen Community in Germany and Yeloha and Mosaic in the US. Some of these 

projects, such as Peer Energy Cloud and Smart Watts in Germany, worked on the information 

and communication technologies (ICT) to support the energy sharing. Some other projects, 

such as TransActive Grid in the US, have developed a P2P platform based on blockchain 

technology that enables members to trade energy secularly and automatically between each 

other [107]. 

Several studies focused on pricing mechanisms for P2P energy sharing. They can be classified 

in two categories: double auction model [108]–[112] and analytical model [113]–[116]. Using 

Double Auction (DA) model, the peers (sellers and buyers) can interact between each other to 

trade their energy in a step-by-step fashion as follows [117]; buyer/seller peers submit their 

bids/offers to an auctioneer, these bids/offers are then arranged in a decreasing/increasing 

order. Once bids and offers are ordered, the aggregated supply and demand curves are 

generated and intersected at an auction price. Therefore, the only peers who can engage in the 

trading process are buyers/sellers with bids greater than/offers lower than the auction price. 

While consumers with bids lower than the auction price cannot buy from prosumers with offers 

higher than the auction price, this means that the total surplus of PV generation after self-

consumption will not be completely traded within the community microgrid as discussed in 

[108]–[110]. To address this issue, continuous double auctions (CDAs) which consists of 

repeating the DA for a certain number of rounds or within a specified time are proposed in 

[111], [112]. Although CDA has a great scalability and high efficiency for distributed energy 

transactions, the pricing rule and trading strategies of the CDA have some limitations. Due to 

different trading prices for a series of P2P trading contracts, the CDA does not ensure fairness 

among peers, in the sense that buyers/sellers may pay more than/earn less than other peers 

when buying/selling the same amount of energy [118]. In addition, trading prices decided by 

the auctioneer exhibit higher variation. Therefore, the CDA model cannot offer a fairer trading 

price that will stimulate the participation of prosumers in the P2P energy trading, which is the 

main goal of an ideal trading mechanism [119].  
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An analytical model refers to pricing the energy generated from Distributed Energy Resources 

(DERs) in a local market based on certain rules, calculation methods or game theoretic 

approaches. For example, in [113], [114], a Supply Demand Ratio (SDR) is proposed as the 

ratio of the total renewable energy supply to the total net energy demand in a microgrid, where 

P2P energy prices are a function of SDR. In [115], the mid-market rate (MMR) mechanism 

provides the trading price among prosumers at the average of the selling and buying prices set 

by the retailer, with some adjustment based on the difference between the total energy 

generation and consumption within the community. The Bill Sharing (BS) mechanism 

distributes the total energy costs and income among prosumers within a community based on 

the amount of each prosumer’s energy production and consumption. However, these pricing 

mechanisms (SDR, MMR and BS) cannot guarantee that every participant in the P2P energy 

sharing market will generate economic benefits [120]. In addition, none of these pricing 

mechanisms has considered the impact of dynamic retail electricity prices on the P2P market 

as more retailers may adopt dynamic prices or implement DR programs [121]. Therefore, 

pricing mechanisms must be designed with considering dynamic retailer prices, so that 

prosumers can participate in demand response programs by scheduling and controlling their 

household appliances and energy storage via a HEMS.  

Despite the large body of literature on P2P sharing, a limited number of studies have focused 

on the participation of EVs [122]. Indeed, EVs could serve as a temporary energy storage and 

supply power to home appliances via V2H technology, and/or feed power to the utility grid 

using V2G technology when needed. Therefore, the P2P energy market may not only depend 

on the excess of power from PV generation, but also involves EVs in energy trading during 

their charging and discharging operations. To enable the participation of EVs in P2P energy 

markets, an efficient pricing strategy must be adopted to balance the interests of all the players. 

This chapter focuses on energy sharing problem within a residential community. A P2P pricing 

mechanism is proposed for a community consisting of 100 households to incentivise individual 

customers to participate in energy trading and to ensure that not a single household would be 

worse off with considering the physical network constrains. This will simultaneously generate 

revenue for the Energy Sharing Coordinator (ESC) to cover the maintenance and service 

operations costs. 
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7.2 Modelling of the Residential Microgrid Components  

7.2.1 Household categories 

As shown in Figure 7-1, electricity flow refers to the flow of electric power between buyers 

and sellers and cash flow refers to the cost involved, and income generated during the electricity 

trade. 

 

Figure 7-1 Different types of households participating in P2P energy sharing. 

 

Generally, a residential network consists of different types of dwellings, depending on what 

their premises are equipped with, such as solar PV panels, BESSs and EVs. The type of 

household 𝑖 in the residential microgrid can be categorised as 𝐻𝑗
𝑖 , 𝑗 ∈ {1,2,3,4,5,6}: 

𝐻𝑗
𝑖 =

[
 
 
 
 
 
1 1 1
1 1 0
1 0 1
1 0 0
0 0 1
0 0 0]

 
 
 
 
 

[𝑃𝑉 𝐵𝐸𝑆 𝐸𝑉]                                                                (7.1) 

Where, matrix entry 1 means household 𝑖 is equipped with the corresponding device and 0 

means the household is not equipped with the corresponding device. Note that households 

𝐻1
𝑖 , 𝐻2

𝑖 , 𝐻3
𝑖 , 𝐻4

𝑖  and 𝐻5
𝑖  could be prosumer (seller or buyer) in the residential microgrid whereas 

household 𝐻6
𝑖  is considered as a consumer (buyer only) all the time. 

Community 

Operator 

Main Grid 

Type 1 

Type 2 

Type 3 

Type 4 

Type 5 

Type 6 

Cash flow 

Electricity flow 
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7.2.2 Modelling of household components 

A. Modelling of the load and PV systems  

The energy consumption 𝐸𝐿
𝑖(t) of household 𝑖 at every time slot over the operation time is 

defined as: 

𝐸𝐿
𝑖(t) ≜ [𝐸𝐿

𝑖(1) 𝐸𝐿
𝑖(2) ⋯ 𝐸𝐿

𝑖(𝑇)]      𝑖 ∈ {1, 2, … ,𝑁}                      (7.2) 

 

Where {1, 2,⋯ , 𝑇} is the set of all time slots which are assumed to have equal interval ∆𝑡 =

5 min, 𝑇 denotes the number of time slots over the operation period, and  𝑁 represents the 

number of households in the microgrid. 

The local PV energy generation of each household during the time interval [𝑇𝑠, 𝑇𝑒] is defined 

as: 

𝐸𝑃𝑉
𝑖 (t) ≜ 𝐻𝑗

𝑖(𝑃𝑉) . [𝐸𝑃𝑉
𝑖 (𝑇𝑠 + 1), 𝐸𝑃𝑉

𝑖 (𝑇𝑠 + 2),… , 𝐸𝑃𝑉
𝑖 (𝑇𝑒) ] , 0 < 𝑇𝑠 < 𝑇𝑑 < 𝑇            (7.3)  

𝐸𝑃𝑉
𝑖 (𝑡) represents the PV generation of household 𝑖 at each time step, 𝐻𝑗

𝑖(𝑃𝑉) indicates 

whether household 𝑖 is equipped with PV or not as shown in Equation (7.1) and returns 1 if the 

household is equipped with PV and 0 otherwise. 

B. Modelling of BES 

BES enables the excess of power generated from PV to be stored and used later in the day when 

the solar PV is no longer available. The energy stored in the BES is described by following 

equation:  

𝐸𝐵𝐸𝑆
𝑖 (𝑡) = 𝐻𝑗

𝑖(𝐵𝐸𝑆) [𝐸𝐵𝐸𝑆
𝑖 (𝑡 − 1)(1 − 𝛿𝑆𝐷,𝐵𝐸𝑆

𝑖 ) + 𝑈𝐵𝐸𝑆
𝑖 𝑃𝐵𝐸𝑆,𝑐ℎ

𝑖 (𝑡)𝜇𝐵𝐸𝑆,𝑐ℎ
𝑖  

−
(1 − 𝑈𝐵𝐸𝑆

𝑖 )𝑃𝐵𝐸𝑆,𝑑𝑖𝑠
𝑖 (𝑡)

𝜇𝐵𝐸𝑆,𝑑𝑖𝑠
𝑖

]                                                                                      (7.4) 

𝐸𝐵𝐸𝑆
𝑖 (𝑡) and 𝐸𝐵𝐸𝑆

𝑖 (𝑡 − 1) represent the stored energy at time slot 𝑡 and (𝑡 − 1) respectively, 

𝛿𝑆𝐷
𝑖  is the self-discharging rate, 𝑃𝐵𝐸𝑆,𝑐ℎ

𝑖 (𝑡) and 𝑃𝐵𝐸𝑆,𝑑𝑖𝑠
𝑖 (𝑡) denote the battery charging and 

discharging rates at a given time slot 𝑡, respectively,  𝜇𝐵𝐸𝑆,𝑐ℎ
𝑖  and 𝜇𝐵𝐸𝑆,𝑑𝑖𝑠

𝑖  are the charging and 

discharging efficiencies respectively. 𝐻𝑗
𝑖(𝐵𝐸𝑆) indicates whether a BES is available at 

household 𝑖 as shown in Equation (7.1) and returns 1 if the household is equipped with BES 
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and 0 otherwise. 𝑈𝐵𝐸𝑆
𝑖  is 1 when the battery is charging and 0 when the battery is discharging. 

The SoC of the battery is defined as: 

{
𝑆𝑜𝐶𝐵𝐸𝑆

𝑖 = 
𝐸𝐵𝐸𝑆
𝑖 (𝑡)

𝐸𝐵𝐸𝑆,𝑐𝑎𝑝
𝑖

× 100%              

𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑖𝑛
𝑖 < 𝑆𝑜𝐶𝐵𝐸𝑆

𝑖 < 𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑎𝑥
𝑖

                                                          (7.5) 

Where 𝐸𝐵𝐸𝑆,𝑐𝑎𝑝
𝑖  is the maximum battery capacity, 𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑖𝑛

𝑖  and 𝑆𝑜𝐶𝐵𝐸𝑆,𝑚𝑎𝑥
𝑖  are the minimum 

and maximum SOC of the battery and are set to 20 % and 80 % respectively to avoid deep 

discharging and overcharging of the battery. 

C. Electric vehicle modelling 

The EV acts as a domestic battery storage and provides back-up power to supply the home 

appliances during short-term outages or during peak demand when electricity prices are higher. 

EV owners can participate in the P2P market by selling energy to other customers. With V2H 

technology, the EV becomes part of the smart home, and its charging-discharging operations 

are supervised by the HEMS. The energy stored in the EV battery 𝐸𝐸𝑉
𝑖 (𝑡) during the availability 

time of the EV at home is given by: 

𝐸𝐸𝑉
𝑖 (𝑡) =  𝐻𝑗

𝑖(𝐸𝑉) [𝐸𝐸𝑉
𝑖 (𝑡 − 1)(1 − 𝛿𝑆𝐷,𝐸𝑉

𝑖 ) + 𝑈𝐸𝑉
𝑖 𝑃𝐸𝑉,𝑐ℎ

𝑖 (𝑡) 𝜇𝐸𝑉,𝑐ℎ
𝑖 −

(1−𝑈𝐸𝑉
𝑖 )𝑃𝐸𝑉,𝑑𝑖𝑠

𝑖 (𝑡)

𝜇𝐸𝑉,𝑑𝑖𝑠
𝑖 ]  (7.6)  

𝑃𝐸𝑉,𝑐ℎ
𝑖 (𝑡) = 𝐸𝐸𝑉,𝑐ℎ𝑓𝑃𝑉

𝑖 (𝑡) + 𝐸𝐸𝑉,𝑏𝑓𝐺
𝑖 (𝑡) + 𝐸𝐸𝑉,𝑏𝑓𝑃2𝑃

𝑖 (𝑡), ∀𝑡 ∈ [𝑇𝑎, 𝑇𝑑]               (7.7) 

𝑃𝐸𝑉,𝑑𝑖𝑠
𝑖 (𝑡) =  𝐸𝐸𝑉,𝑡𝐻

𝑖 (𝑡) + 𝐸𝐸𝑉,𝑠𝑡𝐺
𝑖 (𝑡) + 𝐸𝐸𝑉,𝑠𝑡𝑃2𝑃

𝑖 (𝑡) , ∀𝑡 ∈ [𝑇𝑎, 𝑇𝑑]                             (7.8) 

𝐻𝑗
𝑖(𝐸𝑉) returns 1 if the household is equipped with EV and 0 otherwise. To avoid charging and 

discharging to occur at the same time, the availability of the EV for charging and discharging, 

denoted 𝑈𝐸𝑉
𝑖 , is introduced and takes the value 1 when the EV is charging and 0 when it is 

discharging. Equation (7.7) represents the charging power of the EV battery which can come 

from the PV (𝐸𝐸𝑉,𝑐ℎ𝑓𝑃𝑉
𝑖 (𝑡)), from the grid (𝐸𝐸𝑉,𝑏𝑓𝐺

𝑖 (𝑡)) or purchased from the P2P market 

(𝐸𝐸𝑉,𝑏𝑓𝑃2𝑃
𝑖 (𝑡)). Equation (7.8) represents the discharging power of the battery to supply the 

home appliances (𝐸𝐸𝑉,𝑡𝐻
𝑖 (𝑡)), to be exported to the grid (𝐸𝐸𝑉,𝑠𝑡𝐺

𝑖 (𝑡)) or to be exported to the 

P2P market (𝐸𝐸𝑉,𝑠𝑡𝑃2𝑃
𝑖 (𝑡)). The availability time of the EV is limited between the EV’s arrival 

time (𝑇𝑎) to the house and the departure time (𝑇𝑑). The SOC of the EV battery, with its charging 

and discharging limits is given by: 
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{
𝑆𝑂𝐶𝐸𝑉

𝑖 = 
𝐸𝐸𝑉
𝑖 (𝑡)

𝐸𝐸𝑉,𝑐𝑎𝑝
𝑖

× 100%                 

𝑆𝑂𝐶𝐸𝑉,𝑚𝑖𝑛
𝑖 < 𝑆𝑂𝐶𝐸𝑉

𝑖 < 𝑆𝑂𝐶𝐸𝑉,𝑚𝑎𝑥
𝑖      

                                                          (7.9) 

The energy consumed during each trip is calculated as: 

𝐸𝐸𝑉,𝑡𝑟𝑖𝑝
𝑖 = 

𝐷𝑡𝑟𝑖𝑝
𝐷𝑚𝑎𝑥

× 𝐸𝐸𝑉,𝑐𝑎𝑝
𝑖                                                                            (7.10) 

Where 𝐷𝑡𝑟𝑖𝑝  and 𝐷𝑚𝑎𝑥  represent the trip distance and the maximum distance the EV can travel 

when the battery is fully charged, respectively, 𝐸𝐸𝑉,𝑐𝑎𝑝
𝑖   denotes the maximum energy capacity 

of the EV battery. 

