On the [α/Fe]-[Fe/H] relations in early-type galaxies
We study how the predicted [α/Fe]-[Fe/H] relations in early-type galaxies vary as functions of their stellar masses, ages, and stellar velocity dispersions, by making use of cosmological chemodynamical simulations with feedback from active galactic nuclei. Our model includes a detailed treatment for the chemical enrichment from dying stars, core-collapse supernovae (both Type II and hypernovae) and Type Ia supernovae. At redshift z = 0, we create a catalogue of 526 galaxies, among which we determine 80 early-type galaxies. From the analysis of our simulations, we find [α/Fe]-[Fe/H] relations similar to the Galactic bulge. We also find that, in the oldest galaxies, Type Ia supernovae start to contribute at higher [Fe/H] than in the youngest ones. On the average, early-type galaxies with larger stellar masses (and, equivalently, higher stellar velocity dispersions) have higher [α/Fe] ratios, at fixed [Fe/H]. This is qualitatively consistent with the recent observations of Sybilska et al., but quantitatively there are mismatches, which might require stronger feedback, sub-classes of Type Ia Supernovae, or a variable initial mass function to address.
Item Type | Other |
---|---|
Uncontrolled Keywords | CD- galaxies: evolution; Galaxies: abundances; Galaxies: elliptical and lenticular; Hydrodynamics; Stars: abundances; Supernovae: general |
Subjects |
Physics and Astronomy(all) > Astronomy and Astrophysics Earth and Planetary Sciences(all) > Space and Planetary Science |
Divisions | ?? sbu_spam ?? |
Date Deposited | 18 Nov 2024 12:22 |
Last Modified | 18 Nov 2024 12:22 |
-
picture_as_pdf - sly128.pdf