The limits of understanding and the understanding of limits : David Hume’s mathematical sources
David Hume devoted a long section of his Treatise of Human Nature to an attempt to refute the indivisibility of space and time. In his later Enquiry Concerning Human Understanding, he ridiculed the doctrine of infinitesimals and the paradox of the angle of contact between a circle and a tangent. Following up Hume’s mathematical references reveals the role that a handful of mathematical examples (in Hume’s case, the indivisibility of space and the angle of contact) played in the work of philosophers who (like Hume) were not otherwise interested in mathematics, and who used them to argue for either fideist or sceptical conclusions. Such paradoxes were taken to mark the limit of rational mathematical enquiry, beyond which human thought should either fall silent or surrender to religious faith. The fideist argument occurs, for example, in Malezieu’s Éléments de Géometrie, to which Hume refers indirectly in the Treatise. Hume did not seem to appreciate that while bringing rigour to the differential and integral calculus was a central problem for mathematics, the angle of contact was (by his time) a non-problem that arose in the first place only owing to the antique authority of Euclid. Following Hume’s mathematical sources thereby shows us something about the role and significance of mathematics in the wider intellectual culture of his time. A small number of isolated and fossilized puzzles became emblematic of mathematics as both rational authority and inaccessible mystery.
Item Type | Other |
---|---|
Uncontrolled Keywords | mathematics; HISTORY; philosophy; Hume |
Subjects |
Arts and Humanities(all) > Philosophy Arts and Humanities(all) > History |
Divisions |
?? dep_phil ?? ?? sbu_sca ?? |
Date Deposited | 18 Nov 2024 12:21 |
Last Modified | 18 Nov 2024 12:21 |
-
picture_as_pdf - Mathematical_Memes_in_the_Age_of_Reason_revision_May_22_.pdf
-
lock - Restricted to Repository staff only