D. Modelling of the net energy  

Solar PV generation can be used to power the household appliances, charge the home BES and 

the EV battery. The extra power, if any, can be either sold to the P2P market and/or the main 

grid. Note that the home BES can only supply the household load and charge only from the PV 

when possible. The EV battery, on the other hand, can be charged from the PV, from the P2P 

market or the main grid and it can supply the household appliances and sell energy to the P2P 

market or the main grid. The net energy 𝐸𝑛𝑒𝑡
𝑖 (𝑡) of household 𝑖 is the difference between the 

energy supply 𝐸𝑠𝑢𝑝𝑝𝑙𝑦
𝑖 (𝑡) and demand 𝐸𝑑𝑒𝑚𝑎𝑛𝑑

𝑖 (𝑡) at each time slot.   

𝐸𝑛𝑒𝑡
𝑖 (𝑡) = 𝐸𝑑𝑒𝑚𝑎𝑛𝑑

𝑖 (𝑡) − 𝐸𝑠𝑢𝑝𝑝𝑙𝑦
𝑖 (𝑡), ∀𝑡 ∈ [0, 𝑇]                           (7.11) 

𝐸𝑑𝑒𝑚𝑎𝑛𝑑
𝑖 (𝑡) = 𝐸𝐿

𝑖(𝑡) + 𝑈𝐵𝐸𝑆
𝑖 𝑃𝐵𝐸𝑆,𝑐ℎ

𝑖 (𝑡) + 𝑈𝐸𝑉
𝑖 𝑃𝐸𝑉,𝑐ℎ

𝑖 (𝑡), ∀𝑡 ∈ [0, 𝑇]                     (7.12) 

𝐸𝑠𝑢𝑝𝑝𝑙𝑦
𝑖 (𝑡) = 𝐸𝑃𝑉

𝑖 (𝑡) + (1 − 𝑈𝐵𝐸𝑆
𝑖 )𝑃𝐵𝐸𝑆,𝑑𝑖𝑠

𝑖 (𝑡) + (1 − 𝑈𝐸𝑉
𝑖 )𝑃𝐸𝑉,𝑑𝑖𝑠

𝑖 (𝑡), ∀𝑡[0, 𝑇]         (7.13) 

Where 𝐸𝐿
𝑖(𝑡)is the household demand, 𝑃𝐵𝐸𝑆,𝑐ℎ

𝑖 (𝑡) and 𝑃𝐵𝐸𝑆,𝑑𝑖𝑠
𝑖 (𝑡) denote the battery charging 

and discharging rates at a given time slot 𝑡, respectively. 𝑃𝐸𝑉,𝑐ℎ
𝑖 (𝑡) and 𝑃𝐸𝑉,𝑑𝑖𝑠

𝑖  denote the EV 

battery charging and discharging rates, respectively. 

If 𝐸𝑛𝑒𝑡
𝑖 (𝑡) < 0 , the surplus power 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠

𝑖 (𝑡) the customer can sell is: 

𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) = −|𝐸𝑛𝑒𝑡

𝑖 (𝑡) |, ∀𝑡 ∈ [0, 𝑇]                                                       (7.14) 

If 𝐸𝑛𝑒𝑡
𝑖 (𝑡) > 0 , the deficiency power 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

𝑖 (𝑡) the customer needs to buy is: 

𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) = |𝐸𝑛𝑒𝑡

𝑖 (𝑡) |, ∀𝑡 ∈ [0, 𝑇]                                                     (7.15) 
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7.2.3 Home Energy Management System 

With HEMS, the user can monitor, control, and optimize the amount of energy generated and 

consumed in real-time, based on the customer’s preferences via a dedicated user interface. This 

enables users to actively participate in the P2P market. Thus, the HEMS should be designed to 

accommodate different types of household resources such as local generation from renewable 

RESs, BES and EV. The flowchart of Figure 7-2 describes the proposed HEMS. Generally, PV 

generation, when available, is first used to supply the household appliances. When the PV 

generation is higher than the household demand, the surplus of energy will be first stored in 

the batteries (BES or EV batteries), and the remaining will be sold to other peers in the 

microgrid. If the PV generation is lower than the household demand, the difference will be 

purchased from the P2P market if the energy price is low or provided from the batteries 

otherwise. However, when there is no PV generation, the required power for the household will 

be purchased from the P2P market if the price is low or taken from the batteries if the price in 

the P2P market is higher.  

 

Figure 7-2 Flowchart of the proposed HEMS. 

 

7.2.4 Consideration of physical network constraints 

Although the P2P energy sharing benefits both peers and the main grid, technical challenges 

such as voltage stability and overflow in the physical layer arise with the implementation of a 

P2P market with the absent of control and management process in the P2P trading. Therefore, 
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the physical network constrains must be considered to avoid the violation of voltage and 

capacity issues. In this chapter, the proposed P2P trading mechanism is also proposed with 

taking in the account of the physical network constraints.  

Consider a radial distribution network that consists of a set 𝒩 of buses and a set ℰ of 

distribution lines connecting these buses. The buses in 𝒩 are indexed by  𝒾 = 0,1,2, …𝓃, and 

denote a line in ℰ by the pair (𝒾, 𝒿)of buses it connects and the index 𝒾 denotes the bus that is 

closer to the feeder. Bus 0 denotes the feeder, which has fixed voltage but flexible power 

injection to balance the loads. For each link (𝒾, 𝒿) ∈ ℰ, let z𝒾𝒿 = r𝒾𝒿 + 𝑗x𝒾𝒿 be the impedance 

of the line (𝒾, 𝒿), where r𝒾𝒿 and x𝒾𝒿 refer to the resistance and reactance of the line.  𝑆𝒾,𝒿 =

𝑃𝒾,𝒿 + 𝑗𝑄𝒾,𝒿 is the complex power, where 𝑃𝒾,𝒿 and 𝑄𝒾,𝒿 are the real and reactive power, 

respectively. At each bus 𝒾 ∈ 𝒩, let 𝑠𝒾 = 𝑝𝒾 + 𝑗𝑞𝒾 be the complex load, 𝑉𝒾 the complex voltage 

and 𝐼𝒾,𝒿 current flowing from bus 𝒾 to bus 𝒿. As customary, we assume that the complex voltage 

𝑉0 on the feeder is given and fixed. The branch flow model, proposed in [123], models power 

flows in a steady state in a radial distribution network: for each (𝒾, 𝒿) ∈ ℰ, 

𝑃𝒾,𝒿
2 + 𝑄𝒾,𝒿

2

𝑣𝒾
= i𝒾,𝒿                                                                                             (7.16) 

𝑃𝒾,𝒿 = r𝒾,𝒿i𝒾,𝒿 + 𝑝𝒿 + ∑ 𝑃𝒿,𝓀
𝒽:(𝒿,𝓀)∈ℰ

                                                             (7.17) 

𝑄𝒾,𝒿 = x𝒾,𝒿i𝒾,𝒿 + 𝑞𝒿 + ∑ 𝑄𝒿,𝓀
𝒽:(𝒿,𝓀)∈ℰ

                                                            (7.18) 

𝑣𝒾 − 𝑣𝒿 = 2(r𝒾,𝒿𝑃𝒾,𝒿 + x𝑖,𝒿𝑄𝒾,𝒿) − (r𝒾,𝒿
2 + r𝒾,𝒿

2 )i𝑖,𝒿                                (7.19) 

Subject to: 

𝑣𝒾
𝑚𝑖𝑛 ≤ 𝑣𝒾 ≤ 𝑣𝒾

𝑚𝑎𝑥, 𝒾 = 1,… , 𝓃                                                                   (7.20) 

𝑝𝒾
𝑚𝑖𝑛 ≤ 𝑝𝒾 ≤ 𝑝𝒾

𝑚𝑎𝑥, 𝒾 = 1,… , 𝓃                                                                   (7.21) 

𝑞𝒾
𝑚𝑖𝑛 ≤ 𝑞𝒾 ≤ 𝑞𝒾

𝑚𝑎𝑥, 𝒾 = 1,… , 𝓃                                                                   (7.22) 

Where i𝑖,𝒿 = |𝐼𝒾,𝒿|
2
 , 𝑣𝒾 = |𝑉𝒾|

2. It is worth noting that the net reactive power for each bus must 

thus be calculated for each time step 𝑡. For simplicity, it was decided to find an average power 

factor for each of the buses and keep it constant for all time steps. From the given network data, 
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it was obtained that all buses maintained a constant power factor of 0.98. The reactive power 

for each house 𝒾 for each time step 𝑡 was thus calculated with: 

𝑞𝒾 = √
𝑝𝒾
2

𝑐𝑜𝑠𝜃2
− 𝑝𝒾

2 = √
𝑝𝒾
2

0.982
− 𝑝𝒾

2 , ∀𝒾 ∈ ℰ                                            (6.23) 

Figure 7.3 presents the flowchart of the proposed bus voltage and line capacity control. To 

ensure that the P2P mechanism does not violate the physical constraints (Equations (7.20)-

(7.22)), every time the Energy Sharing Coordinator (ECS) receives the selling/buying request 

from prosumers/consumers, voltage variation and line congestion are evaluated and then all 

participants receive a signal which informs them if they can still participate in the market 

without causing problems in the network. For example, one prosumer could reduce the injected 

power into the grid at a certain time due to the high risk of causing voltage problems in the 

network.  

 

Figure 7-3 Flowchart of the proposed bus voltage control strategy. 
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7.3 P2P Energy Sharing Model  

7.3.1 P2P Energy Sharing Structure 

For the P2P energy trading structure of the community microgrid, it is assumed that all 

participants are connected to one another through the bidirectional energy and information 

flows, and the whole community is linked to the utility grid via a network connection point. 

Based on this structure, the peers can trade their excess energy among themselves, instead of 

directly trading with the utility grid. As shown in Figure 7-4, the P2P sharing system is assumed 

to have two layers: a physical layer and a virtual layer. The physical layer is responsible for the 

physical connection and transfer of energy between prosumers within the community through 

a local distribution network. In addition, it is assumed that all houses are equipped with smart 

meters to collect data such as PV generation, energy consumption, SOC of the ESS and EV, 

and energy transactions with P2P market or with the utility grid. Moreover, the communication 

network is used to enable the smart meters to exchange the data.  

 

Figure 7-4 P2P energy sharing structure. 

 

The virtual layer provides a secure network environment for all the peers to have equal access 

to the P2P market. In the virtual layer, it is assumed that each participant is equipped with an 

Energy management System (EMS), which is responsible for managing the energy flow within 

the household and energy import/export on behalf of the consumer/prosumer. As shown in 
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Figure 7.3, both the trading process and the communication of information are done in a 

centralized fashion via an ESC who can communicate with each peer within the community. 

The ESC manages energy transactions, price mechanism, purchase, and sale expenses 

settlement, and interacts with the utility grid considering the physical network constrains to 

avoid the violation of voltage and capacity issues. Peers, on the other hand, will pay/gain their 

energy cost/revenue based on the amount of energy imported/exported using the predefined 

pricing mechanism. It is worth noting that this study focuses only on the application of energy 

trading in the virtual layer of the P2P energy sharing model. 

7.3.2 P2P Energy Sharing Mechanism 

The P2P energy trading mechanism is designed to motivate residents to participate in the 

energy market. The basic principle of economics states that the goods price increases when the 

demand increases and the production decreases, and vice versa. In this chapter, a new P2P 

pricing mechanism is proposed to ensure all customers in a community make economic 

benefits, in other words they will be better off compared to the traditional utility grid market. 

The proposed pricing mechanism can be applied to any P2P energy sharing model. The 

proposed mechanism does not consider only the relationship of the surplus and deficiency of 

power, but also considers the RTP of the power grid and FiT which reflect the demand of the 

power system, where the price is high during peak demand and lower during off-demand. Then 

demand response (DR) program is implemented to encourage consumers to manage their 

energy consumption, to reduce the stress on the power grid and ensure that energy exchange 

among the peers does not violate network constraints. The proposed P2P model assumes that 

(i) the internal selling and buying prices are bounded between the FiT and RTP prices and (ii) 

the buying price is higher than selling price except in the case where the energy deficiency 

equals the energy surplus, in which case the buying and selling prices are equal.  

For each time slot, the total energy surplus exported to the P2P market by 𝑛 prosumers is 

defined as: 

𝐸𝑆(𝑡) =  ∑𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡)

𝑛

𝑖=1

, ∀𝑡 ∈ [0, 𝑇]                                                          (7.24) 

The total energy deficiency purchased by 𝑚 consumers is defined as: 

𝐸𝐷(𝑡) =  ∑𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡)

𝑚

𝑖=1

, ∀𝑡 ∈ [0, 𝑇]                                                    (7.25) 
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Since the P2P prices depend on the relationship between the energy deficiency and energy 

surplus that need to be traded at the P2P market, this measure is defined by the 𝛼-ratio given 

by: 

𝛼 =  
𝐸𝐷 − 𝐸𝑆
𝐸𝐷 + 𝐸𝑆

        𝛼 ∈ [−1, 1]                                                                      (7.26) 

When  𝛼 = 0 , the surplus equals the deficiency (𝐸𝑆(t) = 𝐸𝐷(𝑡)) as shown in Figure 7-5, when 

𝛼 ≈ −1, there is no deficiency  (𝐸𝐷(t) = 0)  or the surplus is much larger than the deficiency 

(𝐸𝑆(t) ≫ 𝐸𝐷(t)) and when 𝛼 ≈  1, there is no surplus exported or the surplus is much smaller 

than the deficiency (𝐸𝑆(t) ≪ 𝐸𝐷(t)).  

 

Figure 7-5 Different values of alpha 𝛼 and among different values of surplus power 𝐸𝑆(𝑡) and deficiency power 

𝐸𝐷(𝑡). 

 

The energy price of the main grid fluctuates during the day; it is higher during peak demand 

periods and lower during off-peak periods which affects the internal P2P prices.  

Therefore, the relationship between the import and FiT prices can be expressed as: 

𝛽 =
𝑟𝑒𝑥

𝑟𝑒𝑥 + 𝑟𝑔
  , 𝑟𝑒𝑥 < 𝑟𝑔                                                                                  (7.27) 

Where 𝑟𝑔 is the RTP of the main grid and 𝑟𝑒𝑥 is the FiT.  

Therefore, the P2P market price is calculated based on (𝛼) and (𝛽) parameters as: 

 

𝑟𝑏 =

{
 
 

 
 (

𝑟𝑔−𝑟𝑒𝑥

2
)
(2−𝛽)𝑒2𝛼+𝛽𝑒−2𝛼

𝑒2𝛼+𝑒−2𝛼
+ 𝑟𝑒𝑥                              𝛼 ≥ 0   

(
𝑟𝑔−𝑟𝑒𝑥

2
)
(1+𝛽)𝑒2𝛼+(1−𝛽)𝑒−2𝛼

𝑒2𝛼+𝑒−2𝛼
+ 𝑟𝑒𝑥                       𝛼 < 0 

𝑟𝑔                                                                           𝐸𝑆(t) = 0  

              (7.28)  
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𝑟𝑠 =

{
 
 

 
 (

𝑟𝑔−𝑟𝑒𝑥

2
)
(1+𝛽)𝑒2𝛼+(1−𝛽)𝑒−2𝛼

𝑒2𝛼+𝑒−2𝛼
+ 𝑟𝑒𝑥                         𝛼 ≥ 0 

(
𝑟𝑔−𝑟𝑒𝑥

2
)
(2−𝛽)𝑒2𝛼+𝛽𝑒−2𝛼

𝑒2𝛼+𝑒−2𝛼
+ 𝑟𝑒𝑥                                𝛼 < 0  

𝑟𝑒𝑥                                                                      𝐸𝐷(t) = 0

               (7.29)  

The formulation of Equations (7.28) and (7.29) is shown in Appendix A. Figure 7-6 P2P market 

prices under the proposed price mechanism with different values of 𝛼 and 𝛽.shows the P2P 

market prices under the proposed price mechanism with three different values of RTP as FiT 

is constant throughout the day.  

 

Figure 7-6 P2P market prices under the proposed price mechanism with different values of 𝛼 and 𝛽. 

 

The main features of this price mechanism are: (i) The P2P market prices are bounded between 

the RTP and FiT. (ii) When 𝐸𝐷(t) = 𝐸𝑆(𝑡), the P2P prices are set to the Mid-Rate Ratio 

(MMR), which refers to the mean value of the RTP and FiT prices. (iii) P2P buying price is 

always higher than P2P selling price. (iv) P2P market prices are higher than MMR when 

𝐸𝐷(t) > 𝐸𝑆(𝑡), 𝛼 > 0. (v) P2P market prices are lower than MMR when 𝐸𝐷(t) < 𝐸𝑆(𝑡), 𝛼 <

0. (vi) With increasing RTP, the P2P market prices increase based on 𝛽 value, and vice versa. 

7.3.3 Cost Function 

The role of the ESC is to supervise the transactions in the P2P market. His main responsibilities 

are to set the trading rules and manage the trading activities, as well as supervise the metering, 

billing, and information sharing. After receiving a bid from a prosumer, the ESC runs the 

pricing model to obtain P2P prices based on the deficiency-surplus ratio, and RTP-FiT prices. 

At each time slot, the individual energy cost for each participant is calculated using Algorithm 

1 given in Table 7-1. During the operation, the following possible cases could occur at each 

time step: 

FiT 

Alpha (𝛼) 

𝐸𝐷(𝑡) ≪ 𝐸𝑆(𝑡) 

𝐸𝐷(𝑡) = 𝐸𝑆(𝑡) 

𝐸𝐷(𝑡) ≫ 𝐸𝑆(𝑡) 
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1. 𝐸𝐷(𝑡) > 0 and 𝐸𝑆(𝑡) = 0: When the ESC receives only the energy deficiency requests 

from consumers, he will buy energy from the main grid to meet the demand and the 

individual energy cost for each consumer 𝑖 is defined as in line (8) of Algorithm 1. 

2. 𝐸𝑆(𝑡) > 0 and 𝐸𝐷(𝑡) = 0: In this case, there is no energy deficiency request from 

consumers, thus the amount of energy surplus will be exported to the main grid under 

FiT price and the individual cost is calculated using line (11) of Algorithm 1. 

3. 𝐸𝐷(𝑡) > 𝐸𝑆(𝑡), 𝐸𝑆(𝑡) ≠ 0: When the amount of deficiency is higher than the surplus, 

then the ESC needs to buy energy from the main grid to meet the energy deficiency. In 

this case, lines (12-21) are implemented. Firstly, the amount of energy purchased from 

the grid is defined using line (13). Consequently, calculating the individual energy cost 

depends on whether the participant is buying or selling energy. Lines (16) and (17) 

calculate respectively the cost of the energy purchased from P2P market and main grid, 

and then the total individual cost is determined using line (18). For users who are selling 

energy, the profit is calculated using line (20).   

4. 𝐸𝑆(𝑡) > 𝐸𝐷(𝑡), 𝐸𝐷(𝑡) ≠ 0: In this case, the total energy surplus is greater than the total 

deficiency. Therefore, the extra energy will be sold to the main grid. The individual 

energy cost is calculated with lines (22-31).  

5. Firstly, the amount of energy sold to the main grid is determined using line (23), then 

the energy cost is calculated using line (28) which is the sum of the cost from selling 

energy to consumers (line 26) and the main grid (line 27). The individual energy cost 

for users who are buying energy from the P2P market is calculated with line (30). 

6. 𝐸𝑆(𝑡) = 𝐸𝐷(𝑡): When the total surplus meets the deficiency, the P2P selling and buying 

prices are equal. The energy cost for prosumers and consumers are calculated using 

lines (35) and (37) respectively. 
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Table 7-1 Proposed cost function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 

1: For t = 1 to 24 

2:      Read RTP (𝑟𝑔) and FiT (𝑟𝑒𝑥), number of households (N) 

3:      Receive 𝐸𝐷 and 𝐸𝑆 requests 

4:      Implement pricing model to specify 𝑟𝑏 and 𝑟𝑠 
5:      For 𝑖 =1 to 𝑁 

6:             if 𝐸𝐷(𝑡) > 0 and 𝐸𝑆(𝑡) = 0 

7:                   Calculate individual energy cost as: 

8:                   𝐶𝑖(𝑡) = 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) ∗ 𝑟𝑔                                                   

9:             elseif 𝐸𝑆(𝑡) > 0 𝑎𝑛𝑑 𝐸𝐷(𝑡) = 0 

10:                   Calculate individual energy cost as: 

11:                   𝐶𝑖(𝑡) = 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) ∗ 𝑟𝑒𝑥                                                

12:           elseif 𝐸𝐷(𝑡) > 𝐸𝑆(𝑡) and 𝐸𝑆(𝑡) ≠ 0 

13:                   𝐸𝑏𝑓𝑔(𝑡) = 𝐸𝐷(𝑡) − 𝐸𝑆(𝑡)                                                
14:                   Calculate individual energy cost as: 

15:                   if 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) > 0 

16:                        𝑐𝑏𝑓𝑃2𝑃
𝑖 (𝑡) =

𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡)∗𝐸𝑆(𝑡)∗𝑟𝑏

𝐸𝐷(𝑡)
                                

17:                        𝑐𝑏𝑓𝑔
𝑖 (𝑡) =

𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡)∗𝐸𝑏𝑓𝑔(𝑡)∗𝑟𝑔

𝐸𝐷(𝑡)
                                  

18:                        𝐶𝑖(𝑡) =  𝑐𝑏𝑓𝑃2𝑃
𝑖 (𝑡) + 𝑐𝑏𝑓𝑔

𝑖                                             

19:                   elseif   𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) > 0   

20:                        𝐶𝑖(𝑡) = 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) ∗ 𝑟𝑠                                                 

21:                   endif 

22:         elseif 𝐸𝑆(𝑡) > 𝐸𝐷(𝑡) and 𝐸𝐷(𝑡) ≠ 0                 

23:                 𝐸𝑠𝑡𝑔(𝑡) = 𝐸𝑆(𝑡) − 𝐸𝐷(𝑡)                                                     

24:                 Calculate individual cost as: 

25:                  if 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) > 0 

26:                        𝑐𝑠𝑡𝑃2𝑃
𝑖 (𝑡) =

𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡)∗𝐸𝐷(𝑡)∗𝑟𝑠

𝐸𝑆(𝑡)
                                        

27:                        𝑐𝑠𝑡𝑔
𝑖 (𝑡) =

𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡)∗𝐸𝑠𝑡𝑔(𝑡)∗𝑟𝑒𝑥

𝐸𝐷(𝑡)
                                       

28:                        𝐶𝑖(𝑡) =  𝑐𝑠𝑡𝑃2𝑃
𝑖 (𝑡) + 𝑐𝑠𝑡𝑔

𝑖 (𝑡)                                        

29:                  elseif   𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) > 0   

30:                              𝐶𝑖(𝑡) = 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) ∗ 𝑟𝑏                                    

31:                  endif 

32:          elseif 𝐸𝑆(𝑡) = 𝐸𝐷(𝑡) 
33:                  Calculate individual cost as: 

34:                  if 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) > 0 

35:                       𝐶𝑖(𝑡) = 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠
𝑖 (𝑡) ∗ 𝑟𝑠            

36:                  elseif  𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) > 0 

37:                       𝐶𝑖(𝑡) = 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖 (𝑡) ∗ 𝑟𝑏                                           

38:                  endif 

39:           endif 

40:       end 

41: end 
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7.4 Results and Discussion 

7.4.1 Simulation Setup  

In this chapter, the uncertainties in the load demand of the houses, the PV generation, and the 

flexibility of EVs are simulated using the MCS which produces 1000 scenarios of possible 

probabilities. A suitable distribution function has been assigned to each parameter of the load 

demand, PV generation and EVs. Then the input data for the MCS is extracted from the 

Probability Density Function (PDF) generated by these distribution functions.    

A. household demands  

To address the uncertainty of the household demand, the residential area with 100 households 

is firstly classified into six types  [𝐻1, 𝐻2, 𝐻3, 𝐻4,  𝐻5, 𝐻6] based on the type of household they 

own. The number of each type of these houses is extracted from the weighted uniform 

distribution as shown in Table 7-2.    

Table 7-2 Types of households 
Household Type PV BES EV Probability Density 

1 Yes Yes Yes 0.07 

2 Yes Yes No 0.1 

3 Yes No Yes 0.1 

4 Yes No No 0.18 

5 No No Yes 0.15 

6 No No No 0.4 

 

The daily household load depends on the house’s size and profile class as presented in Ofgem 

(UK’s energy regulator) report [124]. According to this report, a typical household loads 

divided into two profiles. Profile 1 is domestic unrestricted, which most homes fall under 

(60%). While Profile 2 (40%) covers Domestic Economy 7, where users have a lower off-peak 

rate at night, when they pay less for their electricity as shown in Table 7-3. The probability 

density of the household size is based on the real data extracted from [125] which presents the 

number of household size by number of bedrooms in England/London, 2011.  

Table 7-3 Typical household’s energy usage in UK 

 

 

 

 

 

 

Household Size 

Electricity Consumption (kWh) 

Profile Class 1 
Profile Class 

2 

Annual Daily 
Annu

al 

Dail

y 

1–2-bedroom 

household/flat 
1,800 5 2,400 6.7 

3–4-bedroom house 2,900 8 4,200 11.7 

5+ bedroom house 4,300 12 7,100 19.7 
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Figure 7-7 shows the weights of the uniform distribution function of each household size based 

on the number of bedrooms. Generally, peak electricity consumption occurs during morning 

hours [7:00 am-12:00 pm] when the household occupants wake up and during the evening 

[16:00 pm -21:00 pm] when the occupants start cooking, watching TV and doing other 

activities. Off-peak hours usually correspond to the period from mid-night till the morning.  

 

Figure 7-7 Distribution of household size by number of bedrooms. 

 

 

B. Probability distribution for stochastic parameters of EVs 

The availability of EVs depends on several factors, such as the EV owners’ travelling patterns 

and usage, EVs’ type, the capacities of their batteries, and the arrival and departure times. 

Therefore, it is essential to develop a comprehensive model to determine the availability of 

EVs. In this chapter, the distribution functions are used to create the PDF of all the parameters 

and variables for each EV to be used as an input to the MCS to produce different scenarios.  

➢ EVs classification 

In the UK, individual EVs based on their size and use are classified into the following four 

basic categories [81]: 

• L7e: Quadricycle-four wheels, with a maximum unladen mass of 400 kg or 550 kg for 

goods carrying vehicles.  

• M1: Passenger vehicle, four wheels up to 8 seats in addition to the driver’s seat.  

• N1: Goods-carrying vehicle, four wheels, with a maximum laden mass of 3500 kg.  

• N2: Goods-carrying vehicle, four wheels, with a maximum laden mass between 3500 

kg and 12,000 kg. 
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The real data presented in [81] regarding the number of the above four types of EVs in the UK 

in 2020 is used to create a weighted uniform distribution function. Figure 7-8 shows the PDF 

used to determine the category of each EV.   

 

Figure 7-8 Distribution of EVs categories. 

 

 

➢ Departure and arrival times  

It is assumed that the peak-hour of departure time of EVs is 8:00 am as people start leaving 

their premises, while the peak -hour of arrival time is 18:00 pm as users return home. To 

address the uncertainties, Departure and arrival times are assumed to have a Weilbull 

distribution with scale and shape parameters as shown Figure 7-9 (a) and Figure 7-9 (b), 

respectively. 

 

 

Figure 7-9 Probability density of departure and arrival times. 

 



P2P Electricity Market Model for a Community Microgrid with Price-Based Demand Response 

 144 

➢ Battery characteristics and daily travelling distance 

The random values for the rated battery capacity for each type of EV are generated based on 

the Gamma and Normal distributions to create the most suitable probability density functions 

[81]. Figure 7-10 shows the PDFs of the battery capacities for each EV’s category. For 

example, the Gamma distribution with shape set to 10.8 and scale set to 0.8 is used for L7e 

category and the battery capacity is bounded between 5 and 15 kWh.  

 

   Figure 7-10 Probability of battery capacity of EVs’ categories. 

 

According to the statistical data set published by the Department of Transport in England 2020 

[126], the distribution of daily distance is fitted as a normal distribution with the average value 

set to 39.9 km and the deviation set to 10 km to create the PDF of EV travelling distance as 

shown in Figure 7-11. 
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Figure 7-11 Probability of EV travelling distance. 

 

To specify the initial amount of EV’s SoC, it is essential to determine the energy consumption 

per kilometer. To this end, the weighted uniform distribution is used, where the distributions 

of EV energy consumption per kilometer for all types of EVs are shown in Figure 7-12 [81]. 

 

Figure 7-12 Probability of energy consumption of each EV category. 

 

➢ Initial SoC and target SoC of EVs 

To satisfy the charging demand for each EV, the target SoC of each EV is selected randomly 

using the uniform distribution [65%, 80%]. Based on the target SoC, the travelling distance 

and energy consumption per kilometer values, the initial SoC for each EV can then be 

calculated as: 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 = 𝜑𝑖  .  (𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 −
𝐶𝑘𝑊ℎ/𝑘𝑚
𝑖 × 𝐷𝑡𝑟𝑖𝑝

𝑖

𝐸𝐸𝑉,𝑐𝑎𝑝
𝑖

  )                          (7.30) 
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𝐶𝑘𝑊ℎ/𝑘𝑚
𝑖  is the energy consumption per kilometer. 𝜑𝑖  is an energy efficiency coefficient which 

is used to consider the energy loss brought by the speed change process, and it varies uniformly 

in the range of [0.9,1.0].  

C. Probability distribution for stochastic parameters of PV 

As the PV power generation is highly uncertain due to variations in the solar irradiance level 

throughout different hours of the day. Hence, the modelling of PV uncertainty can be addressed 

either directly as a PDF of the PV power yield or indirectly as a PDF related to the solar 

irradiance which is subsequently fed into a PV system model. In this chapter, A stochastic 

model of PV production is built based on the adopted historical solar irradiance data extracted 

from [127] with zero mean and standard deviation of 15%. Figure 7-13 shows one of the 

random scenarios of power generation of the PV.  

 

Figure 7-13 Stochastic PV generation. 

 

7.4.2 Evaluation of the proposed HEMS 

A. Impact HEMS on individual household demand  

In this study, it is assumed that all participants in the P2P energy sharing are equipped with a 

HEMS in their households. The key function of the HEMS is to provide energy management 

services to minimise the power consumption in the smart home. This functionality includes 

monitoring, control and management of renewable energy generation, energy storage, and 

energy consumption. HEMS also receives price signals from the utility grid and the P2P market 

and performs demand response analysis. To investigate the performance of the proposed 
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HEMS to satisfy the household demand, one scenario that has the highest probabilities of MCS 

is selected to illustrate the power profiles of the six households’ types. In Table 7-4, the details 

for this scenario are listed of each household. 

Table 7-4 Details of the six test houses. 

House 

type 

House 

load 

(kWh) 

PV 

(kWh) 

BES EV Battery 

Cap. 

(kWh) 

Initial SoC 

(%) 

Cap. 

(kWh) 

Initial SoC 

(%) 

𝐻1 19.7 4 5 40 50 39 

𝐻2 8 3 6 35 - - 

𝐻3 12 3 - - 40 37 

𝐻4 8 3 - - - - 

𝐻5 12 - - - 60 42 

𝐻6 5 - - - - - 

“-“ = not applicable, “cap.” = Capacity. 

 

By using the proposed HEMS algorithm of Figure 7-2, the energy consumption profiles of the 

selected six households throughout the day are shown in Figure 7-14 . Household Type 1 (𝐻1) 

is equipped with PV, BES and EV as shown in Table 6.2. It can be noted that, during the time 

interval [12:00 am – 6:00 am], the HEMS sends a request of energy deficiency to the ESC as 

there is no PV generation, the energy demand and the electricity price are lower as shown in 

Figure 7-14(a). At 6:00 am, the price is high, then the BES starts discharging to supply the 

household demand, until there is no deficiency energy. During [7:00 am – 9:00 am], the solar 

PV starts generating. Therefore, the household load is supplied from the PV and the surplus is 

used to charge the BES. Once the BES reaches the maximum SoC, the remaining power is 

exported to the P2P market. This occurs during the time [9:00 am- 13:00 pm]. Once the EV 

returns home, and there is still PV generation, the surplus of power is used to charge the EV 

battery till the SoC reaches 80 %. Then the surplus of power is fed back to the P2P market 

again. During the time [16:00 pm-18:00 pm], the household load reaches the peak value, thus 

the BES is used to supply the household appliances. The EV battery is discharging to sell 

energy to the P2P market during [17:00 pm- 18:00 pm], as the SoC of the EV is at its full 

capacity, and the electricity price is also high. From 18:00 pm to 22:00 pm, the EV is selling 

energy to the P2P market and supplying energy to the household load. 

 

 



P2P Electricity Market Model for a Community Microgrid with Price-Based Demand Response 

 148 

 

Figure 7-14 Random scenario of the power profiles for the six household types throughout the day under the 

proposed HEMS. 
 

  

Household Type 2 (𝐻2) sends energy deficiency request to the P2P market during [12:00 am- 

6:00 am] and [22:00 pm – 12:00 am] and exports the surplus energy during [10:00 am – 16:00 

pm] as shown in Figure 7-14 (b). Since this household type is equipped with PV and BES, the 

BES charges from the surplus of PV and then is used later to supply the household load during 

the evening peak demand.   

 For household Type 3 (𝐻3), the energy deficiency request is sent to the P2P market during 

early morning time [12:00 am-6:00 am] to supply the household appliances as there is no PV 

generation and the electricity price is lower. At 6:00 am, the electricity price becomes higher, 

hence it is better to use the EV battery to supply the household appliances. Since this household 

is not equipped with BES, the surplus energy request is sent to the P2P market during the PV 

generation [7:00 am-13:00 pm]. Once the EV returns home at 13:00 pm, the surplus power is 

(a) (b) 

(c) (d) 

(e) (f) 
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used to charge EV battery. During [16:00 pm-22:00 am], the household load is powered by 

discharging the EV battery. From 16:30 pm to 19:30 pm, the EV is utilized to sell energy to 

P2P market as there is enough SoC and the electricity price is high shown in Figure 7-14(c).  

 The load curve of household Type 4 (𝐻4) is presented in Figure 7-14(d), This household is 

equipped with solar PV only. Therefore, the surplus of energy can be sold only to the P2P 

market. When there is no PV generation, the user buys the required energy from the P2P 

market.  

 As Household Type 5 (𝐻5) owns only an EV, the household load is supplied by importing 

energy from the P2P market most of the time as shown in Figure 7-14(e). The EV battery is 

charged only during off-peak periods because energy prices are lower. While the surplus of 

energy is exported to the P2P market during [16:30 pm-18:00 pm] by discharging the EV 

battery. The evening peak demand is covered with the energy stored in the EV battery due to 

the higher electricity price.   

Household Type 6 (𝐻6) is considered as consumer all the time; hence his load is supplied by 

purchasing the required power from the P2P market as shown in Figure 7-14(f). 

To evaluate the overall performance of the proposed HEMS within the community, the average 

amount of deficit/surplus for each group of households that belongs to same type has been 

calculated over 1000 scenarios of MCS with and without implementing HEMS and presented 

in Figure 7-15. Clearly, the proposed HEMS can effectively manage the energy flow within 

each type of household and simultaneously enable the EVs to participate in P2P market.  For 

example, for households of Type 1, the average energy deficit has decreased using HEMS from 

4.6 kWh to 3.2 kWh, while the surplus energy exported to the P2P market has increased using 

HEMS from 10.9 kWh to 12.1 kWh as shown in Figure 7-15 (a) and Figure 7-15 (b), 

respectively.  
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Figure 7-15 Average amount of deficit/surplus for each group of households under 1000 scenarios of MCS. 

 

(a) Deficit and surplus power of Household Type 1. 

(b) Deficit and surplus power of Household Type 2. 

(c) Deficit and surplus power of Household Type 3. 

(d) Deficit and surplus power of Household Type 4. 

(e) Deficit and surplus power of Household Type 5. 
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B. Impacts HEMS on microgrid   

In microgrids, self-consumption of energy from renewable sources, such as photovoltaic 

panels, results in immediate positive impacts such as reduction in energy losses and mitigation 

of congestion problems in the distribution network. The self-consumption rate (SCR) (the 

amount of energy locally generated and consumed with respect to the total local generation) is 

considered as a performance measure to assess a microgrid’s ability to consume its own locally 

generated energy. Consequently, maximizing the self-consumption rate is an implicit goal in 

most microgrid settings. To this end, the self-consumption of each type of households is 

evaluated to validate the proposed HEMS.  

 

Figure 7-16  Average values of 1000 scenarios of (a) EVs’ capacities and SoCs, (b) BESs’ capacities and SoCs, 

(c) household demand, (d) SCR of Type 1, (e) SCR of Type 2, and (f) SCR of Type 3. 

(a) 

(b) 

(e) 

(d) 

(c) 

(f) 
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As the battery energy storage plays a key role in increasing the self-consumption rate by storing 

the excess of energy generated by PVs to be used later when needed. For this reason, the impact 

of different SoCs and capacities of BES and/or EVs on the SCR is analysed for the households 

of Types 1, Type 2 and Type 3, which have BES and/or EV as shown in Figure 7-16. Figure 

7-16 (a) and Figure 7-16 (b) show the average initial SoCs and capacities of the EVs’ and 

BESs’ batteries respectively throughout the 1000 scenarios of the MCS. Figure 7-16 (c) shows 

the average daily load demand of the households in the community (8.01 kWh). As the 

households that belong to Type 1 have both EV and BES, these households have the highest 

SCR (52.5 %) as shown in Figure 7-16 (d). 

 It is noted that how the lower battery capacity of the EVs influenced the SCR in the first 200 

iterations. Figure 7-16 (e) shows the SCR of the households belong to Type 2, as this type of 

households has only BESs with the small average battery capacity (4.2 kWh), the SCR is 

15.9%, while the households Type 3 has 47.3% of SCR as shown in Figure 7-16 (f), since these 

households have only EVs.  Therefore, the SCR depends mainly on the capacity of EV and 

BES batteries and their SoCs. The batteries with higher capacity and lower SoCs consume more 

energy when they are charged. Therefore, the higher capacity of batteries, the lower are the 

SoCs, and the higher self-consumption rate is. 

7.4.3 Evaluation of the Proposed P2P Price Mechanism 

One scenario with the highest possibilities is selected to evaluate dynamic performance of the 

proposed P2P price mechanism. To decide on the P2P market prices for each time slot, the ESC 

receives the total deficiency and surplus of energy in real-time from the 100 users as shown in 

Figure 7-17, and the dynamic electricity prices from the main power grid (RTP and FiT) as 

shown in Figure 7-18. Based on the total surplus and deficiency power, and the power grid 

prices, Equations (7.26) and (7.27) are used to determine the values of 𝑎 and 𝛽. Figure 7-19 

shows the variation of these parameters over one day period. Consequently, using equations 

(6.28) and (6.29), the P2P market buying and selling prices are decided as shown in Figure 

7-20. 

It is obvious that when 𝛼 = 1 (means there is no surplus of energy exported to the P2P market), 

the ESC purchases energy from the main power grid under the RTP. During [6:00 am-8:00 

am], the energy deficiency is higher than the surplus of energy, hence the P2P trading prices 

are higher than the Mid-Market Rate (MMR) price. However, when the surplus of energy is 
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higher than energy deficiency during [8:00 am- 16:00 pm], the P2P buying and selling prices 

are less than the MMR price. 

 
Figure 7-17 Surplus and deficiency power throughout a day. 

 

 

Figure 7-18 Real time price (RTP) and feed-in tariff (FiT). 

 

 

Figure 7-19 Alpha (𝛼) and Beta (𝛽) values. 
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Figure 7-20 Internal P2P prices (buying and selling prices) under the proposed mechanism. 

 

A. Comparison with other P2P models 

The performance of the proposed pricing mechanism has been compared with three existing 

P2P energy sharing mechanisms, namely, the Bill Sharing (BS), Mid-Market Rate and Supply-

Demand Ratio (SDR). A detailed description and definition of these three mechanisms is 

provided in Appendix B. The three pricing mechanisms were simulated and evaluated under 

1000 scenarios, and results of the MCS are presented in Figure 6.20 that contains the 

profits/cost of the six types of households within the community.   

From Figure 7-21, it can be observed that the proposed pricing mechanism can fairly guarantee 

the highest profit/cost for all prosumers/consumers within the community compared to other 

mechanisms as shown in Figure 7-16 (a)-(f). In terms of the overall performance, the proposed 

mechanism preformed the best with 42.1% of improvement in the economy index of all 

participants in the community. 

Although the SDR mechanism has a better overall performance (with 37.3% of the overall 

performance) for all participants than both the BS and MMR mechanisms, it does not address 

the unfairness issue among participants. The reason behind this is that, using SDR mechanism 

as discussed in Appendix B.3, the P2P selling and buying prices are set to the FiT price when 

the total amount of energy surplus exported to the P2P market is higher than the total amount 

of energy deficiency (SDR>1). This confirms why the energy profits rate for Type 1 and Type 

3 households (prosumers) is lower compared to MMR mechanism.  
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Figure 7-21 Evaluation results of three existing P2P energy sharing models (SDR, MMR and BS) under 1000 

scenarios of MCS. 

 

As for the MMR mechanism, the P2P prices are set to the average value of RTP and FiT without 

considering the amount of energy exported or imported by the participants as discussed in 

Appendix B.2. When the energy surplus exported to the P2P market is higher than the energy 

deficiency, the P2P prices under the MMR method are higher than the P2P buying and selling 

prices under the proposed mechanism and SDR. This conflicts with the basic principle of 

economics states that the goods price decreases when the production increases and the demand 

decreases, and vice versa. That is why the cost-saving rate for Type 5 and Type 6 (consumers) 

is lower under the MMR method compared to both proposed mechanism and SDR as shown in 

Figure 7-21 (e) and Figure 7-21 (f), respectively. As these households (Type 5 and Type 6) 

bought a large amount of energy with higher price compared to the buying price of the proposed 

(a) Household Type 1 (b) Household Type 2 

(c) Household Type 3 (d) Household Type 4 

(e) Household Type 5 (f) Household Type 6 
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mechanism during [8:00 am- 16:00 pm]. However, the overall performance of MMR 

mechanism is 29.6%.  

For the BS mechanism, although its overall performance was more than the conventional 

paradigm (trading with main grid) with an overall performance of 21.7% for all participants, 

some of the participants under the BS mechanism received lower income than that under the 

trading with the grid. The reason was that in the BS mechanism, the cost of electricity for a 

community is shared among the customers based on individual customer’s total energy 

consumption and export, so that the ones with larger contribution (with high surplus energy) 

were not remunerated fairly because their energy was sold to the P2P market at a price lower 

than FiT.  

B. Impacts P2P market on microgrid   

To investigate how the proposed HEMS and P2P market can smooth the electricity demand of 

the community, the same scenario (with higher probabilities) as that selected in Section B and 

C is used.  

In this scenario, the amounts of power that need to be purchased by the residential area from 

the main grid under different cases are shown in Figure 7-22, where CS0 refers to the base case 

of the total demand of all households within the community, CS1 refers to the total households’ 

demand after implementing HEMS and CS2 refers to the total demand of all households’ 

demand when participating in P2P market.  

 

Figure 7-22 Community demand that needs to be purchased from the main grid under different scenarios. 

According to Figure 7-22, the whole amount of deficit that needs to be purchased from the 

main grid under the three cases are the same during the time period [12:00 am-6:30 am]. That 

is because there is no surplus power traded in the P2P market. During the period [6:30 am – 

7:30 am], the deficit of energy that was purchased from the grid under CS1 and CS2 are the 

same. However, this amount of power is lower than that under CS0. This is because the 
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households that own batteries started to use them to supply their appliances due to higher 

electricity prices. Around 7:30 am under CS2, the households that have PVs started to export 

their surplus of energy to the P2P market. It is noted that the whole community can satisfy its 

energy demand and there is no need to purchase energy from the main grid during [7:30 am-

15:30 pm] as the P2P market covers the whole community demand. In addition, by motivating 

EV owners to participate in the P2P market during evening peak demand [16:00 pm-22:00 pm], 

they sell energy by discharging their EVs batteries and generate more revenue.  

 

Figure 7-23 Energy exported to the main grid under different scenarios. 

 

On the other hand, the amount of energy surplus exported to the main grid by all households is 

decreased by 31% as a result of using the proposed HEMS (CS1) in every household as shown 

in Figure 7-23. The P2P trading (CS2) can contribute to a further reduction of the exported 

energy (up to 43%) by sharing energy within the community. 

Overall, P2P trading enable better energy management by matching local demand and supply. 

Along with the higher local consumption of renewable energy, P2P electricity trading can help 

reduce investments related to the generation capacity and transmission infrastructure needed to 

meet peak demand. 

C. Evaluation of P2P mechanism with considering physical network constrains 

For the simulation, the 11-bus radial distribution network that proposed in [128] has been 

analysed and modified. The network consists of the six types of households with the same 

probabilities as discussed in Section II.A. The distribution of the households within the network 

is shown in a Figure 7-24. It is assumed that the bus 1 is the slack bus where the ESC is located, 

who is responsible for preventing any network constraint violation.  
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Figure 7-24 11-bus distribution system diagram. 

 

Therefore, to ensure the safe and reliable operation of the distribution network, the proposed 

P2P energy model considered the bus voltages and line capacity constraints. While the bus 

voltages do not violate the standard, which is ±5% of 1 per unit (p.u) as specified by the 

American National Standards Institute [129]. The maximum/minimum power flow of each line 

in a distribution network refers to the highest/lowest amount of electricity that can be delivered 

to/consumed at specific bus to maintain network stability and meet the electricity demand of 

the connected consumers. In this work, we assumed the maximum and minimum line power 

flows are 10 kW and −10 kW, respectively. The imported power profiles of the consumers are 

shown in Figure 7-25, while the exported power profiles of the prosumers are shown in Figure 

7-26 after implementing HEMS.   

 

 

Figure 7-25 Consumers’ energy deficiency throughout a day. 
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Figure 7-26 Prosumers’ energy surplus throughout a day. 
 

It is noted from Figure 7-27 that the voltage in the buses 2,4,5 and 10 violate the maximum 

voltage limit of 1.05 p.u. while the network constraints were not considered. According to the 

network constrains in equations 38-40 that applied on the distribution network shown in Figure 

7-24, the voltages stay inside the limits of 0.95 p.u. to 1.05 p.u. by decreasing the amount of 

power injection energy by associated prosumers in different buses as shown in Figure 7-26.   It 

is observed from Figure 7-27 that the line power flow constraints are also satisfied in the 

proposed P2P energy trading approach, where the power flow between the buses does not 

exceed the upper limit of the capacity of each line. This may protect the power line from being 

over-congested in a given system. It should be noted that the violation of these constraints may 

adversely affect the reliability and stability of a distribution system. In that context, the 

proposed trading approach will enhance the power system performance in P2P energy sharing. 

 

Figure 7-27 Bus voltages with and without considering the distribution network constraints. 
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Figure 7-28 Power flow in different lines with and without considering network constraints. 

 

7.5 Conclusion  

This chapter proposed a P2P energy sharing model for residential microgrids with stochastic 

models of different types of households equipped with PV distributed generation, EVs, and 

BESs to address the uncertainties using 1000 scenarios of the Monte-Carlo simulation. The 

P2P energy sharing mechanism is designed based on the relationships between energy demand 

and supply, and Feed-in Tariff (FiT) and Real-Time Price (RTP). Furthermore, HEMS is also 

designed to manage the energy produced and consumed within a household. The proposed 

model is simulated and evaluated on a local community of 100 households subject to 

constraints associated with household load profile, PV, EVs, BESs and market signals 

including FiT and retail prices. The simulation results show that the proposed HEMS can 

effectively manage the energy flow within each type of household and simultaneously enable 

EVs to participate in P2P market. The proposed HEMS can also increase the self-consumption 

rate within the community which depends mainly on the batteries capacity and their SoCs.  The 

results show that the effective performance of the proposed P2P pricing mechanism in 

achieving cost saving/income for consumers/prosumers with considering that not a single 

household would be worse off. This leads to motivates peers to participate in P2P energy 

trading. To validate the performance of the proposed pricing mechanism, it is evaluated by 

comparing to three popular P2P sharing mechanisms; the supply and demand ratio (SDR), mid-

market rate (MMR) and bill sharing (BS). The simulation results verify the effectiveness the 

proposed mechanism in terms the economic revenue and ensure the fairness among all peers 

considering the physical network constrains. 
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Chapter 8 Conclusions and Future 

Work 

This dissertation contributes to the development of new Demand Response (DR) management 

strategies based on machine learning techniques such as Reinforcement Learning (RL) and 

Deep Reinforcement Learning (DRL) combined with Fuzzy Logic (FL) and Neural Network 

(NN) in the smart grid.  

8.1 Main findings and contributions 

In this thesis, DR management and control strategies for smart grids have been investigated 

from the three following aspects: 

Firstly, to motivate consumers to participate in DR programs, the two conflicting objectives of 

HEMS (minimising the electricity bills and maximising the user’s satisfaction) for consumers 

are addressed in Chapter 4. Firstly, we proposed an effective DR algorithm to be utilised in 

smart homes to schedule household appliances in response to electricity prices. The design was 

of the DR approach was based on Q-learning method due to its ability to deal with dynamic 

electricity prices and different household power consumption patterns. More specifically, Q-

learning was employed to make optimal decisions to schedule the operation of household 

appliances by shifting controllable appliances from peak periods, when the electricity prices 

are high to off-peak hours when the electricity prices are lower. A human comfort-oriented 

control approach for HEMS has also been designed to increase the user’s satisfaction as much 

as possible while responding to DR schemes. Four comfort factors were used namely, the 

priority of the appliance to be shifted, the power rate of the appliances, the operating time 

interval, and the waiting time.  The simulation results presented in Chapter 4 showed that the 

proposed algorithm leads to minimising energy consumption, reducing household electricity 

bills, and maximising the user’s satisfaction.  

Secondly, Chapters 5 and 6 focused on investigating the benefits of EVs for promoting the 

implementation of DR programs in the residential sector and performing ancillary services for 

the power system such as frequency regulation. As a new type of household appliance, EVs 

can provide opportunities as an energy storage unit, where the consumers can charge their EVs 

during low-price periods and sell back the energy to the power grid during high-price periods 

using Vehicle-to-Grid (V2G) technology or supply the household loads using Vehicle-to-Home 
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(V2H) technology. In Chapter 4, an effective DR approach for V2G and V2H 

energy management using Reinforcement Learning (RL) is presented. The RL strategy based 

on a reward mechanism is used to make optimal decisions to charge or delay the charging of 

the EV battery pack and/or dispatch the stored electricity back to the grid without 

compromising the driving needs. The results presented demonstrate how the proposed DR 

strategy can effectively manage the charging/discharging schedule of the EV battery and how 

V2H and V2G can contribute to smooth the household load profile, minimise electricity bills 

and maximise revenue. In Chapter 6, we focused on the participation of EVs in the grid 

frequency response due to the ability of their batteries to provide bidirectional power flow and 

faster response. An optimal V2G control strategy is designed to allow EVs to be utilised in 

Supplementary Frequency Regulation (SFR). DRL is used for adjusting in real-time the 

scheduled charging power of the EV to satisfy the charging demand of the battery at plug-out 

time while performing frequency regulation. A Deep Deterministic Policy Gradient (DDPG) 

agent was used to automatically provide very fast decisions without a need for extensive 

calculations which has significantly reduced the computational cost. The advantages of using 

the DDPG agent has significantly improved the SFR of EVs without compromising the 

preferences of EVs’ owners. The proposed strategy has been tested on a two-area 

interconnected power system. The results showed that the proposed V2G strategy provides an 

improvement in the quality of the frequency regulation while satisfying the charging demands 

of EVs compared to other strategies existing in the literature.  

Thirdly, for further minimisation in the electricity cost of the residents, P2P energy sharing 

enables prosumers within a community to directly trade their available excess energy among 

each other. A P2P energy-sharing mechanism has been developed in Chapter 7 for a residential 

microgrid with price-based DR. The proposed P2P model was tested on a residential 

neighbourhood of 100 households subject to constraints associated with household load profile, 

PV, EVs, BESs and market signals including FiT and retail prices. The proposed P2P pricing 

mechanism achieved a cost saving/income for consumers/prosumers considering that not a 

single household would be worse off. The P2P model was compared against three popular P2P 

sharing mechanisms including the Supply and Demand Ratio (SDR), Mid-Market Rate (MMR) 

and Bill Sharing (BS) and has demonstrated superior performance.  
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8.2 Limitations of the work 

The implementation of DR programs with their application such as HEMS and P2P energy 

trading, in the residential areas faces a set of complex challenges that need to be addressed.  

The key consideration is the initial cost associated with installing HEMS and establishing P2P 

trading platforms. The financial burden of purchasing and installing smart devices, meters, and 

the required software can act as a constraint for homeowners and small-scale energy producers.  

Consumer awareness and understanding also play a significant role in the successful 

implementation of these technologies. Without a clear understanding of the benefits and 

functioning of DR programs, consumers may be unwilling to participate in these programs. 

Overcoming this knowledge gap is crucial to encourage wider adoption. 

Finally, data privacy and security are critical considerations when implementing P2P energy 

trading. The collection and sharing of sensitive energy consumption data raise concerns about 

privacy and cybersecurity. Establishing robust measures to protect data and ensure secure 

transactions is crucial for building trust among consumers and prosumers. 

8.3 Future works 

Although our research fulfils the aims of developing efficient strategies to DR management for 

the smart grid using machine learning techniques, there is still scope for further research and 

developments. 

• In Chapter 4, the Q-learning algorithm was used to provide discrete actions for 

scheduling the typical household appliances. However, this method is not applicable to 

other appliances that need to be controlled in real-time such as heaters and ACs. As the 

Q-learning algorithm deals with discrete actions, and the DDPG algorithm handles 

continuous actions. As a future work, this study can be extended to proposing a Mixed 

Deep Reinforcement Learning, which integrates the Q-learning algorithm and deep 

deterministic policy gradient (DDPG) algorithm to provide discrete-continuous hybrid 

action space. 

• In Chapter 5, we have presented a DR strategy for charging/discharging energy 

management of Electrical Vehicles (EVs) equipped with bidirectional V2G and V2H 

technologies. The proposed method is implemented under the assumption that the EVs 

are connected only to the owners’ houses. However, the EV could be connected to the 

grid at any other location such as the destination of the trip or others’ houses. As future 
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work, the proposed approach can be expanded and assessed while considering the 

mobility of the EV. Investigation of the impacts of our proposed framework considering 

the movement of the EV in the expanded large-scale model is remained on a future 

work. Regarding the EV driving schedule, it was assumed that the EV owner added the 

driving schedule to the HEMS. However, it is more convenient if the HEMS 

automatically forecasts the driving schedule to be readily used by the EV owner. The 

HEMS should conduct this operation considering the impact on the forecast error which 

can be investigated as the future work.  

• Chapter 7 presents a dynamic P2P energy market model for a community microgrid. In 

this work, we considered the physical network constraints such as power capacity and 

overvoltage by evaluating our model on a small microgrid (11-bus network). As a future 

work, the proposed energy trading model can be tested on a larger distribution network 

to investigate the impact of the power flows on the physical constraints of the network.  
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Appendixes 

Appendix A: MATLAB/Simulink model of HEMS 

 

 

Figure A.1: Household Appliances model 

 

 

 

Figure A.2: Power grid model 
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 Figure A.3: Bidirectional DC/AC inverter model 
 

 

Figure A.4: DC/DC converter model 
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Figure A.5: Solar Panel model 

 

 

Figure A.6: Home Energy storage model 
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Figure A.7: User interface model. 
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Appendix B: MATALB/Simulink of Low-voltage (LV) distribution 

network  

 

 

Figure B.1: Low-voltage distribution network in MATLAB/Simulink 

 

Appendix C: DDPG agent Model and two-area power system model 

in MATLAB/Simulink 

 

 

Figure C.1: EV energy management Using DRL 
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Figure C.2: Two-area power system model in Simulink.  
 
 
 
MATLAB code of DDPG agent model of EV battery: 

 
 
open_system('Mymodel') 
 
 
%%%%% specification obsInfo and action specification actInfo 
obsInfo = rlNumericSpec([3 1],... 
    'LowerLimit',[-inf -inf 0  ]',... 
    'UpperLimit',[ inf  inf inf]'); 
obsInfo.Name = 'observations'; 
obsInfo.Description = 'integrated error, error, and measured height'; 
numObservations = obsInfo.Dimension(1); 
 
actInfo = rlNumericSpec([1 1]); 
actInfo.Name = 'flow'; 
numActions = actInfo.Dimension(1); 
 
 
%%%%% environment interface object 
 
env = rlSimulinkEnv('Mymodel','Mymodel/RL Agent',... 
    obsInfo,actInfo); 
 
 
%%%% Resetting function that randomises the reference values for the model 
 
env.ResetFcn = @(in)localResetFcn(in); 
 
%%%%%  simulation time Tf and the agent sample time Ts in seconds 
 
Ts = 5/3; 
Tf = 800; 
 
 
%%% random generator seed for reproducibility 
 
rng(0) 
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%%%% DDPG Agent 
 
 
statePath = [ 
    featureInputLayer(numObservations,'Normalization','none','Name','State') 
    fullyConnectedLayer(50,'Name','CriticStateFC1') 
    reluLayer('Name','CriticRelu1') 
    fullyConnectedLayer(25,'Name','CriticStateFC2')]; 
actionPath = [ 
    featureInputLayer(numActions,'Normalization','none','Name','Action') 
    fullyConnectedLayer(25,'Name','CriticActionFC1')]; 
commonPath = [ 
    additionLayer(2,'Name','add') 
    reluLayer('Name','CriticCommonRelu') 
    fullyConnectedLayer(1,'Name','CriticOutput')]; 
 
criticNetwork = layerGraph(); 
criticNetwork = addLayers(criticNetwork,statePath); 
criticNetwork = addLayers(criticNetwork,actionPath); 
criticNetwork = addLayers(criticNetwork,commonPath); 
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1'); 
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2'); 
 
 
%%% critic network configuration 
 
figure 
plot(criticNetwork) 
 
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1); 
critic = 
rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Acti
on',{'Action'},criticOpts); 
 
%%% actor network configuration 
 
 
actorNetwork = [ 
    featureInputLayer(numObservations,'Normalization','none','Name','State') 
    fullyConnectedLayer(3, 'Name','actorFC') 
    tanhLayer('Name','actorTanh') 
    fullyConnectedLayer(numActions,'Name','Action') 
    ]; 
 
actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1); 
 
actor = 
rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'St
ate'},'Action',{'Action'},actorOptions); 
 
%%% My agent 
 
agentOpts = rlDDPGAgentOptions(... 
    'SampleTime',Ts,... 
    'TargetSmoothFactor',1e-3,... 
    'DiscountFactor',1.0, ... 
    'MiniBatchSize',96, ... 
    'ExperienceBufferLength',1e6);  
agentOpts.NoiseOptions.StandardDeviation = 0.3; 
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agentOpts.NoiseOptions.StandardDeviationDecayRate = 1e-9; 
 
 
%%%%% Train My Agent 
 
 
maxepisodes = 5000; 
maxsteps = ceil(Tf/Ts); 
trainOpts = rlTrainingOptions(... 
    'MaxEpisodes',maxepisodes, ... 
    'MaxStepsPerEpisode',maxsteps, ... 
    'ScoreAveragingWindowLength',20, ... 
    'Verbose',false, ... 
    'Plots','training-progress',... 
    'StopTrainingCriteria','AverageReward',... 
    'StopTrainingValue',5000); 
 
 
doTraining = false; 
 
if doTraining 
    % Train the agent. 
    trainingStats = train(agent,env,trainOpts); 
else 
    
    load('initialAgent1.mat','agent') 
end 
%save("initialAgent1.mat","agent") 
 
 
%%%% Validate Trained Agent 
 
 
simOpts = rlSimulationOptions('MaxSteps',maxsteps); 
experiences = sim(env,agent,simOpts); 
 
 
%%%%%%% Local Function 
 
function in = localResetFcn(in) 
% randomize the Type of EV 
EVType = 3; %randi([1 3],1,1); % 1 means Charging, 2 means Discharging and 3 means 
do-nothing 
 
if EVType == 1 
    % randomize reference signal 
    blk = sprintf('Mymodel/ECP'); 
    SOCexp=80; %70 + (80-70)*rand(1); 
    SOCint=30; %30 + (40-30)*rand(1); %randi([30 40],1,1); 
    EVcap= 30; %randi([24 30],1,1); 
     
    ECP = ((SOCexp-SOCint)*0.01*EVcap)/8; 
    in = setBlockParameter(in,blk,'Value',num2str(ECP)); 
     
    Eint = SOCint*EVcap; 
    blk = 'Mymodel/EVBattery/EVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    Eint = SOCint*EVcap; 
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    blk = 'Mymodel/ExpectedEVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    blk = 'Mymodel/EVBattery/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
    blk = 'Mymodel/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
     
elseif EVType == 2 
    % randomize reference signal 
    blk = sprintf('Mymodel/ECP'); 
    SOCexp= 40; %40 + (60-40)*rand(1);%randi([40 60],1,1); 
    SOCint= 70; %60 + (80-60)*rand(1);%randi([70 80],1,1); 
    EVcap= 30; %randi([24 30],1,1); 
     
    ECP = ((SOCexp-SOCint)*0.01*EVcap)/8; 
    in = setBlockParameter(in,blk,'Value',num2str(ECP)); 
     
    Eint = SOCint*EVcap; 
    blk = 'Mymodel/EVBattery/EVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    Eint = SOCint*EVcap; 
    blk = 'Mymodel/ExpectedEVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    blk = 'Mymodel/EVBattery/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
    blk = 'Mymodel/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
     
elseif EVType == 3     
    % randomize reference signal 
    blk = sprintf('Mymodel/ECP'); 
    SOCexp= 70; %50 + (70-50)*rand(1);%randi([50 70],1,1); 
    SOCint= SOCexp;  
    EVcap= 30; %randi([24 30],1,1); 
     
    ECP = ((SOCexp-SOCint)*0.01*EVcap)/8; 
    in = setBlockParameter(in,blk,'Value',num2str(ECP)); 
     
    Eint = SOCint*EVcap; 
    blk = 'Mymodel/EVBattery/EVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    Eint = SOCint*EVcap; 
    blk = 'Mymodel/ExpectedEVenergy'; 
    in = setBlockParameter(in,blk,'InitialCondition',num2str(Eint)); 
     
    blk = 'Mymodel/EVBattery/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
    blk = 'Mymodel/Gain'; 
    in = setBlockParameter(in,blk,'Gain',num2str(1/EVcap)); 
end 
     
 
% randomize Regulation Task signal (Mean and Variance) 
RegulationMean = 0.5; %-3 + (3--3)*rand(1); 
blk = 'Mymodel/EVBattery/RegulationTask'; 
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in = setBlockParameter(in,blk,'Mean',num2str(RegulationMean)); 
 
RegulationVariance = 1; %0.5 + (1.5-0.5)*rand(1); 
blk = 'Mymodel/EVBattery/RegulationTask'; 
in = setBlockParameter(in,blk,'Variance',num2str(RegulationVariance)); 
end 

 

Appendix D: P2P energy model and formulation 

Appendix D.1: Formulation of proposed P2P pricing mechanism  

According to the basic principle of economics, prices decrease with higher supply/lower 

demand and increase with the higher demand/ lower supply. In the P2P energy market, when 

there is no energy surplus exported from a prosumer (𝐸𝑆(𝑡) = 0) to the P2P market, the P2P 

buying price is set to the grid price (RTP). In contrast, when there is no energy deficiency 

requests (𝐸𝐷(𝑡) = 0) from the P2P market, the P2P selling price is set to FiT. When the ESC 

receives both energy surplus and deficiency requests (−1 < 𝛼 < 1), the P2P prices trend tends 

to follow the function tanh( 2𝛼). Thus, tanh(2𝛼) can be used to model the relationship 

between P2P prices and 𝛼/𝛽: 

 

𝑟𝑏 =  𝑓(𝛼, 𝛽) =  {

(1 − 𝛽) tanh( 2𝛼)           , 𝛼 ≥ 0
𝛽 tanh(2𝛼)                      , 𝛼 < 0
𝑟𝑔                                        , 𝐸𝑆 = 0

                        (D. 1) 

 

𝑟𝑠 =  𝑓(𝛼, 𝛽) =  {

𝛽 tanh(2𝛼)                                   
(1 − 𝛽) tanh(2𝛼)           , 𝛼 < 0
𝑟𝑒𝑥                                       , 𝐸𝐷 = 0

                         (D. 2) 

 

Substituting tanh( 𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 , in (D.1) and (D.2): 

𝑟𝑏 =  𝑓(𝛼, 𝛽) =  

{
 
 

 
 (1 − 𝛽)

𝑒2𝛼 − 𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
        , 𝛼 ≥ 0 

𝛽
𝑒2𝛼 − 𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
                   , 𝛼 < 0

𝑟𝑔                                          , 𝐸𝑆 = 0

                  (D. 3) 
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𝑟𝑠 =  𝑓(𝛼, 𝛽) =  

{
 
 

 
 𝛽

𝑒2𝛼 − 𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
                   , 𝛼 ≥ 0 

(1 − 𝛽)
𝑒2𝛼 − 𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
      , 𝛼 < 0

𝑟𝑒𝑥                                        , 𝐸𝐷 = 0

                    (C. 4) 

Where 𝛼 is in the range [-1, 1] as shown in Equation (6.26), and to convert this range to [0,1], 

the formula (𝑋𝑛𝑒𝑤 =
𝑋𝑜𝑙𝑑−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 ) is used: 

𝑟𝑏 =  𝑓(𝛼, 𝛽) =  

{
 
 

 
 
(2 − 𝛽)𝑒2𝛼 + 𝛽𝑒−2𝛼

2(𝑒2𝛼 + 𝑒−2𝛼)
             , 𝛼 ≥ 0 

𝛽𝑒2𝛼 + (1 − 𝛽)𝑒−2𝛼

2(𝑒2𝛼 + 𝑒−2𝛼)
            , 𝛼 < 0

𝑟𝑔                                                  , 𝐸𝑆 = 0

                              (D. 5) 

𝑟𝑠 =  𝑓(𝛼, 𝛽) =  

{
 
 

 
 
(2 − 𝛽)𝑒2𝛼 + 𝛽𝑒−2𝛼

2(𝑒2𝛼 + 𝑒−2𝛼)
             , 𝛼 ≥ 0 

𝛽𝑒2𝛼 + (1 − 𝛽)𝑒−2𝛼

2(𝑒2𝛼 + 𝑒−2𝛼)
            , 𝛼 < 0

𝑟𝑒𝑥                                                  , 𝐸𝐷 = 0

                             (D. 6) 

Finally, to map the P2P prices into [𝑟𝑒𝑥, 𝑟𝑔], the formula (𝑋 × (𝑚𝑎𝑥 −𝑚𝑖𝑛) + 𝑚𝑖𝑛) is used. 

The function of P2P prices can be formulated as: 

𝑟𝑏 =

{
 
 

 
 (
𝑟𝑔 − 𝑟𝑒𝑥
2

)
(2 − 𝛽)𝑒2𝛼 + 𝛽𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
+ 𝑟𝑒𝑥                     , 𝛼 ≥ 0   

(
𝑟𝑔 − 𝑟𝑒𝑥
2

)
(1 + 𝛽)𝑒2𝛼 + (1 − 𝛽)𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
+ 𝑟𝑒𝑥          , 𝛼 < 0 

𝑟𝑔                                                                                    , 𝐸𝑆 = 0  

 

𝑟𝑠 =

{
 
 

 
 (
𝑟𝑔 − 𝑟𝑒𝑥
2

)
(1 + 𝛽)𝑒2𝛼 + (1 − 𝛽)𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
+ 𝑟𝑒𝑥        , 𝛼 ≥ 0 

(
𝑟𝑔 − 𝑟𝑒𝑥
2

)
(2 − 𝛽)𝑒2𝛼 + 𝛽𝑒−2𝛼

𝑒2𝛼 + 𝑒−2𝛼
+ 𝑟𝑒𝑥                  , 𝛼 < 0  

𝑟𝑒𝑥                                                                                , 𝐸𝐷 = 0

 

 

Appendix D.2: formulation of BS, MMR and SDR mechanisms 

Bill sharing mechanism (BS) 
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In this method, the cost of electricity for a community is shared among customers based on 

individual customer’s total energy consumption and export. The buy and sell prices for the P2P 

mechanism as determined by this method are given by equations (D.7) and (D.8) respectively. 

𝑟𝑏 = 𝑟𝑔 (
𝐸𝐷
𝐵𝐹𝐺

𝐸𝐷
)                                                             (D. 7) 

𝑟𝑠 = 𝑟𝑒𝑥 (
𝐸𝑆
𝑆𝑇𝐺

𝐸𝑆
)                                                                (D. 8) 

𝐸𝐷
𝐵𝐹𝐺 and 𝐸𝑆

𝑆𝑇𝐺 are respectively the total energy import and export of the community from/to 

the grid after P2P trading. Therefore, the electricity bill of individual households is calculated 

as follows: 

𝐶𝑖 = (𝐸𝐷𝑖
𝐵𝐹𝐺 . 𝑟𝑔 − 𝐸𝑆𝑖

𝑆𝑇𝐺 . 𝑟𝑒𝑥) + (𝐸𝐷𝑖
𝑃2𝑃. 𝑟𝑏 − 𝐸𝑆𝑖

𝑃2𝑃. 𝑟𝑠)                              (D. 9) 

 

𝐸𝐷𝑖
𝐵𝐹𝐺 and 𝐸𝐷𝑖

𝑃2𝑃 denote the energy purchased from the main grid and P2P market by individual 

users respectively. 𝐸𝑆𝑖
𝑆𝑇𝐺 and 𝐸𝑆𝑖

𝑃2𝑃  are the energy sold to the main grid and P2P market 

respectively.  

Mid-Market Rate Mechanism (MMR) 

In this pricing mechanism, the P2P prices are bounded between the RTP and FiT. Therefore, 

the MMR method assumes that the P2P prices are set to the average value of RTP and FiT 

when the total energy surplus equals the energy deficiency, thus: 

𝑟𝑏, 𝑟𝑠 =
𝑟𝑔 + 𝑟𝑒𝑥
2

                                                               (D. 10) 

However, the peers will buy/sell their energy under RTP/FiT in case the total energy surplus 

does not meet the energy deficiency in the P2P market.  

Supply-Demand Ratio (SDR) 

In this mechanism, P2P prices can be adjusted with the change of Supply-Demand Ratio (SDR) 

based on the basic principle of economics, as the relation between price and SDR is inverse-

proportional. the relationship of supply and demand in the energy sharing zone can be 

represented by: 
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𝑆𝐷𝑅 =  
𝐸𝑆
𝐸𝐷
                                                              (D. 11) 

The P2P buying and selling prices are identified by equations (C.12) and (C.13) according to 

SDR values: 

𝑟𝑠 = {

𝑟𝑔. 𝑟𝑒𝑥

(𝑟𝑔 − 𝑟𝑒𝑥). 𝑆𝐷𝑅 + 𝑟𝑒𝑥
         ,0 ≤ 𝑆𝐷𝑅 ≤ 1

𝑟𝑒𝑥                                     , 𝑆𝐷𝑅 > 1

                                 (D. 12) 

𝑟𝑏 = {
𝑟𝑠. 𝑆𝐷𝑅 + 𝑟𝑔(1 − 𝑆𝐷𝑅),   0 ≤ 𝑆𝐷𝑅 ≤ 0

𝑟𝑒𝑥                                          𝑆𝐷𝑅 > 1
                                 (D. 13) 

The relationship between the internal price and 𝑆𝐷𝑅 is shown in Figure A.1 which shows that 

𝑟𝑠 and 𝑟𝑏 decline with the increase of SDR in the interval [0, 1], and they are set to 𝑟𝑒𝑥 when 

SDR is greater than 1. 

 

Figure D.1: Relationship between the P2P prices and SDR. 

 

 

Appendix D.3: MATALB code of P2P energy model 

 
clc 
clear  
 
hours = 24; 
% peak mornoing form 7-10     (4 hrs) 
% peak evening form 17-21     (5 hrs) 
% off-peak form 0-6 & 22-23   (9 hrs) 
% mid-peak form 11-16         (6 hrs) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Max_household_Demand = 20;   %maximum household power demand 
Min_household_Demand = 8.5;  %minimum household power demand 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Household Types = [PV, BESS, EV]  
HouseholdTypesIndex = [1,1,1;1,1,0;1,0,1;1,0,0;0,0,1;0,0,0]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Number_households = 100; 
 
Household_Types = TypeOfHouse(Number_households); 
[Individual_Household_demand,Household_Demand_Distribution, 
Total_households_Demand] = Household_Demand(Number_households); 
[PV_Individual, Total_PV_Gen,PV_Curve,PV_Type] = PV(Number_households, 
Household_Types,HouseholdTypesIndex); 
[Capacity_of_BESs, initial_SOCs_BES] = BESS(Number_households, 
Household_Types,HouseholdTypesIndex); 
[Capacity_of_EVs,initial_SOCs_EV,Trip_Duration] = EV(Number_households, 
Household_Types,HouseholdTypesIndex); 
[Capacity_of_Pool, initial_SOC_Pool] = Pool_Battery(); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Total_Current_Demand = zeros(1, 240); 
Total_surplus_power = zeros(1, 240); 
Total_deficiency_power = zeros(1, 240); 
Total_Net_Household_Demand = zeros(1, 240); 
 
Z = 0; 
T = []; 
%%%%%%%%%%%%%%Test of Household 2%%%%%%%%%%%%%%%%%%%%%%%%% 
Net_Household2_Demand = zeros(1, 240); 
Daily_current_demand2 = zeros(1, 240); 
Individual_surplus2 = zeros(1, 240); 
 
Individual_deficiency = zeros(Number_households, 240); 
Individual_surplus = zeros(Number_households, 240); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%BESS Parameters%%%%%%%%%%%%%%%%%%%%%%%% 
Initial_BES_power = (Capacity_of_BESs.*initial_SOCs_BES)./100; 
BES_Inividual_power = Initial_BES_power; 
BES_Power = zeros(1, 240); 
SOCs_BES = initial_SOCs_BES; 
Min_SOC_BES = 20; 
Max_SOC_BES = 80; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%EV Parameters%%%%%%%%%%%%%%%%%%%%%%% 
Initial_EV_power = (Capacity_of_EVs.*initial_SOCs_EV)./100; 
EV_Inividual_power = Initial_EV_power; 
EV_Power = zeros(1, 240); 
SOCs_EV = initial_SOCs_EV; 
Min_SOC_EV = 20; 
Max_SOC_EV = 80; 
Trip_power = 4; 
Availability_EV = zeros(1, Number_households); 
%%%%%%%%%%%%%%%%%%%%%%%%%%Pool Battery of Micro Grid%%%%%%%%%%%% 
Initial_Pool_power = (Capacity_of_Pool*initial_SOC_Pool)/100; 
Pool_power = Initial_Pool_power; 
Pool_SOC = initial_SOC_Pool; 
Min_SOC_Pool = 20; 
Max_SOC_Pool = 80; 
Pool_Power = zeros(1, 240); 
Pool_deficiency = 0; 
Pool_surplus = 0; 
Pool_Deficiency = zeros(1, 241); 
Pool_Surplus = zeros(1, 241); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%Pricing%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Total_Surplus = 0; 
Total_Deficiency = 0; 
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Price_Selling = zeros(1,240); 
Price_Buying = zeros(1,240); 
grid_price = zeros(1,240); 
MMR = zeros(1,240); 
Individual_Cost_Households = zeros(240,Number_households); 
 
for h = 0:0.1:hours 
Current_household_demand = zeros(1,Number_households); 
Surplus_power = zeros(1, Number_households); 
Deficiency_power = zeros(1, Number_households); 
Net_Household_Demand = zeros(1, Number_households); 
 
 
    if h >= 0 && h < 6 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PV Management%%%%%%%%%%%%%%%%%%%%% 
        %%%%To calculate PV Generation, Surplus Power and Deficiency Power 
        for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 1);                   
            Deficiency_power (i) =  - Current_household_demand(i); 
            Net_Household_Demand(i) = Current_household_demand(i); 
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i);             
            if SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1))* HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i);  
                Deficiency_power (i) = 0; 
            else 
                BES_Inividual_power(i) = BES_Inividual_power(i);                 
            end 
             
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i); 
            if SOCs_EV(i) >= Min_SOC_EV && Deficiency_power (i) < 0 
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (Deficiency_power 
(i)*0.1))* HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i);  
                Deficiency_power (i) = 0; 
            else 
                BES_Inividual_power(i) = BES_Inividual_power(i);    
            end 
        end        
         
    elseif   h >= 6 && h < 7 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PV Management%%%%%%%%%%%%%%%%%%%%% 
        %%%%To calculate PV Generation, Surplus Power and Deficiency Power 
        for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 1); 
            if PV_Curve(i, 1) >= Current_household_demand(i) 
                Surplus_power(i) =  PV_Curve(i, 1) - Current_household_demand(i); 
                Net_Household_Demand(i) = 0; 
 
            else 
                Deficiency_power (i) = PV_Curve(i, 1) - 
Current_household_demand(i); 
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                Net_Household_Demand(i) = Current_household_demand(i) - 
PV_Curve(i, 1) ; 
 
            end 
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i);             
            if SOCs_BES(i) <= Max_SOC_BES && Surplus_power(i) > 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_BES(i) >= Max_SOC_BES 
                BES_Inividual_power(i) = BES_Inividual_power(i); 
            end        
             
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);             
            if SOCs_EV(i) <= Max_SOC_EV && Surplus_power(i) > 0 
                EV_Inividual_power(i) = (EV_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_EV(i) >= Min_SOC_EV && Deficiency_power (i) < 0 
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (Deficiency_power 
(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_EV(i) >= Max_SOC_EV 
                EV_Inividual_power(i) = EV_Inividual_power(i); 
            end    
             
 
        end 
     
    elseif h >= 7 && h < 11 
        for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 2); 
            if PV_Curve(i, floor(h-5)) >= Current_household_demand(i) 
                Surplus_power(i) =  PV_Curve(i, floor(h-5)) - 
Current_household_demand(i); 
                Net_Household_Demand(i) = 0 ; 
            else 
                Deficiency_power (i) = PV_Curve(i, floor(h-5)) - 
Current_household_demand(i); 
                Net_Household_Demand(i) = Current_household_demand(i) - 
PV_Curve(i, floor(h-5)) ; 
            end       
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i); 
            if SOCs_BES(i) <= Max_SOC_BES && Surplus_power(i) > 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
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                Surplus_power(i) = 0; 
            elseif SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_BES(i) >= Max_SOC_BES 
                BES_Inividual_power(i) = BES_Inividual_power(i); 
            end   
             
        end    
         
    elseif h >= 11 && h < 17 
         for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 3); 
            if PV_Curve(i, floor(h-5)) >= Current_household_demand(i) 
                Surplus_power(i) =  PV_Curve(i, floor(h-5)) - 
Current_household_demand(i); 
                Net_Household_Demand(i) = 0; 
            else 
                Deficiency_power (i) = PV_Curve(i, floor(h-5)) - 
Current_household_demand(i); 
                Net_Household_Demand(i) = Current_household_demand(i) - 
PV_Curve(i, floor(h-5)); 
            end   
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i); 
            if SOCs_BES(i) <= Max_SOC_BES && Surplus_power(i) > 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_BES(i) >= Max_SOC_BES 
                BES_Inividual_power(i) = BES_Inividual_power(i); 
            end     
             
            if (Trip_Duration(i) + 7) == 11 && h == 11 
                EV_Inividual_power(i) = EV_Inividual_power(i) - Trip_power; 
                Availability_EV(i) = 1; 
            elseif (Trip_Duration(i) + 7) == 12 && h == 12 
                EV_Inividual_power(i) = EV_Inividual_power(i) - (Trip_power+1); 
                Availability_EV(i) = 1; 
            elseif (Trip_Duration(i) + 7) == 13 && h == 13 
                EV_Inividual_power(i) = EV_Inividual_power(i) - (Trip_power+2);  
                Availability_EV(i) = 1;           
            end 
             
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);  
             
            if SOCs_EV(i) <= Max_SOC_EV && Surplus_power(i) > 0 && 
Availability_EV(i) == 1 
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                EV_Inividual_power(i) = (EV_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_EV(i) < Max_SOC_EV && Surplus_power(i) == 0 && 
Availability_EV(i) == 1 && Household_Types(i) ~= 1 && Household_Types(i) ~= 3 && h 
< 16 
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (2*0.1)) * 
HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + (2); 
                Deficiency_power (i) = -1*Net_Household_Demand(i); 
            elseif SOCs_EV(i) <= Max_SOC_EV && Deficiency_power (i) < 0 && 
Availability_EV(i) == 1 
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (Deficiency_power 
(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_EV(i) >= Max_SOC_EV 
                EV_Inividual_power(i) = EV_Inividual_power(i); 
            end    
         end 
     
    elseif h >= 17 && h < 22 
        for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 4); 
            Deficiency_power (i) = - Current_household_demand(i); 
            Net_Household_Demand(i) = Current_household_demand(i); 
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i);      
            if SOCs_BES(i) <= Max_SOC_BES && Surplus_power(i) > 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_BES(i) >= Max_SOC_BES 
                BES_Inividual_power(i) = BES_Inividual_power(i); 
            end  
             
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);  
            if SOCs_EV(i) >= Min_SOC_EV && Deficiency_power (i) < 0  
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (Deficiency_power 
(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_EV(i) >= Max_SOC_EV 
                EV_Inividual_power(i) = EV_Inividual_power(i); 
            end       
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);  
            if SOCs_EV(i) >= 40 && Deficiency_power (i) == 0  
                EV_Inividual_power(i) = (EV_Inividual_power(i) - (1*0.1)) * 
HouseholdTypesIndex(Household_Types(i),3); 
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                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 1; 
            end               
        end     
  
    elseif h >= 22 && h < 24 
        for i = 1: Number_households 
            Current_household_demand(i) = Household_Demand_Distribution (i, 5); 
            Deficiency_power (i) = - Current_household_demand(i); 
            Net_Household_Demand(i) = Current_household_demand(i); 
             
            SOCs_BES(i) = (BES_Inividual_power(i)*100)/ Capacity_of_BESs(i);             
            if SOCs_BES(i) <= Max_SOC_BES && Surplus_power(i) > 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Surplus_power(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 0; 
            elseif SOCs_BES(i) >= Min_SOC_BES && Deficiency_power (i) < 0 
                BES_Inividual_power(i) = (BES_Inividual_power(i) + 
(Deficiency_power (i)*0.1)) * HouseholdTypesIndex(Household_Types(i),2); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_BES(i) >= Max_SOC_BES 
                BES_Inividual_power(i) = BES_Inividual_power(i); 
            end         
             
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);  
            if SOCs_EV(i) >= Min_SOC_EV && Deficiency_power (i) < 0  
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (Deficiency_power 
(i)*0.1)) * HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + 
Deficiency_power (i); 
                Deficiency_power (i) = 0; 
            elseif SOCs_EV(i) < Max_SOC_EV && SOCs_EV(i)> 50  
                EV_Inividual_power(i) = (EV_Inividual_power(i) - (1*0.1)) * 
HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i); 
                Surplus_power(i) = 1;                                
            end              
            SOCs_EV(i) = (EV_Inividual_power(i)*100)/ Capacity_of_EVs(i);  
            if SOCs_EV(i) < 50 && Deficiency_power (i) == 0  
                EV_Inividual_power(i) = (EV_Inividual_power(i) + (1*0.1)) * 
HouseholdTypesIndex(Household_Types(i),3); 
                Net_Household_Demand(i) = Net_Household_Demand(i) + (1); 
                Deficiency_power (i) = -1*Net_Household_Demand(i); 
            end 
       
        end 
      
    end 
 
    Z = Z+1; 
    T(Z) = h; 
    Total_Current_Demand(Z) = sum(Current_household_demand);  
    Total_surplus_power(Z) = sum(Surplus_power); 
    Total_deficiency_power(Z) = -sum(Deficiency_power); 
    Total_Net_Household_Demand(Z) = sum(Net_Household_Demand); 
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    Total_Surplus = sum(Surplus_power); 
    Total_Deficiency = -sum(Deficiency_power); 
    Grid_price = GridPrice(h); 
    [Price_B, Price_S,mmr] = Pricing(Total_Surplus, Total_Deficiency, Grid_price); 
    Price_Buying(Z) = Price_B; 
    Price_Selling (Z) = Price_S; 
    grid_price(Z) = Grid_price; 
    MMR(Z) = mmr; 
    Individual_cost = Cost_Function (Number_households, Total_Surplus, 
Total_Deficiency, Surplus_power, Deficiency_power, Grid_price, Price_B, Price_S); 
    Individual_Cost_Households (Z,:) = Individual_cost; 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%Pool Battery%%%%%%%%%%%%%%%%%%%%%%% 
    Pool_SOC = (Pool_power*100)/ Capacity_of_Pool; 
    if Pool_SOC < Max_SOC_Pool && Pool_SOC > Min_SOC_Pool 
        Pool_power = Pool_power + (sum(Surplus_power)*0.1 + 
sum(Deficiency_power)*0.1); 
        Pool_Power(Z) =  Pool_power;  
        Pool_Surplus(Z) = Pool_surplus; 
        Pool_Deficiency(Z) = Pool_deficiency; 
    elseif Pool_SOC >= Max_SOC_Pool 
        Pool_power = Pool_power + (sum(Deficiency_power)*0.1); 
        Pool_Power(Z) =  Pool_power;  
        Pool_surplus = Pool_surplus + (sum(Surplus_power)*0.1); 
        Pool_Surplus(Z) = Pool_surplus; 
    elseif Pool_SOC < Min_SOC_Pool 
        Pool_power = Pool_power + (sum(Surplus_power)*0.1); 
        Pool_Power(Z) =  Pool_power; 
        Pool_deficiency = Pool_deficiency - (sum(Deficiency_power)*0.1); 
        Pool_Deficiency(Z) = Pool_deficiency; 
    end 
     
 
    Net_Household2_Demand(Z) = Net_Household_Demand(5);  
    Daily_current_demand2(Z) = Current_household_demand(5); 
    Individual_surplus2(Z) = Surplus_power(5); 
    BES_Power(Z)=BES_Inividual_power(5); 
    EV_Power(Z) = EV_Inividual_power(5); 
    for i = 1:Number_households 
        Individual_deficiency(i,Z) = Surplus_power(i); 
        Individual_surplus(i,Z) = -Deficiency_power(i); 
    end 
  
 
end 
Indiv_cost = zeros(1,Number_households); 
for i = 1 : Number_households 
    Indiv_cost(i) = sum (Individual_Cost_Households(:,i))/1000; 
end 
sum(Indiv_cost) 
for i = 1: Number_households 
    figure 
    plot (T,Individual_deficiency(i,:),T,Individual_surplus(i,:)) 
    hold on 
end 
figure 
plot(T, Price_Selling , T,  Price_Buying, T, grid_price, T, MMR,':') 
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plot(T, Net_Household2_Demand, T, Individual_surplus2, T,BES_Power,'--', T, 
Daily_current_demand2,':', T, EV_Power) 
hold on 
figure 
plot(T, Total_surplus_power, T, Total_Net_Household_Demand) 
hold on 
figure 
plot( T, Pool_Power, T, Pool_Deficiency, T, Pool_Surplus) 
 
 
Total_Current_Demand = sum(Total_Current_Demand)*0.1 
Total_surplus_power = sum(Total_surplus_power)*0.1; 
Total_deficiency_power = -sum(Total_deficiency_power)*0.1; 
Total_Net_Household_Demand = sum(Total_Net_Household_Demand)*0.1 
Total_surplus2 = sum(Individual_surplus2)*0.1; 
 
 
%%%%%%%%%%%Initialisation of the household type Function%%%%%%%%%%%%%%%%%%%%% 
function HouseholdTypes = TypeOfHouse (Number_households) 
HouseholdTypes = zeros(1,Number_households); 
    for i = 1: Number_households 
        HouseholdTypes(i) = randi([1 6],1,1); 
    end 
end 
 
function [Demand_indiv,Demand_dis, Demand_total] = Household_Demand 
(Number_households) 
Demand_dis = zeros(Number_households,5); 
Demand_indiv = zeros(1,Number_households); 
Demand_total = 0; 
Higher_Demand = 17; 
Lower_Demand = 8; 
    for i = 1:Number_households         
 
        n = sum(~mod(Lower_Demand:Higher_Demand,0.5)); 
        Rand_Demand = ((randi(n)-1)*0.5 + Lower_Demand); 
        Demand_indiv (i) = Rand_Demand;  
        Demand_total = Demand_total + Demand_indiv(i); 
        Demand_dis(i,1) = Rand_Demand * 0.07/7; 
        Demand_dis(i,2) = Rand_Demand * 0.30/4; 
        Demand_dis(i,3) = Rand_Demand * 0.20/6; 
        Demand_dis(i,4) = Rand_Demand * 0.40/5; 
        Demand_dis(i,5) = Rand_Demand * 0.03/2;      
    end 
         
end 
 
function [individ_PV, PV_total,PV_Curve,PV_Type] = 
PV(Number_households,Household_Types,HouseholdTypesIndex) 
individ_PV = zeros(1, Number_households); 
PV_total = 0; 
PV_Curve = zeros(Number_households, 11); 
PV_Type = zeros(1, Number_households); 
 
    for i = 1: Number_households 
        PV_Type(i) = (randi([3 5],1,1)) * 
HouseholdTypesIndex(Household_Types(i),1); 
        individ_PV(i) = (PV_Type(i) * 4) * 
HouseholdTypesIndex(Household_Types(i),1);        
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        PV_total = PV_total + individ_PV(i); 
            PV_Curve = []; 
            for i = 1:100 
                 
                R = [1:0.1:24]; 
                Irr = []; 
                Temp = []; 
                    for i = 1:0.1:24 
                        h = floor (i); 
                        irr = London_irr(h); 
                        temp = London_Tem(h); 
                        delta_irr = normrnd(0,0.1); 
                        delat_temp = normrnd(0,0.1); 
                        irr = London_irr(h) + London_irr(h) * delta_irr; 
                        temp = London_Tem(h) + London_Tem(h) * delat_temp; 
                        Irr = [Irr irr]; 
                        Temp = [Temp temp]; 
                    end 
                Irr = transpose(Irr); 
                Temp = transpose(Temp); 
                R = transpose(R); 
                Irr = [R, Irr]; 
                Temp = [R, Temp]; 
             
                sim("PV_irr.slx"); 
             
                PV_curve = ans.PV_generation.signals.values; 
             
                PV_Curve = [PV_Curve PV_curve]; 
                i 
             
            end 
    end 
end 
 
function [BES_Capacity, initial_SOCs] = BESS(Number_households, Household_Types, 
HouseholdTypesIndex) 
initial_SOCs = zeros(1,Number_households); 
BES_Capacity = zeros(1, Number_households); 
Min_Capacity = 3; 
Max_Capacity = 7; 
Min_SOC = 20; 
Max_SOC = 80; 
    for i = 1: Number_households 
        BES_Capacity(i) = randi ([Min_Capacity Max_Capacity], 1, 
1)*HouseholdTypesIndex(Household_Types(i),2); 
        n = sum(~mod(Min_SOC:Max_SOC,5)); 
        initial_SOCs(i) = ((randi(n)-1)*5 + 
Min_SOC)*HouseholdTypesIndex(Household_Types(i),2); 
    end     
end 
 
function [EV_Capacity,initial_SOCs,Trip_Duration] = EV(Number_households, 
Household_Types, HouseholdTypesIndex) 
initial_SOCs = zeros(1,Number_households); 
EV_Capacity = zeros(1, Number_households); 
Trip_Duration = zeros(1, Number_households); 
Min_capacity = 15; 
Max_capacity = 25; 
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Min_SOC = 40; 
Max_SOC = 80; 
 
    for i =1:Number_households   
        n = sum(~mod(Min_capacity:Max_capacity,5)); 
        EV_Capacity(i) = ((randi(n)-1)*5 + 
Min_capacity)*HouseholdTypesIndex(Household_Types(i),3); 
        m = sum(~mod(Min_SOC:Max_SOC,5)); 
        initial_SOCs(i) = ((randi(m)-1)*5 + 
Min_SOC)*HouseholdTypesIndex(Household_Types(i),3); 
         
        Trip_Duration(i) = randi([4 
6],1,1)*HouseholdTypesIndex(Household_Types(i),3); 
 
    end 
end 
 
function [Pool_Capacity, initial_SOC] = Pool_Battery( ) 
 
Pool_Capacity = 200; 
Min_SOC = 30; 
Max_SOC = 40; 
 
n = sum(~mod(Min_SOC:Max_SOC,5)); 
initial_SOC = ((randi(n)-1)*5 + Min_SOC); 
end 
 
function Grid_Price = GridPrice (h) 
persistent p; 
persistent t; 
t = h; 
 
function [Buying, Selling,MMR] = Pricing (Total_Surplus, Total_Deficiency, 
Grid_Price) 
persistent Buying_Price 
persistent Selling_Price 
FiT = 5; 
Alpha = (Total_Deficiency - Total_Surplus) / (Total_Deficiency + Total_Surplus); 
gamma1 = FiT/(FiT + Grid_Price);%Total_Surplus/Total_Deficiency; 
gamma2 = FiT/(FiT + Grid_Price); 
 
MMR = (Grid_Price+FiT)/2; 
 
if Alpha >= 0 && Total_Surplus ~= 0 
    Beta = tanh(2*Alpha); 
    Buying_Price = ((((1-gamma1) * Beta + 1)/2) * (Grid_Price - FiT)) + FiT; 
   Selling_Price = (((gamma1 * Beta + 1)/2) * (Grid_Price - FiT)) + FiT; 
elseif Alpha < 0 && Total_Deficiency ~= 0 
   Beta1 = tanh(2*Alpha); 
   Beta2 = tanh(2*Alpha); 
    Buying_Price = (((gamma2 * Beta1 + 1)/2) * (Grid_Price - FiT)) + FiT; 
    Selling_Price = ((((1-gamma2) * Beta2 + 1)/2) * (Grid_Price - FiT)) + FiT;  
elseif Alpha > 0 && Total_Surplus == 0 
    Buying_Price = Grid_Price; 
    Selling_Price = Grid_Price; 
elseif Alpha < 0 && Total_Deficiency == 0 
    Buying_Price = FiT; 
    Selling_Price = FiT; 
end 
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Buying = Buying_Price; 
Selling = Selling_Price; 
end 
function [Total_individual_Cost] = Cost_Function(Number_households, Total_Surplus, 
Total_Deficiency, Surplus_power, deficiency_power, Grid_Price, Price_B, Price_S) 
 
persistent total_individual_cost 
total_individual_cost = zeros(1, Number_households); 
Deficiency_power = -1 * deficiency_power; 
FiT = 5; 
 
for i = 1 : Number_households 
    if Total_Surplus > 0 && Total_Deficiency == 0 
        total_individual_cost(i) = -1 * Surplus_power(i) * FiT; 
         
    elseif Total_Deficiency > 0 && Total_Surplus == 0 
        total_individual_cost(i) = Deficiency_power(i) * Grid_Price; 
 
    elseif Total_Deficiency > Total_Surplus && Total_Surplus ~= 0 
        if Deficiency_power(i) > 0 
            PowerFromGrid = Total_Deficiency - Total_Surplus;    
            Individual_Cost_Peer = (Deficiency_power(i) * Total_Surplus * Price_B) 
/ Total_Deficiency; 
            Individual_Cost_Grid =  (Deficiency_power(i) * PowerFromGrid * 
Grid_Price) / Total_Deficiency; 
 
            total_individual_cost(i) = Individual_Cost_Peer + 
Individual_Cost_Grid; 
        elseif Surplus_power(i) > 0 
            total_individual_cost(i) = -1 * Surplus_power(i) * Price_S; 
        end 
 
    elseif Total_Surplus > Total_Deficiency && Total_Deficiency ~= 0 
        if Surplus_power(i) > 0 
 
            PowerToGrid =  Total_Surplus - Total_Deficiency; 
 
            Individual_Cost_Peer = (Surplus_power(i) * Total_Deficiency * Price_S) 
/ Total_Surplus; 
            Individual_Cost_Grid = (Surplus_power(i) * PowerToGrid * FiT) / 
Total_Surplus; 
 
            total_individual_cost(i) = -1 * (Individual_Cost_Peer + 
Individual_Cost_Grid); 
        elseif Deficiency_power(i) > 0 
            total_individual_cost(i) = Deficiency_power(i) * Price_B; 
        end 
    elseif Total_Surplus == Total_Deficiency 
        if Deficiency_power(i) > 0 
            total_individual_cost(i) = Deficiency_power(i) * Price_B; 
        elseif Surplus_power(i) > 0 
            total_individual_cost(i) = -1 * Surplus_power(i) * Price_S; 
        end 
 
    end 
    Total_individual_Cost = total_individual_cost; 
end 
end 


